Kommission der Europäischen Gemeinschaften

MITTEILUNGEN ÜBER LANDWIRTSCHAFT

Die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in der Gemeinschaft

II. Charakterisierung der Regionen mit intensiver Tierhaltung

A. Bericht

Nr. 48 August 1978

Kommission der Europäischen Gemeinschaften

MITTEILUNGEN ÜBER LANDWIRTSCHAFT

Die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in der Gemeinschaft

II. Charakterisierung der Regionen mit intensiver Tierhaltung

A. Bericht

KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN

GENERALDIREKTION LANDWIRTSCHAFT Direktion: Agrarwirtschaft – Abteilung: "Bilanzen, Studien, statistische Informationen"

Bibliographische Daten befinden sich am Ende der Veröffentlichung

© Copyright EGKS-EWG-EAG, Brüssel-Luxemburg, 1978 Printed in Belgium

Der vollständige oder auszugsweise Nachdruck von Beiträgen dieser Veröffentlichung ist kostenlos und mit Quellenangabe gestattet.

ISBN 92-825-0520-0 Katalognummer: CB-NA-78-048-DE-C

VORWORT

Die vorliegende Studie wurde im Rahmen des Studienprogramms der Generaldirektion Landwirtschaft und der Dienststelle Umwelt und Verbraucherschutz der Kommission der Europäischen Gemeinschaften durchgeführt.

Die Studie wurde im Institut für Strukturforschung der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode unter der Leitung von Prof. Dr. E. NEANDER von den Herren G. BENEKER und P. UPHOFF ausgeführt. Sie umfasst einen Bericht sowie zwei Bände mit statistischen Daten (1) und bildet den zweiten Teil einer weiterreichenden Untersuchung der möglichen Umweltwirkungen der Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen (2).

Die Abteilung "Bilanzen, Studien, Statistische Informationen", "Landwirtschaftliche Erzeugungsstrukturen und Umweltfragen", "Koordinierung der Agrarforschung" der Generaldirektion Landwirtschaft und die Abteilung "Allgemeine Studien und Verbesserung der Umwelt" der Dienststelle "Umwelt und Verbraucherschutz" waren an den Arbeiten beteiligt.

Original: Deutsch

*

* *

Diese Studie gibt nicht zwangsläufig die Meinung der Kommission der Europäischen Gemeinschaften wider und greift in keiner Weise der künftigen Haltung der Kommission auf diesem Gebiet vor.

⁽¹⁾ Diese Bände werden in der gleichen Reihe veröffentlicht.

⁽²⁾ Der erste Teil "Wissenschaftliche Grundlagen für die Begrenzung der Ausbringung und Kriterien für regulierende Massnahmen" wurde unter Nummer 47 in der gleichen Reihe veröffentlicht.

Inhaltsverzeichnis

	<u>Seite</u>
1	Einleitung
1.1	Problemstellung
1.2	Aufgabe und Gliederung der Studie
2	Auswahl der Untersuchungsgebiete 20
2.1	Zielsetzung · · · · · · · · · · · · · · · · · · ·
2.2	Aufgliederung der EG in Teilregionen 20
2.2.1	Ziele der Aufgliederung
2.2.2	Möglichkeiten der regionalen Aufgliederung in den einzelnen Mitgliedstaaten der EG
2.2.3	Beschreibung der Kennziffern zur Identifikation der Teilregionen
2.3	Messung der Viehdichte in den Teilregionen 27
2.3.1	Methodische Alternativen zur Messung der Viehdichte 27
2.3.2	Verfügbarkeit und Vergleichbarkeit statistischer Informationen über Viehbestände und Flächen 31
2.3.3	Das angewendete Verfahren
2.4	Auswahl der Untersuchungsgebiete
2.4.1	Die Verteilung der Teilregionen nach der Dichte der Viehbestände
2.4.2	Das Verfahren der Gebietsauswahl
2.4.3	Ergänzende Untersuchungen zur Gebietsauswahl 48
3	Charakterisierung der Untersuchungsgebiete 66
3.1	Methodik der Charakterisierung
3.1.1	Auswahl von Grunddaten
3.1.1.1	Klima- und Bodenverhältnisse
3.1.1.2	Raumnutzung
3.1.1.3	Bodennutzung und Viehhaltung
3.1.2	Ableitung von Kennwerten zur Charakterisierung und Klassifizierung der Untersuchungsgebiete
3.1.2.1	Klima- und Bodenverhältnisse
3.1.2.2	Raumnutzung
3.1.2.3	Bodennutzung und Viehhaltung80

		Seite
3.1.2.3.1	Räumliche Konzentration der Viehhaltung	81
3.1.2.3.2	Betriebliche Konzentration der Viehhaltung	86
3.2	Darstellung der Grunddaten und Kennwerte zur Charakterisierung der Untersuchungsgebiete	92
3.3	Einige Ergebnisse der Analyse der betrieblichen Konzentration der Viehhaltung in den Untersuchungs-	
	gebieten	101
4	Klassifizierung der Untersuchungsgebiete	111
4.1	Methodik der Klassifizierung	111
4.1.1	Einzelklassifizierung	112
4.1.2	Hierarchische Klassifizierung	114
4.2	Ergebnisse der Klassifizierung	123
4.2.1	Einzelklassifizierung	146
4.2.2	Hierarchische Klassifizierung	149
5	Zusammenfassung und Schlußfolgerungen	175
6	Quellenverzeichnis	182
	Anhang	101

Verzeichnis der Übersichten:

- 1.1 Schematische Darstellung möglicher Umweltwirkungen der Tierhaltung
- 2.1 Gliederung der Mitgliedsländer der EG in Verwaltungseinheiten und deren Flächenausstattung in 1 000 ha
- 2.2 Anzahl "Vieheinheiten" je Tier verschiedener Tierarten und -kategorien in unterschiedlichen Verfahren der Umrechnung von Tieren auf "Vieheinheiten"
- 2.3 Eier- und Geflügelfleischproduktion in den Mitgliedstaaten der EG im Vergleich zum Hühnerbestand 1972
- 2.4 Umfang und Zusammensetzung der Rinder- und Schweinebestände in der Europäischen Gemeinschaft insgesamt und in den einzelnen Mitgliedstaaten, Dezember 1973
- 2.5 Wägungsfaktoren zur Umrechnung der Bestände verschiedener Tierarten auf "Vieheinheiten" (GVE)
- 2.6 Rinder-, Schweine- und Hühnerbestände in Tieren und "Vieheinheiten" (GVE) in drei Landkreisen der BR Deutschland, Dezember 1972
- 2.7 Statistische Maßzahlen zur Charakterisierung der Häufigkeitsverteilungen der 300 Teilregionen der EG nach der Viehdichte
- 2.8 Liste der nach dem Auswahlkriterium A₁ ausgewählten Teilregionen
- 2.9 Liste der nach dem Auswahlkriterium A₂ ausgewählten Teilregionen
- 2.10 Kreisfreie Städte und Landkreise in der BR Deutschland, in denen im Dezember 1972 die Dichte der Viehbestände den Schwellenwert nach A₂ (x) und A₁ (:) überschritt
- 2.11 Viehbestände und Viehdichte in den norditalienischen Provinzen im Oktober 1970
- 2.12 Entwicklung der Bestände an Rindern, Schweinen und Geflügel in England und Wales zwischen 1963 und 1972
- 2.13 Untersuchungsgebiete und Regionsaggregate in den Mitgliedstaaten der EG
- 2.14 Landwirtschaftlich genutzte Flächen (LF) sowie Rinder-, Schweine- und Hühnerbestände in den untersuchten Regionsaggregaten 1974
- 2.15 Anteile der Untersuchungsgebiete an der landwirtschaftlich genutzten Fläche und an den Rinder-, Schweine- und Hühnerbeständen der einzelnen Mitgliedstaaten sowie der EG insgesamt

- 2.16 Verzeichnis der Untersuchungsgebiete und Regionsaggregate
- 3.1 Umrechnungsfaktoren für die Ermittlung von "Futtereinheiten" und von "Rindviehäquivalenten" aus der Anzahl der Tiere verschiedener Tierkategorien
- 3.2 Abgrenzung von Betriebs- und Bestandsgrößenintervallen für Rinder und Schweine
- 3.3 Abgrenzung von Betriebs- und Bestandsgrößenintervallen für Legehennen und Masthühner
- 3.4 Beispiel für die Computerausdrucke im Teil B ("Statistische Daten: Grunddaten und Kennwerte")
- 3.5 Verzeichnis der in den Computerausdrucken des Teils B (vgl. Übersicht 3.4) enthaltenen Grunddaten und Kennwerte
- 3.6 Beispiel für die Computerausdrucke im Teil C ("Statistische Daten: Räumliche Konzentration der Viehhaltung")
- 3.7 Anzahl der Rinder- und Schweinehaltungen und Anteil der Rinder und Schweine in unterschiedlichen Haltungstypen in den Regionsaggregaten
- 4.1 Abgrenzung der Ausprägungsintervalle der in die Einzelklassifizierung (EK) einbezogenen Variablen
- 4.2 Abgrenzung der Ausprägungsintervalle der in die hierarchische Klassifizierung (HK) einbezogenen Variablen
- 4.3 Ergebnisse der Klassifizierung der Untersuchungsgebiete
- 4.4 Ergebnisse der Klassifizierung der Regionsaggregate
- 4.5 Verteilung von 292 Untersuchungsgebieten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung
- 4.6 Verteilung von 40 Regionsaggregaten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung
- 4.7 Verteilung der landwirtschaftlich genutzten Flächen von 292 Untersuchungsgebieten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung
- 4.8 Verteilung der landwirtschaftlich genutzten Flächen von 40 Regionsaggregaten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung
- 4.9 Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 8 und 12

- 4.10 Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 13 und 14
- 4.11 Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufe 15 mit einer Viehdichte von 150 und mehr P₂O₅-RE je 100 ha LF (Typ 15a)
- 4.12 Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufe 16
- 4.13 Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 20 und 21
- 4.14 Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufe 23

Verzeichnis der Abbildungen:

- 1.1 Schematische Darstellung von Nährstoffentzug und Nährstoffzufuhr in Boden und Gewässern in einem land-wirtschaftlichen Betrieb
- 3.1 Verhältnis zwischen Rindviehäquivalenten (RE) und Futtereinheiten (FE) bei verschiedenen Tierarten
- 4.1 Schematische Darstellung der hierarchischen Klassifizierung (Dendrogramm)

Verzeichnis der Karten:

- 2.1 Geographische Lage der ausgewählten Untersuchungsgebiete in der EG
- 3.1 Anteil der Rinder in "mittleren und großen Intensivhaltungen" am Rinderbestand in den Regionsaggregaten
- 3.2 Anteil der Rinder in "Großintensivhaltungen" am Rinderbestand in den Regionsaggregaten
- 3.3 Anteil der Rinder in "Großhaltungen" am Rinderbestand in den Regionsaggregaten
- 3.4 Anteil der Schweine in "mittleren und großen Intensivhaltungen" am Schweinebestand in den Regionsaggregaten
- 3.5 Anteil der Schweine in "Großintensivhaltungen" am Schweinebestand in den Regionsaggregaten
- 3.6 Anteil der Schweine in "Großhaltungen" am Schweinebestand in den Regionsaggregaten
- 4.1 Räumliche Verteilung der durch Untersuchungsgebiete vertretenen Endstufen der hierarchischen Klassifizierung

1. Einleitung

1.1 Problemstellung

Jede Haltung landwirtschaftlicher Nutztiere zur Gewinnung tierischer Erzeugnisse ist mit gewissen Wirkungen auf die Umwelt verbunden, sei es durch Abgabe von Stoffen an verschiedene Umweltmedien wie z.B. Luft, Boden und Wasser, sei es durch Veränderung der Umweltmedien selbst. Art und Intensität dieser Umweltwirkungen hängen u.a. vom Umfang und von der Zusammensetzung der je Flächeneinheit gehaltenen Viehbestände und von der Art der zur Anwendung gelangenden Haltungsverfahren ab. Übersicht 1.1 enthält den Versuch einer systematischen Zusammenstellung möglicher Umweltwirkungen der Tierhaltung.

In der Vorspalte der Übersicht sind, einer häufig verwendeten Einteilung folgend ¹⁾, sechs verschiedene Umweltbereiche unterschieden, nämlich Klima und Luft, Boden, Wasser, Flora, Fauna und Landschaftsbild. Für jeden dieser Bereiche sind diejenigen Wirkungen aufgeführt, die von einer Tierhaltung ausgehen können, so beispielsweise für den Bereich Klima und Luft die durch sie möglicherweise verbreiteten Gerüche, Geräusche, Stäube, Ungeziefer, Keime und Giftstoffe.

Im Tabellenkopf sind drei verschiedene Orte der möglichen Entstehung von Umweltwirkungen aufgeführt, nämlich

- die Stallgebäude, in denen Tiere gehalten und anfallende Exkremente gesammelt werden,
- die Wege, auf denen die gesammelten Exkremente abtransportiert werden und
- die Flächen, auf die die tierischen Exkremente aufgebracht werden.

Schließlich sind - stark vergröbernd - zwei hinsichtlich ihrer wahrscheinlichen Umweltwirkungen voneinander abweichende Formen der Tierhaltung unterschieden: Der "Gemischtbetrieb" mit geringem bis mittlerem Umfang des Viehbestands und geringer Besatzdichte und der "Spezialbetrieb" mit hoher Bestands- und Besatzstärke einer einzigen Viehart.

¹⁾ Vgl. z.B. Umweltgutachten 1974. Hrsg. v. Rat der Sachverständigen für Umweltfragen. Stuttgart-Mainz 1974, S. 248.

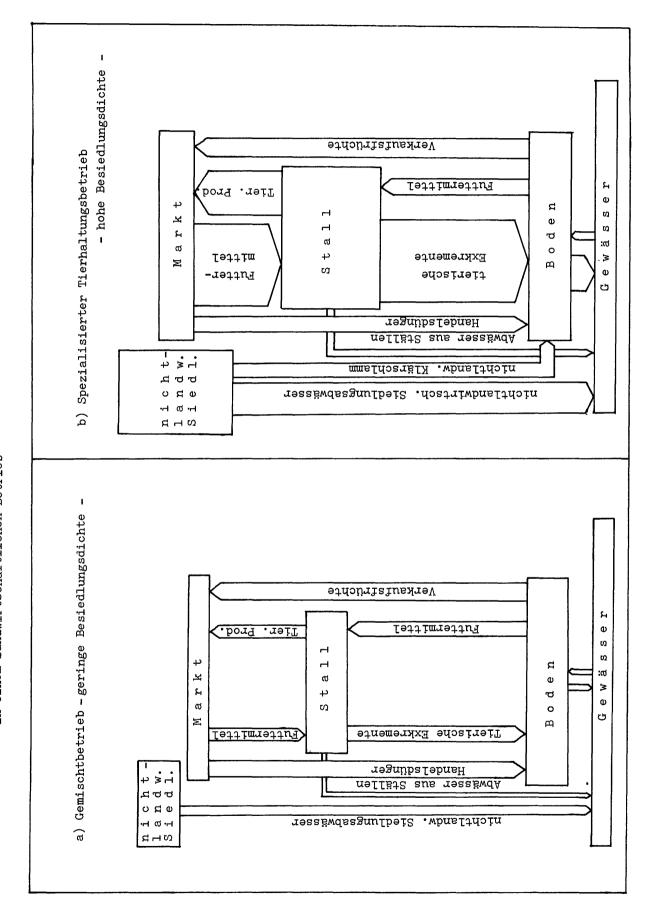
Schematische Darstellung möglicher Umweltwirkungen der Tierhaltung 1) Ubersicht 1.1:

Wahrscheinlichkeit der Entstehung und Intensität von Umweltwirkungen: - = nicht vorhanden; I = gering; II = hoch
 Gemischtbetrieb mit geringem bzw. mittlerem Viehbestand und -besatz; spezialisierter Tierhaltungsbetrieb mit hohem Viehbestand und -besatz.

Für jeden der Entstehungsorte, jede der beiden Haltungsformen, jeden der Umweltbereiche und jede der zugehörigen Wirkungsarten sind die relative Wahrscheinlichkeit der Entstehung von Umweltwirkungen und deren vermutliche Intensität (-, I, II) unter sonst gleichen Bedingungen abgeschätzt. Wahrscheinlichkeit und Intensität von Umweltwirkungen der Tierhaltung werden natürlich auch sehr wesentlich von den in den tierhaltenden Betrieben jeweils zur Anwendung gelangenden technischen Hilfsmitteln und organisatorischen Vorkehrungen zur Vermeidung bzw. Verminderung potentieller Umweltwirkungen mitbestimmt, die allerdings in dieser Darstellung nicht berücksichtigt sind.

Umweltwirkungen der erwähnten Art können zu einer Beeinträchtigung von Umweltansprüchen Einzelner oder der Allgemeinheit führen. Soweit Ansprüche der verursachenden Tierhalter selbst berührt werden, beispielsweise an die Erhaltung und Steigerung der Produktivität der von ihnen landwirtschaftlich genutzten Flächen, schlagen sich die betreffenden Umweltwirkungen längerfristig in den Erträgen und Kosten der tierhaltenden Betriebe nieder und lösen deshalb in der Regel Maßnahmen zur Verminderung der entstandenen Beeinträchtigungen aus. Umweltwirkungen der Tierhaltung, die zu einer Beeinträchtigung von Ansprüchen Dritter oder der Allgemeinheit führen, machen hingegen staatliche Eingriffe zur Vermeidung bzw. zur Regelung hieraus resultierender Konflikte erforderlich. So ist beispielsweise während der vergangenen Jahre in der Bundesrepublik Deutschland eine Vielzahl von Gesetzen und Verordnungen in Kraft getreten, die das Ziel verfolgen, Beeinträchtigungen der Umwelt allgemein bzw. speziell durch Tierhaltung zu verhindern oder auf ein erträgliches Maß zu reduzieren ²⁾.

¹⁾ Vgl. insbesondere: Umweltschutz in Land- und Forstwirtschaft. 3. Teil: Tierische Produktion. Berichte über Landwirtschaft, N.F. 50 (1972), Heft 3. - STRAUCH, D., BAADER, W. und TIETJEN, C. (Hrsg.): Abfälle aus der Tierhaltung. Anfall, Umweltbelastung, Behandlung, Verwertung. Stuttgart 1977.


²⁾ Vgl. hierzu z.B. EYSEL, H.: Rechtsfragen zum Umweltschutz in der Landwirtschaft. Hrsg. v. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. Münster 1977. - STORM, P.-Chr.: Rechtsvorschriften zum Schutz der Allgemeinheit von Verunreinigungen des Bodens und Wassers durch tierische Exkremente sowie von Geruchs-, Staub- und Keimemissionen aus der Tierproduktion. In: STRAUCH, D. u.a.: Abfälle aus der Tierhaltung, a.a.O., S. 345-370.

Zu den Umweltwirkungen der Haltung landwirtschaftlicher Nutztiere, die unter bestimmten Voraussetzungen zu Beeinträchtigungen von Umweltansprüchen Einzelner oder der Allgemeinheit führen können, gehören auch jene, die aus der Aufbringung von in Nutzviehbeständen anfallenden tierischen Exkremente, genauer: der in ihnen enthaltenen Nährstoffe, auf landwirtschaftlich genutzte Flächen resultieren und Gegenstand der vorgelegten Studie sind. Um die Bedeutung dieser Umweltwirkungen abschätzen zu können, erscheint es zunächst zweckmäßig, sich Richtung und Größenordnung der gesamten Nährstoffströme zwischen einem Betrieb mit landwirtschaftlicher Bodennutzung und Tierhaltung und seiner jeweiligen Umwelt zu vergegenwärtigen. Dies ist in der Abbildung 1.1 versucht worden.

In der linken Hälfte der Abbildung (Fall a) wird von einem sogen. "Gemischtbetrieb" mit geringer Bestandsgröße und Besatzdichte der Tierhaltung in einem Gebiet mit relativ geringer Besiedlungsdichte ausgegangen, in der rechten Hälfte (Fall b) dagegen von einem spezialisierten Tierhaltungsbetrieb mit hohem Viehbestand und -besatz in einem Gebiet relativ dichter Besiedlung. Richtung und relativer Umfang der Nährstoffströme sind durch Pfeile angedeutet.

Den Boden verlassen Nährstoffe in den an den Markt gelangenden Verkaufsfrüchten sowie in selbsterzeugten Futtermitteln, die über die im Betrieb gehaltenen Viehbestände ("Stall") verwertet werden. Mit den von diesen hervorgebrachten und zum Verkauf gebrachten Schlacht- und Nutztieren und tierischen Produkten gelangen weitere Nährstoffmengen auf den Markt. Umgekehrt werden mit den vom Markt zugekauften Futtermitteln der betrieblichen Viehhaltung Nährstoffe zugeführt, und von dieser fließen in den anfallenden tierischen Exkrementen, zusammen mit den auf dem Markt beschafften Handelsdüngern, Nährstoffe an den Boden zurück. Vom Boden nicht unmittelbar verwertete und gespeicherte Nährstoffmengen gehen in das Oberflächen- oder Grundwasser über, wo sie mit Nährstoffmengen zusammentreffen, die aus den im landwirtschaftlichen Betrieb unmittelbar eingeleiteten Abwässern, insbesondere aber aus nichtlandwirtschaftlichen Siedlungsabwässern stammen.

Schematische Darstellung von Nährstoffentzug und Nährstoffzufuhr in Boden und Gewässer in einem landwirtschaftlichen Betrieb

Während in Gemischtbetrieben (a) typischer Weise mehrere Nutzvieharten nebeneinander gehalten werden, die Viehbesatzdichte insgesamt jedoch relativ gering bleibt, werden in spezialisierten Viehhaltungsbetrieben (b) zwecks Ausnutzung der sich bietenden internen und externen Spezialisierungs- und Größenvorteile Viehbestände meist nur einer Tierart gehalten, die - bezogen auf die landwirtschaftlich genutzte Fläche - ein Vielfaches der in Gemischtbetrieben vorhandenen Besatzdichte erreichen. Bei häufig nur unwesentlich verändertem Umfang der Erzeugung von Verkaufsfrüchten wächst mit zunehmendem Umfang des Tierbestands zwangsläufig der Austausch von Nährstoffen über den Markt, einerseits in Form von verkauften Schlacht- und Nutztieren und tierischen Produkten, andrerseits in Gestalt zugekaufter Futtermittel. In ähnlichem Ausmaß nimmt der Anfall an tierischen Exkrementen zu, die - mangels wirtschaftlich lohnender Verwertungsalternativen - im allgemeinen der landwirtschaftlich genutzten Fläche zugeführt werden. Aufgrund der einseitigen Zusammensetzung der in den tierischen Exkrementen enthaltenen Nährstoffmengen kann der Handelsdüngeraufwand gegenüber dem Gemischtbetrieb nur innerhalb gewisser Grenzen eingeschränkt werden. Da überdies die Nährstoffzufuhr aufgrund der meist begrenzten Lagerkapazität für tierische Exkremente zeitlich dem Bedarf der Nutzpflanzen nicht vollständig angepaßt werden kann, steigt mit zunehmender Viehbesatzdichte die Nährstoffabgabe aus dem Boden an das Oberflächen- und Grundwasser, während die Grenzverwertung der in den tierischen Exkrementen enthaltenen Nährstoffe durch die angebauten Kulturpflanzen stetig abnimmt und schließlich sogar negativ wird. Diese Zusammenhänge variieren allerdings sowohl in quantitativer als auch in qualitativer Hinsicht unter dem Einfluß von Bodenart und Geländeform, von Kulturartenverhältnis und Fruchtfolge, von anbautechnischen Maßnahmen und von Umfang und Zusammensetzung des Mineraldüngeraufwands sowie der zeitlichen Verteilung der aufgebrachten Mengen an tierischen Exkrementen.

Vollzieht sich die betriebliche und räumliche Konzentration der Viehhaltung - wie im Fall (b) unterstellt - in oder nahe einem Gebiet mit hoher Besiedlungsdichte, kumulieren somit die Ansprüche an die begrenzt verfügbare Kapazität von Boden und Wasser, gleichzeitig Abfälle zu verwerten, Schadstoffe umzuwandeln, Trinkwasser bereitzuhalten und landwirtschaftliche Erzeugnisse hervorzubringen, so erhöht sich natürlich die Wahrscheinlichkeit, daß es zu Beeinträchtigungen der Umweltansprüche Dritter oder der Allgemeinheit und in deren Gefolge zu Konflikten kommt.

1,2 Aufgabe und Gliederung der Studie

Die vorliegende Studie ist Teil einer Untersuchung über "Umweltfolgen der Anwendung moderner Erzeugungsverfahren in der Landwirtschaft - Bestimmung von Höchstschwellen für die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen". Der
erste Teil dieser Untersuchung dient dem Zweck, auf der Grundlage
bodenkundlicher und pflanzenphysiologischer Eerkenntnisse Höchstwerte für die auf landwirtschaftlich genutzte Flächen aufzubringenden Mengen an tierischen Exkremente in Abhängigkeit vom Gehalt
dieser Exkremente an Nährstoffen sowie deren Verwertung durch die
verschiedenen Kulturpflanzen zu bestimmen. Er wurde im Instituut
voor Bodemvruchtbaarheid in Haren (Niederlande) durchgeführt.

Aufgabe des hier vorgelegten, im Institut für Strukturforschung der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (Bundesrepublik Deutschland) bearbeiteten zweiten Teils der Untersuchung ist es, diejenigen Gebiete in der Europäischen Gemeinschaft zu identifizieren, in denen Tierhaltung mit besonderer Intensität betrieben wird, und diese Gebiete nach Merkmalen des Bodens, des Klimas, der Raumnutzung, der Tierhaltung und der landwirtschaftlichen Bodennutzung zu charakterisieren und zu klassifizieren. Dabei wird zugleich der Versuch unternommen, solche Teilgebiete innerhalb der Europäischen Gemeinschaft zu identifizieren, in denen die (rechnerisch) auf die jeweils vorhandenen landwirtschaftlich genutzten Flächen entfallenden Mengen an tierischen Exkrementen möglicherweise zu Umweltbeeinträchtigungen führen können.

Die vorliegende Studie umfaßt einen Bericht sowie einen Statistischen Anhang. Im Bericht werden die bei der Untersuchung zur Anwendung gebrachten Methoden erläutert sowie einige ausgewählte Ergebnisse vorgestellt. Der Statistische Anhang enthält für jede der ausgewählten Regionen - je nach Datenverfügbarkeit - detaillierte Angaben zu den Aspekten Boden und Klima, Raumnutzung, Landbewirtschaftung und Tierhaltung.

Der Bericht beginnt in Kapitel 2 mit der Darstellung der Abgrenzung der Untersuchungsgebiete. Hierzu wird das Gebiet der Europäischen Gemeinschaft in insgesamt 300 Regionen aufgegliedert. Nach ausführlicher Diskussion möglicher Alternativen zur Bestimmung der "Viehdichte" (Viehbestand je Flächeneinheit) als Maßstab für die Intensität der Viehhaltung sowie der hierfür erforderlichen und der tatsächlich verfügbaren statistischen Informationen werden aus den o.g. Regionen diejenigen ausgewählt, in denen die Viehdichte insgesamt, die Dichte der Schweine- und Hühnerbestände bzw. die Dichte der Hühnerbestände bestimmte, im einzelnen begründete Schwellenwerte überschreiten.

In Kapitel 3 folgt eine eingehende Darstellung der Ziele, Methoden und Ergebnisse der Charakterisierung der ausgewählten Regionen. Zunächst werden Grunddaten aufgeführt, die möglichst für alle Regionen verfügbar sowie inhaltlich vergleichbar sind und geeignet erscheinen, die Untersuchungsgebiete hinsichtlich der o.g. Aspekte zu beschreiben. Ihre Auswahl wird begründet und dargestellt. Aus den Grunddaten werden sodann Verhältniszahlen (Kennwerte) gebildet. Unter der Zielsetzung einer möglichst übersichtlichen Information werden aus der Vielzahl der möglichen Kennwerte insgesamt über 200 Variable zur Kennzeichnung der Bereiche "Boden- und Klimaverhältnisse", "Raumnutzung", "Bodennutzung" und "räumliche und betriebliche Konzentration der Tierhaltung" in den Untersuchungsgebieten herangezogen. Die ermittelten Größenordnungen der Werte der Variablen werden diskutiert und interpretiert.

In Kapitel 4 schließt sich eine Klassifizierung der Untersuchungsgebiete an. Zunächst werden Zielsetzung und Methoden der Klassifizierung vorgestellt. Mit dem Ziel, die für alle Regionen verfügbaren und besonders aussagekräftigen Informationen zu ordnen und anschaulich darzustellen, werden 22 Variable ausgewählt. Die Klassifizierung erfolgt einmal als Einzelklassifizierung und zum anderen als hierarchische Klassifizierung. In der Einzelklassifizierung werden die Werte jeder der 22 ausgewählten Variablen jeweils fünf Wertebereichen zugeordnet. In der Regel ist die Reihenfolge der Intervalle so definiert, daß dem Intervall mit der höheren Ordnungsnummer der im Sinne der der Gesamtstudie zugrundegelegten Fragestellung höhere Problemgehalt zugeordnet werden kann. Auf diese Weise können diejenigen unter den Untersuchungsgebieten, in denen das Vorhandensein bzw. die Entstehung von Umweltbeeinträchtigungen unter einem bestimmten Aspekt besonders wahrscheinlich ist, leicht identifiziert werden. Mittels einer hierarchischen Folge von 10 Abfrageschritten (hierarchische Klassifizierung) wird sodann versucht, die Untersuchungsgebiete nach Maßgabe der Ausprägung von bestimmten Variablen in beschreibbare Gruppen zu unterteilen. Der Weg, den eine bestimmte Region bei jedem Abfrageschritt nimmt, sowie der "Ausgang", bei dem diese Region nach dem zehnten Abfrageschritt landet, vermitteln zusammen einen guten Überblick über die Eigenschaften der Regionen im Hinblick auf verschiedene Aspekte. Die Ergebnisse der beiden Klassifizierungen werden dargestellt.

Im abschließenden Kapitel 5 werden einige der Ergebnisse der Klassifizierung der Untersuchungsgebiete zusammenfassend rekapituliert und Möglichkeiten und Grenzen ihrer Nutzbarmachung für regulierende Maßnahmen zur Vermeidung bzw. Begrenzung von Umweltbeeinträchtigungen diskutiert.

2. Auswahl der Untersuchungsgebiete

2.1 Zielsetzung

Ausgehend von der Hypothese, daß es zu möglichen Umweltbeeinträchtigungen durch Viehhaltung im Sinne der hier zu behandelnden Problemstellung nur in Gebieten mit einer relativ hohen Dichte der Viehbestände ("Viehdichte") kommen kann, gilt es zunächst, diese Gebiete innerhalb der Mitgliedstaaten der Europäischen Gemeinschaft (EG) zu identifizieren. Hierzu ist es erforderlich,

- zunächst das Gesamtgebiet der EG in geeigneter Weise in Teilregionen aufzugliedern.
- danach für jede dieser Teilregionen mit Hilfe möglichst vergleichbarer Methoden und statistischer Daten die Viehdichte zu ermitteln und
- schließlich anhand der so gewonnenen Werte diejenigen in den folgenden Kapiteln näher zu untersuchenden Gebiete auszuwählen, in denen die Viehdichte bestimmte im einzelnen abzuleitende und zu begründende Schwellenwerte bereits überschreitet oder in absehbarer Zeit überschreiten wird.

2.2 Aufgliederung der EG in Teilregionen

2.2.1 Ziele der Aufgliederung

Bei der Aufgliederung der EG in Teilregionen werden vier Ziele verfolgt:

- 1. sollen die regionalen Unterschiede der Viehdichte innerhalb der EG möglichst differenziert ermittelt werden;
- 2. sollen die zu bildenden Teilregionen in sich möglichst homogen sein, damit charakteristische Merkmale einer Region auch charakteristisch für Teile dieser Region sind;
- 3. sollen die zu bildenden Teilregionen von etwa vergleichbarer Größe nach dem Umfang der landwirtschaftlich genutzten Fläche sein;
- 4. sollen für diese Teilregionen allgemein zugängliche statistische Informationen zur Verfügung stehen.

Diese vier Ziele konkurrieren miteinander, können also nicht alle gleichzeitig im höchstmöglichen Umfang erreicht werden: Schöpft man beispielsweise die regionale Aufgliederung der verfügbaren Statistiken jeweils maximal aus (Ziel 1), so werden die Regionen sehr unterschiedlich groß (Ziel 3). Wählt man die Regionen etwa gleich groß (Ziel 3), so können Details verloren gehen (Ziel 1) und werden möglicherweise recht heterogene Teile zu Regionen zusammengefaßt (Ziel 2). Gliedert man schließlich einige Mitgliedstaaten (z.B. Niederlande, Belgien) nach landwirtschaftlich homogenen Naturräumen statt nach den Verwaltungsgebieten (Ziel 2), so leidet die Vergleichbarkeit mit den nicht in gleicher Weise gliederbaren Staaten (Ziel 3) bzw. sind unangemessene Aufwendungen für die Beschaffung der benötigten statistischen Daten notwendig (Ziel 4). Es muß deshalb ein Kompromiß zwischen den vier Zielen geschlossen werden. In einem ersten Schritt stehen die Ziele Datenverfügbarkeit (4), Differenziertheit (1) und Größenähnlichkeit (3) im Vordergrund. In einem zweiten Schritt erfolgt dann eine Überprüfung der auf diese Weise gewonnenen Aufgliederung im Hinblick auf das Ziel Homogenität (2).

2.2.2 <u>Möglichkeiten der regionalen Aufgliederung in den einzelnen</u> <u>Mitgliedstaaten der EG</u>

Die administrative Untergliederung der Bundesrepublik be utschland erfährt seit einigen Jahren im Zuge von Gebiets- und Verwaltungsreformen fortlaufende Änderungen. Während am 27.5.1970 11 Bundesländer 1), 30 Regierungs- bzw. Verwaltungsbezirke, 542 Kreise (136 kreisfreie Städte und 406 Landkreise) sowie 22 510 Gemeinden 2) bestanden, waren es beispielsweise am 1.1.1975 bei 11 Bundesländern nur noch 29 Regierungs- bzw. Verwaltungsbezirke, 343 Kreise (93 kreisfreie Städte und 250 Landkreise) sowie 10 914 Gemeinden Solange die Gebiets- und Verwaltungs- reformen andauern, sind Analysen statistischer Zeitreihen auf

¹⁾ Einschließlich Berlin (West).

²⁾ Einschließlich Hamburg, Bremen, Berlin (West), der kreisfreien Städte sowie der bewohnten gemeindefreien Gebiete.

³⁾ Vgl. Amtliches Gemeindeverzeichnis für die Bundesrepublik Deutschland, Ausgabe 1971. Hrsg. v. Statistischen Bundesamt. Stuttgart-Mainz 1972, S. 11. - Statistisches Jahrbuch 1975 für die Bundesrepublik Deutschland. Hrsg. v. Statistischen Bundesamt. Stuttgart-Mainz 1975, S. 48.

Kreis- und Gemeindeebene unmöglich und selbst Querschnittsanalysen von Daten, die zu verschiedenen Zeitpunkten im Jahr erhoben werden (beispielsweise Bodennutzungserhebung im Mai, Viehzählung im Dezember) können problematisch werden. Demgemäß erscheint es sinnvoll, die BRD zunächst nur bis zur Ebene der Regierungs- bzw. Verwaltungsbezirke aufzugliedern 1) und erst auf der zweiten Stufe weitere Untersuchungen auf der Ebene der kreisfreien Städte und Landkreise anzustellen.

gliedert sich administrativ seit 1968 in Frankreich 21 Regions, 95 Departements, 322 Arrondissements, 3 208 Cantons und 37 708 Communes 2). Zeitreihen- und Querschnittsanalysen erscheinen auf der Ebene der Regions und Departements unproblematisch, da die Verwaltungsstruktur stabil ist. Von der Verfügbarkeit der Daten her erscheint die Departementebene als feinstmögliche Gliederungsstufe 3).

I t a l i e n ist verwaltungstechnisch in 20 Regioni, 94 Provincie und dem Bearbeiter unbekannt viele Communi aufgegliedert 4). Gut verfügbar sind Daten (bis auf solche der Geflügelhaltung) auf der Ebene der Regioni. Anhand der Ergebnisse der Landwirtschaftszählung 1970 könnten sie auch für die Ebene der Provinzi geschätzt werden. Eine Schätzung der Geflügelbestände erscheint auf dieser Aggragationsebene allerdings nicht zulässig, weil die Informationen zu vage sind. In gewissem Umfang ebenfalls verfügbar sind statistische Daten gegliedert nach den drei Höhenzonen ("Zone altimetriche"), Ebene ("pianura"), Hügelland ("collina") und Gebirge ("montagna").

Die Agrarstatistik der Niederlande wird parallel nach zwei verschiedenen Konzepten der regionalen Aufgliederung veröffentlicht, nämlich einmal für die 13 bzw. 12 ⁵⁾ Provincies, zum anderen

¹⁾ Sowie der nicht in Regierungs- bzw. Verwaltungsbezirke gegliederten Bundesländer Schleswig-Holstein, Hamburg, Bremen und Saarland sowie Berlin (West).

2) Institut Nationale de la Statistique et des Etudes Economiques

⁽INSEE), Annuaire Statistique de la France 1974, S. 3. - Ohne überseeische Besitzungen.

³⁾ Die Departements sind ferner in "regions agricoles" aufgegliedert,

für die teilweise ebenfalls Daten vorliegen.

4) Istituto Centrale di Statistica (ISTAT), Annuario Statistico Italiano, 1972, Rom 1972, S. 2f.

5) Die Provinzen Nordost-Polder und Flevoland werden häufig unter dem Begriff "Landbouwgebieden" zusammengefaßt.

für 6 Gruppen von Landbouwgebieden (Einteilungskriterium Bodenart). Darüber hinaus ist prinzipiell eine Aufgliederung in die entsprechenden Untereinheiten (942 Gemeenten ¹⁾ bzw. 121 Landbouwgebiede) möglich.

In ähnlicher Weise basiert die Agrarstatistik in Belgien auf zwei Gliederungskonzepten, einmal auf dem nach 9 Provinces und zum anderen auf dem nach 13 Regions agricoles ²⁾. Statistische Informationen sind darüber hinaus teilweise auch für die 43 Arrondissements administratifs und 2 359 Communes ³⁾ verfügbar.

Luxemburg ist administrativ in 3 Districts, 12 Cantons und 126 Communes gegliedert. Statistische Daten werden von den Communes erhoben und sind auf dieser Ebene verfügbar.

Im Vereinigten Königreich wird die Agrarstatistik von den drei Landesteilen England und Wales, Schottland und Nordirland relativ autonom betrieben. Dies führt zu unterschiedlichen Möglichkeiten der Aufgliederung der drei Teilgebiete. Vom SAEG wird das VK zunächst in 10 Regions gegliedert 4). In Schottland erfolgt als nächste Stufe die Einteilung in 5 (Sub)-Regions, danach in allen Teilen des VK die Aufteilung in insgesamt 97 Counties. Auf dieser Ebene werden allerdings in Nord-Irland keine statistischen Daten veröffentlicht.

I r l a n d gliedert sich administrativ in 4 Provinces und 27 Counties. Auf beiden Ebenen sind statistische Daten verfügbar.

^{1) 1966,} vgl. Central Bureau voor de Statistiek, Jaarcijfers vor Nederland 1965-1966, S. 9.

²⁾ Außerdem wird Belgien auch in Arrondissements judicaires bzw. Cantons jedicaires eingeteilt. Vgl. Institut National de Statistique, Annuaire Statistique de la Belgique, Tome 93, 1973, S. 6.

³⁾ Ebenda. S. 6.

⁴⁾ Vgl. SAEG, Agrarstatistik, 1, 1973. Diese Gliederung entspricht etwa der Aufteilung in 11 ökonomische Planungsgebiete (Vgl. Kommission der Europ. Gemeinschaften - Generaldir. Regionalpolitik, Regionalwirtschaftliche Struktur und Politik im Vereinigten Königreich, 1972, S. 6).

Dänemark wurde im April 1970 regional neu gegliedert, und zwar in 14 Amtslaegekredse und 277 Kommuner 1). Von der Agrarstatistik her kann ab 1970 eine Analyse auf der Ebene der Gemeinden (Kommuner) erstellt werden.

Übersicht 2.1 ermöglicht eine überschlägige Beurteilung der Alternativen für eine Aufgliederung der Mitgliedstaaten der EG in Teilregionen im Lichte der drei Ziele Differenziertheit der Informationen. Größenähnlichkeit der Regionen und Beschränkung auf verfügbare statistische Daten. Legt man unter dem Gesichtspunkt optimale Größenähnlichkeit der Teilregionen eine durchschnittliche Größe von 200 bis 300 Tausend Hektar Gesamtfläche bzw. von 150 bis 250 Tausend Hektar landwirtschaftlich genutzte Fläche je Teilregion zugrunde, so stehen auf dieser Ebene statistische Daten in den Niederlanden (Provincies), im Vereinigten Königreich ohne Nordirland (Counties), in Irland (Counties) und in Dänemark (Amtslaegekredse) zur Verfügung. In der Bundesrepublik Deutschland und in Frankreich entspräche dieser Größenordnung eine Aggregationsebene zwischen den Stufen 3 und 4. In Italien und in Nordirland stehen auf der Ebene der Teilregionen entsprechender Größenordnung nicht alle bzw. keine der benötigten statistischen Informationen zur Verfügung. Vollständige statistische Daten auf einer wesentlich niedrigeren Aggregationsebene werden lediglich in Dänemark veröffentlicht.

Unter Berücksichtigung der tatsächlichen Verfügbarkeit statistischer Informationen wird in der ersten Stufe von folgender Aufgliederung der Mitgliedstaaten der EG in Teilregionen ausgegangen:

Regierungs-bzw. Verwaltungs-bezirke 2) Bundesrepublik Deutschland:

Frankreich: Departements

Italien: Regioni Niederlande: Provincies

Belgien: Provinces

¹⁾ Danmarks Statistik, Statistik Arbog 1972, S. 2. - Ohne Färoer-Inseln und Grönland.

²⁾ Sowie die nicht in Regierungs- bzw. Verwaltungsbezirke gegliederten Bundesländer und Berlin (West).

Gliederung der Mitgliedsländer der EG in Verwaltungseinheiten und deren Flächenausstattung in 1 000 ha Ubersicht 2.1:

Dänemark (DK)	4 307 2 921	Länder 2 2 154 1 461	Amtslaegekredse 14 309 209	Kommuner 277 16	
Irland (IR)	7 030 4 829	Provinces 4 1 758 1 206	Counties 27 260 179		
Vereinigtes Königreich (VK)	24 402 18 742	Regions 10 2 440 1 874	Counties 95 257 197		
Luxemburg (L)	260 132	(Districts) $\frac{87}{44}$	(Cantons) 12 22 11	(Communes) 126 2	
Belgien (B)	3 050 1 586	<u>Provinces</u> 5) 9 339 176	(Arrondissements) 43 71		
Niederlande (NL)	3 685 2 537	Provinces 4) 12 307 211	Gemeenten) 942 4		
Italien (I)	30 120 17 491	Regioni ³⁾ 20 1 560 875	(Provincie) 94 320 186		
Frankreich (F)	54 900 32 503	Regions 21 2 614 1 548	Departements 95 578 542	(Arrondissements) 522 171 101	(Cantons) 3 208 17 10
Bundesrepublik Deutschland (D)	24 745 13 303	Länder 11 2 250 1 209	RegBezirke ¹⁾ 74 728 728 391	(Kreise) ²⁾ 343 72 72 39	(Gemeinden) 10 914 2
Einheit	insgesamt Fläche*) F: LF:	Bezeichnung: Anzahl: Ø Fläche*) F: LF:	Bezeichmung: Anzahl; Ø Fläche*) F: LF:	Bezeichnung: Anzahl; Ø Fläche*) F: LF:	Bezeichnung: Anzahl: Ø Fläche*) F: LF:
Stufe	~	7	W	7	7.

Stand: BR Deutschland: 1975; Frankreich: 1974; Belgien und Luxemburg: 1975; Italien, Vereinigtes Königreich, Irland und Dänemark: 1972; Niederlande: 1966.

*) F = Gesamfläche; LF = Landw. genutzte Fläche jeweils in 1 000 ha. - 1) Regierungs- und Verwaltungsbezirke, Länder ohne Einteilung in Reg.-Bez. (Schleswig-Holstein, Saarland), Stadtstaaten (Hamburg, Bremen) sowie Berlin (West). - 2) 93 kreisfreie Städte (einschließlich Stadtstaaten und Berlin (West)) und 250 Landkreise. - 3) Darüber hinaus besteht eine Einteilung der Regioni in je drei "Höhenzonen" (montagna, collina, pianura). - 4) Daneben besteht eine Einteilung in 13 Regions agricoles.

Unterstreichung bedeutet: Diese Aggregationsebene wird zunächst zur Untersuchung herangezogen. Klammern bedeuten: Auf dieser Aggregationsebene sind vollständige Statistiken nicht verfügbar.

25

Luxemburg: insgesamt
England, Wales und Schottland: Counties
Nord-Irland: insgesamt
Irland: Counties

Dänemark: Amtslaegekredse

Bei Zusammenfassung der kleineren Departements um Paris zu den zwei Gebieten "Ile de France" und "Seine et Marne" ergeben sich für die EG insgesamt 300 Teilregionen.

Natürlich weisen diese 300 Teilregionen sowohl zwischen den verschiedenen Mitgliedstaaten als auch teilweise innerhalb derselben immer noch erhebliche Größenunterschiede auf. Darüber hinaus sind sie teilweise in sich wenig homogen, da die Verwaltungsgliederung der Mitgliedstaaten ja nach anderen Kriterien als nach der Einheitlichkeit der Standortbedingungen für die landwirtschaftliche Produktion erfolgt. Vor allem für Italien, Nordirland, die Bundesrepublik Deutschland und Frankreich erscheint die o.g. regionale Aufgliederung immer noch relativ grob. Feinere Analysen in den Teilregionen dieser Mitgliedstaaten im Rahmen der verfügbaren statistischen Informationen erscheinen allerdings erst nach einer ersten Datenauswertung auf einer zweiten Stufe sinnvoll.

2.2.3 Beschreibung der Kennziffern zur Identifikation der Teilregionen

Im Zuge der Datenaufnahme wurde es notwendig, jede Region mit einer Kennziffer zu versehen. Dazu mußte ein eigenes, zur Menge und Struktur der Daten und ihrer sinnvollen Gliederung passendes System entwickelt werden. In einigen Details konnte er auf den vom SAEG verwendeten Regionencode ¹⁾ abgestimmt werden, der jedoch vollständig nicht zu übernehmen war, da mit ihm eine computergerechte und übersichtliche Ordnung der Daten nicht herstellbar erschien.

Die Kennziffer umfaßt insgesamt 12 Stellen. Die ersten zwei Stellen geben das Jahr an, aus dem die in der Untersuchung jeweils verwendeten Daten stammen. Es folgt eine Stelle, mit der durch die Ziffern 1 bis 9 die Zugehörigkeit zu einem der neun Mitgliedstaaten

¹⁾ Vgl. SAEG, Regionalstatistik, Jahrbuch 1972.

bezeichnet wird. Darauf folgen je zwei Stellen für die drei folgenden Stufen der regionalen Gliederung, in der Bundesrepublik Deutschland z.B. Bundesländer - Regierungsbezirke - Kreise. Die letzten drei Stellen sind für die Kennzeichnung weiterer regionaler Untergliederungen reserviert, die erst im Zusammenhang mit den in Abschnitt 2.4.3 für Frankreich, Italien und die Niederlande angestellten Überlegungen zur Verwendung kommen. Übersicht A 1 im Anhang zu diesem Bericht enthält eine Liste der 300 Teilregionen mit ihren Kennziffern, wobei die beiden ersten, die achte und die zehnte bis zwölfte Stelle der Übersichtlichkeit halber fortgelassen wurden.

An einem Beispiel sei die Funktionsweise des Kennziffernsystems erläutert. Die Region Nr. 255 heißt Lanark und hat die Kennziffer 709 056. Die 7 kennzeichnet die Zugehörigkeit zum Vereinigten Königreich (Kennziffer 700 000), mit der Ziffernfolge 09 wird die Zugehörigkeit zu Schottland und mit der Ziffernfolge 05 die Zugehörigkeit zum Gebiet South-West markiert. Die letzte Ziffer 6 schließlich ist spezifisch für die Region Lanark.

2.3 Messung der Viehdichte in den Teilregionen

2.3.1 Methodische Alternativen zur Messung der Viehdichte

Die Intensität der Viehhaltung innerhalb einer Region wird im folgenden durch Bezug des zu einem bestimmten Zeitpunkt vorhandenen Viehbestands auf die zum gleichen oder einem möglichst nahen Zeitpunkt vorhandene Fläche der Region gemessen und durch die Ausprägung der Variablen "Viehbestand je Flächeneinheit" ("Viehdichte") dargestellt.

Zur Darstellung der Bestandsdichte einer einzelnen Tierart bzw. einer einzelnen Teilkategorie einer Tierart können die entsprechenden Originalgrößen wie beispielsweise "Rinder", "Masthühner" oder "Mastschweine mit 50 und mehr kg Lebendgewicht" unmittelbar zur betreffenden Flächengröße in Beziehung gesetzt werden. Soll dagegen die Bestandsdichte mehrerer Tierarten oder verschiedener Kategorien einer oder mehrerer Tierarten gleichzeitig dargestellt werden,

so müssen diese Tierarten und -kategorien unter Verwendung geeigneter Wägungsfaktoren auf einen gemeinsamen Nenner, sogen. "Vieheinheiten", gebracht werden. Hierfür finden innerhalb der EG
mehrere Verfahren nebeneinander Verwendung, die zur Wägung der
verschiedenen Tierarten und -kategorien so unterschiedliche Merkmale
wie z.B. das Lebendgewicht, den Nährstoff- bzw. Energieverzehr
oder den Nährstoffgehalt der anfallenden Exkremente je Tier und
Jahr heranziehen. Einige dieser Verfahren werden im folgenden näher
erläutert.

Für die EG liegen zwei neuere Verfahren zur Umrechnung der Tierarten auf Vieheinheiten vor: Die auf Vorschlägen der FAO beruhende Umrechnung auf "Großvieheinheiten" (GVE $_{\rm EG}$ bzw. UGB $_{\rm EG}$) aus dem Jahre 1973 $^{1)}$ und die auf "Vieheinheiten" (VE $_{\rm EG}$) aus dem Jahre 1972 $^{2)}$. Eine "Vieheinheit" (VE $_{\rm EG}$) entspricht einem Tier mit einem jährlichen Energiebedarf von 3 000 Futtereinheiten zu 1 650 Kcal. Zur Methodik der Umrechnung auf "Großvieheinheiten" (GVE $_{\rm EG}$ bzw. UGB $_{\rm EG}$) liegen keine Erläuterungen vor.

In der Bundesrepublik Deutschland werden nebeneinander drei Verfahren der Umrechnung auf "Vieheinheiten" verwendet: Die Umrechnung auf "Großvieheinheiten" (GV_{BRD}) 3), die auf "Vieheinheiten" für steuerliche Zwecke (VE_{BRD}) 4) und die auf "Düngergroßvieheinheiten" (DGV) 5). Eine "Großvieheinheit" entspricht einem Tier mit einem Lebendgewicht von rd. 500 kg, eine "Vieheinheit" einem Tier mit einem Futterbedarf von etwa 20 "Getreideeinheiten" im Jahr. Der Umrechnung auf "Düngergroßvieheinheiten" werden die pro Tier und Jahr durchschnittlich in den Exkrementen anfallenden Mengen derjenigen Nährstoffe zugrundegelegt, die bei Überdosierung schädliche Wirkungen auf Pflanzen, Boden und Wasser ausüben können.

¹⁾ Vgl. SAEG, Agrarstatistik, Nr. 7, 1973, S. 40, Fußnote 1.

²⁾ Vgl. SAEG, Agrarstatistisches Jahrbuch 1972, S. 102.

³⁾ Begriffs-Systematik für die landwirtschaftliche und gartenbauliche Betriebslehre. Hauptverband der landwirtschaftlichen Buchstellen und Sachverständigen, Heft 14. 5. Auflage, Bonn 1973, S. 159.

⁴⁾ Ebenda, S. 160.

⁵⁾ VETTER, H., und KLASINK, A., Einfluß starker Wirtschaftsdüngergaben auf Boden, Wasser und Pflanzen. Landwirtschaftliche Forschung, 25 (1975), H. 3, S. 249-268.

Vom Instituut voor Bodemvruchtbaarheid in Haren sind im Rahmen dieser Studie - ähnlich wie von VETTER und KLASINK - unter dem Aspekt der Nährstoffracht der anfallenden tierischen Exkremente "rundvee-equivalenten" (RE) gebildet worden $^{1)}$. Die Umrechnung auf "rundvee-equivalenten" basiert auf einer Stallhaltung von 180 Tagen (VETTER: 200 Tage) und erfolgt für die Nährstoffe N, P_2O_5 und K_2O gesondert, so daß sich 3 Arten der Definition von "rundvee-equivalenten" ergeben: N-RE, P_2O_5 -RE und K_2O -RE.

<u>Übersicht 2.2</u> enthält eine auszugsweise Zusammenstellung der in den verschiedenen Umrechnungsverfahren verwendeten Wägungsfaktoren. In den Spalten werden die bei den oben beschriebenen Verfahren verwendeten Wägungsfaktoren nacheinander für verschiedene Kategorien von Rindern, Schafen, Ziegen, Schweinen und Geflügel aufgeführt. Zur besseren Vergleichbarkeit mit den DGV-Werten von VETTER u.a. werden die vom Institut in Haren für die Ermittlung von "rundveeequivalenten" verwendeten Umrechnungsfaktoren nach dem N-Gehalt (N-RE) und dem P_2O_5 -Gehalt (P_2O_5 -RE) getrennt ausgewiesen.

Die in der Übersicht dargestellten Umrechnungsverfahren unterscheiden sich nicht nur hinsichtlich der der Wägung zugrundegelegten Merkmale, sondern darüber hinaus auch wesentlich in Bezug auf die jeweils berücksichtigten Tierkategorien. Die Entscheidung darüber, welche Wägungsfaktoren zur Messung und Darstellung der Dichte der Viehbestände in den 300 Teilregionen der EG Verwendung finden sollen, hängt somit nicht nur von der zugrundeliegenden Fragestellung – Umfang und Zusammensetzung der in den vorhandenen Viehbeständen je Flächeneinheit anfallenden Exkremente – sondern auch davon ab, für welche Tierkategorien vergleichbare statistische Informationen in allen 300 Teilregionen tatsächlich zur Verfügung stehen. Auf diese Frage wird im folgenden Abschnitt eingegangen.

Als Bezugsgröße für die Viehbestände zur Darstellung "Viehdichte" bieten sich alternativ die Gesamtfläche oder die landwirtschaftlich genutzte Fläche (LF) der betreffenden Teilregion an. Da die in

¹⁾ Vgl. Teil I dieser Studie (Nr. 47 dieser Reihe, im folgenden: Harener Studie) Kapitel IV

<u>Übersicht 2.2:</u> Anzahl "Vieheinheiten" je Tier verschiedener Tierarten und -kategorien in unterschiedlichen Verfahren der Umrechnung von Tieren auf "Vieheinheiten"

				Umre	chnungsv	erfahren		
Tierart und -kategorie	Einheit ¹⁾	GVE/UGB	VE	GV	VE	DGV	RE (HAREN)
		(EG)	(EG)	(BRD)	(BRD)	(VETTER)	N-RE	P ₂ 0 ₅ -RE
Mastrinder über 1 Jahr Zuchtrinder über 1 Jahr Rinder unter 1 Jahr Rinder unter 1 Jahr Kühe ausschließlich zur Milcherzeugung Milch- und Zugkühe andere Zugrinder Mastrinder Färsen Jungstiere und Stiere Zugochsen Zuchtbullen Jungvieh über 2 Jahre Jungvieh 1-2 Jahre ausgewachsene Rinder Jungrinder Kälber bis 3 Monate Mastkälber Mastkälber		1,2 1,0 0,4	0,4 1,8 10,8 10,9 10,5 10,7	0,3 1,0 1,0 1,2 1,0 0,7	0,3 1,0 1,0 1,0 1,2 1,2 0,7	1,02) 0,52) 0,167 ²)	1,0	1,0
Schafe jeden Alters Schafe über 1 Jahr Schafe unter 1 Jahr	ND ND ND	0,1	0,1	0,1 0,05	0,1 0,05			
Ziegen jeden Alters	JD	0,1	0,1		0,08			
Sauen über 0,5 Jahre übrige Schweine Eber Mutterschweine Mastschweine u. andere Schweine 20 kg u.m. LG Ferkel unter 20 kg LG Zuchtsauen einschl. ges. Nachzucht Mastschweine über 50 kg LG Läufer 20-50 kg LG Ferkel Mastschweine aus selbsterz. Ferkeln Mastschweine aus zugekauften Ferkeln Mastschweine aus zugekauften Läufern Läufer Ferkel Mastschweine Mastschweine Mastschweine	DDDD DDDDDEEEEE	0,3 0,2	0,4 0,5 0,3 0,017	0,3 0,3 1,0 0,16 0,06 0,02	0,33 0,33 0,16 0,14 0,10 0,06 0,02	0,5 ²) 0,067 ²) 0,067 ²)	0,64	0,93
Hühner Legehennen anderes Geflügel (Enten, Truthühner, Gänse, Perlhühner) Junghennen Masthähnchen uhühnchen Junghennen Masthähnchen Mastenten Mastenten Mastputen ugänse Masthähnchen Mastputen Mastenten Mastenten Mastenten Mastenten	JD JD JD JE JE JE SP SP	0,004	0,014 0,03 0,007		0,02 0,04 0,0017 0,0017 0,0033 0,0067	0,01 0,005 0,0005 0,003 0,0067 0,01	0,0114	0,037

¹⁾ JD = Jahresdurchschnittsbestand; JE = Jahreserzeugung; SP = Stallplätze

²⁾ bei Flüssigmistbereitung

der Viehhaltung anfallenden Exkremente ausschließlich, mindestens aber überwiegend auf landwirtschaftlich genutzte Flächen aufgebracht werden, erscheint die letztgenannte Bezugsgröße zweckmäßiger.

2.3.2 <u>Verfügbarkeit und Vergleichbarkeit statistischer Informationen</u> über Viehbestände und Flächen

Obwohl in den vergangenen Jahren erhebliche Anstrengungen unternommen worden sind, um im Bereich der Agrarstatistiken innerhalb der EG zu einer vergleichbaren Informationsbasis zu gelangen, vermag das Resultat immer noch nicht voll zu befriedigen. Einige Vereinheitlichungen sind zwar schon vor längerer Zeit beschlossen worden, wirken sich jedoch nur sehr allmählich in der statistischen Praxis aus. Durch den Beitritt Dänemarks, Irlands und des Vereinigten Königreiches zur EG hat die Inhomogenität der Agrarstatistik vorübergehend wieder zugenommen.

Die Vergleichbarkeit der in den Mitgliedstaaten der EG vorhandenen statistischen Informationen über den Umfang und die Zusammensetzung der Viehbestände wird offensichtlich dadurch eingeengt, daß

- nicht in allen Ländern alle Tierarten erhoben werden,
- die Klassenbildung nach unterschiedlichen Kriterien vorgenommen wird.

So werden beispielsweise in Italien und Frankreich die Geflügelbestände, in den Niederlanden, Luxemburg und den drei neuen Mitgliedstaaten die Ziegenbestände und im Vereinigten Königreich die Pferdebestände durch die amtliche Statistik überhaupt nicht erfaßt. Im Zusammenhang dieser Untersuchung ist lediglich dem Fehlen statistischer Daten über die Geflügelbestände wesentliche Bedeutung beizumessen. Es muß daher der Versuch unternommen werden, in Frankreich und Italien wenigstens die Bestände an Hühnern und ihre regionale Verteilung zu schätzen.

Einen ersten Anhaltspunkt für den Umfang der Hühnerbestände insgesamt bietet die Gegenüberstellung der Produktionsziffern für Eier und Geflügelfleisch mit den Hüherbeständen in den übrigen Mitgliedstaaten in Übersicht 2.3. Der Vergleich zwischen den jeweiligen Summen aus Eier- und Geflügelfleischproduktion und den Bestandszahlen für Hühner in den Ländern mit statistischer Erfassung der Hühnerbestände zeigt, daß in den Ländern mit hohem Anteil der Legehennen am Hühnerbestand (BR Deutschland, Vereinigtes Königreich) die Produktion (in 1 000 t) den Bestand an Hühnern (in 100 000 Tieren) übertrifft, während in Ländern mit hohem Masthühneranteil (z.B. Dänemark) die in 1000 t gemessene Produktion die in 100 000 Tieren angegebene Anzahl der Hühner übertrifft. Entsprechend diesen Überlegungen und auf Grund von Literaturhinweisen zu den Angaben über die Produktion 1) wurden die in Übersicht 2.3 angegebenen Bestandszahlen für Frankreich und Italien geschätzt.

Die Möglichkeiten der regionalen Aufgliederung der so geschätzten Gesamtbestände sind natürlich sehr begrenzt. In Frankreich wurden die auf die einzelnen Teilregionen entfallenden Bestände an Hühnern gemäß den in den "Comptes Departmentause" 1970 ²⁾ angegebenen Anteilen der einzelnen Regionen an der Kategorie "volaille", in Italien gemäß der vom ISTAT ³⁾ ermittelten regionalen Verteilung des Kükenschlupfes aller Rassen im Jahre 1971 geschätzt. Angesichts der Unsicherheit, mit der diese Schätzungen behaftet sind, muß sich die Entscheidung über die Auswahl von Untersuchungsregionen in Frankreich und Italien vorrangig an der Dichte der Rinder- und Schweinebestände orientieren.

¹⁾ Vgl. KERSTEN, L., Ansätze zur Harmonisierung der Mengenstatistik für Eier und Geflügelfleisch in der Gemeinschaft. SAEG, Agrarstatistische Studien, H. 15, Luxemburg 1973.

²⁾ Ministère de l'Agriculture, Direction Generale de l'Administration et du Financement, Service Central des Enquêter et Etudes Statistiques (SCEES), Statistique agricole, supplement "serie études", n. 120.

³⁾ Istituto Centrale di Statistica (ISTAT), Notizario ISTAT, foglio d'informazioni. 8. Jg., Nr. 5, Folge 18, Rom 1972.

Übersicht 2.3: Eier- und Geflügelfleischproduktion in den Mitgliedstaaten der EG im Vergleich zum Hühnerbestand 1972 1).

Staat	Geflügel fleisch 1000 t	Eier 1000 t	Eier und Ge- flügelfleisch 1000 t	Hühner- bestand 100 000 Hühner
BR Deutschland	797	776	1208	266
Frankreich	819	703	1522	1568 2)
Italien	714	599	1313	1381 ²⁾
Niederlande	328	258	586	584
Belgien	114	223	337	337
Luxemburg	_	7	2	2
Verein.Königr.	629	917	1596	1330
Irland	07	04	80	89
Dänemark	85	42	159	182

Quellen: 1) SAEG, Agrarstatistik 1973, H. 7, S. 97-107; Agrarstatisches Jahrbuch 1974, S. 18 u. 170. - 2) Eigene Schätzung

Bei den Rinder- und Schweinebeständen wurde bisher die Vergleichbarkeit der statistischen Informationen durch teilweise unterschiedliche Klasseneinteilungen erschwert bzw. begrenzt. So standen beispielsweise 1972 der in der Sechsergemeinschaft inzwischen erreichten einheitlichen Klassifizierung der Schweine nach dem Lebendgewicht im Vereinigten Königreich und in Irland solche nach dem Alter und Verwendungszweck und in Dänemark solche nach abweichenden Gewichtsklassen und dem Verwendungszweck gegenüber. Abweichungen zwischen den Mitgliedstaaten zeigten sich auch hinsichtlich der Abgrenzung der Kategorie "Kühe" und der Aufgliederung der übrigen Rinderbestände nach Alter, Geschlecht und Verwendungszweck.

Zwar wurden vom SAEG für Dezember 1973 erstmals Bestandszahlen für Rinder und Schweine einheitlich definierter Kategorien in allen neun Mitgliedstaaten veröffentlicht 1, die in der Übersicht 2.4 wiedergegeben sind. Zum Zeitpunkt der Durchführung dieses Teils der Untersuchung lagen jedoch für das Jahr 1973 noch nicht aus allen Mitgliedstaaten die entsprechenden statistischen Informationen auf der Ebene der Teilregionen vor, so daß notgedrungen auf Daten des vorangegangenen Jahres 1972 mit noch nicht vereinheitlichter Aufgliederung der Tierkategorien zurückgegriffen werden mußte. Lediglich die für Frankreich verwendeten Daten beziehen sich auf 1973, da hier die Daten des Jahres 1972 nicht rechtzeitig beschafft werden konnten. Daraus möglicherweise resultierende Verzerrungen dürften angesichts der sonstigen Fehlerquellen innerhalb vertretbarer Grenzen liegen.

Innerhalb des für die Ermittlung der Viehdichte gewählten Erhebungsjahres 1972 (Frankreich: 1973) wurden die Viehbestände nicht zum
gleichen Zeitpunkt erhoben. In einigen Ländern wurde im Sommer,
in anderen dagegen im Winter gezählt. Neben dem Fehler, der durch
Nichtberücksichtigung von Zyklen und Trends entstehen könnte, erscheint der Saisonfehler als der eigentlich systematische Fehler.
Die gleichzeitige Verwendung von Erhebungsergebnissen aus dem
Sommer und dem Winter dürfte bei Rindern zu einem relativ geringen,
bei Schafen dagegen zu einem größeren Fehler führen. Unter der
plausiblen Hypothese, daß eine saisonale Bereinigung für kleinere

¹⁾ SAEG, Agrarstatistisches Jahrbuch 1974, S. 104-105.

tbersicht 2.4: Umfang und Zusammensetzung der Rinder- und Schweinebestände in der Buropäischen Gemeinschaft insgesamt und in den einzelnen Mitgliedstaaten, Dezember 1973.

Tierart und -kategorie	Einheit	EG 9	BR Deutschl.	Frank- reich	Italien	Nieder- lande	Belgien/ Luxemb.	Verein. Königr.	Irland	Däne- mark
Rinder: Rinder insges. Rinder bis unter 1 Jahr Rinder 1 bis unter 2 J., männl. Rinder 2 J. u. älter, männl. Färsen 2 J. u. älter Kühe Milchkühe sonst. Kühe	1 000 v.H. "	78 632 28,4 8,1 12,8 72,7 72,5 72,5	14 364 35,2 8,0 11,8 1,1 4,5 39,3 78,2	23 949 25,4 6,8 4,5 42,5 42,4 32,4	8 487 23,3 10,5 11,2 2,1 7,12 44,7 35,9	4 668 72,2 11,9 0,3 46,5	3 104 27,6 16,3 16,3 2,4 27,4 37,4 25,1	14 696 28,4 1,0 13,9 6,1 23,1 12,3	6 408 25,3 12,2 12,0 7,9 10,7	2 956 35,3 10,2 16,2 140,1 7,0 7,1
Schweine: Schweine insges. Ferkel bis unter 20 kg Jungschweine 20 bis unt. 50 kg Mastschweine	1 000 v.H.	69 979 26,5 26,8 34,8	19 993 28,1 27,4 33,3	11 461 22,7 27,0 38,3 11,3	8 201 23,6 18,3 47,2	6 889 26,1 27,0 33,9 12,5	4 821 26,8 27,1 32,4 13,0	9 215 24,7 31,6 31,6	200 200 200,00 200,00 200,00	8 364 32,8 28,1 26,7 12,0

Quelle: SAEG, Agrarstatistisches Jahrbuch 1974, S. 104 - 105

Regionen angesichts der möglichen Schätzfehler problematisch ist und daß darüber hinaus die Viehdichte in den Teilregionen mit relativ hoher Viehdichte selbst durch eine Über- oder Unterschätzung der Schafbestände um 50 v.H. kaum beeinflußt wird, weil die Schafhaltung dort nur von untergeordneter Bedeutung ist, wurde jedoch auf eine Saisonbereinigung der Bestandsdaten bei Schafen verzichtet.

Zweifellos wäre es nützlich gewesen, neben dem Umfang und der Zusammensetzung der Viehbestände im Jahre 1972 auch deren Entwicklung während des vorangegangenen Zeitraums in die Untersuchung
einzubeziehen, um hieraus gewisse Schlußfolgerungen bezüglich der
absehbaren künftigen Entwicklung der Viehdichte ableiten zu können.
Dieses Vorhaben scheiterte jedoch daran, daß auf der erforderlichen
räumlichen Aggregationsebene infolge von Gebietsreformen in einigen
Ländern (Dänemark, Deutschland) Zeitreihenanalysen nicht möglich
sind und zudem - wie bereits erwähnt - die Klasseneinteilungen der
Viehbestände in der Vergangenheit geändert wurden.

Die Definition der landwirtschaftlich genutzten F l ä c h e (LF) ist in den sechs ursprünglichen Mitgliedstaaten inzwischen vereinheitlicht worden. Für die drei neuen Mitgliedstaaten wurden folgende Flächenkategorien als Bezugsgrößen bei der Ermittlung der "Viehdichte" herangezogen:

- Vereinigtes Königreich: "Total area crops and pasture",
- Irland: "Total crops and pasture",
- Dänemark: "Landbrugsejendommenes samled dyrkede areal".

Zunächst erschien die Frage offen, ob im Vereinigten Königreich die sogen. "rough grazings" der landwirtschaftlich genutzten Fläche zugerechnet werden sollten oder ob sie teilweise oder ganz als Ödland anzusehen sind. Die Überprüfung der statistischen Daten zeigte aber, daß die "rough grazings" nur in den Gebirgsregionen Schottlands und Wales einen nennenswerten Anteil an der Gesamtfläche aufweisen, während sie z.B. in Südost-England nur einen sehr geringen Teil der Gesamtfläche einnehmen, und daß die Viehdichte bei Ausklammerung der "rough grazings" in den Gebirgsregionen erheblich überschätzt, in den übrigen Gebieten dagegen kaum beeinflußt würde. Folglich wurden die "rough grazings" in die Definition der landwirtschaftlich genutzten Fläche einbezogen.

2.3.3 Das angewendete Verfahren

Angesichts der bereits erwähnten teilweise erheblichen Unterschiede der Aufgliederung der verschiedenen Tierarten in den für 1972 vorhandenen Regionalstatistiken zwischen den neun Mitgliedstaaten und im Hinblick auf die sehr begrenzte Zeitspanne, die für die Auswahl der Untersuchungsgebiete aus den 300 Teilregionen zur Verfügung stand, mußte auf eine Aufgliederung der Tierarten verzichtet werden. Stattdessen wurden zur Ermittlung der Viehdichte jeweils die in den nationalen Statistiken 1972 für die einzelnen Teilregionen ausgewiesenen - bei Hühnern in Frankreich und Italien geschätzten -Gesamtbestände an Rindern, Schweinen, Hühnern und Schafen (in Frankreich und Italien: Schafe und Ziegen) herangezogen. Tierarten, denen im Hinblick auf die hier zu behandelnden Probleme keine Bedeutung beigemessen werden kann, wie Pferde, Esel und - mit Ausnahme von Frankreich und Italien - Ziegen, sowie Tierarten, für die statistische Informationen in mehreren Mitgliedstaaten nicht zur Verfügung stehen wie Gänse, Enten, Puten etc., blieben unberücksichtigt.

Ausgehend von der für 1973 bekannten durchschnittlichen Zusammensetzung der Rinder-, Schweine- und Hühnerbestände in der EG $^{1)}$ wurden für die wichtigsten Teilkategorien dieser Tierarten Wägungsfaktoren zur Umrechnung der Bestände der o.g. Tierarten auf "Vieheinheiten" (GVE) abgeleitet. Dabei wurde grundsätzlich auf die vom jährlichen Energiebedarf der verschiedenen Tierarten und -kategorien ausgehenden "Vieheinheiten" (VE $_{\rm EG}$) zurückgegriffen. Wichen diese für vergleichbare Kategorien erheblich von den "rundvee-equivalenten" der Harener Studie ab, so wurden sie nach unten bzw. oben korrigiert. Die Vorgehensweise und ihr Ergebnis sind in <u>Übersicht 2.5</u> wiedergegeben.

¹⁾ Für Rinder und Schweine vgl. Übersicht 2.4. In der EG (ohne Frankreich und Italien) wurden 1973 insges. 348,3 Mio Hühner gezählt, davon waren 174,4 Mio Legehennen (= 50 v.H.).

<u>Übersicht 2.5:</u> Wägungsfaktoren zur Umrechnung der Bestände verschiedener Tierarten auf "Vieheinheiten" (GVE)

Tierarten und -kategorien	Anteil 1973 v.H.	Wägungsfaktoren GVE/Tier
Milchkühe sonst. Rinder 2 Jahre u. älter Rinder 1 bis unter 2 Jahre alt Rinder bis unter 1 Jahr alt	30 20 20 30	1,0 1,0 0,65 0,3
Rinder zusammen	100	0,72
Zuchtsauen übrige Schweine	10 90	0,5 0,2
Schweine zusammen	100	0,23
Legehennen Masthühner	50 50	0,014 0,006
Hühner zusammen	100	0,01
Schafe, Ziegen zusammen	100	0,1

Natürlich lassen sich bei Erfassung der Viehbestände auf diesem Aggregationsniveau (Tierarten insgesamt) gewisse Abweichungen gegenüber der "wahren", d.h. unter Berücksichtigung der jeweiligen Struktur der einzelnen Tierartenbestände gemessenen Anzahl der "Vieheinheiten" nicht gänzlich vermeiden. Eine Unterschätzung des Bestands an "Vieheinheiten" wird immer dann auftreten, wenn die Anteile der (Milch-)Kühe am Rinderbestand, der Zuchtsauen am Schweinebestand oder/und der Legehennen am Hühnerbestand höher sind als im Durchschnitt der EG im Jahre 1973. In Übersicht 2.6 sind die möglichen Auswirkungen solcher Abweichungen der tatsächlichen von der in Übersicht 2.5 unterstellten Zusammensetzung der Viehbestände am Beispiel von drei Landkreisen im Nordwesten der Bundesrepublik Deutschland veranschaulicht. Der Landkreis Leer weist einen überdurchschnittlich hohen Milchkuhanteil, der Landkreis Grafschaft Bentheim einen überdurchschnittlich hohen Zuchtsauenanteil und der Landkreis Vechta einen extrem hohen Legehennenanteil auf. Die Abweichungen der auf aggregiertem Niveau errechneten Bestände an "Vieheinheiten" (a) von den Beständen, die sich bei Berücksichtigung der jeweiligen Bestandszusammensetzung der Rinder-, Schweine- und Hühnerbestände ergeben (b), halten sich mit ± 5 v.H. in vertretbaren Grenzen. Daß Milchkühe, Zuchtsauen und Legehennen g l e i c h z e i t i g einen wesentlich höheren als den in Übersicht 2.5 angegebenen Anteil an den Rinder-, Schweine- bzw. Hühnerbeständen aufweisen, erscheint aus standortökonomischen Gründen unwahrscheinlich.

Rinder-, Schweine- und Hühnerbestände in Tieren und "Vieheinheiten" (GVE) in drei Landkreisen der BR Deutschland, Dezember 1972 Ubersicht 2.6:

		Landkreis	eis Leer		Landkreis Grafsch, Bentheim	rafsch. Be	ntheim	Landkrei	Landkreis Vechta	
	. E		Ω.	GVE		GVE	Œ		GVE	
Therart bzwKategorie	GVE/Tier	Tiere	(a) ¹⁾	(b) ¹⁾	Tiere	(a) ¹⁾	(b) ¹⁾	Tiere	(a) ¹⁾	(b) ¹⁾
Rinder insges.	0,72	110 611	049 640	78 441	678 82	53 171	45 665	64 421	46 383	35 331
dar. Milchkühe dgl. in v.H. (30) sonstige Rinder	1,0	55 146 (49,9) (50,1)	•••	55 146 23 295	25 256 (34,2) (65,8)		25 256 20 409	14 266 (22,1) (77,8)	• • •	14 266 21 065
Schweine insges.	0,23	45 031	10 357	11 189	152 359	35 043	42 893	419 393	09† 96	89 827
dar. Zuchtsauen dgl. in v.H. (10) sonstige Schweine	0,5	7 276 (16,2) (83,8)		3 638 7 551	41 403 (27,2) (72,8)		20 702 22 1 91	19 827 (4,7) (95,3)	• • •	9 914 79 913
Hühner insges.	0,01	259 789	2 598	2 452	1 291 399	12 914	8 659	776 967 6	94 965	124 038
dar. Legehennen dgl. in v.H. (50) Masthühner	0,014	(43,0) (57.0)		1 564 •	113 869 (8,8) (91,2)		1 594	8 382 374 (88,3) (11,7)	• • •	117 353
GVE zusammen	•	•	92 595	92 082	•	101 128	97 217	•	237 808	249 196
Differenz (a) - (b) dgl. in v.H. (b)	•	• •	+ 513 + 0.56	• •	• •	+ 5 911 + 4,02	• •	• •	-11 388 - 4,57	• •
	7-1-1									

bei Unterstellung einer durchschnittlichen Zusammensetzung der Tierbestände; bei Berücksichtigung der jeweiligen Zusammensetzung der Tierbestände. = "Vieheinheiten" (GVE) = "Vieheinheiten" (GVE) (a) 7

Quelle: Statist. Rundesamt, Fachserie B: Land- und Forstwirtschaft, Fischerei, Reihe 3: Viehwirtschaft, 1972. 2) Einschließlich Junghennen und zur Aufzucht bestimmte Küken.

Die in den 300 Teilregionen der EG für 1972 ausgewiesenen Bestände an Rindern, Schweinen, Hühnern und Schafen (bzw. Schafen und Ziegen), mit Hilfe der in Übersicht 2.5 angegebenen Wägungsfaktoren auf "Vieheinheiten" (GVE) umgerechnet und auf 100 ha der jeweiligen landwirtschaftlich genutzte Fläche (LF) der Regionen bezogen, ergeben die "Viehdichte" (GVE je 100 ha LF) der betreffenden Gebiete.

In den <u>Übersichten A 2.1 bis A 2.3</u> im <u>Anhang</u> zu diesem Bericht sind die Bestände an Rindern, Schweinen, Hühnern und Schafen/Ziegen insgesamt und je 100 ha landwirtschaftlich genutzte Fläche sowie die entsprechenden Besatzzahlen in "Vieheinheiten" (GVE) je 100 ha LF in den 300 Teilregionen der TG wiedergegeben.

Die Untersuchungen des Instituuts voor Bodemvruchtbaarheid in Haren im Rahmen dieser Studie ergaben, daß die Auswirkungen tierischer Exkremente auf landwirtschaftlich genutzte Flächen nicht nur von der Art der gehaltenen Tiere, sondern auch von der Art der Nutzung der Flächen abhängen 1). Unter dem Aspekt der Pflanzen- und Tierverträglichkeit werden bei Grünland andere Begrenzungen wirksam als bei Acker. In der Regel nimmt die zulässige Höchstgabe an tierischen Exkrementen je Flächeneinheit mit zunehmendem Grünlandanteil ab. Folglich wäre es an sich sinnvoll erschienen, den Dauergrünlandanteil oder noch weitergehende Informationen über die Nutzung der landwirtschaftlich genutzten Fläche von vorne herein in die Untersuchung der Viehdichte einzubeziehen. Aus folgenden Gründen wurde letztlich davon abgesehen:

- Unter dem Aspekt der Wasserverunreinigung ist nicht auf dem Ackerland, sondern auf dem Dauergrünland eine höhere Viehdichte zulässig;
- die Abgrenzung zwischen Ackerland und Grünland, insbesondere bei mehrjährigen Futterpflanzen auf dem Acker, wirft Probleme auf;
- die Erhebung der verschiedenen Kategorien von Grünland hätte einen zusätzlichen zeitlichen Aufwand erfordert;
- die Kapazität des Rechenprogrammes wäre überschritten worden.

¹⁾ Vgl. Harener Studie, a.a.O., Kap. II.

2.4 Auswahl der Untersuchungsgebiete

2.4.1 <u>Die Verteilung der Teilregionen nach der Dichte der Vieh-</u> bestände

Um aus den 300 Teilregionen der EG die in die weitere Untersuchung einzubeziehenden Gebiete mit "relativ hoher" Viehdichte auswählen zu können, ist es zunächst erforderlich, sich ein Bild von der Häufigkeitsverteilung dieser 300 Teilregionen nach der Viehdichte, gemessen in "Vieheinheiten" (GVE) je 100 ha landwirtschaftlich genutzte Fläche (LF) zu verschaffen.

Übersicht 2.7 enthält Angaben über verschiedene statistische Maßzahlen zur Charakterisierung der Häufigkeitsverteilungen der Teilregionen nach der Dichte einzelner Tierarten sowie der erfaßten Tierarten zusammen. Nach der Lageregel von FECHNER gilt für unimodale Häufigkeitsverteilungen:

- Stimmen arithmetrisches Mittel \bar{x} , Median \tilde{x} und Modus \tilde{x} überein, so liegt eine symmetrische Häufigkeitsverteilung vor;
- ist das arithmetrische Mittel \bar{x} größer als der Median \tilde{x} und dieser größer als der Modus \tilde{x} , so ist die Häufigkeitsverteilung rechtsschief:
- ist das arithmetrische Mittel \bar{x} dagegen kleiner als der Median \tilde{x} und dieser kleiner als der Modus \tilde{x} , so handelt es sich um eine linksschiefe Häufigkeitsverteilung.

Die diesbezüglichen Werte der Übersicht 2.7 verdeutlichen, daß die Häufigkeitsverteilungen der 300 Regionen nach der Viehdichte bei Hühnern, Schweinen und Schafen und Ziegen in zunehmender Ausprägung rechtsschief sind, d.h. die Überwiegende Mehrzahl der Regionen konzentriert sich auf die niedrigen Dichtewerte. Die Häufigkeits-verteilungen nach der Dichte der Rinderbestände sowie der erfaßten Tierbestände insgesamt weisen dagegen keine eindeutigen Schiefecharakteristika auf.

In den <u>Übersichten A 3.1 bis A 3.6</u> im <u>Anhang</u> zu diesem Bericht sind die Verteilungen der 300 Teilregionen auf je 50 äquidistante Größenklassen der Dichte ("Dichteklassen") jeder einzelnen Tierart

Statistische Maßzahlen zur Charakterisierung der Häufigkeitsverteilungen der 300 Teilregionen der EG nach der Viehdichte Ubersicht 2.7:

Monardow		Dic.	hte (GVE/1	Dichte (GVE/100 ha LF) der		
iabzaiiteii	Rinder	Schweine	Hühner	Schweine u. Hühner	Schafe u. Ziegen	Tierarten zus.
et. Mittel		17,46	75,7	24,75	7,31	92,38
Median X Modus X	60,77	8,34	4,20 2,09	13,50	2,93	89,20 116,58
Standardabweich. G _x	54,74	24,85	10,09	32,01	10,04	55,41
Kleinstwert x _{min}	0,55	00,00	00,00	0,03	0,02	6,33
Größtwert xmax.	196,54	176,59	81,84	207,93	76,77	365,87
Variationskoeffizient						
ه ۱۵۵ × ۱۵۵	56,66	142,33	138,79	129,33	137,35	59,34
9 + ×	96,05	42,31	17,36	56,76	17,35	148,79
x + 1,5 G _x	108,42	54,74	22,41	72,77	22,37	176,50

sowie der erfaßten Tierarten zusammen in GVE je 100 ha LF wiedergegeben. Ihrer Veranschaulichung dient die <u>Abbildung A 1</u> im <u>Anhang</u>,
in der für jede der (auf der horizontalen Achse aufgetragenen)
Dichteklassen die Anzahl der jeweils auf sie entfallenden Teilregionen als Säule dargestellt ist.

Um eine erste Vorstellung von der räumlichen Verbreitung von Teilregionen mit einer "relativ hohen" Dichte der Viehbestände innerhalb der EG zu erhalten, wurden die 100 Teilregionen mit der höchsten
Viehdichte insgesamt (Rinder, Schweine, Hühner und Schafe (Ziegen))
namentlich erfaßt. Da den sogen. "flächenunabhängigen"

Zweigen der Viehhaltung aufgrund der insbesondere in größeren Haltungseinheiten verbreiteten Haltungsverfahren - strohlose Aufstallung mit Flüssigmistanfall - im Hinblick auf die Problemstellung dieser Untersuchung besondere Bedeutung beizumessen ist, wurden daneben 80 Teilregionen mit der höchsten gemeinsamen Dichte der Schweine- und Hühnerbestände erfaßt. Schließlich ist auch der Hühnerhaltung allein angesichts der Menge und spezifischen Zusammensetzung der im Hühnerflüssigmist bzw. -kot enthaltenen Nährstoffe gesonderte Beachtung zu schenken. Demgemäß wurden - wiederum unabhängig von den ersten beiden Auswahlverfahren - 50 Teilregionen mit der höchsten Dichte der Hühnerbestände ausgewählt. Es sei ausdrücklich betont, daß weder die Anzahl der so ausgewählten Teilregionen noch die sich ergebenden "Schwellenwerte" der Viehdichte einen unmittelbaren Zusammenhang zu der weiter unten beschriebenen Auswahl der Untersuchungsgebiete aufweisen.

Die auf die beschriebene Weise ausgewählten Teilregionen sind in den <u>Übersichten A 4.1 bis A 4.3</u> im <u>Anhang</u> aufgelistet worden. Für jede der Teilregionen sind in den drei ersten Spalten ihre Kennziffer (vgl. Übersicht A 1), ihr Name sowie ihre Zugehörigkeit zu einem der neun Mitgliedstaaten angegeben. In den folgenden drei Spalten sind die jweiligen Ausprägungen der der Auswahl zugrundeliegenden Merkmale – Viehdichte insges. (GVE/100 ha LF), Schweine- und Hühnerdichte (GVE $_{\rm S+H}$ /100 ha LF) und Hühnerdichte (GVE $_{\rm H}$ /100 ha LF)-

aufgeführt. Die letzten drei Spalten enthalten Angaben über den Rang, den eine Region unter den ausgewählten Teilregionen hinsichtlich der Ausprägung des jeweils untersuchten sowie der beiden übrigen Merkmale einnimmt (ein Strich in der zweiten oder/und dritten Spalte bedeutet, daß die Region in der bzw. den betreffenden Listen nicht enthalten ist).

Die räumliche Verteilung der in der oben skizzierten Weise ausgewählten Teilregionen mit relativ hoher Dichte der erfaßten Tierbestände insgesamt, der Schweine- und Hühnerbestände sowie der Hühnerbestände innerhalb der EG veranschaulichen die Abbildungen A 2.1 bis A 2.3 im Anhang. Zu diesem Zweck wurden die den drei Gruppen jeweils zugehörigen Teilregionen nach der Höhe der Viehdichte in je 5 Klassen mit gleicher Anzahl von Regionen aufgeteilt. Die Abbildungen verdeutlichen, daß die Gebiete mit relativ hoher Dichte der Schweine- und Hühnerbestände bzw. der Hühnerbestände mit denen relativ hoher Dichte der Viehbestände insgesamt teilweise identisch sind. Insgesamt konzentrieren sich die ausgewählten Teilregionen auf sieben größere Gebietskomplexe innerhalb der EG.

2.4.2 Das Verfahren der Gebietsauswahl

Nachdem im vorigen Abschnitt die Verteilung der 300 Teilregionen der EG nach der Dichte der Viehbestände der erfaßten Tierarten skizziert wurde, gilt es nunmehr, für die weitere Untersuchung alle Teilregionen mit einer "überdurchschnittlich hohen Viehdichte" auszuwählen. Als "überdurchschnittlich hoch" wird die Viehdichte im folgenden dann bezeichnet, wenn die Dichte der erfaßten Viehbestände zusammen (Rinder, Schweine, Hühner und Schafe/Ziegen), gemessen in GVE je 100 ha LF, und/oder die Dichte der Schweine- und Hühnerbestände, gemessen in GVE_{S+H} je 100 ha LF, und/oder die Dichte der Hühnerbestände, gemessen in GVE_H je 100 ha LF, die jeweiligen arithmetischen Mittelwerte der betreffenden Häufigkeitsverteilungen der 300 Teilregionen (vgl. Übersicht 2.7) um einen

bestimmten Schwellenwert übersteigen. Als Schwellenwert wird der einfache Wert der Standardabweichung (Alternative A_1) bzw. der eineinhalbfache Wert der Standardabweichung (Alternative A_2) der jeweiligen Häufigkeitsverteilungen verwendet 1).

Welche der 300 Teilregionen der EG bei Anwendung dieser beiden Selektionskriterien in die engere Auswahl gelangen, ist der Übersicht 2.8 (für Alternative A₁) und der Übersicht 2.9 (für Alternative A2) zu entnehmen. In der ersten Spalte dieser beiden Übersichten sind - jeweils geordnet nach der Höhe der Viehdichte diejenigen Teilregionen aufgeführt, in denen die Dichte der Viehbestände insgesamt (in GVE/100 ha LF) die Summe aus arithmetischem Mittelwert (\bar{x}_1) und einfacher Standardabweichung (g_1) bzw. eineinhalbfacher Standardabweichung (1.5 51) übersteigt. Die zweite Spalte enthält die Namen derjenigen Teilregionen, die zwar nach der Dichte ihrer Viehbestände insgesamt den eben genannten Schwellenwert nicht überschreiten, in denen jedoch die gemeinsame Dichte der Schweine- und Hühnerbestände (in $\text{GVE}_{\text{S+H}}/\text{100}$ ha LF) höher als die geforderte Norm $(\bar{x}_2 + 6_2)$ bzw. $\bar{x}_2 + 1, 56_2)$ ist. Und in der dritten Spalte werden schließlich jene Teilregicnen genannt, in denen weder die Dichte der Viehbestände insgesamt noch die der Schweineund Hühnerbestände, wohl aber die Dichte der Hühnerbestände allein (in GVE_H/100 ha LF) die Summe aus arithmetischem Mittel und Standardabweichung bzw. eineinhalbfacher Standardabweichung ($\bar{x}_3 + \sigma_3$ bzw. $\bar{\mathbf{x}}_3+1,5oldsymbol{\sigma}_3$) übersteigt. Insgesamt weisen bei Anwendung des Auswahlkriteriums A₁ 51 Regionen, bei Anwendung des Auswahlkriteriums ${\rm A_2}$ 31 Regionen die Eigenschaft "überdurchschnittlich hohe Viehdichte" auf.

In die weitere Untersuchung sollen zunächst alle diejenigen Teil-regionen der EG einbezogen werden, in denen die Dichte der Viehbestände insgesamt, der Schweine- und Hühnerbestände oder der Hühnerbestände allein dem Auswahlkriterium \mathbf{A}_2 (Dichte größer als die Summe aus arithmetischem Mittelwert und eineinhalbfacher Standardabweichung der betreffenden Häufigkeitsverteilungen) genügt.

¹⁾ Vgl. hierzu BOUSTEDT, O., Grundriß der empirischen Regionalforschung. Teil IV: Regionalstatistik. Taschenbücher zur Raumplanung, Band 7. Hannover 1976, S. 106 ff.

Übersicht 2.8: Liste der nach dem Auswahlkriterium A₁ ausgewählten Teilregionen

Lfd. Nr.	Staat	Gebiete mit überdurchschnittl. hoher Dichte der Viehbestände insges. (1)	Gebiete mit überdurchschnittl. hoher Dichte der Schweine- und Hühnerbestände (2)	Gebiete mit überdurchschnittl. hoher Dichte der Hühnerbestände (3)
1234567890123456789012345678901	BBNNBBNNNOFNBOFONVFNKKKBBK OKKKK	Antwerpen West-Vlaanderen Noord Brabant Gelderland Oost-Vlaanderen Limburg Limburg Utrecht Overijssel Oldenburg Finistère Viborg Liège Münster Côtes-du-Nord Osnabrück Friesland Flintshire Ille-et-Vilaine Nordjylland Vejle Lombardia Bornholm Ribe Brabant Luxembourg Fyn	Berlin (West) Vestsjælland Århus Roskilde	
30 31 32 334 356 37 38 39	DK D VK D DK DK D DK DK		Roskilde Detmold Gr. London (S.E.) Hannover Ringkøbing Sønderjylland Düsseldorf Storstrømen Frederiksborg	
40 42 44 45 47 49 49 55	VK VK VK VK VK F VK F VK			Kinross Fife Veneto West Lothian Nottinghamshire Midlothian Emilia Romagna Lancashire Landes Sussex (E) Morbihan Surrey

¹⁾ $\frac{\text{GVE}}{100 \text{ ha LF}} > \overline{x}_1 + \mathcal{G}_1$ 2) $\frac{\text{GVE}}{100 \text{ ha LF}} \le \overline{x}_1 + \mathcal{G}_1$ und $\frac{\text{GVE}_{S+H}}{100 \text{ ha LF}} > \overline{x}_2 + \mathcal{G}_2$ 3) $\frac{\text{GVE}}{100 \text{ ha LF}} \le \overline{x}_1 + \mathcal{G}_1$ und $\frac{\text{GVE}_{S+H}}{100 \text{ ha LF}} \le \overline{x}_2 + \mathcal{G}_2$ und $\frac{\text{GVE}_{H}}{100 \text{ ha LF}} > \overline{x}_3 + \mathcal{G}_3$

 $\underline{\text{Ubersicht 2.9:}} \quad \text{Liste der nach dem Auswahlkriterium A}_2 \text{ ausgewählten Teilregionen}$

Lfd. Nr.	Staat	Gebiete mit überdurchschnittl. hoher Dichte der Viehbestände insges. (1)	Gebiete mit überdurchschnittl. hoher Dichte der Schweine- und Hühnerbestände (2)	Gebiete mit überdurchschnittl. hoher Dichte der Hühnerbestände (3)
12345678901123	B B NL B B NL NL D F DK B	Antwerpen West-Vlaanderen Noord Brabant Gelderland Oost-Vlaanderen Limburg Limburg Utrecht Overijssel Oldenburg Finistère Viborg Liege		
14 15 16 17 18 190 21 22 24 25 26	D DK DK DK DK DK DK D DK D DK D DK		Berlin (West) Bornholm Osnabrück Münster Vestsjaelland Fyn Århus Roskilde Nordjylland Detmold Vejle Gr. London (S.E.) Hannover	
27 28 29 30 31	VK VK I VK VK			Kinross Fife Veneto West Lothian Nottinghamshire

¹⁾ $\frac{\text{GVE}}{100 \text{ ha LF}} > \bar{x}_1 + 1,56_1$

2)
$$\frac{\text{GVE}}{100 \text{ ha LF}} \le \bar{x}_1 + 1,5 \, \epsilon_1 \text{ und } \frac{\text{GVE}_{S+H}}{100 \text{ ha LF}} > \bar{x}_2 + 1,5 \, \epsilon_2$$

Einer zusätzlichen Prüfung im Hinblick auf ihre endgültige Einbeziehung in die Untersuchung werden die jenigen Teilregionen unterzogen, die zwar nicht dem Auswahlkriterium A_2 , wohl aber dem (schwächeren) Auswahlkriterium A_1 genügen.

2.4.3 Ergänzende Untersuchungen zur Gebietsauswahl

Für die Bundesrepublik Deutschland wurde ergänzend eine Analyse der Dichte der Viehbestände in den Kreisen außerhalb der bereits nach dem Auswahlkriterium A_2 in die Auswahl einbezogenen Regierungs- bzw. Verwaltungsbezirke durchgeführt. In der Übersicht 2.10 sind, nach Bundesländern geordnet, diejenigen kreisfreien Städte (KS) und Landkreise (LK) aufgeführt, in denen die Dichte der Viehbestände insgesamt (GVE/100 ha LF), der Schweine- und Hühnerbestände (GVE $_{S+H}$ /100 ha LF) und/oder der Hühnerbestände (GVE $_{H}$ /100 ha LF) dem Auswahlkriterium A_2 (durch ein x gekennzeichnet) bzw. dem Auswahlkriterium A_1 (durch ein : gekennzeichnet) genügt.

Einige dieser Kreise liegen in unmittelbarer Nachbarschaft zu Regierungsbezirken, die nach Maßgabe des Auswahlkriteriums A2 bereits in die engere Auswahl einbezogen sind: Die Landkreise Geldern, Kempen-Krefeld, Kleve, Moers und Rees grenzen westlich, die kreisfreien Städte Dortmund und Wattenscheid sowie die Landkreise Lippstadt und Soest südlich bzw. südöstlich an den Regierungsbezirk Münster und der Landkreis Verden nördlich an den Regierungsbezirk Hannover. Andere Kreise wie beispielsweise die Landkreise Dingolfing-Landau (Untere Isar) und Straubing-Bogen bilden für sich eine relativ geschlossene Region vergleichsweise hoher Viehdichte.

Unter Berücksichtigung der Zuwachsraten der Viehbestände während der letzten Jahre, die - mit Ausnahme des Regierungsbezirks Niederbayern - im süddeutschen Raum durchweg geringer waren als in Norddeutschland, sowie der großen Ähnlichkeit, die die Verhältnisse in Teilen Schleswig-Holsteins mit bereits in die engere Auswahl gelangten Gebieten in Dänemark aufweisen, wurden aufgrund der ergänzenden Analyse folgende Gebiete zusätzlich in die weitere Untersuchung einbezogen:

<u>Übersicht 2.10:</u> Kreisfreie Städte und Landkreise in der BR Deutschland¹⁾, in denen im Dezember 1972 die Dichte der Viehbestände den Schwellenwert nach A₂ (x) bzw. A₁ (:) überschritt.

Bundesland Kreisfreie Stadt (KS) bzw. Landkreis (LK)	Viehdichte insges. GVE 100 haLF	Dichte d. Schweine- u. Hühnerbestände GVE _{S+H} 100 haLF	Dichte der Hühnerbestände GVE _H 100 haLF
Schleswig-Holstein: LK Flensburg-Land LK Steinburg	150,94 : 171,95 :	42,07 47,03	1,83 5,33
Niedersachsen:	•		
LK Bremervörde LK Verden	146,68 132,03	57,46 : 56,21 :	7,66 4,47
Nordrhein-Westfalen:			
LK Geldern LK Kempen-Krefeld LK Kleve LK Moers LK Rees	192,76 x 148,20 171,40 : 160,71 : 160,95 :	104,49 x 76,16 x 77,56 x 82,73 x 57,58 :	12,83 7,90 4,70 7,70 5,46
LK Rhein-Sieg-Kreis	177 , 12 x	34 , 94	11,59
KS Dortmund KS Wattenscheid LK Lippstadt LK Soest	92,02 101,93 141,98 131,25	53,02 75,53 x 75,72 x 70,21 :	21,14 : 32,06 x 9,47 7,19
Hessen:			
LK Offenbach	99,30	58,19	33,60 x
LK Fritzlar-Homberg	123,32	57 , 27 :	2,93
LK Marburg	130,30	57,79:	5,23
Rheinland-Pfalz:			
LK Mayen-Koblenz	97,37	57 , 95 :	12,93
LK Alzey-Worms	41,86	32,94	20,66:
Baden-Würtemberg:	247 62	04.45	0.07
KS Ulm LK Grailsheim LK Öhringen LK Schwäbisch-Hall	217,62 x 146,64 145,37 155,23 :	91,13 x 56,67 : 64,26 : 66,32 :	9,27 2,90 6,77 3,90
KS Karlsruhe	46,62	35,21	22,49 :
KS Freiburg i.Br.	243,92 x	139 , 42 x	15,00
LK Balingen LK Freudenstadt LK Ravensburg	157,74 : 163,83 : 150,33 :	39,67 67,75 : 33,72	6,60 4,53 3,97
Bayern:			
LK Dingolfing-Landau	144,02	67,62 :	18,73 :
(Untere Isar) LK Straubing-Bogen	109,87	48,86	20,73 :
KS Schwabach	136,31	65,42 :	38,50 x
LK Mindelheim	162,22	17,19	3,27

¹⁾ Außerhalb der Verw.- bzw. Reg.-Bez. Oldenburg, Münster, Osnabrück, Detmold und Hannover sowie Berlin (West).

- Aus dem Regierungsbezirk Stade die Landkreise Bremervörde, Stade und Verden,
- aus dem Regierungsbezirk Arnsberg die Landkreise Lippstadt, Soest und Unna,
- der Regierungsbezirk Düsseldorf sowie
- der Regierungsbezirk Niederbayern.

Eine Einbeziehung des gesamten Regierungsbezirks Düsseldorf empfahl sich, weil sie eine Analyse des gesamten Raumes zwischen Maas, Rhein und Weser ermöglichte. Der Regierungsbezirk Niederbayern wurde als einzige geschlossene Region mit vergleichsweise höherer Viehdichte im süddeutschen Raum mit gegenüber den nordwestdeutschen Untersuchungsgebieten abweichenden natürlichen Standortbedingungen und agrarstrukturellen Verhältnissen einbezogen. Kreisfreie Städte blieben, soweit sie nicht zu in die Untersuchung einbezogenen Regierungs- bzw. Verwaltungsbezirken gehören, unberücksichtigt, da sie durchweg eine sehr geringe flächenmäßige Ausdehnung aufweisen.

Die weitere Analyse der Untersuchungsgebiete in der Bundesrepublik Deutschland erfolgt auf der Ebene der Kreise (kreisfreie Städte und Landkreise).

In Frankreich gelangen nach dem Auswahlkriterium A2 nur das Departement Finistère und nach dem Auswahlkriterium A4 zusätzlich die Departements Côtes du Nord, Ille et Villaine und Morbihan im Nordwesten sowie das Departement Landes im Südwesten in die engere Auswahl. Für die übrigen in den Anhangsübersichten A 4.1 bis A 4.3 enthaltenen Departements wurde die Entwicklung der Viehbestände während des Zeitraums von 1968 bis 1973 geprüft. Dabei erwies sich, daß in den Departements Nord und Pas de Calais die Bestände an Rindern, Schweinen und Hühnern zusammen stärker zugenommen haben als im Durchschnitt des Landes, wenngleich auf deutlich niedrigerem Niveau als in den o.g. Departements der Bretagne. Höhere Zuwachsraten als in Frankreich insgesamt (+ 14 v.H.) weisen darüber hinaus speziell die Schweinebestände in den Departements Mayenne (+ 33 v.H.) und Drôme (+ 48 v.H.) auf. Da allerdings die für die weitere Untersuchung erforderlichen Daten für diese beiden

Departements nicht beschafft werden konnten, mußten sie unberücksichtigt bleiben. Neben den bereits zu Beginn erwähnten fünf Departements werden somit die Departements Nord und Pas de Calais in die endgültige Auswahl einbezogen.

Die weitere Analyse der Untersuchungsgebiete in Frankreich erfolgt auf der Ebene der Regions Agricoles.

I t a l i e n wurde die Auswahl der in die weitere Unter-In suchung einzubeziehenden Teilregionen dergestalt überprüft, daß für sämtliche norditalienischen Provinzen die Bestände an Rindern, Schweinen und Geflügel sowie die daraus resultierenden Kennziffern der Viehdichte anhand der Ergebnisse der Landwirtschaftszählung 1970 ermittelt wurden 1). Aus der Übersicht 2.11 wird deutlich, daß die nach der Höhe der Viehdichte überhaupt in Betracht zu ziehenden Provinzen ausschließlich in den nach Maßgabe der Auswahlkriterien A2 und A4 ohnehin in die engere Auswahl gelangenden drei Regionen Lombardia, Veneto und Emilia Romagna liegen. Von einer Ausgliederung derjenigen Provinzen innerhalb dieser Regionen, die wie z.B. Varese, Como, Sondrio, Belluno, Rovigo und Ferrara eine vergleichsweise niedrige Viehdichte aufweisen, wurde angesichts des relativ weit zurückliegenden Erhebungszeitpunkts abgesehen. Auf eine detailliertere Untersuchung der süditalienischen Provinzen konnte angesichts der durchweg sehr geringen Viehdichte von vorne herein verzichtet werden.

Die weitere Analyse der Untersuchungsgebiete in Italien erfolgt auf der Ebene der nach Höhenzonen gegliederten Provincie.

In den Niederlanden wird neben den Auswahl-kriterium A2 genügenden Teilregionen die Provinz Friesland aufgrund der hier besonders hohen Dichte der Rindviehbestände bei gleichzeitig hohem Anteil des Dauergrünlands an der landwirtschaftlich genutzten Fläche in die weitere Untersuchung einbezogen, die auf der Ebene der Landbouwgebieden erfolgt.

¹⁾ Vgl. Istituto Centrale di Statistica (ISTA), 2. Censimento Generale dell'Agricoltura, 25. ottobre 1970. Vol. III (Coltivazioni), Vol. IV (Bestiame), Rom 1974, S. 244 ff.

<u>Übersicht 2.11:</u> Viehbestände und Viehdichte in den norditalienischen Provinzen im Oktober 1970

Lfd.	Provincie		Viehbestand	l	GV	Viehdichte E / 100 ha I	,F
Nr.	Regioni	Rinder Tiere	Schweine Tiere	Geflügel 100 Tiere	insges. 1)	Schweine u. Geflügel	
123456	Torino Vercelli Novara Cuneo Asti Alessandria	336 945 86 380 88 091 534 705 107 419 124 405	67 413 36 752 41 640 203 390 21 388 17 860	2 054 1 009 634 5 347 906 1 168	89 51 54 114 85 47	12 11 10 24 13 7	7 6 4 13 8 5
1-6	Piemonte	1 278 035	388 443	11 120	82	14	8
7	Valle d'Aosta	37 561	1 453	61	28	1	1
8 90 11 12 13 14 15 16	Varese Como Sondrio Milano Bergamo Brescia Pavia Cremona Mantova	23 707 71 595 41 098 268 917 141 416 373 873 164 295 296 640 423 469	5 434 11 706 11 619 235 168 57 724 171 181 141 288 179 267 374 203	505 929 684 1 313 2 736 10 766 1 193 2 816 2 160	72 99 41 158 112 180 74 200	20 19 10 41 32 64 20 49 58	16 15 7 8 22 47 5 20 12
8-16	Lombardia	1 805 010	1 187 598	23 107	141	40	18
17 18	Bolzanc Trento	117 041 70 791	47 419 13 679	276 1 090	36 36	5 8	1 6
17-18	Trentino-Alto Adige	187 832	61 098	1 367	36	6	3
19 20 21 22 23 24 25	Verona Vicenza Belluno Treviso Venezia Padova Rovigo	239 711 195 554 47 392 245 871 103 236 214 437 106 428	87 288 70 903 7 524 69 219 26 178 65 655 29 407	9 180 4 468 426 5 098 1 715 3 130 1 258	143 140 54 149 72 122 79	56 42 8 41 17 24 16	46 31 6 31 13 20 10
19-25	Veneto	1 152 629	356 174	25 278	118	34	26
26 27 28 29	Pordenone Udine Gorizia Trieste	69 129 141 592 13 611 2 085	24 328 51 616 6 081 618	997 1 907 109 41	73 69 59 29	17 16 12 8	11 10 5 6
26-29	Friuli-Venezia Givlia	226 417	82 643	3 055	69	16	10
30 31 32 334 35 36 37	Piacenza Parma Reggio nell' Emilia Modena Bologna Ferrara Ravenna Forlí	174 349 197 484 211 994 183 765 127 717 70 321 71 181 74 943	74 822 194 344 315 025 381 422 157 221 24 203 152 210 158 021	752 1 284 2 987 1 236 1 797 565 1 757 9 187	91 108 179 133 67 34 80 137	15 31 72 57 25 6 40 82	5 7 21 7 8 3 14 59
30-37	Emilia Romagna	1 111 754	1 457 268	19 569	99	40	15
38 39 41 42 445 445 46	Massa Carrara Lucca Pistoia Firenze Livorno Pisa Arezzo Siena Grosseto	19 485 21 447 13 886 52 408 18 189 35 660 57 125 47 407 53 166	8 364 12 909 12 964 50 576 12 476 26 397 161 049 166 008 69 306	208 451 385 1 045 306 833 1 143 798 563	46 40 46 35 39 32 65 40 26	10 13 19 13 12 12 35 23	5 11 66 7 8 4 2
38-46	Toscana	318 773	520 049	5 729	48	16	5
47 48	Perugia Terni	157 428 46 059	330 854 63 917	1 762 571	64 53	30 19	6 6
47-48	Umbria	203 487	394 771	2 334	63	28	6
49 50 51 52	Pesaro e Urbino Ancona Macerata Ascoli Piceno	82 450 108 033 117 974 110 082	35 718 55 181 162 266 108 003	984 1 413 1 384 952	48 76 72 96	11 19 27 26	6 10 7 7
49-52	Marche	418 539	361 168	4 735	71	22	8
53 54 55 56 57	Viterbo Rieti Roma Latina Frosinone	58 720 43 583 101 309 73 020 65 437	37 291 25 695 31 001 28 613 48 363	368 347 1 073 763 1 392	22 31 30 51 41	5 7 6 11 14	2 3 4 6 8
53-57	Lazio	342 069	170 963	3 944	33	8	9

Rinder + Schweine + Geflügel. Quelle: ISTAT, 2^o Censimento Generale dell'Agricoltura 1970; Vol III u. IV, Rom 1974.

In Belgien werden alle das Auswahlkriterium A₁ erfüllenden Provinzen in die weitere Untersuchung einbezogen. Die weitere Analyse der Untersuchungsgebiete erfolgt hier auf der Ebene der Arrondissements.

Innerhalb des Vereinigten Königreichs wird für Schottland zusätzlich zu den das Auswahlkriterium A_2 erfüllenden Counties Fife, Kinross und West Lothian auch die Grafschaft Midlothian in die weitere Untersuchung einbezogen. Um zu entscheiden, welche Teilregionen in England und Wales – neben Nottinghamshire – in die Analyse aufgenommen werden sollten, wurde geprüft, wie sich die Bestände an Rindern, Schweinen und Geflügel in den einzelnen Counties während des Zeitraums von 1963 bis 1972 sowie 1972 im Vergleich zu 1971 entwickelt haben. Die Ergebnisse dieser Entwicklungsanalyse sind in der <u>Übersicht 2.12</u> wiedergegeben.

In den ersten neun Spalten dieser Übersicht sind die Bestände an Rindern, Schweinen und Geflügel in den Jahren 1963, 1971 und 1972 jeweils in 1 000 Stück und in den folgenden sechs Spalten die Bestände von 1972 in v.H. von 1963 sowie in v.H. von 1971 dargestellt. Für alle diejenigen Counties, in denen die prozentuale Zunahme der Tierbestände während der Referenzperiode bei mindestens einer Tierart höher war als im Landesdurchschnitt, wurde unter Berücksichtigung der im Jahre 1972 erreichten Viehdichte ermittelt, ob bei Fortsetzung der bisherigen Entwicklung bis 1977 eines der beiden Auswahlkriterien A2 bzw. A1 erfüllt wäre.

Unter Berücksichtigung der am 1.4.1974 in Kraft getretenen Änderungen der Verwaltungsgrenzen wurde beschlossen, in die weitere Untersuchung neben dem County Nottinghamshire (Region East Midlands) die Counties Cambridgeshire und Suffolk in der Region East Anglia, die Counties Greater London (South-East), Surrey und East Sussex in der Region South East, die Counties Cheshire, Greater Manchester, Humberside, Lancashire und Merseyside in der Region North West sowie die Counties Clwyd (Flintshire) und Gwent (Monmouthshire) in Wales einzubeziehen.

Ubersicht 2.12: Entwicklung der Bestände an Rindern, Schweinen und Geflügel in England und Wales zwischen 1963 und 1972

1963 1971 1972 1963 1971 1972 1963 1971 1973 1971 1973 1972 1973 1973 1974 1973 1973 1974 1973 1974 1973 1974 1973 1974 1973 1974 1973 1974 1973 1974 1973 1974			Tie (10	erbeständ 000 Stück	de K)		: 5		Tierbe	ständ	e 1972	in v.		
2 5 231 6 903 6 910 54401 111010 11066 112 106 132 100 118 1 118 1 118 1 118 1	Rinder	ler 71 1972	1 4	hwein	1 1	290	ч! σ	0.7	a S	2 B	o I c	in 10	$\varphi \mid \varphi$	b0 ←
63 85 100 111 135 100 143 87 175 176 298 878 100 111 135 110 143 74 170 173 298 278 100 115 110 145 130 141 141 258 1563 1563 1563 1563 1642 176 100 145 100 145 130 141 141 1642 1577 1571 106 104 100 145 149 149 140	19	6 9 55	5 5	1 8	1/2	7 4	2 5	1 8	7 2	1 5) I M) -		
276 170 173 558 1563 1563 171 171 172 172 173 175 </td <td>40 88 118 120</td> <td>400</td> <td></td> <td>115</td> <td>$\infty \sim 10$</td> <td>60 19 77</td> <td></td> <td>85 70 70</td> <td>000</td> <td>~ O C</td> <td>ろらっ</td> <td></td> <td>143 82 115</td> <td>998 938</td>	40 88 118 120	400		115	$\infty \sim 10$	60 19 77		85 70 70	000	~ O C	ろらっ		143 82 115	998 938
3 776 717 2762 111 106 104 100 94 3 276 215 190 1642 2777 128 104 69 88 94 100 94 23 276 772 1773 128 104 69 88 94 13 100 134 100 94 129 128 173 106 109 94 129 128 173 106 100 94 129 128 174 106 174 106 178 100 178 178 100 178 100 178 178 177 177 177 177 177 106 178 178 178 178 178 178 178 177 177 106 108 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178		32		170	173	יט ת יט מ	1563	185		0	135		7	118
31 37 36 1187 1088 122 105 113 95 113 106 134 100 138 125 105 113 95 113 106 134 100 138 113 106 136 100 138 113 106 138 113 106 138 113 106 138 113 106 138 113 100 138 113 106 138 113 106 138 113 106 138 113 106 138 113 100 138 136 113 106 138 136 113 106 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136		288		141	141	202	2717	276	~ U	106	104	100	76	102
239 279 262 3729 4552 4809 132 106 110 94 129 193 173 118 113 1378 1541 1773 131 106 110 94 129 194 275 276 3639 3724 3416 83 107 108 129 129 129 108 126 177 1669 3746 274 3416 83 107 108 129 130 </td <td></td> <td>368 268 700</td> <td></td> <td>37</td> <td>322</td> <td>96</td> <td>1 787</td> <td>108</td> <td>20</td> <td>105</td> <td>113</td> <td>760</td> <td>113</td> <td>114</td>		368 268 700		37	322	96	1 787	108	20	105	113	760	113	114
194 275 276 3639 2603 2515 107 108 102 277 108 102 277 108 102 277 108 102 277 108 102 277 108 102 277 108 102 277 108 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 95 120 100 94 95 120 100 95 120 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 94 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100		649 876	0.4	279	262	72,	4 552	480	- W K	100	.00	48	120	106
108 126 117 1669 1974 276 168 118 107 108 170 100 </td <td></td> <td>146 146</td> <td></td> <td>64</td> <td>200</td> <td>787</td> <td>2 603</td> <td>257</td> <td>1Ο α</td> <td>107</td> <td>108</td> <td>102</td> <td>277</td> <td>000</td>		146 146		64	200	787	2 603	257	1Ο α	107	108	102	277	000
157 181 178 3610 4398 3862 118 106 13 98 107 <td></td> <td>244</td> <td></td> <td>126</td> <td>277</td> <td>99</td> <td>1 974</td> <td>74 10 10 10 10</td> <td>) ~ •</td> <td>70,0</td> <td>108</td> <td>969</td> <td>130</td> <td>110</td>		244		126	277	99	1 974	74 10 10 10 10) ~ •	70,0	108	969	130	110
3 57 68 62 1178 2123 2523 175 105 199 100 69 100	167 186	197		181	178		210 4 398	27 386	• ~ 7	100	113		107	129 88
259 74 72 1281 1366 735 100 108 189 97 57 128 142 138 2464 2376 2503 108 108 189 97 57 259 345 345 9345 7068 6696 111 106 133 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 95 100 107 117 <	26 129 165 186	26 28 36		- 68 - 68 - 7	~ 20 C C C	1178	2127 727 7237	252 252 252	- N 0	7000	200		214	2 7 6 0
259 345 345 9345 7068 6696 111 106 133 100 95 27 82 83 1408 893 1042 102 107 124 101 117 27 82 901 1171 1500 84 109 213 96 100 111 158 161 5555 5671 5148 84 107 145 102 91 127 462 479 5287 6974 7821 79 105 175 104 112 1 5 44 601 83 872 97 109 157 104 112 1 5 42 44 601 858 1029 90 157 104 112 1 1 55 44 601 858 1029 90 157 103 118 1 1 29 12<		1272		74	138	1281	1366	273	000	108	189	76	102	101 100 100
23 51 49 607 484 55 109 213 96 100 45 76 82 901 1171 1500 84 109 182 108 128 274 462 479 5671 5148 84 107 145 102 91 1 274 462 479 5287 6974 7821 79 105 175 104 112 1 53 894 739 872 97 109 157 104 112 4 44 601 858 1029 116 108 122 105 120 1 5 42 44 601 858 1029 90 108 168 109 98		347 178	. (/)	345	345	9 345 1 408	7 068	669	~ C	106	133	19,	195	72
274 452 479 5287 5671 5148 84 107 145 102 91 112 274 462 479 5287 6974 7821 79 105 175 104 112 1 53 42 44 601 358 1029 116 109 157 103 118 1 4 56 42 44 601 358 1029 116 108 122 105 120 1 80 123 134 2941 4108 4029 90 108 168 109 98 1	2 - 1	- 4		75.0	040	607	707 700 700 700 700 700 700 700 700 700	400	ס רט מ	90,	213	96	100	184
1 274 462 479 5 287 6 974 7821 79 105 175 104 112 14 53 81 83 894 739 872 97 109 157 104 118 19 5 42 44 601 858 1029 116 108 122 105 120 17 4 80 123 134 2941 4108 4029 90 108 168 109 98 13	12.7	36	_	158	161		5 671	574	78	107	145	102	<u>8</u> 2	145
5 42 44 601 858 1029 116 108 122 105 120 175 109 157 109 157 109 175 178 178 178 178 178 178 178 178 178 178	144	.5	274	462	479		97	82		$\cdot \circ$	• i~ r	104		148
4 56 42 44 601 858 1029 116 108 122 105 120 17 + 80 123 134 2941 4108 4029 90 108 168 109 98 13	130	141	50.00	94	83	894	3	· α		\circ .	υ·	\circ		ω·
	237 255 115 96	274 104	30		134		8 0 0	020		108	Øίν	\circ	ω	~ M

Ubersicht 2.12: Entwicklung der Bestände an Rindern, Schweinen und Geflügel in England und Wales (Forts.)

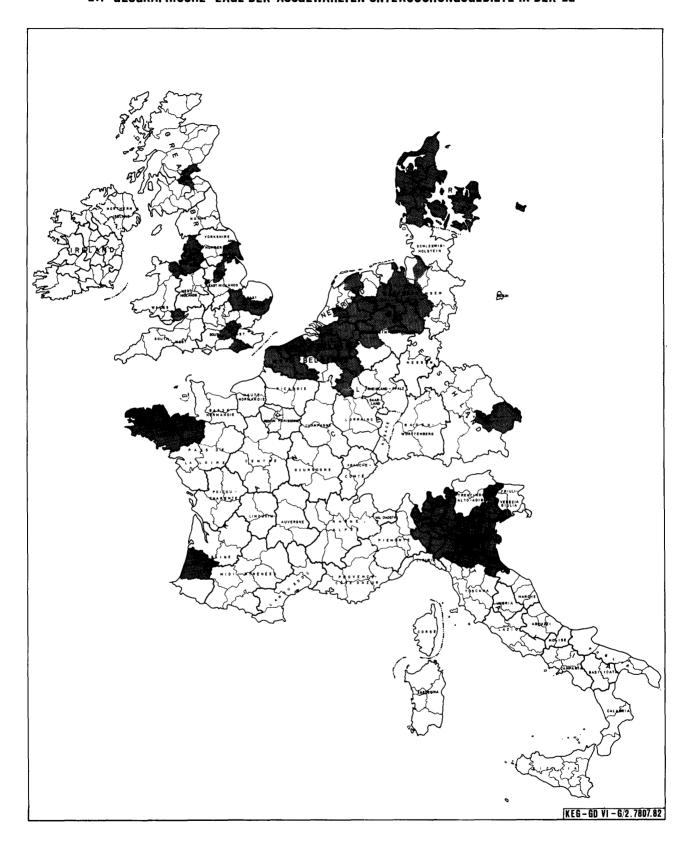
:	flügel	1971	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H. von	Gef	1963	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
in v.H	eine	1971	CC 2000 2000 2000 2000 2000 2000 2000 2
e 1972	Schweine	1963	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
s⊹änd	ler	1971	00000000000000000000000000000000000000
Tierbe	Rind	1963	00000000000000000000000000000000000000
	Le	1972	27 27 27 27 27 27 27 27 27 27 27 27 27 2
	Geflüge	1971	7 7 5 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		1963	221 22484 24892 24172 24173 25119 25119 25119 25113 25
\$ ()	e)	1972	2
beständ O Stück	Schweine	1971	- 001-U 0 001-U 0 000-U 0 000
Tierbe (1000		1963	84 450 68 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6
		1972	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
	Rinder	1971	202 202 203 203 203 203 203 203 203 203
	R	1963	50 20 20 20 20 20 20 20 20 20 20 20 20 20
	County		Oxfordshire Rutland Shropshire Somerset Staffordshire Suffolk Surrey Sussex (East) Sussex (West) Warwickshire Westmorland Wiltshire Worcestershire Yorkshire (West Riding) Yorkshire (West Riding) Anglesey Breconshire Caernarvonshire Cardiganshire Cardiganshire Denbigshire Flintshire Chrishire Cardiganshire Cardiganshire Flintshire Morgomeryshire Flintshire Morgomeryshire Flintshire Radnorshire Radnorshire Radnorshire Isle of Man Carmarthenshire

Quelle: Ministry of Agriculture, Fisheries and Food: Agricultural Statistics England and Wales 1962, 1963, 1972.

Die weitere Analyse der Untersuchungsgebiete erfolgt auf der Ebene der Counties.

Da innerhalb Dänemarks die Viehdichte nur relativ geringfügig variiert, wird dieses Land mit allen seinen Teilregionen in die weitere Untersuchung einbezogen, die auf der Ebene der Amtslaegekredse erfolgt.

In <u>Übersicht 2.13</u> sind die in die weitere Untersuchung einbezogenen Gebietseinheiten und zugehörigen Regionsaggregate ¹⁾ in den Mitgliedstaaten der EG zusammengestellt. Die geographische Lage der Untersuchungsgebiete geht aus der <u>Karte 2.1</u> hervor. Die landwirtschaftlich genutzten Flächen sowie die Rinder-, Schweine- und Hühnerbestände in den zu untersuchenden Gebieten, nach Regionsaggregaten gegliedert, und ihre jeweiligen Anteile an den entsprechenden Flächen und Tierbeständen der einzelnen Mitgliedsstaaten sowie der EG insgesamt sind in den <u>Übersichten 2.14</u> und <u>2.15</u> ausgewiesen. Ein vollständiges Verzeichnis aller Untersuchungsgebiete und Regionsaggregate mit ihren jeweiligen Kennziffern ("Regionsnummern") folgt in der <u>Übersicht 2.16</u>.


¹⁾ Als "Regionsaggregate" werden Gruppen von benachbarten Untersuchungsgebieten bezeichnet. Sie tragen den Namen der jeweils übergeordneten Verwaltungseinheit, auch wenn sie nur Teile derselben umfassen. Aus rechentechnischen Gründen werden Regionsaggregate auch dann gebildet, wenn sie nur ein Untersuchungsgebiet umfassen.

Untersuchungsgebiete und Regionsaggregate in den Mitgliedstaaten der EG Ubersicht 2.13:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		Untersuchungsgebiete	te	Regionsaggregate	
٥		Gebietseinheiten	Anzahl	Gebietseinheiten	Anzahl
BR Deutschland ((a)	Kreisfreie Städte (KS) und Landkreise	06	Regierungsbezirke (RB) bzw. Verwaltungsbezirke (VB)	6
Frankreich ((F)	Regionsagricoles	58	Departements	2
Italien ((I)	Provincie	24(72) ¹⁾	Regioni	3(9)1)
Niederlande (N	(NL)	Landbouwgebieden	56	Provincies	9
Belgien ((B)	Arrondissements	33	Provinces	2
Ver. Königreich (VK)	VK)	Counties	17	Regions ²⁾	2
Dänemark (D	(DK)	Amtslaegekredse	14	Länder	01
Zusammen			292(340)		41(47)

1) Bei Aufgliederung nach Höhenzonen verdreifacht sich die Anzahl der Untersuchungsgebiete und Regionsaggregate in Italien. 2) In Schottland Subregions.

2.1 GEOGRAPHISCHE LAGE DER AUSGEWÄHLTEN UNTERSUCHUNGSGEBIETE IN DER EG

<u>Übersicht 2.14</u> Landwirtschaftlich genutzte Flächen (LF) sowie Rinder-, Schweine- und Hühnerbestände in den untersuchten Regionsaggregaten 1974.

Staat	Regionsaggregat	LF ha	Rinder Stü c k	Schweine Stück	Hühner 100 Stück
0 0 0 0 0 0 0	Hannover Stade (Teil) Osnabrück Oldenburg Düsseldorf Münster Detmold Arnsberg (Teil) Niederbayern	431 314 228 792 387 255 403 927 305 785 481 639 416 195 108 619 611 682	371 600 281 952 399 928 549 812 314 493 579 651 402 945 93 797 707 836	1108 401 408 701 1381 700 1380 071 718 728 1731 444 1189 210 284 966 887 721	54 681 18 707 73 594 126 723 28 970 65 088 52 598 7 093 54 932
দ্দ্দ্দ্দ্দ্দ্	Nord Pas de Calais Côtes du Nord Finistère Ille-et-Vilaine Morbihan Landes	406 804 515 306 505 018 465 029 532 375 429 604 203 633	429 624 483 364 551 522 616 298 638 616 458 376 106 423	554 152 714 743 1012 254 910 107 564 433 489 430 67 466	14 076 26 862 85 666 88 566 24 371 62 211 31 720
I I I	Lombardia Veneto Emilia Romagna	1264 923 991 263 1348 279	1805 010 1152 629 1111 754	1187 590 356 174 1457 268	231 078 252 789 195 694
NL NL NL NL NL	Friesland Overijssel Gelderland Utrecht Noord-Brabant Limburg	233 439 213 194 267 217 71 186 286 458 116 822	641 434 702 805 1004 640 240 838 869 688 224 476	98 255 977 657 1893 340 340 165 2467 111 844 130	34 472 74 196 126 794 17 236 204 225 132 330
B B B B B B B	Antwerpen Brabant Liège Limburg Luxembourg Oost-Vlaanderen West-Vlaanderen	93 656 173 076 183 303 88 920 154 569 168 585 225 099	286 771 241 411 391 517 167 907 325 467 422 936 510 110	505 748 369 732 273 425 530 807 89 701 891 171 2119 947	69 604 23 017 5 104 45 634 1 734 54 808 70 132
VK VK VK VK VK VK	East Anglia (Teil) South East (Teil) East Midlands (Teil) Yorks & Lancs (Teil) Wales (Teil) East Central (Teil) South East (Teil)	180 155	186 393 234 172 117 202 847 854 351 156 116 073 60 439	838 047 162 999 153 139 1054 081 70 804 30 553 46 785	66 227 22 671 38 111 106 769 21 067 39 657 23 035
DK DK	Oerne Jylland	874 498 2030 799	551 586 2548 039	2343 718 5419 410	50 369 103 805

Flache und an den Rinder-, Schweine- und Hühnerbeständen der einzelnen Anteile der Untersuchungsgebiete an der landwirtschaftlich genutzten Mitgliedstaaten sowie der EG insgesamt. Ubersicht 2.15:

Staat	Landwirtschaftli genutzte Fläche	schaftlich Fläche	Rinder		Schweine		Hühner	
	ha	v.H.	Stück	v.H.	Stück	v.H.	100 Stück	v.H.
BR Deutschland	3 375 208	3.6	3 702 014	4.7	246 060 6	13.0	482 416	7.5
Frankreich	3 057 769	3.3	3 284 223	4.1	4 312 585	6.2	313 472	4.9
Italien	3 604 465	3.9	4 069 393	5.2	3 001 032	4.3	679 551	10.6
Niederlande	1 188 316	1.3	3 683 881	9.4	6 620 658	9.5	589 253	9.2
Belgien	1 087 208	1.2	2 346 119	3.0	4 780 531	6.9	270 033	4.2
Verein. Königreich	2 014 427	2.2	1 913 289	2.4	2 356 408	3.4	317 537	4.9
Dänemark	2 905 297	3.1	3 099 625	3.9	7 763 128	17.	154 174	2.4
Untersuchungsge- biete insges.	17 232 690	18.41)	22 098 544	27.9 ¹⁾	37 925 289	54.41)	54.4 ₁) 2 796 436	43.51)

1) Anteile an der LF und an den Rinder-, Schweine- und Hühnerbeständen in der EG insgesamt (1974).

<u>Übersicht 2.16:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate

Bundesrepublik Deutschland:

Name:	Regions-Nr.:	Name:	Regions-Nr.:
Hannover (KS) Diepholz Hoya Schaumburg Hameln-Pyrmont Hannover Neustadt am Rbg. Nienburg a.d.W. Schaumburg-Lippe Springe	1 3 1 1 0 1 3 1 2 0 1 3 1 3 0 1 3 1 4 0 1 3 1 5 0 1 3 1 6 0 1 3 1 7 0 1 3 1 8 0 1 3 1 9 0	Bocholt (KS) Bottrop (KS) Gelsenkirchen (KS) Gladbeck (KS) Münster (KS) Recklinghausen (KS) Ahaus Beckum Borken Coesfeld Lüdinghausen	1 5 3 7 0 1 5 3 8 0 1 5 3 10 0 1 5 3 11 0
RB Hannover	1 3 1 0 0	Münster Recklinghausen	1 5 313 0
Bremervörde Stade Verden	1 3 4 2 0 1 3 4 6 0 1 3 4 7 0	Steinfurt Tecklenburg Warendorf	1 5 314 0 1 5 315 0 1 5 316 0
RB Stade (Teil)	1 3 4 0 0	RB Münster	1530 0
Osnabrück (KS) Aschendorf-Hümmling Bentheim Lingen Meppen Osnabrück	1 3 5 1 0 1 3 5 2 0 1 3 5 3 0 1 3 5 5 4 0 1 3 5 6 0	Bielefeld Büren Gütersloh Herford Höxter Lippe Minden-Lübbecke	1 5 4 4 5 0 0 0 0 1 5 5 4 4 5 6 7 1 5 5 4 4 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
RB Osnabrück	1 3 5 0 0	Paderborn Warburg	1 5 4 8 0 1 5 4 9 0
Delmenhorst (KS) Oldenburg (KS) Wilhelmshaven (KS)	1 3 8 1 0 1 3 8 2 0 1 3 8 3 0 1 3 8 4 0	RB Detmold	15400
Ammerland Cloppenburg Friesland Oldenburg	1 3 8 5 0 1 3 8 6 0 1 3 8 7 0	Lippstadt Soest Unna	1 5 516 0 1 5 521 0 1 5 522 0
Vechta Wesermarsch	1 3 8 8 0 1 3 8 9 0	RB Arnsberg (Teil)	1550 0
Düsseldorf (KS) Duisdorf (KS) Essen (KS) Krefeld (KS) Leverkusen (KS) Mönchengladbach (KS) Mülheim a.d. Ruhr (KS) Neuss (KS) Oberhausen (KS) Remscheid (KS) Rheydt (KS) Solingen (KS) Wuppertal (KS) Dinslaken Düsseldorf-Mettmann Geldern Grevenbroich Kempen-Krefeld Kleve Moers Rees Rhein-Wupper-Kreis	1 3 8 0 0 1 5 1 1 0 1 5 1 2 0 1 5 1 3 0 1 5 1 5 1 6 0 1 5 1 6 0 1 5 1 7 8 0 1 5 1 10 0 1 5 1 110 0 1 5 1 114 0 1 5 1 115 115 116 0 1 5 1 117 0 1 5 1 118 0 1 5 1 120 0 1 5 1 121 0 1 5 1 121 1 1 5 1 121 1 1 5 1 121 1 1 5 1 121 1 1 5 1 121 1 1 5 1 121 1 1 5 1 121 1 1 5 1 122 1 1 5 1 1	Landshut (KS) Passau (KS) Straubing (KS) Deggendorf Freyung-Grafenau Kehlheim Landshut Passau Regen Rottal-Inn Straubing-Bogen Dingolfing-Landau RB Niederbayern	1 9 2 1 0 1 9 2 2 4 0 1 9 9 2 2 5 6 0 1 9 9 2 2 7 8 0 1 9 9 2 2 10 1 9 9 2 2 10 1 9 9 2 11 1 9 2 0 0
RB Düsseldorf	15100		

<u>Übersicht 2.16:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate (Forts.)

Regions-Nr.:

211 3 0000

Frankreich:

Dep. Morbihan

Name:	Regions-Nr.:	Name:
Flandre maritime Flandre interieure Plaine de la Lys Region de Lille Pevele Plaine de la Scarpe Cambresis Hainaut Thierache	2 1 1 0 1 2 1 1 0 2 2 1 1 0 3 2 1 1 0 4 2 1 1 0 5 2 1 1 0 6 2 1 1 0 7 2 1 1 0 8 2 1 1 0 9	Pays de Born Marensin Marenne Marsan Petites Landes de Roquefort Seignanx Pays de Gosse Grandes Landes Vallée du Gave d'Oloron
Dep. Nord	2 1 1 0 0	Vallée du Gave de Pau Chalosse
Pays d'Aire Collines Guinoises Boulonnais Haut Pays d'Artois Bethunis Ternois Pays de Montreuil Bas Champs Picards Plaine de la Lys Wateringues Artois	2 1 2 0 23 2 1 2 0 24 2 1 2 0 29 2 1 2 0 30 2 1 2 0 31 2 1 2 0 32 2 1 2 0 40 2 1 2 0324 2 1 2 0325 2 1 2 0326	Tursan Bas Armagnac Dep. Landes
Dep. Pas-de-Calais	2 1 2 0 0	
Littoral Breton Nord Bretagne Centrale Landes des Mts. d'Arrée Pénéplaine Bretonne Nord Region du Sud Ouest	2 7 1 0358 2 7 1 0359 2 7 1 0360 2 7 1 0361 2 7 1 0362	
Dep. Côtes-du-Nord	27100	
Zone de Brest Zone de Plougastel daoulas Presqu'île de Crozon Z. Legumière de la Pénéplaine Littoral Breton Nord Monts d'Arrée Pénépl. Bretonne Nord Bassin de Chateaulin Pénépl. Bretonne Sud	2 7 2 0102 2 7 2 0103	
Dep. Finistère	27200	
Region Centrale Polders du Mont St Michel Marais du Dol Region de Fougères Region de St Malo Bretagne Centrale Pays de Redon	2 7 3 0 97 2 7 3 0 98 2 7 3 0 99 2 7 3 0 357 2 7 3 0358 2 7 3 0359 2 7 3 0363	
Dep. Ille-et-Vilaine	2730 0	
Bretagne Centrale Region Nord Region Centrale Littoral Breton Sud	2 7 4 0359 2 7 4 0362 2 7 4 0363 2 7 4 0364	

27400

<u>Übersicht 2.16:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate (Forts.)

Italien:

Name:	Regions-Nr.:	Name:	Regions-Nr.:
Varese Como Sondrio Milano Bergamo Brescia Pavia Cremona Mantova	3 4 1 0 0 3 4 2 0 0 3 4 3 0 0 3 4 4 5 0 0 3 4 6 0 0 3 4 6 0 0 3 4 8 0 0 3 4 9 0 0	Varese Collina Como " Sondrio " Milano " Bergamo " Brescia " Pavia " Cremona " Mantova "	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Reg. Lombardia	3 4 0 0 0	Reg. Lombardia "	34002
Verona Vicenza Belluno Treviso Venezia Padova Rovigo	3 6 1 0 0 3 6 2 0 0 3 6 3 0 0 3 6 4 0 0 3 6 5 0 0 3 6 6 0 0 3 6 7 0 0	Verona " Vicenza " Belluno " Treviso " Venezia " Padova " Rovigo "	3366670 222222366670 2366670
Reg. Veneto	3600 0	Reg. Veneto "	3600 2
Piacenza Parma Reggio nell'Emilia Modena Bologna Ferrara Ravenna Forlì	3 8 1 0 0 3 8 2 0 0 3 8 3 0 0 3 8 4 0 0 3 8 5 0 0 3 8 6 0 0 3 8 7 0 0 3 8 8 0 0	Piacenza " Parma " Reggio nell'Emilia " Modena " Bologna " Ferrara " Ravenna " Forlì "	38 10 2 38 20 2 38 30 2 38 40 2 38 50 2 38 60 2 38 70 2 38 80 2
Reg. Emilia Romagna	3800 0	Reg. Emil. Rom. "	3800 2
Varese Montagna Como " Sondrio " Milano " Bergamo " Brescia " Pavia " Cremona " Mantova "	3 4 1 0 1 3 4 2 0 1 3 4 3 0 1 3 4 4 0 1 3 4 5 0 1 3 4 6 0 1 3 4 8 0 1 3 4 9 0 1	Varese Pianura Como " Sondrio " Milano " Bergamo " Brescia " Pavia " Cremona " Mantova "	33333333333333333333333333333333333333
Reg. Lombardia "	3 4 0 0 1	Reg. Lombardia "	3 4 0 0 3
Verona " Vicenza " Belluno " Treviso " Venezia " Padova " Rovigo "	3 6 1 0 1 3 6 2 0 1 3 6 3 0 1 3 6 5 0 1 3 6 6 0 1 3 6 7 0 1	Verona " Vicenza " Belluno " Treviso " Venezia " Padova " Rovigo "	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reg. Veneto "	3600 1	Reg. Veneto "	3600 3
Piacenza " Parma " Reggio nell'Emilia " Modena " Bologna " Ferrara " Ravenna " Forlì "	3 8 1 0 1 3 8 2 0 1 3 8 3 0 1 3 8 4 0 1 3 8 6 0 1 3 8 7 0 1 3 8 8 0 1	Piacenza " Parma " Reggio nell'Emilia" Modena " Bologna " Ferrara " Ravenna " Forlì "	3 8 1 0 3 3 8 2 0 3 3 3 3 3 3 3 3 8 8 5 0 3 3 3 8 8 6 0 3 3 3 8
Reg. Emil. Rom. "	3800 1	Reg. Emil. Rom. "	3800 3

Die Ziffern an der letzten Stelle der Regions-Nr. bedeuten: 1 = Montagna (Gebirge), 2 = Collina (Hügelland), 3 = Pianura (Ebene).

<u>Übersicht 2.16:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate (Forts.)

Niederlande:

Name:	Regions-Nr.:	Name:	Regions-Nr.:
Het Bildt Weide- en bouwstreek Kleiweidestreek Veenweidestreek Eilanden De Wouden Pr. Friesland	4 2 0 0110 4 2 0 0120 4 2 0 0310 4 2 0 0320 4 2 0 0330 4 2 0 0410	Noordwesthoek Westelijke Langstraat Biesbosch Oostelijke Langstraat Land van Altena Maaskant Land van Bergen op Zoom Noordwestelijke zandgronder	410 0 0110 410 0 0120 410 0 0130 410 0 0210 410 0 0220 410 0 0310 410 0 0410
Olst en Wijhe Westelijk weidegebied Oostelijk weidegebied Giethoorn en Steenwijkerwold Zand- en veengebied Salland en Twente	4 4 0 0210 4 4 0 0310 4 4 0 0320 4 4 0 0330 4 4 0 0410 4 4 0 0420	Land van Breda Westelijke Kempen Meijerij Oostelijke Kempen Noordelijk Peelgebied Zuidelijk Peelgebied Land van Cuyk	410 0 0430 410 0 0440 410 0 0450 410 0 0460 410 0 0470 410 0 0480 410 0 0490
Pr. Overijssel	4 4 0 0 0	Pr. Noord-Brabant	410 0 0 0
Westelijke Ijsselstreek Costelijke Ijsselstreek Lijmers Costelijke Betuwe Midden-Betuwe Westelijke Betuwe Bommelerwaard Land van Maas en Waal-Noord Land van Maas en Waal-Zuid Noordelijke Veluwe Westelijke Veluwe Costelijke Veluwe Veluwezoom Noordelijke Achterhoek Zuidelijke Achterhoek Cude Ijssel-gebied Rijk van Nijmegen	4 5 0 0210 4 5 0 0220 4 5 0 0230 4 5 0 0240 4 5 0 0260 4 5 0 0270 4 5 0 0290 4 5 0 0410 4 5 0 0430 4 5 0 0450 4 5 0 0450 4 5 0 0480	Zuid-Limburg Westelijk Noord-Limburg Noordelijke Maasvallei Land van Montfort Pr. Limburg	411 0 0310 411 0 0410 411 0 0420 411 0 0430 411 0 0 0
Pr. Gelderland	45000		
Kromme Rijn-streek De ronde venen Veenweidegebied Gebied van Ijssel en Oude Rijn Lopikerwaard Eemland Zandgebied Heuvelrug Pr. Utrecht	4 6 0 0210 4 6 0 0310 4 6 0 0320 4 6 0 0330 4 6 0 0340 4 6 0 0410 4 6 0 0420 4 6 0 0		

```
Die Ziffern an der drittletzten Stelle der Regions-Nr. bedeuten: 1 = zeekleigebied (Seemarsch), 2 = rivierkleigebied (Flußmarsch), 3 = weidestreken (Weidegebiet), 4 = zandgronden (Sandgebiete) 5 = veenkolonien (Moorgebiete).
```

<u>Übersicht 2.16:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate (Forts.)

Belgien:		<u>Ve</u>	reinigtes Königreich:	
Name:	Regions-Nr.:	Na	me:	Regions-Nr.:
Antwerpen Mechelen Turnhout	5 1 1 0 0 5 1 2 0 0 5 1 3 0 0		mbridgeshire ffolk	7 1 1 0 0 7 1 4 0 0
Pr. Antwerpen	51000	Re	g. East Anglia (Teil)	7100 0
Bruxelles Capitale Halle-Vilvoorde Leuven Nivelles	5 2 1 0 0 5 2 2 0 0 5 2 3 0 0 5 2 4 0 0	Su	. London (SE) urrey st Sussex	7 2 6 0 0 7 212 0 0 7 213 0 0
Pr. Brabant	52000	Re	eg. South East (Teil)	72000
Huy	54100	No	ttinghamshire	7360 0
Liège Verviers Waremme	5 4 2 0 0 5 4 3 0 0 5 4 4 0 0		eg. East Midlands meshire	7 3 0 0 0
Pr. Liège	54000	La: Hu:	ncashire mberside	7720 0 7760 0
Hasselt Masseik Tongeren	5 5 1 0 0 5 5 2 0 0 5 5 3 0 0	Me	r. Manchester erseyside	7 710 0 0 7 711 0 0
Pr. Limburg	55000	Re	eg. Yorks & Lancs (Teil)	7700 0
Arlon	56100		.wyd zent	7 821 0 0 7 823 0 0
Bastogne Marche-en-Famenne Neufchâteau	5 6 2 0 0 5 6 4 0 0	Re	eg. Wales (Teil)	7800 0
Virton Pr. Luxembourg	5650 0 5600 0		.fe .nross	7 9 3 3 0 7 9 3 4 0
Aalst	58100	Re	eg. East Central Scotl. (in	
Dendermonde Eeklo Gent	5 8 2 0 0 5 8 3 0 0 5 8 4 0 0		dlothian st Lothian	7 9 4 3 0 7 9 4 7 0
Qudenaarde Sint-Niklaas	5 8 5 0 0 5 8 6 0 0	Re	eg. South East Scotl. (insg	79400
Pr. Oost-Vlaanderen Brugge	5 8 0 0 0 5 9 1 0 0		eg. East Central u. South E cotl. (Teile)	Tast 7900 0
Diksmuide Ieper Kortrijk Oostende Roeselare Tielt	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		inemark:	Regions-Nr.:
Veurne	5 9 8 0 0	Кб	(benhavn	91100
Pr. West-Vlaanderen	5900 0	Fr Ro Ve Sto	rederiksborg oskilde estsjælland orstrømen ornholm	9 1 1 0 0 9 1 2 0 0 9 1 3 0 0 9 1 4 0 0 9 1 5 0 0 9 1 6 0 0 9 1 7 0
		L.	ø erne	91000
		Ri Ve Ri År Vi	nderjylland .be .jle .ngkøbing .hus .borg .rdjylland	9 2 1 0 0 9 2 2 0 0 9 2 3 0 0 9 2 4 0 0 9 2 5 0 0 9 2 6 0 0 9 2 7 0
		L.	Jylland	92000

3. Charakterisierung der Untersuchungsgebiete

Die Untersuchungsgebiete sollen auftragsgemäß nach folgenden drei Merkmalskomplexen charakterisiert werden:

- Merkmale der Viehhaltung,
- relevante Merkmale der Boden- und Klimaverhältnisse im Hinblick auf die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen und
- relevante Merkmale der Art und Intensität der Raumnutzung.

Die Charakterisierung nach Merkmalen der Viehhaltung ist sowohl auf regionaler als auch auf betrieblicher Ebene vorzunehmen. In der regionalen Analyse sollen folgende Aspekte behandelt werden:

- Struktur des Viehbestandes,
- Viehdichte in Großvieheinheiten und Düngeeinheiten je ha Fläche,
- Anteil der tierhaltenden Betriebe und
- Bodennutzung.

Auf betrieblicher Ebene sollen beschrieben werden:

- Struktur des Viehbestandes,
- Zusammenhänge zwischen der Bestands- und Betriebsgröße und
- Bodennutzung der tierhaltenden Betriebe.

Die Erfüllung dieser Detailanforderungen wirft schwierige Datenprobleme auf: In mehreren Ländern fehlt es an statistischen Unterlagen über einzelne Merkmale, teils sind die Daten nur für unterschiedliche Zeitpunkte und/oder sachlich und regional unzureichend
disaggregiert vorhanden und bisweilen können Daten wegen bestehender
Geheimhaltungsvorschriften über statistische Einzelangaben nicht
unmittelbar verwendet werden.

Während auf regionaler Ebene lediglich der Anteil der tierhaltenden Betriebe mangels statistischer Unterlagen nicht befriedigend berücksichtigt werden kann, muß bei der betrieblichen Analyse aus denselben Gründen auf eine exakte Darstellung der Struktur der Viehbestände und der Bodennutzung der tierhaltenden Betriebe verzichtet werden. Lediglich die Zusammenhänge zwischen Betriebs- und

Bestandsgrößenstruktur können nach Beschaffung unveröffentlichten statistischen Materials für einige Untersuchungsgebiete umfassend beschrieben werden, allerdings teilweise nur unter Inkaufnahme einer stärkeren sachlichen Aggregation bzw. der Unterdrückung von Einzeldaten.

Im Bereich Boden- und Klimaverhältnisse sollen die Merkmalskomplexe

- Klimaverhältnisse, insbesondere Niederschläge und Temperaturen, Zahl der Eistage sowie Windrichtung und -stärke,
- Bodeneigenschaften und
- hydrologische Verhältnisse, insbesondere natürliche "Dränage" und Wasserversorgung, speziell Trinkwasserversorgung, Berücksichtigung finden. Eine vollständige und vergleichbare Erfassung und Darstellung der Detailaspekte dieses Komplexes im Hinblick auf die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in den Untersuchungsgebieten stößt auf noch größere Schwierigkeiten. Sofern überhaupt Informationen vorliegen, müssen einerseits punktuelle Angaben (z.B. Klimadaten) auf größere Raumeinheiten, andrerseits raumbezogene Angaben (z.B. über Bodenarten, Relief und Wasserverhältnisse) auf anders abgegrenzte Gebiete und in diesen jeweils auf die landwirtschaftlich genutzten Flächen übertragen werden.

Die Erfassung und Beschreibung von Art und Intensität der Raumnutzung wurde ebenfalls durch Datenprobleme erschwert. Die einzigen durchgehend verfügbaren Angaben hierzu finden sich in den Bodennutzungs- und Bevölkerungsstatistiken. Da die vorhandenen Bodennutzungsstatistiken aber nicht immer eindeutig regional interpretierbar sind oder aber auf bestimmte Sektoren beschränkt bleiben und die Bevölkerungsstatistiken oft nicht in derselben regionalen Gliederung dargestellt werden wie die Agrarstatistiken (z.B. in Frankreich, den Niederlanden und im Vereinigten Königreich), mußte auch bei diesem Komplex das statistische Datenmaterial teilweise durch Schätzungen ergänzt werden.

3.1 Methodik der Charakterisierung

Entsprechend der Aufgabenstellung, Informationen zu den drei Merkmalskomplexen Tierhaltung (und Bodennutzung), Boden- und Klimaverhältnisse und Art und Intensität der Raumnutzung für die ausgewählten Untersuchungsgebiete zusammenzuführen und diese nach allen
drei Komplexen zu klassifizieren, werden zunächst geeignete
Grund dat en ausgewählt. Einige davon sind explizit vorgegeben, andere können nach ihrer vermeintlichen Relevanz Berücksichtigung finden.

Sodann wird ein Teil der ausgewählten Grunddaten zu interpretierbaren und zur Klassifizierung geeigneten Kennwerten aufbereitet. Einige Grunddaten wie zum Beispiel die klimatischen Angaben können direkt zur Charakterisierung verwendet werden. Andere, wie etwa die Zahl der Einwohner und der Umfang der Fläche, müssen zu Relativwerten kombiniert werden, um sie für eine interregional vergleichbare Klassifizierung verwenden zu können. Da aber Verhältniszahlen stets weniger Informationen enthalten als die zueinander in Beziehung gesetzten Ursprungswerte selbst, werden letztere nach Möglichkeit ebenfalls angegeben.

3.1.1 Auswahl von Grunddaten

Die im folgenden erörterten Grunddaten standen bei der Auswahl der Untersuchungsgebiete, die zeitlich zwangsläufig vorgezogen werden mußte, teilweise noch nicht zur Verfügung. Es darf daher nicht überraschen, daß für die Charakterisierung und Klassifizierung der Untersuchungsgebiete Daten Verwendung finden, die gr.T. neueren Datums und inhaltlich teilweise stärker disaggregiert sind als die im vorigen Kapitel benutzten.

Die Ausgangsdaten wurden für jedes Untersuchungsgebiet auf jeweils 24 Lochkarten aufgenommen. Das Schwergewicht liegt dabei auf den Flächen- und Tierbestandsdaten zur Charakterisierung der Zusammenhänge zwischen Bestands- und Betriebsgrößenstruktur. Dieser Komplex umfaßt 16 Lochkarten, davon je vier für die Untergruppen Rinderhaltung, Schweinehaltung, Legehennenhaltung und Masthühnerhaltung. Auf zwei weiteren Lochkarten sind – je nach Verfügbarkeit in den einzelnen Ländern – bis zu zwanzig Kategorien der Bodennutzung

erfaßt. Drei weitere Karten beinhalten insgesamt 15 verschiedene Viehkategorien. Auf drei Karten sind schließlich Ausgangswerte zur Charakterisierung der landwirtschaftlichen Betriebsgrößenstruktur sowie von Klima, Boden und Raumnutzung aufgenommen.

3.1.1.1 Klima- und Bodenverhältnisse

Der Charakterisierung der Klimaverhältnisse werden folgende Werte zugrunde gelegt:

- 12 Monatsdurchschnitte und ein Jahresdurchschnitt für Temperatur und Niederschlag (26 Positionen),
- Zahl der Eistage (Frankreich Schneetage) und Zahl der Frosttage im Jahr (2 Positionen),
- Evapotranspiration (nur BR Deutschland),
- vorherrschende Windrichtung im Juni, im Dezember und im Jahr (3 Positionen) sowie vorherrschende Windstärke im Jahr (1 Position).

Die vorherrschende Windrichtung wird durch Ziffern zwischen 1 und 8 gekennzeichnet, wobei 1 = Nord, 2 = Nordwest, 3 = West, ..., 8 = Nordost.

Insgesamt konnten - unter Berücksichtigung der Datenlücken für manche Regionen - zwischen 26 und 33 Invormationen verwertet werden, darunter in jedem Falle solche über Temperaturen und Niederschläge. Als Datenquellen dienten offizielle Atlanten der Länder, direkte Informationen und Veröffentlichungen der metereologischen Zentralämter sowie ein Klimadiagramm-Weltatlas.

Bei den klimatischen Werten handelt es sich durchgehend um langjährige Mettelwerte, in der Regel aus der Klimanormalperiode 1930-1961. Sie dürften nicht in jedem Falle repräsentativ für die aktuelle Klimasituation der ganzen zugeordneten Region sein, lassen aber trotz eines vermuteten Fehlers von bis zu + 5 v.H. 1) eine abgesicherte Typisierung nach Klimazonen zu.

¹⁾ Ablesefehler bei den Klimadiagrammen.

Für die Charakterisierung der Bodenverhältnisse stehen zwei Methoden zur Wahl:

- Die Differenzierung nach der Korngrößenzusammensetzung (Ton, Lehm, Sand) und
- die Einteilung nach Bodengesellschaften (Bodentypen).

 Da die letztere Bodeneinteilung einerseits klimatische Aspekte integriert und andererseits auch als Europakarte der FAO ¹⁾, nach einheitlicher Methodik bearbeitet, vorliegt, wurde sie vorgezogen.

 Dort, wo der Maßstab von 1: 2,5 Mio nicht hinreicht, wurden spezielle Karten und Atlanten zu Rate gezogen.

Da nicht alle Bodenkarten mit Gebietsgrenzenkarten vollständig zur Deckung gebracht werden können und da die Zuordnung zwischen den landwirtschaftlich genutzten Flächen und den Bodengesellschaften nicht zwangsläufig mit der zwischen der Gesamtfläche und den Bodengesellschaften übereinstimmen muß, werden die Bodentypen nach der geschätzten Häufigkeit ihres Vorkommens wie folgt eingestuft:

- Häufigster Bodentyp,
- zweithäufigster Bodentyp und
- dritthäufigster Boden.

Ist nur ein Bodentyp vorhanden, taucht er dreimal als Grundwert auf. Bei nur zwei Bodentypen wird der überwiegende Typ zweimal genannt. Überwiegt ein Typ sehr stark, geht seine Kennziffer als häufigster und zweithäufigster Bodentyp ein, bei weniger deutlichem Übergewicht als häufigster und dritthäufigster.

Ähnlich wie der Bodentyp kann das Relief nur grob aus topografischen Karten abgelesen und den landwirtschaftlich genutzten Flächen zugeordnet werden. In Anlehnung an die direkt übernommene Aufteilung
der italienischen Statistik nach Höhenzonen ²⁾ wird eine Aufteilung
in drei Hangneigungszonen benutzt, die auf die vermutete Reliefenergie abstellt:

¹⁾ DUDAL, R. TAVERNIER, R., OSMON, D., Soil map of Europe, 1:2,500,000. Hrsg.: Food and Agriculture Organization of the United Nation. Vol. 1: Map, Vol. 2: Explanatory Text. Rom 1966.

²⁾ Eine Definition der italienischen Höhenzonen ("zone altimetriche") findet man in: Istituto Centrale di Statistica (ISTAT), Metodi e norme, Serie I, Nr. 1: Circoscrizioni statistiche. Roma, Agosto 1958, S. 7 f.

- Ebene: unter 2 % Hangneigung

- Hügelland: 2 bis 10 % Hangneigung

- Gebirge: über 10 % Hangneigung.

Jeder dieser Kategorien wird ein Anteil von null bis einhundert Prozent der Gesamtfläche zugeordnet, wobei jeweils auf volle 10 % auf- bzw. abgerundet wird.

Eine quantitative Erfassung der hydrologischen Verhältnisse ist nur für einige Regionen möglich. Deshalb bleibt dieser Aspekt mehr einer verbalen Erörterung vorbehalten. Als Grundwert kann lediglich aus der Bodenkarte abgeschätzt werden, wie hoch der Anteil der grundwassernahen Böden ist. Darüber hinaus kann vermutet werden, daß die benötigte Menge an Trinkwasser eng mit der Bevölkerungsdichte und dem Viehbesatz korreliert ist. Da diese beiden Merkmale in den zwei folgenden Abschnitten behandelt sind, sei auch auf die darin erläuterten Grunddaten verwiesen.

3.1.1.2 Raumnutzung

Art und Intensität der Raumnutzung können aus der Flächen- und Bodennutzungsstatistik einerseits und der Bevölkerungsstatistik andrerseits abgeleitet werden. Da die Bodennutzung im folgenden Abschnitt 3.1.1.3 behandelt wird, sind hier nur die Merkmale Bevölkerung und Fläche zu erläutern. Die Bevölkerungszahlen stammen durchweg aus der Zeit nach 1970 1). Sie werden auf Tausend aufgerundet.

In den Niederlanden, in Frankreich und im Vereinigten Königreich ist es wegen der Unterschiede zwischen der in der Bevölkerungs- und der in der Bodennutzungsstatistik verwendeten Regionalisierung erforderlich, die Angaben zur Bevölkerung und zur Bodenfläche und ihrer Nutzung miteinander vergleichbar zu machen. Die Lösung dieses Problems wird in den Niederlanden durch die weitgehende Kongruenz

¹⁾ Niederlande, Belgien und Dänemark: 1973; Bundesrepublik Deutschland, Italien und Vereinigtes Königreich: 1974; Frankreich: 1975.

der 121 "landbouwgebieden" mit den 129 "economisch-geografische gebieden" erleichtert. Aus dieser letzten Einteilung stammen die Angaben zur Gesamtfläche und zur Bevölkerung der Landbaugebiete. Wo zwei Landbaugebiete zu einem "economisch-geografisch gebied" gehören, werden Fläche und Bevölkerung jedem der Landbaugebiete zur Hälfte zugeschlagen. Dementsprechend ist es unzulässig. die Daten der allgemeinen Bevölkerungs- und Flächenstatistik mit denen der landwirtschaftlichen Bodennutzung in Zusammenhang zu bringen 1). In Frankreich werden für die beiden Regionen Nord und Bretagne und für das Departement Landes zwei verschiedene Methoden angewandt. Die auf Department-Ebene vorliegenden Angaben zu Bevölkerung und Gesamtfläche in der Bretagne und in Landes werden mangels feiner gegliederter Daten auf die "regions agricoles" übertragen, womit unterstellt wird, daß in allen Teilgebieten die gleiche Bevölkerungsdichte wie im Gesamtgebiet vorliegt. Für die Region Nord liegen auf den Ebenen der cantons und arrondissements zwar Bevölkerungswerte, aber keine Flächenangaben vor. Wegen der aus diesen Zahlen ersichtlichen, aber nicht genau quantifizierbaren Inhomogenität der Bevölkerungsdichte in den verschiedenen Landbaugebieten wird auf die Angabe von Grunddaten ganz verzichtet.

3.1.1.3 Bodennutzung und Viehhaltung

Der folgende Abschnitt ist in die zwei Merkmalskomplexe Bodennutzung und Viehhaltung gegliedert. Bodennutzungserhebungen und
Viehzählungen werden in den Mitgliedstaaten von den gleichen Institutionen durchgeführt. In den meisten Ländern fallen die Erhebungszeitpunkte sogar zusammen. In der BR Deutschland basieren
hingegen die Bodennutzungsangaben auf im Mai durchgeführten Erhebungen, während die Tierbestände im Dezember erfaßt werden. Lediglich bei den in zweijährigen Abständen vorgenommenen Sonderauswertungen der Dezember-Viehzählungen nach Betriebs- und Viehbestandsgrößen

¹⁾ Zum Beispiel darf der Kennwert "Einwohner je ha landwirtschaftlich genutzte Fläche" nicht als aussagekräftig angesehen werden.

werden auch die landwirtschaftlich genutzten Flächen der viehhaltenden Betriebe (allerdings ohne weitere Differenzierung nach der Art der Bodennutzung) erfaßt.

Die hier verwendeten Angaben zur Bodennutzung stammen in der Regel aus demselben Jahr wie die über die Viehhaltung und werden unter besonderer Berücksichtigung der unterschiedlichen Düngertoleranz der verschiedenen Nutzungsarten aufgegliedert¹⁾.

Besonders wichtig erscheint die Unterscheidung zwischen Acker- und Grünland. Zum Grünland wird das Dauergrünland einschließlich der Hutungen (rough grazings) gezählt. Um den Umfang der Feldgraswirtschaft auf dem Ackerland abschätzbar zu machen, werden die Kategorie Futterpflanzen und - als Bestandteil derselben - die Unterkategorie Futtermais berücksichtigt. Da Mais insgesamt eine hohe Affinität zu konzentrierter flächenunabhängiger Veredlung hat, wie WINDHORST 2) in einer Spezialstudie für den Raum Vechta zeigen konnte, wird er neben anderen Einzelfrüchten wie z.B. Zuckerrüben, Futterrüben und Kartoffeln in die Charakterisierung der Bodennutzung einbezogen. Einige andere Flächenkategorien, nämlich Hafer, Gerste und Winterweizen, werden dagegen nicht gesondert berücksichtigt, da für sie nicht aus allen Untersuchungsgebieten detaillierte Angaben zur Verfügung stehen.

Insgesamt werden folgende Hauptkategorien der Bodennutzung in die Darstellung aufgenommen: Wirtschaftsfläche (außer in den Nieder-landen und der Region Nord), Ackerland, Gartenland, Dauergrünland, Getreide, Hülsenfrüchte, Handelsgewächse und Hackfrüchte. Mit diesen Angaben dürfte eine hinreichende Grundlage zur Charakterisierung der Bodennutzung gegeben sein.

¹⁾ Vgl. Harener Studie, a.a.O., Kap. II.

²⁾ WINDHORST, H.-W., Spezialisierte Agrarwirtschaft in Südoldenburg - Eine agrargeographische Untersuchung. Leer 1975, S. 61-73.

Zur Kennzeichnung der Ausstattung der landwirtschaftlichen Betriebe mit landwirtschaftlich genutzter Fläche (LF) und deren Größenstruktur werden ferner die Anzahlen der Betriebe mit 1 und mehr 1) ha sowie der Betriebe mit 30 und mehr ²⁾ ha LF ausgewiesen.

Zur Beschreibung der Viehhaltung giltes, die Grunddaten so auszuwählen, daß mit ihrer Hilfe eine hinreichend exakte Beschreibung der Zusammensetzung der Viehbestände nach Tierarten, Altersgruppen und Nutzungsrichtungen und auf diese Weise eine zutreffende Schätzung der jeweils anfallenden Mengen an Exkrementen und der Mengenverhältnisse zwischen den drei in ihnen enthaltenen Hauptnährstoffen N, P_2O_5 und K_2O ermöglicht wird. Ausgewählt werden demgemäß folgende Tierkategorien:

- (1) Pferde.
- (2) Milchkühe,
- (3) Kälber 3),
- (4) übrige Rinder.
- (5) Zuchtsauen über 50 kg Lebendgewicht,
- (6) Schweine über 20 kg Lebendgewicht ohne Zuchtschweine,
- (7) übrige Schweine.
- (8) Schafe.
- (9) Ziegen,
- (10) Legehennen.
- (11) Masthühner,
- (12) übrige Hühner,
- (13) Gänse,
- (14) Enten,
- (15) Truthühner.

3) Frankreich, Italien: Rinder unter 1 Jahr alt

Schlachtrinder unter 1 Jahr alt Belgien : männliche Rinder unter 1 Jahr alt Dänemark

Ver. Königreich

Rinder unter 6 Monate alt Rinder unter 6 Monate alt oder unter BR Deutschland

220 kg LG

: Mastkälber (unter 3,5 Monate) Niederlande

¹⁾ In der BR Deutschland und Dänemark mit 0.5 und mehr ha LF.

²⁾ In Italien mit 20 und mehr ha LF.

Zur Darstellung der Zusammenhänge zwischen Betriebs- und Viehbestandsgrößenstruktur werden simultan je 8 bzw. bei Masthühnern 9 Betriebs- und Viehbestandsgrößenintervalle herangezogen. Diese Differenzierung dürfte ausreichen, um deutliche Unterschiede in der Intensität der Viehhaltung jeweils einer Tierkategorie zu erfassen, zumal einer noch weitergehenden Aufgliederung der Zwang zur Geheimhaltung von Einzelangaben entgegensteht.

Wegen der bisher noch nicht vollständig harmonisierten Viehzählungstermine stammen die Daten über die Viehhaltung in den einzelnen Mitgliedsländern teilweise aus unterschiedlichen Jahren. Für die Niederlande waren ursprünglich neuere Daten (1975) in Aussicht gestellt worden, die jedoch nicht mehr rechtzeitig geliefert wurden. Schließlich muß nachdrücklich darauf hingewiesen werden, daß die verwendeten Daten Aussagen über die Intensität der Viehhaltung stets nur für eine einzige Tierart, nicht jedoch für die gesamten Viehbestände der Betriebe zulassen. So ist es beispielsweise lediglich möglich festzustellen, daß ein Betrieb auf 5 ha landwirtschaftlich genutzter Fläche 200 Schweine hält, nicht jedoch, ob er außerdem auch noch Rinder oder/und Hühner hält. Insofern sind die auf den betreffenden Grunddaten basierenden Kennwerte stets als Minimalschätzungen zu interpretieren.

3.1.2 Ableitung von Kennwerten zur Charakterisierung und Klassifizierung der Untersuchungsgebiete

Der folgende Abschnitt beschreibt die Ableitung von Kennwerten zur Charakterisierung und Klassifizierung der Untersuchungsgebiete aus den im vorigen erwähnten Grunddaten. Dabei wird wiederum in der Reihenfolge

- Boden und Klimaverhältnisse,
- Raumnutzung und
- Viehhaltung und Bodennutzung

vorgegangen. Der letzte Bereich umfaßt recht unterschiedliche Details und wird darum noch weiter aufgegliedert in die drei Unterbereiche

- Größenstruktur der Betriebe mit landwirtschaftlich genutzten Flächen.
- Struktur der Bodennutzung und
- Struktur der Viehbestände

sowie die diese Unterbereiche kombinierenden Aspekte

- räumliche Konzentration der Viehhaltung.
- betriebliche Konzentration der Viehhaltung und
- räumliche und betriebliche Konzentration der Viehhaltung.

3.1.2.1 Klima- und Bodenverhältnisse

Art und Größenordnung der Probleme von Düngerüberschüssen hängen außer vom Niveau des Düngerangebots, seiner Zusammensetzung und der Ausbringungsweise sowie von der Art der Bodennutzung auch wesentlich vom Klima und Boden einer Region ab. Diese beiden Komponenten bestimmen neben der Wuchsleistung der Pflanzendecke die Gefahr der Auswaschung und Abschwemmung von Nährstoffen.

Beim Klima interessiert in erster Linie der Saldo des Wasserhaushaltes. Er kann entweder direkt anhand der Differenz zwischen Niederschlag und Evapotranspiration gemessen oder indirekt über die Kombination von Monatswerten für Temperatur und Niederschläge abgeschätzt werden ¹⁾. Genügend exakte Angaben zur Evapotranspiration konnten nur für den nordwestdeutschen Raum beschafft werden ²⁾. Deshalb müssen die durchschnittlichen Monatswerte zusammen mit Durchschnitten

- für das Jahr insgesamt,
- für die Monate Oktober März und
- für die Monate April September

als Hilfskennwerte dienen. Während die Temperatur- und Niederschlagswerte im Sommerhalbjahr vor allem die Wuchsleistung bestimmen, determinieren die des Winterhalbjahres in erster Linie die Sickerwassermenge und damit die mögliche Auswaschung von Nährstoffen.

¹⁾ BAETJER, D., Der Wasserhaushalt Nordwestdeutschlands. Schriftenreihe der Landwirtschaftskammer Weser-Ems, H. 4. Berlin - Hamburg 1968, S. 51, 92.

²⁾ Ebenda, S. 98, 99.

Wünschenswerte Angaben ¹⁾ über die Niederschlagsintensität konnten nicht durchgehend beschafft und können deshalb auch nicht bei den Kennwerten berücksichtigt werden. Jedoch weisen große Sommerregenanteile eher auf hohe Intensitäten (Gewitter) hin als hohe Niederschlagsanteile im Winter. Andererseits sind die Böden im Sommer wegen ihres Bewuchses weniger abschwemmungs- und auswaschungsgefährdet. Wegen dieser vielschichtigen Argumentationsmöglichkeiten wird neben den eben genannten Hilfskennwerten lediglich der Quotient "Winterregenmenge/Regenmenge im Jahr" zur Charakterisierung des Merkmals Klimaverhältnisse herangezogen.

Die weiter oben beschriebenen Grunddaten zu den Merkmalen Boden nund Relief werden durch zwei ähnliche Methoden in jeweils eine einzige Kennziffer transformiert, die beim Bodentyp Werte zwischen 1.3333 und 5 und beim Relief Werte zwischen 1.6667 und 5 annehmen kann. Zum leichteren Verständnis werden die beiden Verfahren zur Ableitung von Kennwerten im folgenden anhand eines Beispiels beschrieben.

Zunächst werden die Bodentypen fünf Oberklassen zugeordnet. Diese verallgemeinerten Bodentypen werden mit den Wertziffern 1, 2, 3, 4 und 5 derart versehen, daß die Bodentypen mit dem vermuteten höheren Umweltproblemgehalt (Auswaschung, Erosion, Befahrbarkeit) eine hohe Kennzahl und weniger problematische Böden eine niedrige Kennzahl bekommen. Diese fünf Typen umfassen außer Rendzina-Böden, die den Braunerden zugeordnet werden, alle tatsächlich in den Untersuchungsgebieten vorkommenden Bödentypen. Im einzelnen gilt folgende Zuordnung

Bodentyp	Wertziffer
Braunerden, Parabraunerden	1
Gleye, Pseudogleye	2
Auen und Marschen	3
Podsole	4
Moore	5

Darauf wird bestimmt, welches der häufigste, zweithäufigste und dritthäufigste Bodentyp ist. Der häufigste Typ wird mit dem

¹⁾ Vgl. Harener Studie, a.a.O., Kap. II.

²⁾ Diese Verfahren mögen sehr grob und willkürlich erscheinen. Mangels fundierter statistischer Unterlagen und mangels einer brauchbaren Theorie zu deren Anwendung auf Umweltprobleme hätten aber auch detailliertere Angaben keinen abgesicherten Informationsbeitrag leisten können.

Faktor 3, der zweithäufigste mit dem Faktor 2 und der dritthäufigste mit dem Faktor 1 gewichtet. Aus diesen gewogenen Wertziffern wird dann das arithmetische Mittel gebildet. Für das Untersuchungsgebiet Landkreis Vechta (Regions-Nr. 13880) wurde z.B. folgende Rangfolge der Bodentypen ermittelt:

Bodentyp	Wertziffer	Rangfolge	Produkt
Häufigster Typ (HT): Podsole	4	3	12
Zweithäufigster Typ (ZT): Parabraunerden	1	2	2
Dritthäufigster Typ (DT): Auen	3	1	3

Nach der Formel

$$T = \frac{3 \cdot HT + 2 \cdot ZT + 1 \cdot DT}{6}$$

ergibt sich als Kennziffer für den "durchschnittlichen Bodentyp" im Untersuchungsgebiet der Wert 2,833.

Beim Relief werden, wie bereits im Abschnitt 3.1.1.1 erläutert, nach der vorherrschenden Hangneigung drei Klassen unterschieden und mit den Wertziffern 1, 2 und 3 versehen:

Reliefkategorie	Wertziffer
Hangneigung über 10 % (Gebirge)	3
Hangneigung von 2-10 % (Hügelland)	2
Hangneigung unter 2 % (Ebene)	1

Diese Wertziffern werden mit den geschätzten Anteilen der drei Reliefkategorien an der Gesamtfläche gewichtet und durch 0,6 dividiert 1). Für das bereits erwähnte Untersuchungsgebiet Landkreis Vechta wurden z.B. folgende Anteile geschätzt:

Reliefkategorie	Wertziffer	Anteil	Produkt
Gebirge (G)	3	0,0	0,0
Hügelland (H)	2	0,2	0,4
Ebene (E)	1	0,8	0,8

Als Kennziffer für das "durchschnittliche Relief" im Untersuchungsgebiet ergibt sich nach der Formel

$$R = \frac{3 \cdot A_G + 2 \cdot A_H + 1 \cdot A_G}{0,6}$$

der Wert 2,0.

¹⁾ Die Division durch 0,6 erfolgt, um den Wertebereich dieser Kennziffer dem der Kennziffer "durchschnittlicher Bodentyp" so weit als möglich anzugleichen.

3.1.2.2 Raumnutzung

Zur Charakterisierung der Raumnutzung werden vier Kennziffern gebildet. Die erste setzt die landwirtschaftlich genutzte Fläche zur Wirtschaftsfläche des Untersuchungsgebiets in Beziehung. Hat dieser Quotient einen Wert nahe Eins, kann der Raum als landwirtschaftlich geprägt angesehen werden. Liegt er wesentlich unter 0,5, handelt es sich in der Regel um verstädterte Zonen. Der Quotient kann allerdings auch dadurch klein werden, daß das Gebiet einen hohen Anteil an Ödland oder Wald aufweist. Man kann jedoch von der Vermutung ausgehen, daß in vielen solcher Gebiete wegen ihres potentiellen Erholungswertes eine intensive tierische Produktion Umweltbeeinträchtigungen und hieraus resultierende Konflikte in ähnlichem Ausmaß verursachen kann wie in städtischen Regionen.

In den anderen drei Kennziffern wird die Einwohnerzahl auf drei verschiedene Flächenkategorien bezogen, nämlich auf

- die Gesamtfläche.
- die Wirtschaftsfläche und
- die landwirtschaftlich genutzte Fläche.

Die Gesamtfläche gibt die gesamte räumliche Ausdehnung eines Untersuchungsgebietes wieder. Die Wirtschaftsfläche weicht insoweit von der Gesamtfläche ab, als Einwohner der betreffenden Region Teile ihrer Betriebsflächen in anderen Regionen liegen haben. Dort, wo Angaben über eine der beiden Flächenkategorien fehlen, kann die andere als Substitut gelten ¹⁾. Der Quotient "Einwohner/landwirtschaftlich genutzte Fläche" gibt einen Hinweis auf die maximal durch Flächenaufbringung zu verwertenden Mengen an tierischen Exkrementen sowie an Klärwasser und Klärschlamm. Unter Verwendung von sogen. "Einwohnergleichwerten" bzw. der Nährstoffmengen selbst könnte diese Kennziffer für eine intergrierende Betrachtung der gesamten Nährstoffbilanz von Regionen dienen ²⁾.

¹⁾ Für die Niederlande liegen z.B. auf der Ebene der Landbaugebiete keine Angaben zur Gesamtfläche und zur Waldfläche vor.

²⁾ Vgl. hierzu die Ausführungen in Abschnitt 1.1.

3.1.2.3 Bodennutzung und Viehhaltung

In sechs Kennziffern sind die wichtigsten Strukturmerkmale der landwirtschaftlichen Bodennutzung eingefangen. Die ersten vier kennzeichnen das Verhältnis von

- Dauergrünlandfläche,
- Getreidefläche.
- Hackfruchtfläche und
- Maisfläche

zur landwirtschaftlich genutzten Fläche. Diese Verhältniszahlen tragen dazu bei, den Düngerbedarf der landwirtschaftlich genutzten Fläche und seine Struktur zu charakterisieren. Besonders wichtig erscheint dabei die Unterscheidung zwischen Grünland und Ackerland.

Die zwei weiteren Kennzahlen beschreiben die beiden Kategorien Ackerland und Grasland näher. Der Quotient "Getreidefläche/Acker-fläche" charakterisiert die Ackernutzung. Mit dem Quotienten "Wiesen und Mähweisen/Grünland" soll dem nach der Harener Studie für die Kaliproblematik relevanten Begriff "maaifrequentie" (Schnitthäufigkeit) Rechnung getragen werden.

Einen Hinweis auf die Größenstruktur aller land-wirtschaftlichen Betriebe, gemessen am Umfang ihrer landwirtschaftlich genutzten Fläche, gibt die Relation "Betriebe mit 30 u.m. ha LF/Betriebe mit 1 u.m. ha LF" 1). Zwar darf sie wegen der unbekannten Durchschnittsgröße der Betriebe der oberen offenen Klasse nur vorsichtig interpretiert werden, doch waren Alternativen mit geringeren methodischen Unwägbarkeiten bei tragbarem Aufwand der Datenerhebung nicht in Sicht.

Sehr detailliert wird die Struktur der Vieh-haltung beschrieben. Für die in Abschnitt 3.1.1.3 aufgeführten fünfzehn Viehkategorien wird eine Umrechnung der Bestände in "Futtereinheiten" ²⁾ vorgenommen. Ergänzt werden diese 15

¹⁾ Aus Gründen der Datenverfügbarkeit variiert die untere Grenze zwischen 0,5 und 1,0 ha LF, die obere Grenze liegt in Italien bei 20 ha LF.

²⁾ Vgl. den folgenden Abschnitt.

Informationen durch die Summe der "Futtereinheiten" über alle Tier-kategorien.

Vier weitere Kennzahlen können für alle Regionen angegeben werden. Es sind dies die Quotienten

- "Kühe/Rindvieh insges."
- "Sauen/Schweine insges."
- "Legehennen/Hühner insges." und
- "Masthühner/Hühner insges."

Aus ihnen lassen sich Hinweise auf die in den einzelnen Viehhaltungszweigen vorherrschenden Nutzungsrichtungen ableiten.

Weitere vier Kennziffern sind nur für diejenigen Gebiete und Vieharten vorhanden, für die aufgrund des Vorhandenseins entsprechender Daten die Zusammenhänge zwischen der Betriebs- und der Viehbestandsgrößenstruktur der viehhaltenden Betriebe analysiert werden konnten. Sie beschreiben die durchschnittlichen Bestandsgrößen

- "Rinder/Rinderhalter"
- "Schweine/Schweinehalter"
- "Legehennen/Legehennenhalter" und
- "Masthühner/Masthühnerhalter".

Mit Hilfe dieser vier Koeffizienten kann ein Eindruck von der Größenstruktur der viehhaltenden Betriebe gewonnen werden, die wiederum einen gewissen Zusammenhang zu Umfang und Struktur des Anfalls an tierischen Exkrementen (Art der Kot- und Harngewinnung, -sammlung und -aufbereitung) vermuten läßt.

3.1.2.3.1 Räumliche Konzentration der Viehhaltung

Die räumliche Konzentration der Viehhaltung wird durch die Höhe des Viehbesatzes je Flächeneinheit ("Viehdichte"), hier je 100 ha landwirtschaftlich genutzte Fläche, charakterisiert. Hierzu ist eine Aggregation der verschiedenen Tierarten und -kategorien mit Hilfe geeigneter Wägungsfaktoren erforderlich. Im folgenden werden

hierfür zwei verschiedene Arten von Faktoren verwendet, nämlich die im vorigen Abschnitt erwähnten "Futtereinheiten" und die in Kap. 2.3.1 genannten sogen. "Rindviehäquivalente".

Die Definition der "Futtereinheit" (FE) basiert auf der jährlich aufgenommenen Menge an Nettoenergie einer Milchkuh mit einem Lebendgewicht von 550 kg und einer Milchleistung von 4 000 1 mit einem Fettgehalt von 4 %: 1 FE entspricht einem Nettoenergiebedarf von 6 300 Stärkeeinheiten (StE) je Tag x 365 Tage = 2 299 500 StE bzw. 2 299,5 KStE.

Die Definition der "Rindviehäquivalente" (RE) beruht auf den in den Exkrementen einer Milchkuh mit den o.g. Merkmalen jährlich anfallenden Mengen an Hauptnährstoffen N, P_2O_5 und K_2O : 1 RE entspricht einem Nährstoffanfall in den Exkrementen in Höhe von 90 kg N bzw. 40 kg P_2O_5 bzw. 100 kg K_2O .

Da die Umrechnung in "Rindviehäquivalente" für jeden der drei Hauptnährstoffe gesondert zu erfolgen hat und zu unterschiedlichen Ergebnissen führt, erscheint die Verwendung der "Futtereinheit" als Wägungsfaktor immer dann zweckmäßig, wenn eine Bezugnahme auf einen bestimmten Nährstoff nicht möglich oder nicht sinnvoll ist.

Die Definitionen für beide Umrechnungsfaktoren stammen aus dem Instituut voor Bodemvruchtbaarheid in Haren. Mit ihm sind auch die Umrechnungsfaktoren für die 15 in Abschnitt 3.1.1.3 aufgeführten Tierarten und -kategorien in "Futtereinheiten" und in "Rindvieh-äquivalente" abgestimmt worden.

Diese Umrechnungsfaktoren sind in der Übersicht 3.1 wiedergegeben. Spalte (2) enthält die zur Umrechnung in "Futtereinheiten" (FE) und die Spalten (3) bis (5) die zur Umrechnung in "Rindviehäquivalente" (N-RE, P_2O_5 -RE und K_2O -RE) verwendeten Wägungsfaktoren. Die in den Spalten (3) bis (5) enthaltenen Werte spiegeln die unterschiedlichen Mengenverhältnisse zwischen den drei Hauptnährstoffen N, P_2O_5 und K_2O in den Exkrementen der verschiedenen

Umrechnungsfaktoren für die Ermittlung von "Futtereinheiten" und von "Rindviehäquivalenten" aus der Anzahl der Tiere verschiedener Tierkategorien Ubersicht 3.1:

- G	E	Futter-	Rindv	Rindviehäquivalente (RE)	ente (RE)	Anza	Anzahl der RE pro	pro
N P	Terart DzwKategorie	Tarrier (FE)				Fucc	ומרופות (בב)	(44)
•		(= -)	N-RE	P ₂ 0 ₅ -RE	K20-RE	N-RE	P ₂ 0 ₅ -RE	K20-RE
	1	2	3	4	5	9	7	8
~	Pferde	1,000	0,9173	0,7000	0,8850	0,9173	0,7000	0,8850
8	Milchkühe	1,000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
8	Kälber	0,300	0,3000	0,3000	0,3000	1,0000	1,0000	1,0000
7	Übrige Rinder	0,600	0009,0	0,6000	0,6000	1,0000	1,0000	1,0000
5	Zuchtsauen über 50 kg LG	0,460	0,2447	0,3349	0,0920	0,5320	0,7280	0,2000
9	Schweine über 20 kg LG ohne Zuchtschweine	0,250	0,1330	0,1820	0,0500	0,5320	0,7280	0,2000
7	Ubrige Schweine	0,100	0,0532	0,0728	0,0200	0,5320	0,7280	0,2000
ω	Schafe	0,110	0,1500	0,1300	0,1300	1,3636	1,1818	1,1818
6	Ziegen	0,110	0,1500	0,1300	0,1300	1,3636	1,1818	1,1818
9	100 Legehennen	1,420	0606,0	1,8363	0,4000	0,6401	1,2932	0,2817
7	100 Masthühner	0,710	0,4546	0,9183	0,2000	0,6401	1,2932	0,2817
12	100 Ubrige Hühner	0,300	0,1667	0,4000	0,1000	0,5557	1,3333	0,3333
13	100 Gänse jeden Alters	1,500	0,7778	1,2500	0,4800	0,5185	0,8333	0,3200
14	100 Enten jeden Alters	1,500	0,7778	1,2500	0,4800	0,5185	0,8333	0,3200
15	100 Truthühner jeden Alters	0,500	0,2000	0,4500	0,1600	0007,0	0,9000	0,3200

Tierarten wieder: Kommen in den Exkrementen von Rindern auf eine N-RE (90 kg N) eine P_2O_5 -RE (40 kg P_2O_5) und eine K_2O -RE (100 kg K_2O), so liegen die Verhältnisse bei Schweinen bei etwa 1 N-RE (90 kg N): 1,37 P_2O_5 -RE (rd. 55 kg P_2O_5): 0,38 K_2O -RE (rd. 38 kg K_2O).

Aus den Angaben in den Spalten (6) bis (8) ist ersichtlich, wieviele "Rindviehäquivalente" (RE) jeweils einer "Futtereinheit" (FE) derselben Tierart entsprechen. Diese Relationen sind in der Abbildung 3.1 für vier verschiedene Tierarten graphisch dargestellt. Es zeigt sich, daß bei Verwendung der "Futtereinheiten" die Nährstoffmengen in den Exkrementen von Schweinen und – mit Ausnahme von P_2O_5 – auch bei Hühnern im Vergleich zu denen von Rindern überschätzt werden, und zwar vor allem bei K_2O .

Zusätzlich zu den Kennzahlen der räumlichen Konzentration der Viehhaltung ("Viehdichte") in "Futtereinheiten" (FE) und in "Rindviehäquivalenten" (N-RE, P_2O_5 -RE und K_2O -RE) je 100 ha landwirtschaftlich genutzte Fläche werden weitere 13 Kennwerte gebildet.

Zwei Kennwerte geben die Anteile der beiden Teilaggregate "flächenabhängige Tierarten" und "flächenunabhängige Tierarten" am gesamten Viehbestand an:

- "Flächenabhängiger Viehbestand in FE/Gesamtviehbestand in FE" und
- "flächenunabhängiger Viehbestand in FE/Gesamtviehbestand in FE". Zu den sogen. "flächenabhängigen Tierarten" werden dabei Pferde, Schafe, Ziegen und das Rindvieh mit Ausnahme der Kälber gezählt, während Kälber, Schweine und Geflügel den "flächenunabhängigen Tierarten" zugerechnet werden.

Drei weitere Kennziffern geben die (geschätzten) Mengen der in den tierischen Exkrementen enthaltenen Nährstoffe N, P_2O_5 und K_2O in kg je ha landwirtschaftlich genutzte Fläche an.

Abbildung 3.1: Verhältnis zwischen Rindviehäquivalenten (RE) und Futtereinheiten (FE) bei verschiedenen Tierarten $P_{2}^{0}_{5}$ K_2^0 Futtereinheiten (FE) ч е е ជជ h ü h Д ъ • c h w മ വ യ യ Ø 5 5 P205 1 4 -4 -3 5 2 'n Rindviehäquivalente (RE) Rindviehäquivalente (RE) $_{\mathrm{N}}^{\mathrm{P}_{2}^{\mathrm{O}}}$ N K₂0 Futtereinheiten (FE) α a fe ъ с Ъ Rin Ø 5 1 5] 4 N P205, K20 N P205 K205 Rindviehäquivalente (RE) Rindviehäquivalente (RE)

85

Entsprechend der Harener Studie wird mit Hilfe der acht folgenden Kennziffern ein Bezug zwischen dem Bestand an "flächenabhängigen Vieharten", jeweils in FE, N-RE, P_2O_5 -RE und K_2O -RE, und dem Umfang des Graslands in 100 ha sowie zwischen dem Bestand an "flächenabhängigen Vieharten", wiederum in FE, N-RE, P_2O_5 -RE und K_2O -RE, und dem Umfang des Ackerlands in 100 ha hergestellt. Aus diesen Kennwerten darf allerdings nicht der unzutreffende Schluß gezogen werden, die Exkremente der "flächenabhängigen Vieharten" könnten nur auf Grasland und die der "flächenunabhängigen Vieharten" nur auf Ackerland aufgebracht werden.

3.1.2.3.2 Betriebliche Konzentration der Viehhaltung

Zur Charakterisierung von Regionen mit intensiver Viehhaltung tragen neben den eben beschriebenen Kennzahlen solche der viehhaltenden Betriebe selbst bei. Vier einfache Kennzahlen dieser Art, nämlich die durchschnittlichen Bestände an Rindern, Schweinen, Legehennen und Masthühnern je Betrieb mit der betreffenden Tierart, wurden bereits weiter oben erwähnt.

Weitere Kennzahlen zur Darstellung der Konzentration der Bestände der genannten vier Tierarten in den viehhaltenden Betrieben konnten nur für die Untersuchungsgebiete in den Ländern BR Deutschland, Niederlande, Belgien, Vereinigtes Königreich und Dänemark auf der Grundlage durchweg unveröffentlichter Ergebnisse der amtlichen Statistik über die Verteilungen der viehhaltenden Betriebe und der von diesen gehaltenen Tierbestände auf Größenklassen der Betriebe nach dem Umfang der landwirtschaftlich genutzten Fläche sowie auf Größenklassen der Tierbestände errechnet werden. In den übrigen Ländern stehen entsprechende Daten nicht zur Verfügung. Diese Kennzahlen sollen dazu dienen, die Verteilung der Betriebe mit Rindern, Schweinen, Legehennen bzw. Masthühnern sowie der Bestände dieser vier Tierarten bzw. -kategorien innerhalb der Untersuchungsgebiete auf Gruppen unterschiedlicher Haltungsintensität, gemessen an der Viehbesatzdichte in Stück je ha landwirtschaftlich genutzte Fläche (LF), und unterschiedlicher Viehbestandsgröße, gemessen an der absoluten Stückzahl je Betrieb, darzustellen.

Als "Intensivhaltungen" werden alle diejenigen Betriebe bezeichnet, von denen bei maximaler Ausschöpfung des verfügbaren Datenmaterials ermittelt werden kann, daß in ihnen die Besatzdichte bei einer der vier genannten Tierarten folgende Schwellenwerte überschreitet:

Rinder: 3 Stück je ha LF,
Schweine: 10 Stück je ha LF,
Legehennen: 200 Stück je ha LF,
Masthühner: 500 Stück je ha LF 1).

Nach der Bestandsgröße (Anzahl Tiere je Betrieb mit der betreffenden Tierart) werden "kleine", mittlere" und "große Haltungen" wie folgt unterschieden:

	"kleine"	"mittlere"	"große"
		Haltungen	
Tierart	bis unter	von bis unter	und mehr
		Tiere je Betriel	0
Rinder	₂₀ 2)	20 ²⁾ - 100_	100_
Schweine	50	50 - 400 ³	₄₀₀ 3)
Legehennen	100	100 - 5 000	5 000
Masthühner	500	500 - 10 000	10 000

Schließlich wird noch die Gruppe der "Intensivsthaltungen" abgegrenzt, in denen "mittlere" und "große" Bestände der genannten vier Tierarten bei extrem geringer Ausstattung mit landwirtschaftlich genutzter Fläche gehalten werden.

In <u>Übersicht 3.2</u> ist dargestellt, welche - durch die nationalen amtlichen Statistiken vorgegebenen - Intervalle der Bestandsgrößen

¹⁾ Bei den Kleinbetrieben mit bis zu 1 (statt 0,5) ha LF und Geflügelhaltung konnte dieses Abgrenzungskriterium nicht eingehalten werden.

²⁾ Im Vereinigten Königreich 30 Rinder.

³⁾ In den Niederlanden und Dänemark 300, im Vereinigten Königreich 500 Schweine.

an Rindern und Schweinen je Betrieb mit der betreffenden Tierart und der Größe dieser Betriebe in ha LF der Abgrenzung der o.g. Gruppen in denjenigen Mitgliedsländern, in denen derartige Daten zur Verfügung stehen, zugrundegelegt sind. Übersicht 3.3 enthält entsprechende Angaben für Legehennen und Masthühner.

Zur Charakterisierung der betrieblichen Konzentration der Viehhaltung in den Untersuchungsgebieten werden herangezogen

- die sogen. "Großhaltungen", d.h. Betriebe, in denen mindestens 100 Rinder oder 400 Schweine ¹⁾ oder 5 000 Legehennen oder 10 000 Masthühner gehalten werden;
- die sogen. "mittleren und proßen Intensivhaltungen", d.h. Betriebe, die entweder mindestens 20 Rinder 2) bei einer Besatzdichte von mehr als 3 Tieren je ha LF oder mindestens 50 Schweine bei einer Besatzdichte von mehr als 10 Tieren je ha LF oder mindestens 100 Legehennen bei einer Besatzdichte von mehr als 200 Tieren je ha LF oder mindestens 500 Masthühner bei einer Besatzdichte von mehr als 500 Tieren je ha LF halten; diese Betriebe fallen, soweit sie Rinder, Schweine oder Legehennen halten, in die Spalten (5) bis (11), bei Masthühnerhaltung in die Spalten (5) bis (12) der Übersichten 3.2 bzw. 3.3;
- die sogen. "Großintensivhaltungen", d.h. Betriebe, die entweder mindestens 100 Rinder oder 400 Schweine 3) oder 5 000 Legehennen oder 10 000 Masthühner halten und bei den gehaltenen Tierarten mindestens die eben genannten Besatzdichten je ha LF aufweisen; diese Betriebe fallen, soweit sie Rinder, Schweine oder Legehennen halten, in die Spalten (9) bis (11), bei Masthühnerhaltung in die Spalten (9) bis (12) der Übersichten 3.2 bzw. 3.3;
- die sogen. "Intensivsthaltungen", d.h. Betriebe, die entweder mindestens 20 Rinder ⁴⁾ oder 50 Schweine oder 100 Legehennen oder 500 Masthühner bei sehr geringer Ausstattung mit landwirtschaft-

¹⁾ In den Niederlanden und Dänemark 300, im Vereinigten Königreich 500 Schweine.

²⁾ Im Vereinigten Königreich 30 Rinder.

³⁾ In den Niederlanden und Dänemark 300, im Vereinigten Königreich 500 Schweine.

⁴⁾ Im Vereinigten Königreich 30 Rinder.

<u>Ubersicht 3.2:</u> Abgrenzung von Betriebs- und Bestandsgrößenintervallen für Rinder und Schweine

	Intensivst-	haltungen	(12)	20 u.m.	20 u.m.	20 u.m.	30 u.m.	20 u.m.	50 u.m.	50 u.m. -1,0	50 u.m.	50 u.m.	50 u.m.
		ngen	(11)	300 u.m. - 100		300 u.m. - 100	500 u.m. - 300	300 u.m.	1000 u.m.	1 1	1000 u.m.	2000 u.m. - 299,9	1000 u.m. - 99,9
alle alle		Großintensivhaltungen	(10)	200 - 299 - 50		200 - 299 - 60	200 - 499 - 150	150 - 299	600 - 999	500 u.m.	500 - 999 - 50	1000 - 1999 - 149,9	500 - 999 - 49,9
Bestandsgrößenintervalle Betriebsgrößenintervalle		Gr	(6)	100 - 199 - 30		100 - 199 - 30	100 - 199	100 - 149 - 30	400 - 599	300 - 499 - 30	07 - 007	500 - 999 - 99,9	300 - 499 - 19,9
Bestands Betriebs	Intensivhaltungen		(8)	60 - 99	50 u.m.	60 - 99	70 - 99		1 1	1 1	1 1	1 1	1 1
	große Intensiv		(2)	50 - 59 - 15	40 - 49	50 - 59	50 - 69	60 - 99	200 - 399 - 20	200 - 299	200 - 399	200 - 499	200 - 299 - 19,9
	Mittlere und gr		(9)	30 - 49 - 10	30 - 39 - 10	30 - 49 - 10	30 - 49 - 20	30 - 59 - 10	100 - 199	100 - 199	100 - 199	100 - 199	100 - 199
	Mit		(2)	20 - 29 - 5	20 - 29	20 - 29	1 1	20 - 29	50 - 99 - 5	50 - 99 - 5	50 - 99 - 5	50 - 99 - 4,9	50 - 99 - 4,9
+ -; -2 -2 -3 -4 -1	7 1011111		(4)	Stück ha LF	Stück ha LF	Stück ha LF	Stück acre LF	Stück ha LF	Stück ha LF	Stück ha LF	Stück ha LF	Stück acre LF	Stück ha LF
\$ -2 -2			(5)	73	20	74	72	74	73	02	42	72	74
	Lais		(2)	Q	Ŋ	щ	VK	DK	Q	NE	Д	VK	DK
† 9 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	n rei ai r		(1)			Rinder					Schweine	7-5-1	

Übersicht 3.3: Abgrenzung von Betriebs- und Bestandsgrößenintervallen für Legehennen und Masthühner

	Intensivst-	haltungen	(13)	1 u.m.	1 u.m.	1 u.m.	1 u.m. -0,5	5 u.m.	5 u.m. -1,0	5 u.m.	5 u.m.
			(12)	1 1	1 1	ı	1 1	1000 - 100	1 1	1000	1000
		ngen	(11)	300 u.m. - 100	1 1	200 u.m. - 149,9	1 1	500 - 999 - 100	500 u.m.	500 - 999 - 149	500 - 999 - 99,9
nintervalle nintervalle		Großintensivhaltungen	(10)	100 - 299 - 50	1 1	100 - 199 - 99,9	100 u.m. - 50	250 - 499 - 50	250 - 499 - 50	200 - 499	250 - 499 - 49,9
Bestandsgrößenintervalle Betriebsgrößenintervalle	ngen	Großi	(6)	50 - 99,9 - 20	50 u.m. - 20	50 - 99,9 - 49,9	50 - 99,9 - 19,9	100 - 249 - 20	100 - 249 - 20	100 - 199 - 49	100 - 249 - 19,9
ФФ	Intensivhaltungen		(8)	30 - 49,9 - 15	30 - 49,9 - 15	1 1	1 1	50 - 99,9 - 10	50 - 99,9 - 10	1 1	1 1
	große		(2)	10 - 29,9	10 - 29,9	25 - 49,9 - 19,9	20 - 49,9	30 - 49,9	25 - 49,9 - 5	50 - 99,9 - 19,9	1 1
	Mittlere und		(9)	5 - 9,9	6 - 9,9	2 - 24,9 - 4,9	10 - 19,9	10 - 29,9	10 - 24,9 - 2	20 - 49,9	50 - 99,9 - 9,9
			(5)	1 - 4,9	1 - 5,9	1,9	1 1 0,00 0 1 0 0,50 0 1 0 0,50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 - 9,9	5 - 9,9	10 - 19,9	5 - 49,9
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			(4)	100 St. ha LF	100 St. ha LF	100 St. acre LF	100 St. ha LF	100 St. ha LF	100 St. ha LF	100 St. acre LF	100 St. ha LF
} 	rand cam.		(3)	73	20	72	42	73	20	72	4/2
73 5 1	rand		(2)	Q	N	VK	DK	Д	NF	VK	DK
i E	ırerarı		(1)		Lege-				Mast-	Tollinii	

lich genutzter Fläche halten; diese Betriebe fallen in die Spalte (12) bzw. bei Masthühnerhaltung in die Spalte (13) der Übersichten 3.2 bzw. 3.3.

Für jede dieser Gruppen von Betrieben und jede der vier Tierarten werden

- die Anzahl der in den zugehörigen Betrieben gehaltenen Tiere im Verhältnis zum gesamten Bestand der betreffenden Tierart im Untersuchungsgebiet sowie
- die "Dichte" der betreffenden Betriebe, gemessen an ihrer Anzahl je 100 ha landwirtschaftlich genutzte Fläche des Untersuchungsgebiets

ausgewiesen.

Bei der Darstellung dieser Kennwerte müssen allerdings die in einigen Mitgliedstaaten geltenden gesetzlichen Bestimmungen beachtet werden, die eine Wiedergabe von einzelbetrieblichen Angaben ausschließen. Dieser Beschränkung wurde bereits bei der Bildung der Intervalle Rechnung zu tragen versucht. Sind dennoch einzelne Gruppen nur mit einem oder zwei Betrieben besetzt, so mußten die betreffenden Informationen fortgelassen werden. Dies ist insbesondere bei der Gruppe der "Intensivsthaltungen" häufiger der Fall.

Aus den Werten der o.g. Kennzahlen sowie indirekt durch Differenzbildung aus zwei Kennzahlen (z.B. "Großhaltungen" abzüglich "Großintensivhaltungen" = Kennwert für den Intensitätsaspekt in Großintensivhaltungen; "mittlere und große Intensivhaltungen" abzüglich "Großintensivhaltungen" = Kennwert für den Größenaspekt in Intensivhaltungen) können Vorstellungen über den minimalen Grad der betrieblichen Konzentration der Viehhaltung in den Untersuchungsgebieten gewonnen werden. In Wirklichkeit liegt die Konzentration aus zwei Gründen höher. Einmal gibt es zahlreiche Betriebe, die gleichzeitig mehrere Tierarten halten. Da die einschlägigen Statistiken jedoch nicht nach Betrieben, sondern nach einzelnen Tierkategorien erstellt sind, kann nicht ermittelt werden, ob etwa ein Betrieb unter Berücksichtigung aller gehaltenen Tierarten

eine bestimmte Intensitäts- bzw. Bestandsgrößenschwelle überschreitet. Zum zweiten begrenzen die Schwellenwerte die Intervalle für die Intensität und Bestandsgröße jeweils von unten; würde stattdessen die Intervallmitte herangezogen, so ergäben sich höhere Konzentrationsgrade.

).

3.2 <u>Darstellung der Grunddaten und Kennwerte zur Charakterisierung</u> der Untersuchungsgebiete

Eine systematische Zusammenstellung der zur Charakterisierung verwendeten Grunddaten und der aus ihnen abgeleiteten Kennwerte ist für jedes einzelne Untersuchungsgebiet und jedes der Regionsaggregate in je zwei Computerausdrucken in den Teilen B und C dieser Studie enthalten.

Der erste Computerausdruck, im Teil B ("Statistische Daten: Grunddaten und Kennwerte") enthalten, bietet für jedes Untersuchungsgebiet und jedes Regionsaggregat einen zusammenfassenden Überblick über die jeweiligen Ausprägungen der wichtigsten Grunddaten und Kennwerte zu den Bereichen Klima- und Bodenverhältnisse, Raumnutzung, Bodennutzung und Viehhaltung und landwirtschaftliche Betriebsgrößenstruktur. Der zweite Computerausdruck, im Teil C ("Statistische Daten: Räumliche Konzentration der Viehhaltung") wiedergegeben, dient darüber hinaus einer ausführlicheren Darstellung derjenigen Grunddaten und Kennwerte, durch die die räumliche Konzentration der Viehhaltung in den einzelnen Untersuchungsgebieten und Regionsaggregaten charakterisiert wird. Ein Teil der im Teil C wiedergegebenen Kennwerte ist auch im Teil B enthalten.

Welchen Erhebungsjahren die statistischen Grunddaten entstammen, die in den einzelnen Mitgliedstaaten zur Darstellung der räumlichen und der betrieblichen Konzentration der Viehhaltung in den Untersuchungsgebieten, verwendet wurden, ist der folgenden Übersicht zu entnehmen:

	Erhebungsjahr der D	aten zur Kennzeichnung der
Staat	räuml. Konzentr. der Viehhaltung	betriebl. Konzentr. der Viehhaltung
D F I NL B VK DK	1973 1970 1973 1) 1974 1974 1974	1973 - - 1970 1974 1972 1974

Im Kopf jedes der Computerausdrucke in den Teilen B und C ist die jeweilige Regionsnummer des betreffenden Untersuchungsgebietes bzw. Regionsaggregates angegeben; im Teil C ist den Regionsnummern jeweils eine zweistellige Zahl vorangestellt, mit denen das Erhebungsjahr der zur Kennzeichnung der räumlichen Konzentration der Viehhaltung verwendeten Grunddaten (s.o.) bezeichnet ist.

In <u>Übersicht 3.4</u> ist als Beispiel für die im <u>Teil B</u> enthaltenen Computerausdrucke der Ausdruck für das Untersuchungsgebiet Landkreis Grfsch. Hoya, Reg.-Bez. Hannover, BR Deutschland (Regions-Nr. 13130) wiedergegeben. Der Ausdruck hat die Form einer Matrix mit 18 Zeilen (A bis S) und 10 Spalten (1 bis 10), in der bis zu 160 Einzelinformationen enthalten sind. In <u>Übersicht 3.5</u> sind die in diesem Ausdruck enthaltenen Grunddaten und Kennwerte mit Angabe ihrer Position in der Matrix, der für sie verwendeten Abkürzungen sowie der jeweiligen Dimension der dargestellten Merkmalsausprägungen ausführlich erläutert.

In <u>Übersicht 3.6</u> ist für die gleiche Beispielsregion der im <u>Teil C</u> enthaltene Computerausdruck dargestellt, in dem die räumliche Konzentration der Viehhaltung charakterisiert wird. Für jede der 15 berücksichtigten Tierkategorien ist angegeben in

Spalte 1: die Anzahl der Tiere (TIERE),

Spalte 2: die Anzahl der Tiere in Futtereinheiten (FE)

Spalte 3: die Anzahl der Tiere in N-Rindviehäquiv. (N.-POT),

¹⁾ Für die nach "Höhenzonen" aufgegliederten Provincie 1970.

```
Spalte 4: dgl. in P<sub>2</sub>O<sub>5</sub>-Rindviehäquiv. (PHOS.POT),

Spalte 5: dgl. in K<sub>2</sub>O-Rindviehäquiv. (KAL.POT),

Spalte 6: die Anzahl der Tiere je 100 ha LF (TIERE/LF),

Spalte 7: die Anzahl der Futtereinheiten je 100 ha LF (FE/LF),

Spalte 8: die Anzahl der N-Rindviehäquiv. je 100 ha LF (N/LF),

Spalte 9: dgl. P<sub>2</sub>O<sub>5</sub>-Rindviehäquiv. je 100 ha LF (PHOS/LF),

Spalte 10: dgl. K<sub>2</sub>O-Rindviehäquiv. je 100 ha LF (KAL/LF).
```

Die 16. Zeile (SUMME) enthält Angaben über den gesamten Viehbestand in Futtereinheiten und in Rindviehäquivalenten absolut (Spalten 2 bis 5) und je 100 ha LF (Spalten 7 bis 10). In der 17. Zeile (KG/LF) sind in den Spalten 8 bis 10 die aus den o.g. Werten errechneten Gesamtmengen an N, P₂O₅ und K₂O je ha LF ausgewiesen. Über dem Ausdruck sind einige Kennzahlen zur Struktur der Viehbestände (MILCH-KÜHE/RINDER INSG.; ZUCHTSAUEN/SCHWEINE INSG.; MASTHÜHNER/LEGEHENNEN ...) sowie der Umfang der landwirtschaftlich genutzten Fläche (FLÄCHE (100 HA LF)) aufgeführt.

Ubersicht 3.4: Beispiel für die Computerausdrucke im Teil B ("Statistische Daten: Grunddaten und Kennwerte")

A CLIMATE TEMP		ORIGINAL-DATA	0 1	2	3	4	5	Q	7	so i	6	10
NOTE		CLIMATE-	JAN. 1.000	FEB. 1.600	*ARCH 3.900	APRIL 7.300	MAY 12.100	r.	JULY 16.80C	7	SEPT. 13.200	CKT. 8.7CC
REGION - SOL MAIN SOL	æ		NOV.	DEC. 2.300	> •	E D A Y 8 • 00	0		IND-C	-0v1	1 N C - E - Y 3 • 00	4
REGIDN - SOIL MAIN SCII	ပ		, ,	-4	MARCH 45.000	4	Š	JLNE 60.000	79	AUG 71.00	SEPT 3.00	CKT. 53.000
PRECIDIN - SOIL MAIN SOIL SOIL SOIL SOIL POUNTAINS HILLS PLAINS FET-STRICTRE FARK-STRUCTRE FAR	٥		.NDV. 47.000	DEC. 58.000	YEAR 663.000		EVAPOT.YR 535.000	1 1 1 1	; 6 8 8 8 8			1 1 1 1 1 1
-LANDUSE AREA (TA) AUA (LF) ALBE AL GARDENS GRASING MAIZE (GR) GRAIN (G) PULSE (PC) PUTATES SUBJECTED TO 1.265 18.377 0.314 44.116 0.305 11.715 11.715 11.715 0.304 44.116 0.304 44.116 0.305 11.715 11.715 11.715 0.304 11.405 11.405 0.314 44.116 0.304 44.116 0.304 11.715 11.715 11.715 0.304 11.405 0.314 44.116 0.304 11.715 11.715 11.715 0.304 11.405 0.314 44.116 0.314 44.116 0.304 0.307 11.715	ш	REGION + SOIL	MAIN			MOUNTAINS 0.000	0.000 0.000		WET-SCIL 0.20		AREA 1182.000	PCPLLAT. 12C.CCC
-LANDUSE AREA (TA) AUA (LF) ARABLE AL GARDENS GRASS(PC) MAIZE(GP) GRAIN (G) PULSE(PC) PCTATCES SU 1.717 1.533 09.473 54.545 1.465 34.443 0.234 45.116 0.067 11.715 COEFFICIENTS L-USE/STR./POP. AUA/TA GRASS/AUA GRAIN/AUA GRAIN/AL MON-PC/PC LARGE-F-S POP./TA PO.380 0.498 0.04	u.	-LIVEST.	CATTLE 94.455	~~~	0	BROILER 4.26	9.		FARM-	STRUCTUR	FARMS+1HA 5175.000	FARM+30H 940.000
The control of the	ပ		A T	AUA (LF) 90.473	ABL 54	~ ~	A W	ui O	GRAIN	PULSE(CTATCE 1.71	. ~
L-USE/STR./POP. AUA/TA GRASS/AUA GRAIN/AUA RC./AUA MAIZE/AUA GRAIN/AL MON-PG/PG LARGE-F-S POP./TA PO.018 0.380 0.494 0.004 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.006 0.000 0.006 0.000 0.0	I		-00	IND.CROPS 1.533	TEMPGR 0.30	.MAIZ 1.34	•	VEG+	in			
RELIEF/CLIMATE DOD./AREA SOIL RELIEF WINT-RAIN SUMRAIN YEAR-RAIN WI-PG/PG LARGE-F-S POP./TA		COEFFICIENTS										
REC.—CONC. (FU) HORSES OTH.CATT. MILK—CONS CALVES OTH. PIGS SCWS FAT.—PIGS SCWS F		L-USE/STR./POP.	AUA/TA 0.748	GRASS/AUA 0.380	GRAIN/AUA 0.498	8	MAIZ			LARGE-F- 0.18	P./T	PGP./AUA 132.636
REGCONC.(FU) HORSES OTH.CATT. MILK-COMS CALVES CTH. PIGS SCWS FATPIGS SHEEP GCATS CT 2.727 32.314 34.730 4.743 10.219 17.661 65.030 0.135 0.004 LAY -HENS BROILERS GEESE CUCKS TURKEYS TGTAL-FU RE/AUA RE-NITR. RE-PHCS. RE 69.912 119.046 0.369 0.086 0.013 188.959 RG/AUA RC-NITR. RC-PHCS. RG 69.912 119.046 0.369 0.080 0.030 112.376 165.912 48.792 67.658 183.643 183.183 181.560 182.885 197.461 112.376 165.912 48.792 67.658 0.005 0.0056 0.014 0.019 0.022 0.0070 0.022 0.0070 0.0056 0.0070	×	RELIEF/CLIMATE	5 T 1	S01L 2.166	w 1		SUM.	YEAR	3	TEMP	TEMP	TEMP.YEAR 8.541
CRASS-FU L-INGFU GR-FU/TFU LI-FU/TFU GRASS-FU L-INGFU GR-FU/TFU LI-FU/TFU LI-FU/AL LI-REN/AL LI-REP/AL LI-REP/	ب		HORSES 2.727	0TH.CATT 32.31	MILK-COWS 34.730	O	OTH.	SCWS 17.661	ATPIG 65.03	m w	GCATS C.004	·
GR-FU/GR GR-REP/GR GR-REP/	Σ			w	EES.	CUCKS 0.086	TURKEYS 0.013		S. El	E-NITR 137.48	E-PHCS 169.14	E-PCTA 99.0
STRUCT CATTLE COWS/CAT. CAT./FARM MGIH-CAT. GH-CATTLE GIH-CAT. MGIC/CAT. GC/CAT. GIC/CAT. ISA-CAT. ISA-CAT. GP/PIGS GIH-CAT. ISH-CAT. MGIC/CAT. GC/CAT. GIC/CAT. ISH-CAT. MGIC/CAT. GC/CAT. GIC/CAT. ISH-CAT. MGIC/CAT. GC/CAT. GIC/CAT. GC/CAT. GC/	z		GRASS-FU 69.912		68-FU				KG/AUA	OY 00	α ~	ပ်
STRUCT CATTLE COWS/CAT. CAT./FARM MGIH-CAT. GH-CATTLE GIH-CAT. ISH-CAT. MGIC/CAT. GC/CAT. GIC/CAT. ISC/CAT. GC/CAT. GIC/CAT. GI	0		GR-FU/GR 183.643	GR-REN/GR 183.183	GR-REP/GR 181.560	GR-REPU/ 182.88	LI-FU/AL 197.461		!	3		
- PIGS SOWS/PIGS PIGS/FARM MGIH-PIGS GH- PIGS GIH-PIGS ISH-PIGS MGIP/PIGS GP/PIGS GIP/FIGS GI	۵	STRUCT CATTLE	COWS/CAT.	CAT./FARM 24.077	MG1H				#GIC/CAT 0.03	GC/CAT.	GIC/CAT 0.02	1SC/CAT. 0.013
-LHENS HENS/FOWL HENS/FARM MGIH-HENS GH- HENS GIH-HENS ISH-HENS MGIH/HENS GH/HENS GIH/HENS	ø		٠,	Ξ	MG I	-H9	GIM-PIGS 0.016	1 S+	WGIP/PIG 0.10	GP/PIGS 0.086	P/FIG 0.02	ISP/PIGS 0.026
-BROILER BROI/FOWL BROI/FARM MGIH-BROI GH- BROI GIH-BRCI ISH-BRCI MGIB/BRCI GB/BRCI GIB/BRCI G18/BRCI	œ	-LHENS	ENS/FOWL 0.580	HENS/FARM 3.010	MGIH-HENS	FH.	GIH-HENS 0.019	1 2+	a .		9	1SH/HENS 0.692
	S	-BROILER	BR01/F0WL 0.232	8R01/FARM 5.453	MGIH-BROI 0.011	H9	GIH-BRCI 0.007		MGIB/BRC 0.48	GB/BRC1 0.907	GIB/BRCI C.437	ISE/BRCI C.291

<u>Übersicht 3.5:</u> Verzeichnis der in den Computerausdrucken des Teils B (vgl. Übersicht 3.4) enthaltenen Grunddaten und Kennwerte

A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	Mittlere Temperatur im Januar " " Februar " " März " " April " " Juni " " Juli " " August " " September " " Oktober	TEMP. JAN. FEB. MARCH APRIL MAY JUNE JULY AUG. SEPT.	°C "
A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " Februar " " März " " April " " Mai " " Juni " " Juli " " August " " September	FEB. MARCH APRIL MAY JUNE JULY AUG.	" " " " "
A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " Februar " " März " " April " " Mai " " Juni " " Juli " " August " " September	FEB. MARCH APRIL MAY JUNE JULY AUG.	" " " " "
A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " März " " April " " Mai " " Juni " " Juli " " " September	MARCH APRIL MAY JUNE JULY AUG.	11 11 11
A 4 A 5 A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " April " " Mai " " Juni " " Juli " " August " " September	APRIL MAY JUNE JULY AUG.	" "
A 5 A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " Mai " " Juni " " Juli " " August " " " September	MAY JUNE JULY AUG.	"
A 6 A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " Juni " " Juli " " August " " September	JUNE JULY AUG.	н
A 7 A 8 A 9 A 10 B 1 B 2 B 3	" " Juli " " August " " September	JULY AUG.	n
A 8 A 9 A 10 B 1 B 2 B 3	" " August " " September	AUG.	
A 9 A 10 B 1 B 2 B 3	" " September	1] 17
A 10 B 1 B 2 B 3	Бер бешьет		,,
B 1 B 2 B 3		OKT.	"
B 2		1	[
В 3	" " November	NOV.	"
- 1	" " Dezember	DEC.	"
' - '	" " Jahr	YEAR	"
	Mittlere Anzahl der Tage mit Dauerfrost	ICEDAYS	Tage
B 5	" " " " Nachtfrost	FROSTDAYS	"
в 6	-	-	- 41
B 7	Vorherrschende Windrichtung im Juni	WIND-D-JU	.1)
в 8	" im Dezember	WIND-D-DE	.1)
В 9	" im Jahr	WIND-D-YR	.1)
В 10	Vorherrschende Windstärke im Jahr	WIND POWER	m/sec
C 1	Mittlerer Niederschlag im Januar	RAIN JAN.	mm
C 2	" " Februar	FEB.	"
C 3	" " März	MARCH	"
C 4	" " April	APRIL	"
C 5	" " Mai	MAY	"
C 6	" " Juni	JUNE	"
C 7	" " Juli	JULY	"
С 8	" " August	AUG.	"
C 9	" " September	SEPT.	"
C 10	" " Oktober	OKT.	"
D 1	" " November	NOV.	"
D 2	" " Dezember	DEC.	"
D 3	" " Jahr	YEAR	"
D 4	-	-	_
D 5	Evapotranspiration	EVAPOT. YR	mm
D 6	-	_	-
D 7	-	-	-
D 8	-	-	-
D 9	-	-	-
D 10	-	-	-
E 1	Häufigster Bodentyp	SOIL MAIN SOIL	.1)
	Zweithäufigster Bodentyp	2ND SOIL	1)
1	Dritthäufigster Bodentyp	3RD SOIL	.1)
	Anteil steiler Lagen an der Gesamtfläche	MOUNTAINS	ha/ha
E 5	" hügeliger " " " "	HILLS	11
E 6	"ebener """"	PLAINS	11
E 7	Anteil grundwassernaher Böden an der Gesamtfläche	WET-SOILS	11
E 8	-	-	-
E 9	Gesamtfläche	AREA	km ²
E 10	Bevölkerung	POPULAT.	1 000 E.

<u>Übersicht 3.5:</u> Verzeichnis der in den Computerausdrucken des Teils B (vgl. Übersicht 3.4) enthaltenen Grunddaten und Kennwerte (Forts.)

Pos.	Art der Grunddaten und Kennwerte	Abkürzung	Dimension
F 1	Anzahl Rinder	LIVEST. CATTLE	1 000 Tiere
F 2	Anzahl Schweine	PIGS	11
F 3	Anzahl Legehennen (0,5 Jahre u. älter)	HENS	100 000 Tiere
F 4	Anzahl Masthühner	BROILERS	11
F 5	Anzahl Hühner insges.	TOT. FOWL	11
F 6	-	-	-
F 7	-	-	-
F 8	-	-	-
F 9	Anzahl der landwirtschaftl. Betriebe insgesamt	FARMS + 1 HA	Betriebe
F 10	" " " mit 30 u.m. ha LF	FARMS + 30 H	11
G 1	Wirtschaftsfläche	LANDUSE AREA (TA)	1 000 ha
G 2	Landwirtschaftlich genutzte Fläche	AUA (LF)	11
G 3	Ackerland	ARABLE AL	11
G 4	Gärten, Obstanlagen, Baumschulen	GARDENS	11
G 5	Dauergrünland	GRASS (PG)	11
G 6	Mais	MAIZE (GM)	11
G 7	Getreide	GRAIN (G)	11
G 8	Hülsenfrüchte	PULSE (PC)	11
G 9	Kartoffeln	POTATOES	11
G 10	Zuckerrüben	SUGBEET	11
н 1	Futterrüben	FODBEET	11
н 2	Handelsgewächse	IND. CROPS	"
н 3	Gras auf Ackerland	TEMPGR.	11
н 4	Grünmais	FOD.MAIZE	11
н 5	Futterpflanzen insgesamt	GR. FODDER	17
н 6	Gemüse, Blumen, Zierpflanzen	VEG. + FLOW	11
н 7	Hackfrüchte insgesamt	ROOT (RC)	??
н в	_	_	_
н 9	<u>-</u>	-	_
н 10	-	-	_
Kennw	erte (COEFFICIENTS)		
I 1	Landw. genutzte Fläche/Wirtschaftsfläche	AUA/TA	ha/ha
I 2	Dauergrünland/landw. gen. Fläche	GRASS/AUA	11
I 3	Getreide/landw. gen. Fläche	GRAIN/AUA	11
I 4	Hackfrüchte/landw. gen. Fläche	R.C./AUA	11
I 5	Mais/landw. gen. Fläche	MAIZE/AUA	11
I 6	Getreide/Ackerfläche	GRAIN/AL	n
I 7	Wiesen u. Mähweiden/Dauergrünland	MOW-PG/PG	11
I 8	Betriebe mit 30 ha u.m. LF/Betriebe insges.	LARGE-F-S	Betr./Betr.
I 9	Einwohner/Wirtschaftsfläche	POP/TA	E./km ²
I 10	Einwohner/landw. gen. Fläche	POP/AUA	11
K 1	Einwohner/Gesamtfläche	POP/AREA	11
K 2	Mittlerer Bodentyp	SOIL	.2)
к з	Mittleres Relief	RELIEF	.2)
K 4	Mittlere Regenmenge pro Monat von Okt März	WINT-RAIN	m m
K 5	" " " " April- Sept.	SUMRAIN	11
к 6	" " " " Jan Dez.	YEAR-RAIN	11
K 7	Niederschlagsmenge Winter/Jahresniederschlagesmenge	WI-R/YR-R	mm/mm
к в	Mittlere Temperatur von Okt März	TEMP-WINT	o _C
к 9	" " April- Sept.	TEMP-SUM	11
к 10	Mittlere Jahrestemperatur	TEMP. YEAR	11
1	•		

<u>Ubersicht 3.5:</u> Verzeichnis der in den Computerausdrucken des Teils **B** (vgl. Übersicht 3.4) enthaltenen Grunddaten und Kennwerte (Forts.)

Pos.	Art der Grunddaten und Kennwerte		Abkürzung	Dimension
L 1	Pferde in Futtereinheiten je 100	ha LF	HORSES	FE/100 ha
L 2	Ürige Rinder " "	11	OTH. CATTLE	11
L 3	Milchkühe " " "	11	MILK-COWS	"
L 4	Kälber unter 0,5 Jahre " "	Ħ	CALVES	н
L 5	Übrige Schweine " " "	n	OTH. PIGS	"
L 6	Zuchtsauen über 50 kg " " "	11	sows	11
L 7	Schweine über 20 kg " "	lt.	i	,,
[ohne Zuchtschweine		FATPIGS	"
L 8	Schafe " " "	11	SHEEP	11
L 9	Ziegen " "	11	GOATS	11
L 10	Übrige Hühner " "	**	OTH. FOWL	11
M 1	Legehennen " " "	11	LAY-HENS	ti .
M 2	Masthühner " " "	11	BROILERS	11
М 3	Gänse " " "	11	GEESE	11
M 4	Enten " " "	11	DUCKS	n
M 5	Truthühner " " "	11	TURKEYS	n
м 6	Viehbestand insgesamt " " "	11	TOTAL-FU	"
M 7	-		_	_
м в	Viehbestand in N-Rindviehäquivalenten je 100 ha	LF	RE/AUA RE-NITR.	N-RE/100 ha
м 9		11	RE-PHOS.	P ₂ 0 ₅ -RE/100 ha
м 10		11	RE-POTAS.	K ₂ 0 -RE/100 ha
N 4	-	0 h = 1.D		<u>-</u>
N 1	Flächenungh Viehbestand in Futtereinheiten je 10		GRASS-FU	FE/100 ha
N 2	Tachenahabii: Tembebbaha In Tabbereninersen		L-INDFU	
N 3	Flächenabh. Viehbestand in FE /Viehbestand insg	es. in FE	GR-FU/TFU	FE/FE
N 4	Flächenunabh. Viehbestand in FE/ " "	" "	LI-FU/TFU	"
N 5	-		-	-
N 6	-		-	-
N 7			-	-
N 8	Stickstoff (N) je ha LF		KG/AUA KG-NITR.	kg/ha "
N 9	Phosphat (P ₂ 0 ₅) " "		KG-PHOS.	" "
N 10	Kali (K ₂ 0)		KG-POTAS.	
0 1	Flächenabh. Viehbestand in FE je 100 ha Grasla:	nd	GR-FU/GR	FE/100 ha
0 2	" " " N-RE " " "		GR-REN/GR	N-RE/100 ha
0 3	" " P ₂ 0 ₅ -RE " "		GR-REP/GR	P ₂ 0 ₅ -RE/100 ha
0 4	" " K ₂ O -RE " "		GR-REPO/GR	K ₂ 0 -RE/100 ha
0 5	Flächenunabh. Viehbestand in FE je 100 ha Ack		LI-FU/AL	FE/100 ha
0 6	" " N-RE " " "	"	LI-REN/AL	N-RE/100 ha
0 7	" " P ₂ 0 ₅ -RE " "	a ••	LI-REP/AL	P ₂ O ₅ -RE/100 ha
0 8	" " K ₂ O -RE " "	11	LI-REPO/A	K ₂ 0 -RE/100 ha
0 9	-		-	-
0 10	-		-	-
P 1	Milchkühe/Rindvieh insgesamt		CATTLE COWS/CAT	Tiere/Tiere
P 2	Rinder je Betrieb mit Rindvieh		CAT./FARM	Tiere
P 3	Anzahl mittl. u. große Rinder-Intensivhalt.je 10	0 ha LF	MGIH-CAT	Betr./100 ha
P 4	" Rinder-Großhaltungen "	n	GH-CATTLE	11
P 5	" Rinder-Großintensivhaltungen "	n	GIH-CAT.	ıı
P 6	" Rinder-Intensivsthaltungen "	11	ISH-CAT.	11
P 7	Rinder in mittl. u. großen Intensivhaltungen/Rind	der insg.	MGIC/CAT.	Tiere/Tiere
P 8	" " Großhaltungen "	11	GC/CAT.	n
P 9	" " Großintensivhaltungen "	**	GIC/CAT.	n
P 10	" "Intensivsthaltungen "	II	ISC/CAT.	n
			L	L

<u>Übersicht 3.5:</u> Verzeichnis der in den Computerausdrucken des Teils B (vgl. Übersicht 3.4) enthaltenen Grunddaten und Kennwerte (Forts.)

Pos.	Art der Grunddaten und Kennwerte	Abkürzung	Dimension
Q 1	Zuchtsauen/Schweine insgesamt	PIGS SOWS/PIGS	Tiere/Tiere
Q 2	Schweine je Betrieb mit Schweinen	PIGS/FARM	Tiere
Q 3	Anzahl mittl. u. große Schweine-Intensivhaltungen je 100 hal	F MGIH-PIGS	Betr./100 ha
Q 4	" Schweine-Großhaltungen " " "	GH-PIGS	11
Q 5	" -Großintensivhaltungen " " "	GIH-PIGS	17
Q 6	" "-Intensivsthaltungen " " "	ISH-PIGS	11
Q 7	Schweine in mittl. u. großen Intensivhaltungen/Schweine inse	e. MGIP/PIGS	Tiere/Tiere
Q 8	" " Großhaltungen " "	GP/PIGS	"
Q 9	" " Großintensivhaltungen " "	GIP/PIGS	11
Q 10	" " Intensivsthaltungen " "	ISP/PIGS	11
R 1	Legehennen/Hühner insgesamt	LHENS HENS/FOWL	Tiere/Tiere
R 2	" " je Betrieb mit Legehennen	HENS/FARM	100 Tiere
R 3	Anzahl mittl. u. große Legehennen-Intensivhaltungen		
	je 100 haI	1	Betr./100 ha
R 4	" Legehennen-Großhaltungen " " "	GH-HENS	"
R 5	" " " -Großintensivhaltungen " " "	GIH-HENS	"
R 6	" " -Intensivsthaltungen " " "	ISH-HENS	"
R 7	Legehennen in mittl. u. gr. Intensivhaltungen/Legehennen ins	1	Tiere/Tiere
R 8	" " Großhaltungen " "	GH/HENS	"
R 9	" " Großintensivhaltungen " "	GIH/HENS	11
R 10	" " Intensivsthaltungen " "	ISH/HENS	"
S 1	Masthühner/Hühner insgesamt	BROLLER BROI/FOWL	Tiere/Tiere
S 2	Masthühner je Betrieb mit Masthühnern	BROI/FARM	100 Tiere
S 3	Anzahl mittl. u. große MastIntensivhaltungen je 100 hal	F MGIH-BROI	Betr/100 ha
S 4	" Masthühner-Großhaltungen " " "	GH-BROI	"
S 5	" " "-Großintensivhaltungen " " "	GIH-BROI	"
s 6	" " -Intensivsthaltungen " " "	ISH-BROI	"
S 7	Masthühner in mittl. u. gr. Intensivhaltungen/Masthühner ins	g. MGIB/BROI	Tiere/Tiere
s 8	" " Großhaltungen " " "	GB/BROI	"
S 9	" " Großintensivhaltungen " " "	GIB/BROI	"
S 10	" " Intensivsthaltungen " " "	ISB/BROI	"

¹⁾ Vgl. Kap. 3.1.1.1

²⁾ Vgl. Kap. 3.1.2.1

Ubersicht 3.6: Beispiel für die Computerausdrucke im Teil C ("Statistische Daten: Räumliche Konzentration der Viehhaltung")

REGION 73 1 3 1 0

		•	·	•	•	•	•	•	•	
	II I TIERE I I	# # # # # # # # # # # # # # # # # # #	N - POOT	PHOS.POT.I	KAL.POT. I	TIERE/LF I	FE/LF I	N/LF 1	PHOS/LFIKAL./LF	KAL./LF
 PFERDE I	I 2468.00I I 2468.00I	2468.00I	2263.891	1727.59I	2184.181	2.721	2.721 I	2.501	1.901	2.41
UEBR. RINDER	II I 48727.00I I	 29236.19I I	29236.19I	29236.19I	29236.191 I	53.85I	32.311	32.311	32.311	32.31
MILCHKUEHE	1I 1 31422.001 I	31422.00I	31422.001	31422.00I	31422.001 I	34.731 1	34.73I	34.731	34.73I	34.73
KAELBER	II I 14306.00I I	4291.791 1	4291.791 1	4291.79I	4291.79I	15.811 15.811	147.4	4.74	4.74I	4.74
UEBR. SCHWEINE	II I 92460.00I I	9246.00I	4918.871 4918.871	6731.08I	1849.191	102.19I	10.211	5.431	7.431	2.04]
ZUCHTS. GR. 50 KG. 1	1I 1 34736.001 I	1 15978.561 I	8499.891	 11633.081 	3195.711 3195.711	38.39I	17.66I	9.391	12.85I	3.53
MASTSCHWEINE	II I 235340.001 I	58835.001	31300.211	I 42831.881	11767.00I	260.121 1	65.031	34.591 34.591	47.341	13.001
SCHAFE	1I I 1112,001 I	122.32I I	166.801	I	144.551 144.551	1.221	0.131	0.181	0.151	0.15
Z 1 E G E N	I 34.00I	3.74I	5.091	I	4.411	0.031	0.001	0.00	100.0	100.0 100.0
UEB.HUEHNER(100ST.)I	I 3435.001 I 1	1030,501 1030,501	572.611	1374.00I	343.50I	3.791 1	1.131	0.631	1.511	0.37
LEGEHENNEN (100ST.)I	I 10677.001 I 10677.001 I	15161.34I	9705,391 1	 19606.171 	4270.79I	11.801	16.751	10.72	21.671	4.72
	I 4265.001 I 4265.001	3028.151	1938.861 1938.861	 3916.541 	853.00I	 4.711 I	3.341	2.14	4.321	0.941
GAENSE (100 ST.)	-II I 29.00I I	43.50I	22.551	36.251	13.92I	0.031	0.041	0.021	0.041	0.01
ENTEN (100 ST.)	I 52.00I I 1	78.001 1	40.44	I	24.961	0.051	0.081	0.041	0.071	0.02
I TRUTHUEHNER(100ST.)I	I 25.001	12,501	5.00	11.251	3.991	0.021	0.011	00.0	0.01	0.00
SUMME	I 0.00I	170957.60I	124389.661		89605.25I	0.00 I	188.95I	137.48	169.14	99.04
KG/LF]]		I	I		I	123.731	 67.651	99.04

3.3 <u>Einige Ergebnisse der Analyse der betrieblichen Konzentration</u> der Viehhaltung in den Untersuchungsgebieten

Im folgenden Abschnitt soll auf einige Kennwerte der betrieblichen Konzentration der Viehhaltung (vgl. Abschnitt 3.1.2.3.2) näher eingegangen werden, die bei der Klassifizierung der Untersuchungsgebiete im Kapitel 4 nicht berücksichtigt werden können, da die hierfür benötigten statistischen Informationen nicht für alle Untersuchungsgebiete zur Verfügung standen, die aber andererseits Hinweise auf die betriebliche Verursachungsstruktur eventueller Exkrementeüberschüsse in den Untersuchungsgebieten geben können. Es wurde der Versuch unternommen, abzuschätzen, wieviele Betriebe mit Viehhaltung in denjenigen Untersuchungsgebieten innerhalb der EG, für die entsprechende Daten vorliegen, nach Maßgabe des Umfangs ihrer Bestände an einzelnen Tierarten (Bestandsgröße) und der Höhe des Viehbesatzes dieser Tierarten je ha landwirtschaftlich genutzte Fläche (Intensität) hinsichtlich einer möglichen Belastung dieser Flächen mit tierischen Exkrementen besondere Aufmerksamkeit verdienen und welche Anteile der in den betreffenden Regionen insgesamt gehaltenen Tiere auf diese Gruppe von Betrieben entfallen. Die folgende Darstellung beschränkt sich auf die Rinder- und Schweinehaltung.

In der <u>Übersicht 3.7</u> sind für diejenigen Regionsaggregate in der Bundesrepublik Deutschland, in den Niederlanden, in Belgien, im Vereinigten Königreich und in Dänemark, für die die benötigten statistischen Informationen über die betriebliche Konzentration der Rinder- und Schweinehaltung zur Verfügung standen, die Anzahlen der den drei Haltungstypen "mittlere und große Intensivhaltungen", "Großintensivhaltungen" und "Großhaltungen ¹⁾" jeweils zuzuordnenden Betriebe mit Rindern bzw. mit Schweinen ("Zahl der Haltungen") sowie die Anteile der auf diese Haltungstypen entfallenden Rinder und Schweine an den Gesamtbeständen an Rindern bzw. Schweinen der betreffenden Regionen ("Anteil der Tiere") ausgewiesen.

¹⁾ Zur Erläuterung der Begriffe siehe Abschnitt 3.1.2.3.2.

Ubersicht 3.7: Anzahl der Rinder- und Schweinehaltungen und Anteil der Rinder und Schweine in unterschiedlichen Haltungstypen

							r	,		
		der Tiere v.H.	Schweine		77777777777777777777777777777777777777	<u>ნ</u> ო ი ი ა ა ა	44 18 26 10 28 37	59 449 54 34	24 21	•
	tungen	Anteil v	Rinder		<u>ກ້ານກ</u> ສ <i>ເ</i> -400	000000	27. 50	60 55 55 70 40	16 19	
	Großhaltungen	Zahl der Haltungen Stück	Schweine		122 486 1486 155 891 891	29 156 302 55 880 430	293 47 193 14 334 1 055	417 109 70 585 25	1 205 2 608	10 497
		Zah Hal S	Rinder		732 7306 7306 750 741 738 0	00000	256 373 178 548 148 235	414 777 320 4 145 835	586 3 579	14 094
	ne	der Tiere .H.	Schweine		2002 2002 2003 2003 2003 2003 2003 2003	19 8 8 24 29	43 18 26 9 28 36	21 25 25 16	10	•
	vhaltunge	Anteil o	Rinder		<i>010000</i> 0	000000	t.wor4v	N	22	
	Großintensivhaltungen	der ıngen ick	Schweine		74 268 768 1768 178 122 123	27 154 290 290 868 418	291 44 190 13 531 037	761 775 773 713 713	500 1 116	6 715
	Gr	Zahl der Haltungen Stück	Rinder		20 20 20 20 20 20 20	000000	201 84 88 27 104 110	84260	81	1 424
	Intensivhaltungen	der Tiere	Schweine		8977777 777777 711777	54 460 36 57 62	. 77 602 698 69	32 44 441 30	17 25	•
	Intensiv	Anteil (Rinder		00m0m4m00	71222 232 232 232 232	38 18 22 25 25	anama	† 6	•
	u. große	Zahl der Haltungen Stück	Schweine		579 1 2562 5710 9912 658 658	197 1958 4481 654 4931	1 218 372 1 287 7 910 4 703	516 261 142 1 171 1 66	1 545 2 634	33 411
	Mittlere	Zah Halt	Rinder		153 164 164 164 164 164 164 164 164 164 164	747 7 989 3 933 2 503 421	1 344 1 423 1 423 273 2 263 2 167	32 39 16 516 546	753	25 111
		Staat und Regionsaggregat		Bundesrepublik Deutschland:	Hannover Stade (Teil) Osnabrück Oldenburg Düsseldorf Detmold Arnsberg (Teil)	Niederlande: Friesland Goverijssel Gelderland Utrecht Noord-Brabant	Matwerpen: Antwerpen Brabant Lidge Linde Luxembourg Oost-Vlaanderen	Verein. Königreich: East Anglia (Teil) South East Torks u. Lancs "Wales East Central Scotl. (Teil) South East Scotl.	<u>Dänemark:</u> Oerne Jylland	Zusammen

1) Daten nicht vorhanden

Ein Vergleich zwischen den Zahlen für "mittlere und große Intensivhaltungen" und denen für "Großintensivhaltungen" erhellt in etwa, ob mögliche Überschüsse an tierischen Exkrementen mehr von Betrieben mit mittleren oder von solchen mit großen Beständen verursacht werden. Vergleicht man die Zahlen für "Großintensivhaltungen" und die für "Großhaltungen" miteinander, so ergeben sich Anhaltspunkte dafür, inwieweit eine "hohe Intensität" der Rinderbzw. Schweinehaltung mit großen Tierbeständen pro Betrieb zusammenfällt.

Der Gruppe der sogen. "mittleren Intensivhaltungen" sind in den berücksichtigten Regionsaggregaten insgesamt rd. 21 700 Betriebe mit Rindviehhaltung und rd. 26 700 Betriebe mit Schweinehaltung, der Gruppe der "Großintensivhaltungen" rd. 1 400 rindviehhaltende und rd. 6 700 schweinehaltende Betriebe zuzurechnen. Sowohl bei Rindern als auch bei Schweinen scheinen also die "Intensivbetriebe" überwiegend mittlere Bestandsgrößen aufzuweisen: Ihr Anteil an den Rinder- bzw. Schweinebeständen der Regionen beträgt über 90 bzw. fast 80 v.H., wobei allerdings erhebliche Unterschiede zwischen den einzelnen Ländern bestehen. Ferner fällt auf, daß sich die "Großintensivhaltungen" - stärker als die "mittleren Intensivhaltungen" - auf einige wenige Teilregionen in den einzelnen Ländern konzentrieren.

Auf die Gruppe der "mittleren Intensivhaltungen" entfallen in den einzelnen Regionsaggregaten 2 bis 38 v.H. der Rinder und 4 bis 77 v.H. der Schweine. Besonders hoch sind die Anteile der in dieser Gruppe von Betrieben gehaltenen Tiere in den Niederlanden und in Belgien bei Rindern und Schweinen sowie im Vereinigten Königreich bei Schweinen. Dagegen entfallen auf die "Großintensivhaltungen" bei Rindern nur in der Provinz Anvers mehr als 10 v.H. der Tiere; bei Schweinen reduzieren sich die entsprechenden Anteile auf etwa die Hälfte und bewegen sich zwischen 1 und 43 v.H..

Vergleicht man die Zahlen der "Großhaltungen" mit denen der "Großintensivhaltungen", so erhält man einen Eindruck von der Intensität der Viehhaltung in Betrieben mit größeren Viehbeständen. Von den insgesamt rd. 14 000 "Großhaltungen" mit Rindvieh weisen nur gut 10 v.H. eine Besatzdichte von 13 und mehr Rindern je ha LF auf. Von den rd. 10 500 "Großhaltungen" mit Schweinen besitzen dagegen immerhin etwa zwei Drittel, nämlich rd. 6 700 eine Besatzdichte von 10 und mehr Schweinen. Hieraus wird ersichtlich, daß vor allem bei Schweinen eine gewisse Parallelität zwischen Bestandsgröße und Intensität der Viehhaltung besteht. Dies trifft insbesondere für die Niederlande und Belgien zu, wo die größeren Haltungen fast durchweg einen sehr hohen Viehbesatz je ha LF aufweisen. Die Anteile der auf "Großhaltungen" entfallenden Tiere an den gesamten Beständen der betreffenden Tierart schwanken zwischen 0 und 67 v.H. bei Rindern und zwischen 6 und 59 v.H. bei Schweinen.

Die in der Übersicht 3.7 wiedergegebenen Anteile der auf die drei Haltungstypen entfallenden Rinder- und Schweinebestände an den Gesamtbeständen der beiden Tierarten in den Regionsaggregaten der fünf Mitgliedsländer sind in den <u>Karten 3.1</u> bis <u>3.6</u> zusätzlich kartografisch dargestellt. In diesen Darstellungen sind die Regionsaggregate durch abgekürzte Regionsnummern gekennzeichnet. <u>Übersicht A 5</u> im Anhang zu diesem Bericht enthält ein vollständiges Verzeichnis dieser abgekürzten Regionsnummern.

Karte 3.1: Anteil der Rinder in "mittleren und großen Intensivhaltungen" am Rinderbestand in den Regionsaggregaten

<u>Karte 3.2:</u> Anteil der Rinder in "Großintensivhaltungen" am Rinderbestand in den Regionsaggregaten

Karte 3.3: Anteil der Rinder in "Großhaltungen" am Rinderbestand in den Regionsaggregaten

Karte 3.4: Anteil der Schweine in "mittleren und großen Intensivhaltungen" am Schweinebestand in den Regionsaggregaten

<u>Karte 3.5:</u> Anteil der Schweine in "Großintensivhaltungen" am Schweinebestand in den Regionsaggregaten

Die Karten 3.1 - 4.1 sind in einer Mappe enthalten, die diesem Heft beigefügt ist.

<u>Karte 3.6:</u> Anteil der Schweine in "Großhaltungen" am Schweinebestand in den Regionsaggregaten

Die Karten 3.1 - 4.1 sind in einer Mappe enthalten, die diesem Heft beigefügt ist.

4 Klassifizierung der Untersuchungsgebiete

Angesichts der Vielzahl der Regionen und der je Region zusammengetragenen Informationen bedarf es zu ihrer Interpretation einer speziellen Aufbereitung der Ergebnisse. Dies soll durch eine Klassifizierung der Regionen geschehen, mit der das Ziel verfolgt wird, die Fülle der Einzelinformationen zu reduzieren, zu ordnen und teilweise miteinander zu verknüpfen.

4.1 Methodik der Klassifizierung

Die Methodik der Klassifizierung hat sich einerseits an den zu verfolgenden Zielen, andererseits an der Anzahl der zur Charakte-risierung herangezogenen Kennwerte (vgl. Kapitel 3) und am Grad der Vollständigkeit der verfügbaren Informationen über sie zu orientieren. Soweit wie möglich wird dabei auf die elektronische Datenverarbeitung als Hilfsmittel zurückgegriffen.

Die Klassifizierung wird auf zwei Wegen durchgeführt. Einmal wird eine Einzelklassifizierung nach der Ausprägung einer Anzahl ausgewählter Merkmale ohne Verknüpfung derselben untereinander vorgenommen. Zum anderen erfolgt auf dem Wege der Verknüpfung einiger der ausgewählten Merkmale eine hierarchische Klassifizierung. Beide Verfahren werden im folgenden näher erläutert.

Bei der Wahl der Merkmale und der Festlegung ihrer Ausprägungsschwellenwerte bzw. -intervalle für die Zuordnung der Untersuchungsgebiete zu "Gebietstypen" wurden soweit als möglich auch die vom
Instituut voor Bodemvruchtbaarheid in Haren entwickelten Schwellenwerte für die auf landwirtschaftlich genutzte Flächen aufzubringenden Mengen an tierischen Exkrementen berücksichtigt ¹⁾. Eine unmittelbare und vollständige Übernahme dieser Schwellenwerte schien
im Hinblick auf die Fragestellung der hier vorgelegten Studie nicht
zweckmäßig und scheiterte darüber hinaus auch daran, daß die hierfür

¹⁾ Vgl. Harener Studie, a.a.O., Kap. IV.

erforderlichen statistischen Informationen auf der räumlichen Aggregationsebene dieser Studie nicht vollständig zur Verfügung stehen.

4.1.1 Einzelklassifizierung

Zunächst werden von den insgesamt 160 für jedes Untersuchungsgebiet bereitstehenden Grunddaten und Kennwerten ¹⁾ 22 Kennwerte ausgewählt, die zur Erfüllung des Auftrags, nach Merkmalen der Tierhaltung, der Bodennutzung, des Klimas, des Bodens und der Raumnutzung zu klassifizieren, besonders geeignet erscheinen. Diese 22 Kennwerte sind unter Angabe einer laufenden Nummer, ihrer Position in dem in den Übersichten 3.4 und 3.5 erläuterten Computerausdruck des Teils B dieser Studie und ihrer Anordnung bei der Einzelklassifizierung in Übersicht 4.1 aufgeführt.

Für jedes Merkmal werden, wie in Übersicht 4.1 ersichtlich ist, fünf Ausprägungsintervalle definiert. Eine wesentlich größere Zahl von Intervallen hätte den Nachteil, weniger übersichtlich zu sein, eine wesentlich geringere Anzahl von Intervallen würde dagegen der Aufgabe der Strukturierung nicht gerecht werden. Von den fünf Intervallen sind die mittleren drei beidseitig beschränkt, die beiden übrigen sind nach oben bzw. unten offen und stellen damit sicher, daß alle denkbaren Merkmalswerte in die Klassifizierung einbezogen werden.

Jedes Intervall wird mit einer Rangziffer zwischen 1 und 5 dergestalt versehen, daß dasjenige Ausprägungsintervall eines Merkmals, mit dem ceteris paribus der höchste Grad an Umweltbeeinträchtigung verbunden zu sein scheint, die Rangziffer 5 erhält und umgekehrt. Die ersten acht Variablen haben die inneren Intervallgrenzen 100, 200, 300 und 400. Drei davon tragen die Bezeichnung "Futtereinheiten je 100 ha LF" und fünf die Bezeichnung "Rindviehäquivalente je 100 ha LF". Bei der Viehdichte in Futtereinheiten (FE) entsprechen

¹⁾ Vgl. Kapitel 3.2.

<u>Ubersicht 4.1:</u> Abgrenzung der Ausprägungsintervalle der in die Einzelklassifizierung (EK) einbezogenen Variablen

	t.	Pos.			Ausp	Ausprägungsintervalle	.le	
Lfd. Nr.	i.d.	in Ausdruck	Variable	bis unter	von bis unter	von bis unter	von bis unter	und mehr
	1	н		1	2	5	7	5
_	Ą	9 M	Viehbestand insg. in FE/100 ha LF	100	100 - 200	200 - 300	200 - 400	400
2	Д	M 8	Viehbestand insg. in N-RE/100 ha LF	100	100 - 200	200 - 300	300 - 400	004
3	ບ	9 M	Viehbestand insg. in P ₂ O ₅ -RE/100 ha LF	100	100 - 200	200 - 300	200 - 400	400
4	Q	M 10	Viehbestand insg. in K_O-RE/100 ha LF	100	100 - 200	200 - 300	200 - 400	400
7	ഥ	N 1	Flächenabh. Viehbestand in FE/100 ha LF	100	100 - 200	200 - 300	200 - 400	400
9	ഥ	N 2	Flächenunabh. Viehbestand in FE/100 ha LF	100	100 - 200	200 - 300	300 - 400	400
7	ტ	7 0	Flächenabh. Viehbestand in $K_20-RE/100$ ha Dauergrünl.	100	100 - 200	200 - 300	200 - 400	400
ω	н	0 7	Flächenunabh. Viehbest. in P ₂ 05-RE/100 ha Ackerl.	100	100 - 200	200 - 300	200 - 400	400
6	b	Ж 7	Bevölkerung E./km ² Gesamtfläche	100	100 - 200	200 - 300	200 - 400	400
10	Ж	N S	Flächenabh. Viehbest. in FE/Viehbest. insg. in FE	0,5	9,0 - 6,0	2,0 - 9,0	0,7 - 0,8	0,8
7	ij	I 2	Dauergrünland in ha/Landw. gen. Fläche in ha	0,5	9,0 - 6,0	2,0 - 9,0	0,7 - 0,8	9,0
12	M	К 7	Niederschl. Winter mm/Jahresniederschl. mm	0,5	0,5 - 0,6	2,0 - 9,0	0,7 - 0,8	9,0
13	Z	ъ 2	Rinder/Betriebe mit Rindvieh	20	20 - 30	20 - 40	40 - 50	50
14	0	ъ 5	Mittl. u. große Rinder-Intensivhalt./100 ha LF	0,1	0,1 - 0,2	0,2 - 0,3	4,0 - 6,0	0,4
15	д	0	Mittl. u. große Schweine-Intensivhalt./100 ha LF	0,1	0,1 - 0,2	0,2 - 0,3	0,3 - 0,4	0,4
16	ø	8 I	Betriebe mit 30 u.m. ha LF/Betriebe insg.	0,1	0,1 - 0,2	0,5 - 0,3	0,3 - 0,4	0,4
17	Я	K 6	Mittl. Regenmenge pro Monat in mm, JanDez.	07	09 - 04	08 - 09	80 - 100	100
18	Ø	0	Schweine/Betriebe mit Schweinen	07	09 - 07	08 - 09	80 - 100	100
19	D	K 2	Mittlerer Bodentyp	1	1 - 2	2 - 3	3 - 4	4
				5	4	3	2	1
20	Ħ	-	Landw. gen. Fläche in ha/Wirtschaftsfl. in ha	0,2	0,2 - 0,3	0,3 - 0,4	0,4 - 0,5	0,5
21	۸	м 8	Mittl. Temperatur OktMärz in ^O C	2	S .	3 - 4	4 - 5	5
22	A	K 10	Mittl. Jahrestemperatur in °C	80	8 - 8	9 - 10	10 - 11	7

1) Vgl. Übersicht 3.4 und 3.5

die Intervalle 2, 3 und 4 etwa den in der Voruntersuchung (vgl. Kap. 2) gefundenen Viehdichten der in die Charakterisierung und Klassifizierung einbezogenen Untersuchungsgebiete. Die Intervalle 1 und 5 stellen sicher, daß Teilgebiete mit überdurchschnittlich geringer und überdurchschnittlich hoher Viehdichte ebenfalls identifiziert werden können. Für die drei Variablen in "Futtereinheiten" und die fünf Variablen in verschiedenen "Rindviehäquivalenten" werden die gleichen Intervallgrenzen verwendet, damit aus ihrer Kombination Rückschlüsse auf die spezielle Art der Viehkonzentration gezogen werden können. Zum Beispiel deutet eine gleiche Intervallzugehörigkeit bei den RE-Dichten nach N, P_2O_5 und K_2O_5 und nach FE auf vorwiegende Rindviehhaltung hin, während eine relativ niedrige RE-Dichte nach K20 auf vorherrschende Schweineund Hühnerhaltung und der gleiche Sachverhalt in Verbindung mit einer hohen RE-Dichte nach P_2O_5 auf überwiegende Hühnerhaltung schließen lassen.

Jedem Untersuchungsgebiet und jedem Regionsaggregat kann nach der Ausprägung einer jeden der in die Klassifizierung einbezogenen Variablen je eine Rangziffer, insgesamt also 22 von ein an-der unabhängige Rangziffern zwischen 1 und 5, zugeordnet werden.

4.1.2 <u>Hierarchische Klassifizierung</u>

Zielsetzung des hier zu beschreibenden Weges der Klassifizierung ist es, die Untersuchungsgebiete nach der gleich zeitigen Ausprägung mehrerer Merkmale bestimmten Gebietstypen zuzuordnen. Das Verfahren der hierarchischen Klassifizierung eignet sich immer dann besonders gut, wenn "aufgrund sachlicher, außermathematischer Gesichtspunkte eine hierarchische Struktur der Objektmenge von vornherein zu vermuten ist bzw. explizit gefordert wird" 1). Hier wird von der Annahme ausgegangen, daß sich die Untersuchungsgebiete anhand von Kombinationen bestimmter Merkmalsausprägungen, die sich untereinander hierarchisch verhalten,

¹⁾ BOCK, H.H., Automatische Klassifikation. Studia Mathematica/ Mathematische Lehrbücher, Bd. 24. Göttingen 1974, S. 358.

gewissen Gebietstypen zuordnen lassen, die hinsichtlich der Wahrscheinlichkeit, des Umfangs und der Struktur möglicher Überschüsse an tierischen Exkrementen, bezogen auf die landwirtschaftlich genutzte Fläche, charakteristische Unterschiede aufweisen.

Wegen der beschränkten Kapazität der EDV-Anlage durfte die Struktur der hierarchischen Klassifizierung nicht zu kompliziert gewählt werden. Deshalb und weil nicht für alle 22 Variablen die erforderlichen statistischen Daten (z.B. Bevölkerungsdichte) zur Verfügung standen bzw. eine gesicherte hierarchische Einordnung nicht a priori möglich erscheint (z.B. Bodentyp, mittlere Jahrestemperatur), werden nur 10 Variable in die hierarchische Klassifizierung einbezogen.

Im Zuge dieser hierarchischen Klassifizierung werden die Untersuchungsgebiete in einer bestimmten, letztendlich natürlich nicht immer objektiv begründbaren Folge ¹⁾ von Abfrageschritten (Stufen) nach der Ausprägung jeder der zehn Variablen (in jeweils zwei oder drei Intervallen) bestimmten Typen, Untertypen etc. zugeordnet.

In <u>Übersicht 4.2</u> sind die Ausprägungsintervalle der in die hierarchische Klassifizierung einbezogenen zehn Variablen angegeben. Die Vorgehensweise der hierarchischen Klassifizierung wird aus dem in <u>Abbildung 4.1</u> wiedergegebenem "Dendrogramm" deutlich. Im folgenden sollen die einzelnen Abfrageschritte (Stufen) näher erläutert werden:

In der Abfragestufe O wird geklärt, ob die Viehdichte in "Futtereinheiten" (FE) je 100 ha landwirtschaftlich genutzte Fläche (x_0) den Wert 100 erreicht oder übersteigt. Gebiete mit einer Dichte unter 100 FE je 100 ha LF werden sogleich der Endstufe 1 zugeordnet und aus der Menge der weiter zu untersuchenden Regionen ausgesondert. Für die so ausgesonderten Gebiete kann ohne Einschränkung behauptet werden, daß in ihnen aus der Aufbringung der

¹⁾ BOCK, H.H., Automatische Klassifikation, a.a.O., S. 370 ff.

Ubersicht 4.2: Abgrenzung der Ausprägungsintervalle der in die hierarchische Klassifizierung (HK) einbezogenen Variablen

		u. mehr	mehr	mehr	mehr	mehr	u. mehr	u. mehr	mehr	u. mehr	mehr
	2	100 u.	100 u.	0,7 u.	100 u. mehr	200 u. mehr	200 u.	300 u.	100 u.	40 u.	0,4 u. mehr
Ausprägungsintervalle		•	•	•	•	100 bis unter 200	•		40 bis unter 100	20 bis unter 40	0,2 bis unter 0,4
Au		100	100	2.0.	100	100	200	300	07.	. 20	. 0,2
	0	bis unter 100	bis unter 100	bis unter 0,7	bis unter 100	bis unter 100	bis unter 200	bis unter 300	bis unter	bis unter	bis unter 0,2
	Variable	Viehbest. insg. in FE/100 ha LF	Viehbest. insg. in ${ m P_20_5-RE/100}$ ha LF	Flächenabh. Viehbest. in FE/Viehbest. insg. in FE	Flächenunabh. Viehbest. in FE/100 ha LF	Flächenabh. Viehbest. in FE/100 ha LF	Fl'unabh. Viehbest. in $P_2^{0}_5$ -RE/100 ha Ackerland	Flächenabh. Viehbest. in ${ m K_2O-RE/100}$ ha Dauergrünland	Schweine/Betriebe mit Schweinen	Rinder/Betriebe mit Rindvieh	Betriebe mit 30 u.m. ha LF/Betriebe insg.
Pos.	Ausdruck I	9 W	M 6	N S	N 2	N L	0 7	7 0	0	Ъ 2	B I
Bez.	i.d. HK	0 _x	×	× 2	× 5	, x	× 5	9 _x	\mathcal{L}_{X}	x 8	ę× 8
Stufe	d. HK	0	~	7	8	4	7.	9	7	ω	0

Abbildung 4.1: Schematische Darstellung der hierarchischen Klassifizierung (Dendrogramm)

Stufe d. HK	Bez. i.d. HK	Pos. in Ausdr.I	Variable	
0	° ×	9 W	Viehbest. insg. in FE/100 ha LF	x ₀ ≥1
~	×	6	Viehbest. insg. in P_2O_5 -RE/100 ha LF	x ₁ ≥1
8	*2	N 3	Flächenabh. Viehbest. in FE/Viehbest. insg. in FE	× ₂
К	× ₂	N N	Flächenunabh. Viehbest. in FE/100 ha LF	
4	x ⁴	N L	Flächenabh. Viehbest. in FE'100 ha LF	<100 x ₂ 20
72	×	2 0	F1'unabh. Viehbest. in P_2O_5 -RE/100 ha .okerl.	
9	×	7 0	Flächenabh. Viehbest. in ${ m K_2^{0-RE}/100}$ ha Dauergrüni.	^x 6
7	×	0 2	Schweine/Betriebe mit Schweinen	40
ω	×	2	Rinder/Betriebe mit Rindvieh	20≊:
σ	× 6	80 H	Betriebe mit 30 u.m. ha/Betriebe insg.	x ₉ ≥0.4 0.4>x ₉ ≥0.2 x ₉ <0.2 x ₉ ≥0.4 0.4>x ₉ ≥0.2 x ₉ <0.2 x ₉ ≥0.4 x ₉ <0.2 x ₉ ≥0.4 x ₉ <0.2 x ₉ ≥0.4 x ₉ ≥0.2 x ₉ ≥0.4 x ₉ ≥0.4
Frget	onisse	der Abfra	Ergebnisse der Abfrageschritte in den Stufen der HK: 0 1 2 2 2 5 5 6 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9	
Bezei	chnung	Bezeichnung der Endstufen:	tufen:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

anfallenden tierischen Exkremente auf die landwirtschaftlich genutzten Flächen auch unter ungünstigen Klima- und Bodenverhältnissen keine regional bedeutsamen Umweltkonflikte resultieren dürften 1).

Für die Gebiete mit 100 und mehr FE je 100 ha LF schließt sich die Frage nach der Viehdichte, gemessen in "Phosphat-Rindviehäquivalenten" (P_2O_5-RE) je 100 ha landwirtschaftlich genutzte Fläche, (x_1) an. Liegt diese unter 100, dann darf angenommen werden, daß in diesem Gebiet nicht die Hühnerhaltung dominiert und deshalb auch ein regionales Phosphat-Überschußproblem ausgeschlossen werden kann 2). Deshalb werden diese Gebiete nicht weiter verfolgt, sondern unverzüglich der Endstufe 2 zugeführt.

Alle verbleibenden Untersuchungsgebiete werden nach der Höhe des Anteils des Bestands an "flächenabhängigen" Tierarten am gesamten Viehbestand in "Futtereinheiten" etwas rigoros in "Gebiete mit vorwiegend flächenabhängiger Viehhaltung" und in "Gebiete mit gemischter oder vorwiegend flächenunabhängiger Viehhaltung" eingeteilt. Liegt der Anteil der "flächenabhängigen Tierarten" am Gesamtviehbestand in FE (x_2) bei 0,7 und mehr, dann muß davon ausgegangen werden, daß die pro Flächeneinheit aufzubringenden Mengen an tierischen Exkrementen eher durch den Gehalt an Kali begrenzt werden könnten als durch den an Stickstoff oder an Phosphat. Dies soll im folgenden bewiesen werden.

Bei einem Anteil der Rinder – der Tierart mit dem höchsten Kaligehalt in den Exkrementen – am gesamten Viehbestand in FE bis unter 70 v.H. und einer Viehdichte insgesamt von 100 FE je 100 ha LF ergibt sich eine Phosphatfracht von höchstens 100 • 0,7 = 70 P_2O_5 -RE aus Rindern und mindestens 72,8 • 0,3 = 21,8 P_2O_5 -RE aus Schweinen 3), insgesamt also von mindestens 91,8 P_2O_5 -RE je 100 ha LF. Wollte man die in der Harener Studie genannte Toleranzgrenze von 340 K_2O -RE je 100 ha LF voll ausschöpfen, dann läge die

¹⁾ Vgl. Harener Studie a.a.O., Kap. IV.

²⁾ Ebenda.

³⁾ Vgl. Übersicht 3.1.

Phosphatfracht mit mindestens 340 · 0,918 = 312 P₂0₅-RE je 100 ha bereits weit über der angenommenen Toleranzgrenze von 200 P₂0₅-RE für Ackerland 1). In der Regel geht jedoch mit einem hohen Anteil der "flächenabhängigen" Tierarten am Viehbestand auch ein relativ hoher Anteil des Grünlands an der landwirtschaftlich genutzten Fläche einher. Im Falle eines Grünlandanteils von 100 v.H. der LF könnte zwar die Abschwemmungsgefahr vernachlässigt, eine Auswaschungsgefahr aber langfristig kaum bestritten werden 2). Deshalb wird in dieser Studie immer dann von einer Priorität der Gefährdung durch Phosphatüberschüsse und der mit ihnen verbundenen latenten Gefahr einer Phosphatakkumulation mit ihrem zeitlich verzögerten autonomen Auswaschungspotential ausgegangen, wenn der Anteil der "flächenabhängigen" Tierarten am Viehbestand in FE unter 70 % liegt.

Eine weitere Beweismöglichkeit bietet die Betrachtung der mit einem Anteil der flächenabhängigen Tierarten am Gesamtviehbestand in FE von mindestens 0,7 korrespondierenden Mindestfracht an Stickstoff. Besteht der Viehbestand nur aus Rindern und Schweinen (Minimumkonstellation bezüglich N), dann beläuft sich bei einer Viehdichte von 100 FE je 100 ha LF die N-Fracht auf mindestens 100 · 0,7 = 70 N-RE aus Rindern und höchstens 53 · 0,3 = 15,9 N-RE aus Schweinen 3), insgesamt also auf mindestens 85,9 N-RE je 100 ha LF. Ist eine Kalifracht von 340 K₂0-RE je 100 ha LF tolerierbar, dann entspräche ihr bereits eine N-Fracht von 340·0,859 = 292 N-RE je 100 ha LF. Diese Menge entspricht einer N-Gabe von etwa 496 kg/ha LF bzw. einer jährlichen Auswaschung von mindestens 104 kg/ha LF bei reiner Ackernutzung 4) bzw. von etwa 1,3 - 30 kg/ha LF bei reiner Grünlandnutzung 5). Erfolgt also eine gleichmäßige Verteilung der Exkremente über die gesamte landwirtschaftlich genutzte Fläche und besteht diese nicht nur aus Grünland, so muß somit auch von der Gefahr erheblicher N-Auswaschungen ausgegangen werden.

Unter simultaner Berücksichtigung der beiden Nährstoffe N und P_2O_5 kann demnach behauptet werden, daß es bei einem Anteil der "flächenabhängigen Tierarten" am Viehbestand in FE bis unter 0,7 trotz Einhaltung der Toleranzgrenze für Kali sowohl bei Ackernutzung als auch bei Grünlandnutzung langfristig zu Auswaschungsproblemen kommen kann. Zwar könnte je nach dem Acker-Grünlandverhältnis und dem Niveau des Viehbesatzes in Extremfällen die Abgrenzung bei einem Rauhfutterfresseranteil von 0,6 oder 0,8 sinnvoller sein, doch

¹⁾ Vgl. Harener Studie, a.a.O., Kap. IV.

²⁾ Vgl. SCHWERTMANN, U., Der landwirtschaftliche Anteil am Phosphateintrag in Gewässer und die Bedeutung des Bodens hierfür (Literaturübersicht). Wasser und Abwasserforschung 1973, Nr. 6, S. 190-195, besonders S. 190.

³⁾ Vgl. Übersicht 3.1.

⁴⁾ Vgl. Harener Studie, a.a.O., Kap. II u. IV.

⁵⁾ Vgl. BENEKER, G., Gewässereutrophierung durch Konzentration der Tierhaltung. Diplomarbeit aus dem Institut für Agrarökonomie, Göttingen 1974, S. 33 und die dort angegebene Literatur.

bleibt dies bislang unwägbar. Jedenfalls wird durch dieses Vorgehen sichergestellt, daß in "Gebieten mit vorwiegend flächenabhängiger Viehhaltung" mehr dem Kaliproblem und in den übrigen Gebieten mehr dem Phosphat- und damit implizit auch dem Stickstoffproblem 1) nachgegangen wird.

In den weiteren fünf Abfrageschritten werden die "Gebiete mit vorwiegend flächenabhängiger Viehhaltung" und die "Gebiete mit gemischter oder vorwiegend flächenunabhängiger Viehhaltung" mit Hilfe unterschiedlicher, jedoch untereinander verwandter Kriterien weiter aufgegliedert.

Die Fragen nach der Höhe des Besatzes mit "flächenabhängigen" bzw. mit "flächenunabhängigen Tierarten" je 100 ha landwirtschaftlich genutzte Fläche, (\mathbf{x}_3) und (\mathbf{x}_4) , sind eine unabdingbare Ergänzung zu den dem Konzept der Harener Studie entsprechenden Fragen nach der Anzahl der Rindviehäquivalente je 100 ha Acker- bzw. Grünland, (\mathbf{x}_5) und (\mathbf{x}_6) . Denn eine nach der Höhe von \mathbf{x}_5 und \mathbf{x}_6 eventuell zu diagnostizierende hohe spezifische Viehdichte, bezogen auf das Ackerland bzw. auf das Grünland, wird erst dann zu einem nicht durch intraregionalen Nährstofftransfer lösbaren Problem, wenn auch die Viehdichte je 100 ha LF insgesamt ein bestimmtes Niveau überschreitet.

Der Schwellenwert für x_5 (Höhe des Bestandes an "flächenunabhängigen Tierarten" in P_2O_5 -RE, bezogen nur auf das Ackerland) liegt bei 200 P_2O_5 -RE je 100 ha Ackerland. Dieser Wert entspricht der nach der Harener Studie im Regelfall akzeptablen Viehdichte für Ackerland 2). Lediglich für den Fall der wenig klar definierten sogenannten "low tolerance soils" 3) wäre eine Schwelle bei 150 P_2O_5 -RE je 100 ha Ackerland adäquater. Aus Gründen der Programm-kapazität können diese Gebiete jedoch nicht direkt im Zuge der Klassifizierung erfaßt werden; sie werden ielmehr im Kapitel 4.2.2 gesondert ausgewiesen und erörtert.

¹⁾ Eine gleichzeitige Abfrage nach N und P_2O_5 an dieser Stelle war nicht möglich, da dies die Kapazität der EDV-Anlage überschritten hätte.

²⁾ Vgl. Harener Studie, a.a.O., Kap. IV.

³⁾ Ebenda.

In den "Gebieten mit gemischter oder vorwiegend flächenunabhängiger Viehhaltung" und einer Ausprägung der Variablen x₅ von 200 und darüber erscheint für große Teile der landwirtschaftlich genutzten Flächen und besonders des Ackerlandes eine regelmäßige Phosphatüberdüngung wahrscheinlich. Für diese Gebiete werden in den Abfrageschritten 7 und 9 zusätzlich die beiden Aspekte der durchschnittlichen Bestandsgröße bei Schweinen und der Größenstruktur der landwirtschaftlichen Betriebe beleuchtet.

Zunächst folgt die Frage nach der durchschnittlichen Größe der Schweinebestände (x_7) . Sie wird der Durchschnittsgröße der Hühnerbestände vorgezogen, weil die Daten vollständiger zur Verfügung stehen und außerdem die Strukturen in der Hühnerhaltung weiter entwickelt sind und sich zwischen den Untersuchungsgebieten nur geringfügig unterscheiden. Die durchschnittliche Bestandsgröße erscheint deshalb als Klassifizierungskriterium bedeutsam, weil die Persistenzwahrscheinlichkeit der Schweinehaltung bei überwiegend kleinen Beständen geringer erscheint als bei überwiegend größeren Beständen.

Im anschließenden letzten Klassifizierungsschritt 9 werden die Untersuchungsgebiete mit "gemischter bzw. vorwiegend flächenunabhängiger Viehhaltung" und einer Besatzdichte an "flächenunabhängigen Tierarten" von 200 und mehr P_2O_5 -RE je 100 ha Ackerland noch nach dem Anteil der größeren Betriebe (30 und mehr ha LF) an der Gesamtzahl der landwirtschaftlichen Betriebe (x_9) in drei Klassen aufgegliedert. Mit diesem Schritt wird der Hypothese Rechnung getragen, daß eine besonders starke Expansion der flächenunabhängigen Tierhaltung mit einer ungünstigen Betriebsgrößenstruktur einhergeht.

Auch bei den "Gebieten mit vorwiegend flächenabhängiger Viehhaltung" $(x_2 = 0,7 \text{ u. mehr})$ wird die beschränkte EDV-Kapazität dergestalt genutzt, daß die eigentlichen Problemgebiete vorrangig weiterklassifiziert werden. Dementsprechend werden zunächst mit Hilfe der Abfrageschritte 4 und 6 jene Regionen ausgesondert, in denen die in den Exkrementen der "flächenabhängigen Tierarten" anfallenden Mengen an Kali ohne Probleme über das Grünland bzw. die landwirtschaftlich genutzte Fläche verwertet werden können. Mittels des

oberen und des unteren Schwellenwertes von 100 und 200 für den "flächenabhängigen Viehbestand" in FE je 100 ha LF (x_4) werden drei Gebietstypen gebildet. Für die Gebiete mit einem Wert x_4 bis unter 100 können regionale Überschüsse in den anfallenden Exkrementen hinsichtlich aller Nährstoffe ausgeschlossen werden, da durch die vorhergehende Bedingung $x_2 = 0.7$ und mehr sichergestellt ist, daß auch die niedrigste Phosphatschwelle von 150 P_2O_5 -RE je 100 ha LF nicht überschritten wird.

In Regionen mit einer Besatzdichte an "flächenabhängigen Tierarten" von 100 bis unter 200 FE je 100 ha LF dürften nur in seltenen Fällen regionale Nährstoffüberschüsse entstehen, denn nur bei einem extrem hohen Anteil der Hühner am Viehbestand in FE von 30 v.H. wären Phosphatfrachten von bis zu 200 P_2O_5 -RE je ha LF möglich $^{1)}$. Das wäre aber nur in der unwahrscheinlichen Kombination mit einem hohen Ackerlandanteil und sehr schlechten Böden denkbar. Allerdings dürften Regionen mit einem Wert für \mathbf{x}_4 nahe 200 und einem Wert für \mathbf{x}_2 nur wenig über 0,7 und dementsprechend einem Gesamtviehbesatz bis zu 280 Futtereinheiten (FE) je 100 ha LF einer eingehenderen Erörterung wert sein, da in ihnen ähnliche Probleme auftreten könnten wie in den im Kapitel 4.2.2 erläuterten Gebieten der Endstufe 16.

Mit Hilfe des Abfrageschrittes 6 werden entsprechend dem Konzept der Harener Studie jene Regionen ausgesondert, deren Besatz an "flächenabhängigen Tierarten" je 100 ha Grünland (x_6) unter dem kritischen Wert von 300 K_2 0-RE bleibt. Ob allerdings für die landwirtschaftlich genutzten Flächen dieser Gebiete insgesamt eine Überversorgung mit N und P_20_5 ausgeschlossen werden kann, hängt außer von den Klima- und Bodenverhältnissen hauptsächlich vom Acker/Grünlandverhältnis und vom Umfang der weiteren Tierhaltung ab. Deshalb werden auch diese Gebiete im Kapitel 4.2.2 noch eingehender besprochen.

¹⁾ Vgl. Übers. 3.1.

Die Abfrage nach der durchschnittlichen Größe der Rinderbestände (x_8) entspricht der weiter oben bereits diskutierten Abfrage nach x_7 und die Abfrage nach x_9 wurde ebenfalls bereits erörtert.

Insgesamt ergeben sich die im Dendrogramm (Abbildung 4.1) eingezeichneten 25 potentiellen Endstufen mit den fortlaufenden Nummern 1 bis 25. Für jede dieser Endstufen wird der Weg, den die den potentiellen 25 Gebietstypen zugehörigen Untersuchungsgebiete bei den einzelnen Abfrageschritten nehmen, im Dendrogramm vollständig beschrieben: Von den 2 bzw. 3 alternativen Ausprägungsintervallen, in die jede Region auf jeder der zehn Klassifizierungsstufen fallen kann, ist das obere jeweils mit der Ziffer 2, das mittlere (sofern vorhanden) mit der Ziffer 1 und das untere mit der Ziffer 0 versehen; übersprungene Klassifizierungsstufen tragen als Symbol einen waagerechten Strich.

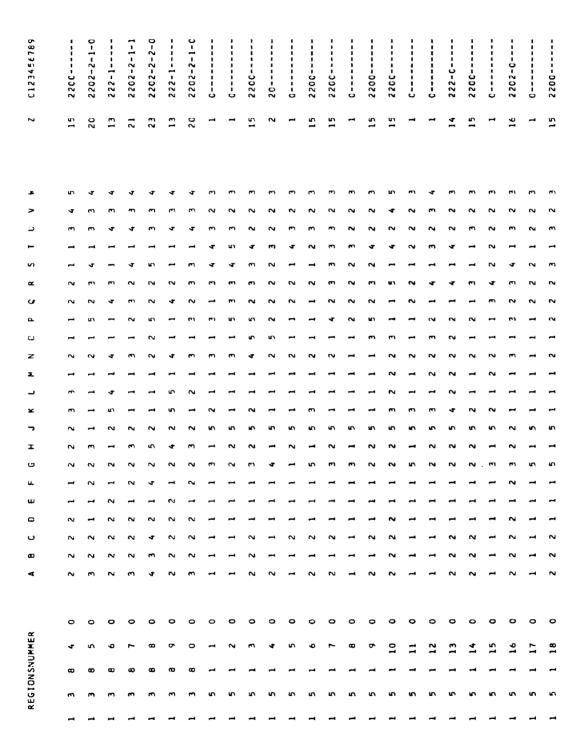
4.2 Ergebnisse der Klassifizierung

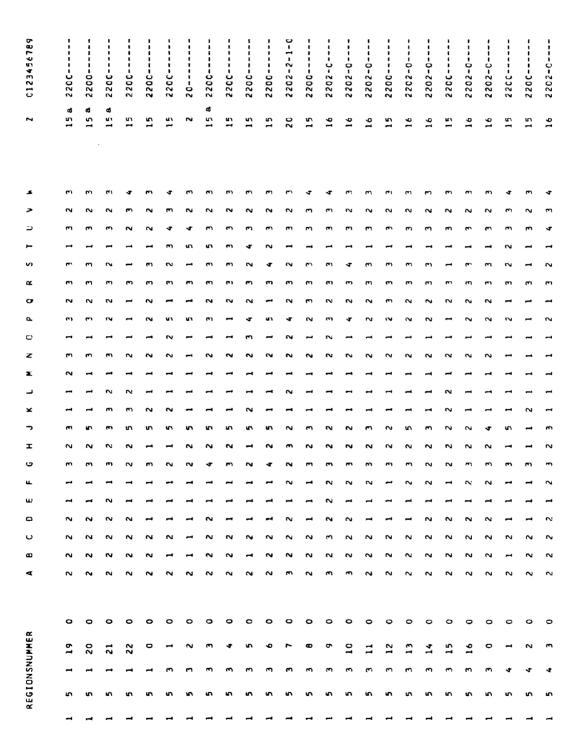
Die vollständigen Ergebnisse der Einzelklassifizierung und der hierarchischen Klassifizierung für jedes der Untersuchungsgebiete und der zugehörigen Regionsaggregate sind in <u>Übersicht 4.3</u> wiedergegeben. Für jedes der durch ihre Regionsnummer identifizierten Untersuchungsgebiete und jedes der zugehörigen Regionsaggregate sind hier unter den Buchstaben A, B, ..., W die Rangziffern der Klassifizierung nach den 22 in die E i n z e l klassifizierung einbezogenen und in Übersicht 4.1 erläuterten Kennwerten (Variablen) ausgewiesen. So bedeuten beispielsweise für das Untersuchungsgebiet Landkreis Grfsch. Hoya, Reg.Bez. Hannover (Regions-Nr. 1 3 1 3 0) die Ziffer 2 in der Spalte A, daß der Viehbestand insgesamt in Futtereinheiten je 100 ha landwirtschaftlich genutzte Fläche im Intervall 100 bis unter 200 liegt und die Ziffer 3 in der Spalte S,

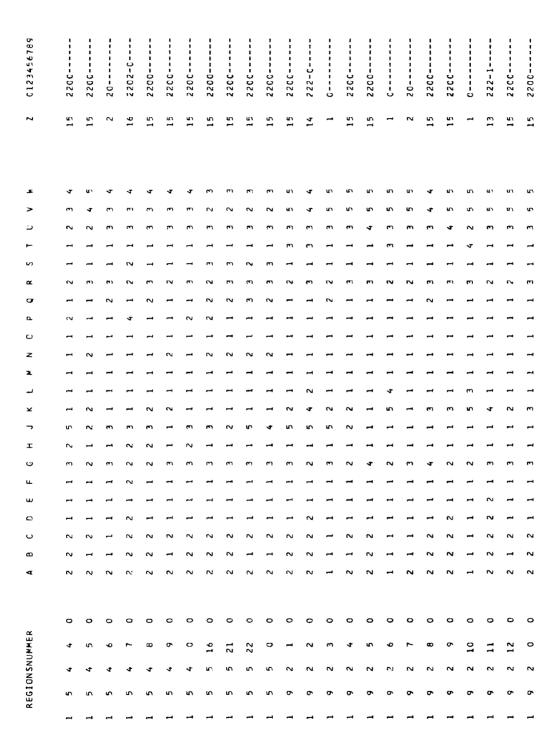
daß der durchschnittliche Bestand an Schweinen je Betrieb mit Schweinehaltung in das Intervall 60 bis unter 80 fällt.

In der mit Z bezeichneten Spalte ist die "Endstufe" (Regionstyp) ausgewiesen, der die einzelnen Untersuchungsgebiete durch die h i e r a r c h i s c h e Klassifizierung jeweils zugeordnet werden; so landet die Beispielsregion in der Endstufe 16. In den letzten 10 Spalten des Ausdrucks ist unter der Überschrift 012 9 angegeben, welchem der zwei bis drei möglichen Ausprägungsintervalle die einzelnen Regionen auf jeder der zehn Stufen der hierarchischen Klassifizierung (0 bis 9) zugeordnet werden. Die Ziffernfolge 2202-0---- für das o.g. Untersuchungsgebiet bedeutet beispielsweise, daß die betreffende Region beim ersten Abfrageschritt (Stufe 0) in das Intervall 2 (Viehbestand insg. in FE je 100 ha LF = 100 und mehr) fällt, beim zweiten Abfrageschritt (Stufe 1) ebenfalls dem Intervall 2 (Viehbestand insg. in P_2O_5 -RE je 100 ha LF = 100 und mehr) zugeordnet wird etc.

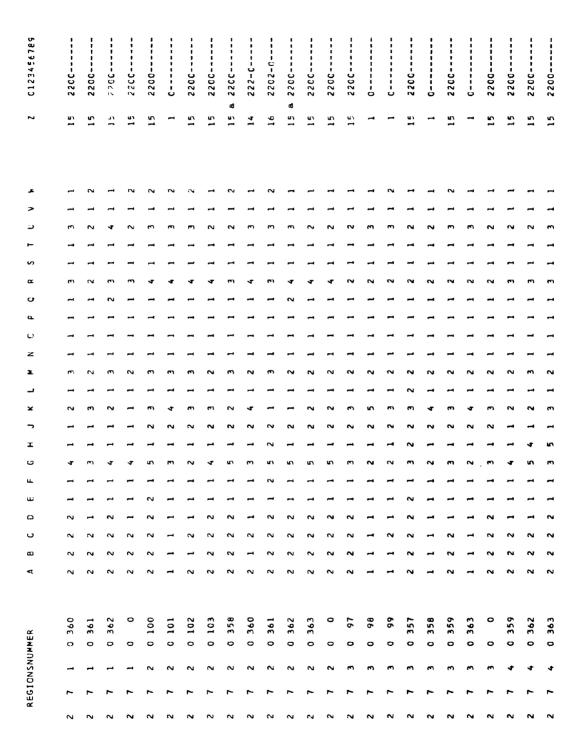
Eine zusammenfassende Darstellung der Klassifizierungsergebnisse auf der Ebene der Regions ag gregate ist in der Übersicht 4.4 enthalten. Hierbei wurden insgesamt 49 Regionsaggregate berücksichtigt, von denen 9 auf die BR Deutschland, 7 auf Frankreich, 12 auf Italien 1), 6 auf die Niederlande, 7 auf Belgien, 6 auf das Vereinigte Königreich 2) und 2 auf Dänemark entfallen.

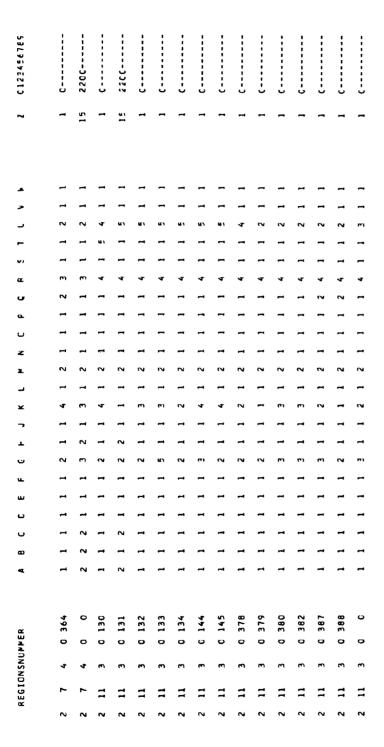

Im folgenden sollen einige Ergebnisse der Klassifizierung anhand dieser Übersicht aufgezeigt und erörtert werden. Dabei wird zunächst auf die 22 Variablen der Einzelklassifizierung eingegangen. Danach werden anhand von Kombinationen zwischen mehreren der 22 Variablen einzelne Gebietstypen charakterisiert. Schließlich wird die Zuordnung der Gebiete zu den verschiedenen Endstufen der hierarchischen Klassifizierung diskutiert.

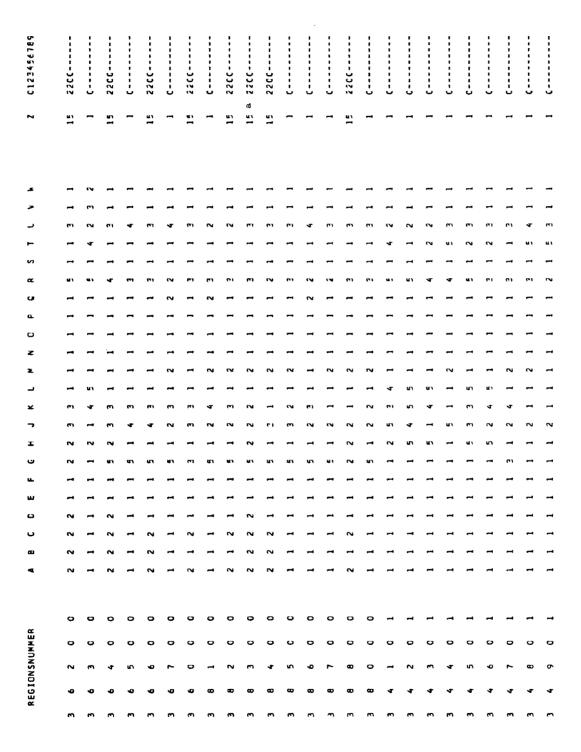

¹⁾ In Italien sind die Regioni zusätzlich nach"Höhenzonen" aufgegliedert.

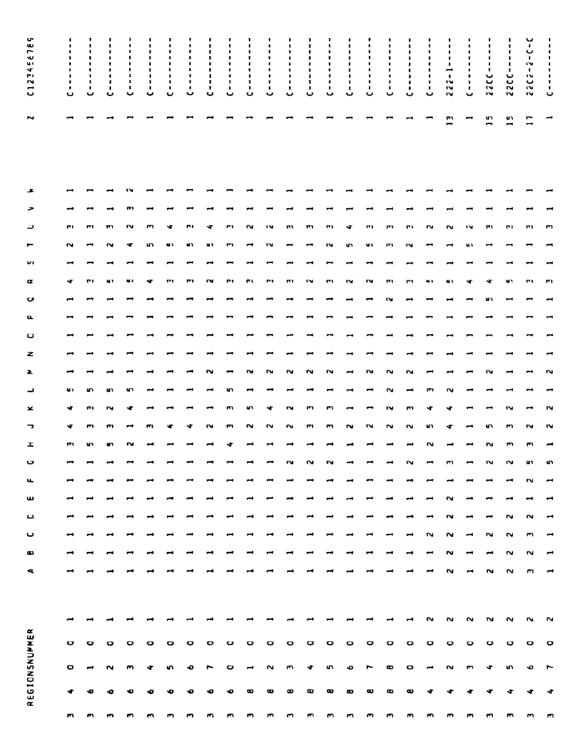

²⁾ Die beiden schottischen Subregions sind zu einem Regionsaggregat zusammengefaßt.

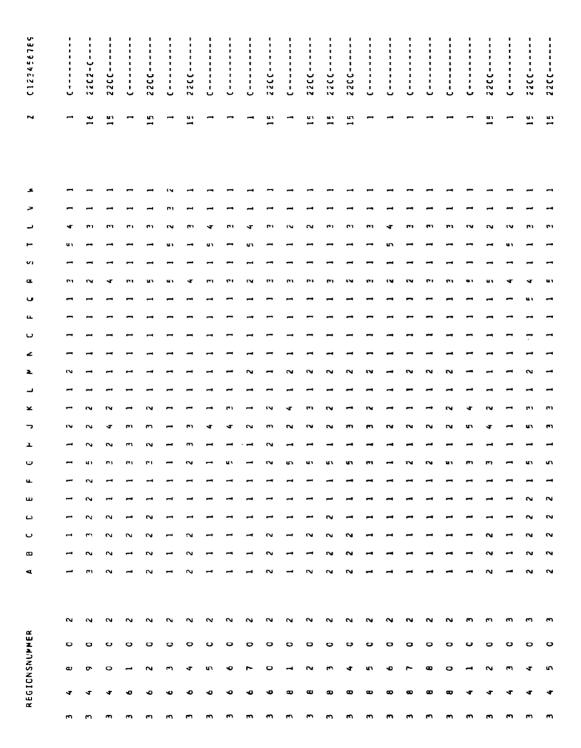
Ubersicht 4.3: Ergebnisse der Klassifizierung der Untersuchungsgebiete


C123456789		2200	2202-0	J	0		02	2202-0	2200	0	2200	220C	2200	2200	220C	2200	2200	2202-2-1-C	2200	2262-6	2202-0	2202-0	1 1 1 1 1 1 1	2200	222-1
7	-	15	16	_	-		~	16	15	_	15	u,	15	15	15	15	15	20	15	16	16	16		15	13
		•	_					•			-	•		_	-	-	_	•	_		_	-			
£	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
>	m	3	6	3	c.	3	3	c	т	3	6	m	4	£Ω.	m	60	3	3	6	3	3	•	ы	٣	3
ت	m	5	m	2	7	E	4	S	ĸ	7	3	4	3	w	6	7	Ľ١	Ŋ	4	ស	m	S	4	т.	4
	ďγ	-	-	-	-		-	-	1	-		~	-		~	3	7	-	-	-		-	7	2	7
S	4	2	(C)		-		-	2		-	2	2	_		7	2	2	2	2	n	2	2	-	2	
αx	~	2	2	m	2	7	7	2	2	m	2	m	m	7	2	m	2	60	m	~	m	m	2	2	60
<i>ن</i>	<u>~</u>	2 2	3 2	- 2	<u></u>	4	4	2	2	4	2		2	7	- 5	7	2 2	2	2	2 2	2 2	2	~	- 2	1 4
Ö	_		-	_	_	_	_	2	_	_		_	_	_	_	_		1 2	_	1 2	7		_	_	_
z	2	2	~	_	2	2	2	2	-	2	2	æ	m	2	60			2	2	2		2	,	m	4
2	_			_	_	~	_	,			_	-	_	_	_	_		_	-	_			_		
_		_	-	_	_	_	-		-			2		7	2	_	_	2	1				7	~	4
×	2	-	-	2	2	2	7	_	-	7	-	7	٣	2	6	-	-	_	-	-	-	1	2	m	د ر
7	5	-	7	2	m	1 0	n		m	7	en	-	2	2		5	-	2	7	-	2	7	2	2	5
I	7	7	7		-			7	7		-	7	-	2	2		2	М	2	7	7	2	2	2	
ß	7	7	7	m	m	7	7	7	m	4	2	2	2	7	2	7	7	7	7	7	7	2		2	2
u.	~	-	7	-	-	-		7	-	-	-	1	-	-	-	-	-	2	-	7	7	2	-	-	~
ш	-	-	1		-	-	-	-	-			-	~	~	-	~	1	-	-	~		-	-		2
۵	-	-	1		-	-	-	~				2	-		-	-	-	2	-	-	7	-	-	-	7
J	-	2	2	-	-	-		2	2		2	2	2	2	2	2	2	2	2	2	2	7	-	2	2
an -	-	~	2	~		-	_	2	7	-	7	2	2	7	2	-	2	2	2	2	2	2	-	2	~
⋖	~	7	2	7	-	_	2	2	2	-	2	8	7	2	2	2	2	2	2	2	2	2	1	2	2
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ. E.		7	6	4	5	9	7	c o	6	10	0	7	9	7	0	-	7	۳	4	r2	9	0	-	7	m
REGIONSNUMMER	1	-	-	7	-	-	-	-			-	4	4	4	4	Z.	ī	5	S.	2	2	5	6 0	30	80
GION	ю	т	т	m	m	ĸ	м	e.	6	m	ю	60	e	ю	ю	60	6	ю	m	m	m	m	60	m	ю
8		~	-	_	-		_	-	-			_		_		1	_	_	_		-		-	-	_



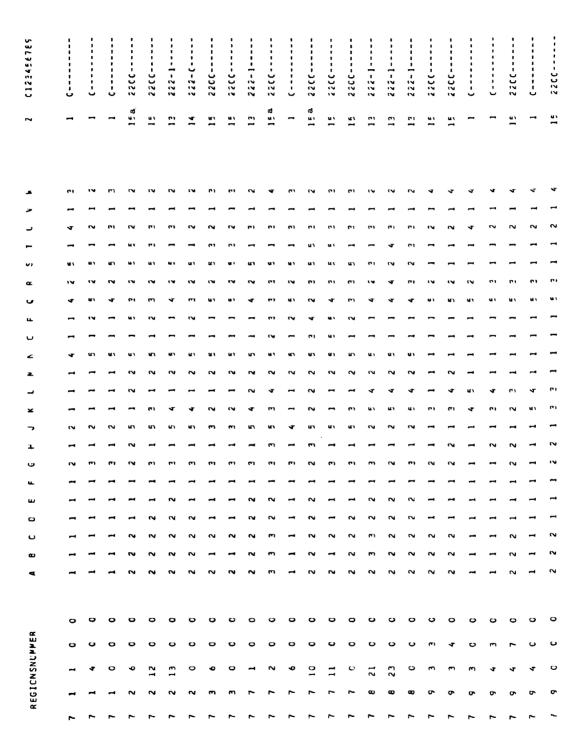


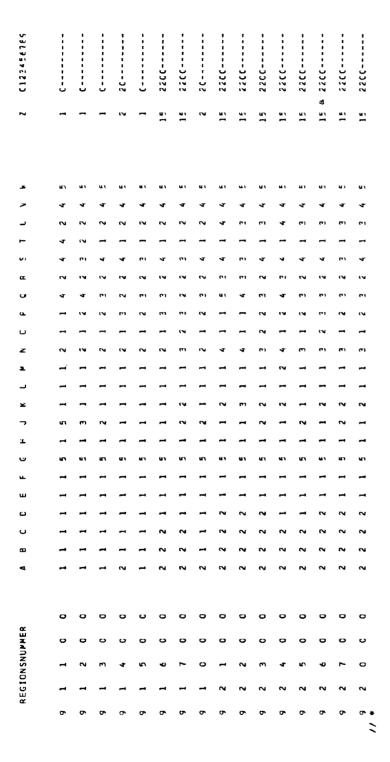

C123456789	0	2200	2200	00		50		222-6	222-1	2200	2200	2200	2200	2200	2200	2200	0	2200	2200)	20	2200	¥ 2200
7	-	15	15	-	-	2	-	14	13	u'	15	15	15	15	15	15		15	15		-	2	15	15 9
2	2	m	m	m	m	m.	m	m	m	m	e	c	^	m	m	m	2	2	m	m	m	(L)	7	2
>	-	-		-		-	-	-		-	-			-	-	2	-	-	-	-	2	~	-	-
5	4	~	~	7	7	~	m	m	m	2	2	7	3	2	7	2	2	4	7	4	7	7	7	m
-	~	-	-	~		-		-	4	-	-	-	-	-	-	-	-	~	-	~	-	-		-
S	-	-		-	-	-		~	~	~	-	~					-		-	-	-	-	-	-
œ	7	7	7	7	~	(L)	2	rv.	7	7	~	m	(C)	7	7	m	m	7	m	m	(C)	m	7	2
ø	4	2		2	7	7	m	m	~	2	-	4	m	2	7	m	4	4	_	2	(m)	(m)	-	-
o.	-	-			-		-	-	-	~	-			-		-	-	-	-	~	-		-	-
Ö	-	-		-	-	-			-	-	-	~	_	-			-	-	-		-		-	
z	7		~	~	~	-	~	-	~	-		-	-	-	-	-	-		-	-		~		7
£	2	-	-	~	-	8			-	~	_	2	2	~	-	2	2	-	2	7	2	2	2	2
	-	_	~		-	-	_	2	5	~	-	-	2	-	-	-	~	-	-	-		-	-	-
×	~	-	-	~	m	Э	m	ſL.	4	m	7		m	7	N	6.0	6	7	-	-	7	2	~	_
7		-				~	-	~4				~		-		-		_	7	-	-	-	-	-
x	-	_	_	_	_	-	_	-	υ. 		_	_		-	_	_	_	~	_	_	_	_	-	-
	~	 М	·П	4	m	~	m	2	2	N	m	П	Α.	m	4	ω.	m	~	m	m	4	m	ľ	r.
	_							_	2 1	_		_		_		_	_	_	_	_	_	_	_	
	_	_	_	_	_	_	_	2	2	_	_	_	_	_		_	_	_	_	_	_	_	_	_
o U	_	7	~	_	_	_		2	2	~	~	~	2	ν.	Α.	~	_	2	~	_	_	_	~	2
82	_	7	~				_	~	7	_	N	_	~	~	_	~	_		_	_			~	8
⋖	_	7	7		_	~	,	7	~	7	~	2	7	2	2	~		7	2	_	_	2	2	~
	-	7	m	4	Ś	9	7	œ	6	0	23	24	29	30	31	32	39	0	324	325	326	0	58	359
Ē	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 3	0
REGIONSNUMMER	-	-		-	7	-			-	~	7	2	7	2	7	~	7	2	~	2	2	7	-	-
REGIO	-	-	-	-		-	-	7	-	-	-	-	-	-	-	-	-	-	-	-	-	~	^	7
-	7	~	2	2	~	7	~	~	7	2	7	2	7	2	2	2	7	7	7	2	7	7	2	7



2 C123456789	C	222-6		15 a 220C	2200	15 a 22CC		15 & 22CC	15 a 220C	2200	22CC
	-	4	-	-	-	5,	~	-	15	41	-
.s	-	-	-		_	-		-		_	-
>	-	-	-		-	-		-	-	-	-
၁	N	2	~	m	m	m	m	4	m	m	m
F	~	-	13		~	-	-	-	-		-
V	-	-	-	-	-	~	~	-	-	-	-
~	uı	w	4	4	*	le.)	(m)	r,	N	4	m
σ	-	~	-	~	_	-	~	6.0	2	_	-
a.	-	~	-		-		-	-	-	~	-
O	~	~	-	~	-	~	-	~	-	~	-
z	-	-	-		-	-	-		-	-	-
Σ		-	-	~	-	~	7	14	-	-	~
7	7	4	u1	-	7	-	-	-	-	-	-
x	m	E)	4	m	771	7	E)	60	7	C.	7
.	មា	4	~	R.J.	m	7	LA.	2	7	4	m
1		7	R.	-	7	2		-	-	-	~
.	7	7	-	N.	~	(C)	g.	¥1	UT.	m	4
u.	-	_	-	_	-	-	-	_	-		-
<u> </u>	-	-	-	2	_	-	-	7	2		-
U	-	~	-	~	_	7	-	~	~	~	
۵	_	~		~	~	~	-	2	~	8	~
⋖	_	2	_	~	2	2	_	~	2	2	2 2
	_		_					•	,	••	.,
	0	0	0	0	0	0	0	0	0	0	ဝ
w X	o	0	o	o	0	0	0	0	0	0	0
R E G I ON SNU M H E R								_			
N OI	-	2	60	4	'n	ø	7	æ	σ	0	-
υ Β α	4	4	4	4	4	4	4	4	4	4	•
_	_	_	_	_	_	_	_	_	_	_	_

C123456789	3-2322		2266	2200	2322		22CC)	2200	3	3322)	2266	222-6	22CC)-2022	22CC)))	2262-6	20
7	16	_	-	-	5	-	5	_	-	-	-	-	-	14	=	16	15	-	-	_	16	N
	-	-	-	~	-	-	-	17	_	-	_	-	-	-	-	-	-		_	~		_
-	-	-			-	-		m	-	-	-	-	~	-	-			-	-	_		-
۔	Ç1	m	4	m	m	C)	m	174	m	4	m	4	•	17	2	۲,	m	(*)	4	r)	ויח	m
-	-	-	-		-	-	-	u1	-	-	-	-	~	-	-	_	-	-		~	-	-
v,	-	-	~	-	-	-			-	~	_	-	-		-	-	-	-	-	-		-
C	(L)	61		7	4	61	u1	81	4	m	m	~	m	61	r,	E.	~	61	(4	•	ריז	rı,
G	"	7	171	~	~	-	-	-	-	-	-	2	-	(C)	174	-	~	-	7	-	~	~
æ	_		-	~	~	-	-	-	-		-	-	-	-	-			-	~	-	-	-
J	-	~		-	-		-	-	-	~	-	-	-	-	~	-	-	~	-	~	-	-
Z	-		7	~	-	-	-	-		-	-	-	-	-	-	~	-	~	-		~	
2	-	7	2	-	-	~	-		-	-	-	~	-	7	~	~	7	2		2	2	7
_	-	-	~	-	-	-	-	_	-	-	-	~	_			-	~	-	-	_		~
×	~	וייז	(T)	~	m	N	m	-	(r)	(4.)	ויז	m	(4)	4	(4)	~	-	17	(L)	-	-	-
7	2	~	(A	~	4	L.	m,		(C)	4	4	N	m	2	17	2	ריז	m	2	7	2	2
T	7	-	-	-	-	~		-	-	_	_	-	_		-	~		-	-	-	2	-
G	u 1	Æ,	u1	Ľ	un.	16 7	4	_	kn .	u1	ų,	W1	W)	en.	41	u n	U 1	U1	(C)	u v	uı	n.
	~		-	-	-									_		2			-	7	~	_
w	2		2	2	2	2	_	_	7	_	_	_	-		2	2	-			_	-	
ن ن	m	_	~	2	2 2	2	2 2		~	_	~	_	2	2 2	~	m	~	_	_	_	2	_
6 0	6 7	_	2	~	~	~	~		~		~			~	N		~	_	_	_	_	_
٩		_	2	2	~	2	2	-	~	_	2	_	7	~	~	m	2	_			7	~
-	Ю	m	3	m	m	m	6	6	m	m	•	m	m	m	m	9	3	m	m	m	m	М
F.	0	0	0	0	0	0	0	o	0	0	0	o	S	0	o	O	0	၁	0	0	0	ပ
SNU	•	7	80	ው	0		2	60	4	Ŋ	9	7	0	-	7	е.	4	5	9	7	00	0
REGIONSNUMMER	4		•	J		~					9											
REG	-	4			4	•	•	•	•	•		•0	•0	6 0	œ	œ	æ	æ	œ	œ	Φ	60
	c	m	E)	6	3	60	m	6	m	m	6	E)	C)	m	9	m	~	m	3	m	3	m


ۍ.	•	ļ	•	:	:	:	:	ب	:	2	:	ب	ų	Ų	:	ب	Ų	Ų	r T	:	:	Ų	Ų	Ų	ب	Ų	:	٠
(1234567E9		;	3 -	222-2-6	÷	3-2-22	3-8-	2202-2-1-C	222-2-6	222-2-2-10		2262-2-1-6	2262-2-1-6	22C2-2-1-C	222-2-6	2202-2-1-0	2262-2-1-6	22C2-2-1-C	į	222-1	222-1	2262-2-1-6	22C2-2-1-C	2262-2-1-6	2262-2-1-6	22C2-2-1-C		2-1-
4	1222	222-1	222-2-C-	22-2	222-2-C	22-2	222-2	2 C 2	22-2	22-2	222-2-0	2 C 2 -	2 C 2 -	2C2-	22-2	2C2-	2 C 2 -	2C2-	222-1	22-1	22-1	- 202	- E 0 Z	202-	205-	-232	222-1	2202-2-1-0
2	13	N	174	14	rv.	~	N	17	17	W	N	14	2	14	rv.	73	14	1.7	(N	~	2	"	7	CV.	"	7	1/4	N
7	13	23	13	12	12	12	12	3 C	12	æ	12	20	2 C	3.5	12	2 C	2.0	2 C	13	13	13	3 C	3 C	3 C	20	3 C	13	3 C
	C I	(r)	TT)	m	m	m	ריז	L,	m	ω,	r)	m	m	e,	m	m	71	m	n,	m	m	m	m	re i	ריז	m	m	m
-	N	Ŋ	17	7	2	14	~	2	~	~	N	~	13	~	~	7	8	63	N	~	7	13	N	2	~	17	~	7
ب	4	4	4	u 1	4	41	4	4	u,	4	ď١	un.	เขา	4	4	4	4	4	4	4	4	4	4	u,	u,	ř.	4	Ľ
-	-	-	-	-	~	~	-	-	-	-			-		-	-	-			-	-	-	-	-		-	~	-
u,	174	7	~	170	~	2	2	ניז	14	7	(2)	7	C.1	m	~	4	(7)	m	-	-	7	""	m	()	(7)	7	17	4
Œ	es.	C)	(1)	(F)	C)	441	C1	rn	r)	ויז	6.3	r)	m	6.1	rı	m	(r)	ריז	r)	(*1	ויז	m	m	ייז	(4)	6.1	6.1	m
G.	(*1	(*)	6.1	(T)	(7)	נייז	(7)	-	-	-		_	-	_	-	-	_	~	-	_	-	-	-	_	-	-	-	-
u.	-	-			_	"		u	174	ur)	17	un.	un.	uı	wn	41	u1	u ı	u 1	_	3	u,	un.	u.	uı	uı		un.
U	N	m	14	(7)	u 1	7T	4	u)	41	27	u1 (*)	E1	EV.	יו מיז	en.	יש	(A)	(N	((1)	4	27	67	uri CV	17	4	2	6. 2	CA
~	77	4	u i	_		_	_			_		_	_	~	,,,		-		-			-	_	_	_	-	-	
2.	_	-	w1	ın.	ø,	I	r.	u n	u n	S	4	2	Į,	un.	L/N	W)	4	m	m	4	4	4	ĸ	ĸ	NO.	10	m	ĸ
_ _	4	'n	W1	LC)	មា	uı	un.	573	เก	•	41	(L)	2	۲٦)	4	m		_	4	LD.	4	7	-	m	-	2	4	C)
-	~	~	~	2		2	~	m	m	m	2	~	4	m	ED.	4	4	m	m	6	m	~	2	m	m	m	un.	~
1	-	_	4	er.	wn.	u1	4	u,	er.	L IN		m	(r)	ĸ	ers.	u n	N.	ហ	v n	4	55	u n	'n	un.	ď	u n	2	r.
ن	C)	e,	C)	m	m	m	(F)	4	m	4	m	4	4	4	m	4	m	e,	r ı	m	m	m	m	rs i	4	m	m	4
u .	-	-	-	_	-	-	~	2	~	N	-	2	2	~	7	N	m	m	_		-	~	m	~	L D	7	-	m
ų.	2	~	m	m	m	9	m	ELJ.	m	m	6	7	m	m	E.	E)	m	2	7	2	~	7	•	m	6	m	7	m
မ	~	m	m	m	m	m	m	m	E.	4	m	(L)	4	m	m	E)	(F)	m	2		m	(F)	m	4	ι.	4	7	4
U	7	n	m	(T)	m	6	m	4	m	4	m	C (1)	w	4	4	4	4	4	i.	m	m	4	4	4	ĸ	Ś	m	īU
an an	2	m	(C)	m	m	m	m	4	(C)	4	m	m	4	4	4	4	4	m	E.	6	m	w	4	4	ľ	4	m	¥n.
٩	~	m	m	•	m	L.	m	20	(L)	4	m	М	ď	4	4	ĸ	πu	4	m	m	(C)	4	ĸ	4	2	S.	m	5
	110	120	310	20	ပ္	10	o	0.1	10	20	330	10	450	0	01	20	3¢	240	250	260	2.70	280	290	410	420	430	440	450
ax ax	- I	0 15	C 31	0 32	5.0	C 41	0	0 21	c 31	0 32	0 3	0 41	4	0	0 21	0 22	0 23	0	0 2	0 2	0 2	0 2	0 2	4	4	4	4	4
N S											_		_	_	c.		_	-	_	_	_	_	_	_	_	_	_	
SNO	0	0	O	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0
REGIONSNUPMER	~	2	~	N	7	~	8	4	4	4	4	4	4	4	ι.	ĸ	ſU.	ŧ0	ĸ	ď	'n	ĽΛ	2	'n	īU	5	ď	ĸ
u.	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4


REGIONSNUMMER A B C D E F G H J K L M N C P Q R S T 5 0 0 460 5 5 4 3 3 4 5 3 1 4 1 2 5 5 1 3 3 1 5 0 0 470 5 4 5 3 3 4 5 3 1 4 1 2 5 5 1 3 3 1	60 00 00 00 00 00 00 00 00 00 00 00 00 0	60 00 00 00 00 00 00 00 00 00 00 00 00 0	60 00 00 00 00 00 00 00 00 00 00 00 00 0		0	## ## ## ## ## ## ## ## ## ## ## ## ##		## ## ## ## ## ## ## ## ## ## ## ## ##	7	X	7 4 4 7 4 7 7 4 7 7 6 7	C (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	α	α	C	G 10 10	G 10 10		- 10 10 E			٦ 4 4	> 0 0
480 5 4 5 3 2 3 3 5 5 1 4 1 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		480 5 4 5 3 2 3 3 5 5 1 4 1 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6										n un un	n un un	n un un	n un un				יו פו פו	n to to		T (1) 4T	v 72 72
6 0 0210 4 3 3 3 3 1 3 5 3 3 4 1 4 5 5 6 0 0 0 0 0 0 0 4 4 4 4 3 1 3 5 3 4 5 1 4 5 3	0 210 4 4 4 3 3 1 3 5 3 4 1 4 5 0 310 4 4 4 4 3 1 3 5 3 4 5 1 4 5	210 4 3 3 3 3 1 3 5 3 4 1 4 5 310 4 4 4 4 3 1 3 5 3 4 5 1 4 5	4 3 3 3 3 1 3 5 3 3 4 1 4 5 4 4 4 4 3 1 3 5 3 4 5 1 4 5	3 3 3 3 1 3 5 3 3 4 1 4 5 4 4 4 4 3 1 3 5 3 4 5 1 4 5	3 3 1 3 5 3 4 1 4 5 4 3 1 3 5 3 4 1 4 5	3 3 1 3 5 3 4 1 4 5 4 3 1 3 5 3 4 1 4 5	3 1 3 5 3 3 4 1 4 5 3 1 3 1 3 5 3 4 5 1 4 5	1 3 5 3 3 4 1 4 6 6 1 1 3 5 5 3 4 5 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2	E E E E E E E E E E E E E E E E E E E	ш 4. 4. т. 4. 4. 8. т.	4 4 4 4 60 60	*** *** 4 4 8/ 8/						ניון ניו	ta ta		47 W)	N N
6 0 0320 4 4 4 3 3 1 2 5 3 4 5 1 4 5 4 6 0 0 0330 4 3 4 3 3 1 2 5 5 4 5 1 3 5 5	0 320 4 4 4 3 3 1 2 5 3 4 5 1 4 5 0 3 3 0 3 3 0 4 3 4 3 3 3 1 2 5 5 4 5 1 3 5	320 4 4 4 3 3 1 2 5 3 4 5 1 4 5	4 4 4 3 3 1 3 5 3 4 5 1 4 5 5 4 5 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6	4 4 3 3 1 2 5 3 4 5 5 1 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				11 12 12 12 12 12 12 12 12 12 12 12 12 1	2 4 4 1 1 1 2 4 4 1 1 1 1 1 1 1 1 1 1 1	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 E	4 E	עט עט	עט עט				m, m	~ ~		4 4	~ ~
0 340 5 4 4 4 3 2 3 5 3 2 5 1 4 5	0 340 5 4 4 4 3 2 3 5 3 2 5 1 4 5	340 5 4 4 3 2 3 5 3 2 5 1 4 5	5 4 4 4 3 2 3 5 3 5 5 1 4 E	4 4 4 3 2 3 5 3 2 5 1 4 5	4 3 2 3 3 3 3 4 5	4 3 2 3 3 3 3 4 5	3 2 3 5 3 2 5 1 4 5	2 3 3 3 5 1 4 5	2 3 3 3 4 4 5	3 2 5 1 4 5	2 4 5	2 4	4	41	41			-	ויח	(7)	~	4	12
6 0 0350 3 3 3 3 3 1 3 5 5 4 5 1 3 5	0.350 3.3.3.3.1.3.5.4	350 3 3 3 3 3 3 5 5 4	** ** ** ** ** ** ** ** ** ** ** ** **	3 3 3 3 1 3 5 5 4	4 2 2 2 2 4	4 2 2 2 2 4	3 1 3 5 5 4	2 E	ຄນ ຄນ	الا 14	4	4 70 44 60	E7	#1 FD	us es	41	F1		m	~	-	4	2
6 0 0410 55543345525135	0410 5554334552513	410 5554334552513	555334552513	554334552513	54334552513	4 3 3 4 5 5 2 5 1 3	334552513	3 4 5 5 2 5 1 3	4 5 5 2 5 1 3	5 2 5 1 3	2 5 1 3	5 1 3	1 3			ıc	K)	~	ניז	m	~	r.	~
6 0 0420 5 4 5 4 3 3 4 5 5 2 5 3 3 5	0420 5454334552	420 5 4 5 4 3 3 4 5 5 2	5 4 5 4 3 3 4 5 5 5 2	4 5 4 3 3 4 5 5 2	4 3 3 4 55 5	4 3 3 4 55 5	6 4 80 80 51	2. E.	2. 10.	~	~		e: e:	3 E	יט מו	u ,	W1	-	6.0	m	-	4	13
	0 0 6 4 4 4 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 4 4 4 3 2 3 5 5 5 5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7	1 4 4 4 3 2 3 5 5 5 5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 2 3 5 5 3 5 1 3	4 3 2 3 5 5 3 5 1 3	3 2 3 5 5 3 5 1 3	2 3 5 5 3 5 1 3		E 1	E 6	E .	en .			0 1 ·	u , (ויס	m (~ .	.	61 (
10 0 0 110 1 1 1 1 1 1 4 1 2 3 1 1 2 3 1 0 0 0 120 3 3 3 3 3 2 1 4 2 2 4 2 1 3 5	0 110 1 1 1 1 1 1 4 1 2 3 1 1 2 6 120 3 3 3 3 3 2 1 4 2 2 4 2 1 3	3 3 3 3 3 2 1 4 2 2 4 2 1 3	3 3 3 3 3 2 1 4 2 2 4 2 1 3	1 1 4 1 2 3 1 1 2 2 1 4 2 1 3	1 1 4 1 2 3 1 1 2 2 1 4 2 1 3	1 1 4 1 2 3 1 1 2 2 1 4 2 1 3	1 1 4 1 2 3 1 1 2 2 1 4 2 1 3	3 1 1 2 4 2 1 3	3 1 1 2 4 2 1 3	3 1 1 2 4 2 1 3	3 1 1 2 4 2 1 3	2 1 3	a 1			(C) H1	(7 4)		ניז ניז	C) E1		4 4	N N
10 0 0 130 1 1 1 1 1 1 2 5 1 1 2 2	0 130 1 1 1 1 1 1 3 1 2 5 1 1	130 1 1 1 1 1 1 3 1 2 5 1 1	1 1 1 1 1 1 3 1 2 5 1 1	1 2 5 1 1	1 2 5 1 1	1 2 5 1 1	1 2 5 1 1	1 2 5 1 1	1 2 5 1 1	5 1 1	5 1 1	1 1	1 1 2 2	1 2 2	2 2	D.	_		ויז	-	-	4	~
10 0 0210 3 3 3 3 3 3 3 3 5 5 1 2 5	0 210 3 3 3 3 3 1 3 3 3 5 5 1 3	210 3 3 3 3 3 1 3 3 3 5 5 1 3	3 3 3 3 3 3 3 3 3 5 5 1 3	3 3 1 3 3 3 3 5 5 1 3	3 3 1 3 3 3 3 5 5 1 3	3 3 1 3 3 3 3 5 5 1 3	3 1 3 3 3 3 5 5 1 3	1 3 3 3 5 1	en un un en	(1) (1) (1)	(1) (1) (1)	e:	e: •	3 6	u i	u.	41	-	m	191	-	4	rv.
10 0 0220 3 2 3 2 2 1 3 2 2 5 3 1 3 5	0 220 3 2 3 2 2 1 3 2 2 5 3 1 3	3 2 3 2 2 1 3 2 2 5 3 1 3	3 2 3 2 2 1 3 2 2 5 3 1 3	2 3 2 2 1 3 2 2 5 3 1 3	2 2 1 3 2 2 5 3 1 3	2 2 1 3 2 2 5 3 1 3	2 1 3 2 2 5 3 1 3	1 3 2 2 5 3 1 3	2 2 5 3 1 3	2 5 3 1 3	1 E	E E				u.	(T)	-	rı	74	-	4	(N)
10 0 0310 5 4 4 3 3 3 3 5 5 1 4 1 3 5	0310 5 4 4 3 3 3 3 5 5 1 4 1 3	310 5 4 4 3 3 3 3 5 5 1 4 1 3	5443333551413	443333551413	3 3 3 3 5 5 1 4 1 3	3 3 3 3 5 5 1 4 1 3	3 3 3 5 5 1 4 1 3	3 3 5 5 1 4 1 3	3 5 5 1 4 1 3	5 1 4 1 3	1 4 1 3	1 3	1 3			a.	41	-	ויז	4	~	4	73
10 0 0410 2 2 2 2 2 1 4 2 5 2 1 1 3 4	0 410 2 2 2 2 2 1 4 2 5 2 1 1	410 2 2 2 2 2 1 4 2 5 2 1 1	2 2 2 2 2 1 4 2 5 2 1 1	2 2 1 4 2 5 2 1 1	2 2 1 4 2 5 2 1 1	2 2 1 4 2 5 2 1 1	2 1 4 2 5 2 1 1	1 4 2 5 2 1 1	5 2 1 1	5 2 1 1	2 1 1	1 1	1 1 3 4	1 3 4	4	J	41	~	C)	4	-	4	12
10 0 0 420 4 4 4 3 3 2 4 5 4 3 2 1 3 5	0 420 4 4 4 3 3 2 4 5 4 3 2 1 3	420 4 4 4 3 3 2 4 5 4 3 2 1 3	4 4 4 3 3 2 4 5 4 3 2 1 3	3 3 2 4 5 4 3 2 1 3	3 3 2 4 5 4 3 2 1 3	3 3 2 4 5 4 3 2 1 3	324543213	2 4 5 4 3 2 1 3	4 5 4 3 2 1 3	4 3 2 1 3	3 2 1 3	2 1 3	1 3			w	u,	-	m	er i	~	un.	2
10 0 0430 5 4 5 4 3 3 4 5 5 2 2 1 3 5	0430 5454334552	430 5 4 5 4 3 3 4 5 5 2	5 4 5 4 3 3 4 5 5 7	4 5 4 3 3 4 5 5 2	4 3 3 4 5 5 2	4 3 3 4 5 5 2	3 3 4 5 5 2	3 4 5 5 2 2	2 2 2	N	N		E1	E1	u i	u,	u,	-	m	m	-	47	~
10 0 0 440 5 5 5 4 3 4 4 5 5 1 4 1 4 5	0 440 5 5 5 4 3 4 4 5	440 5 5 5 4 3 4 4 5	2 2 4 3 4 4 3	5 4 3 4 4 5	4 3 4 4	4 3 4 4	3 4 4 m	4 4	4 5 5 1 4 1 4 5	5 5 1 4 1 4 5	5 1 4 1 4 5	1 4 1 4 5	4 1 4 5	1 4 5	4.	41	u 1	-	(F)	44.1	~	u i	ru.
10 0 0450 55543445514125	0450 5554344551412	450 5554344551412	5554344551412	5 5 4 3 4 4 5 5 1 4 1 2	5 4 3 4 4 5 5 1 4 1 2	4 3 4 4 5 5 1 4 1 2	344551412	4 4 5 5 1 4 1 2	4 5 5 1 4 1 2	5 1 4 1 2	1 4 1 2					ur)	a ı	-	m	W		u n	~
10 0 6 460 5 4 5 3 3 3 4 5 3 1 2 1 2 5	0460 545333453121	460 5 4 5 3 3 3 4 5 3 1 2 1	5 4 5 3 3 3 4 5 3 1 2 1	4 5 3 3 3 4 5 3 1 2 1	5 3 3 3 4 5 3 1 2 1	3 3 3 4 5 3 1 2 1	3 3 4 5 3 1 2 1	3 4 5 3 1 2 1	4 5 3 1 2 1	3 1 2 1	1 2 1	-		E1	41		41	-	m	u1	-	u1	(V)

2 (123456769	23 2202-2-2-0	23 2262-2-2-0	23 2262-2-2-0	23 2202-2-2-0	150 2200	23 22C2-2-2-C	20 2202-2-1-0	3-1-2-2322 32
•	r)	m	(7	(C)	ויי	C)	ריז	(1)
•	~	(%)		17			~	174
_	u1 	_	-	4	_	_		
	u.,					ш.		Ci
A B C D E F G H J K L P N C F G R S 1 L V F	5 5 5 4 3 5 4 5 3 1 3 1 3 5 5 5 1 5 2	55543545213135513515	5 5 5 3 2 4 4 5 3 1 2 1 2 5 5 1 2 5 1 5	5 4 5 3 3 3 4 5 4 1 3 1 3 5 5 1 3 5 1 4 2	3232214253112551221	5 5 5 3 2 5 4 5 3 1 1 1 2 4 5 1 2 5 1 5 2	4 3 4 2 2 3 4 5 4 1 1 1 2 2 5 1 2 4 1 3 2	3232224341112151511
J	_		_	_		_	_	_
ū	u ı	uı	u ı	u 1	u,	u,	u ı	u,
U	uı	u,	u,	un.	u ı	4	17	_
~	(F)	m	17	m	N	2	7	~
2	-		-		-	-	-	-
_	ניז	æ	~	143		-	-	_
¥	-	-	_	-	m	-	_	-
7	m	~	m	4	u,	177	4	4
I	ľ	u١	ur i	'n	2	S	ď١	m
G	4	4	4	4	4	4	4	4
u.	ď١	u۱	4	m	-	Ľ١	(T)	2
ш	m	m	2	m	~	2	7	7
ပ	4	4	m	6	~	m	2	2
U	ß	un.	ď,	2	וייו	ני	4	e.
æ	ľ	r.	u٦	4	7	មា	m	2
٩	5	ĸ.	ī	ĸ	m	Ľ١	4	m
œ	470	480	780	0	210	410	420	430
₹ M	D	0	ပ	O	S	0	0	ပ
D N S	0	0	ပ	0	0	0	o	ပ
REGIONSNUMMER	4 10 0 0 410	4 10 0 0 480	4 10 C C 490	4 10 0 0 0	4 11 0 6 210	4 11 0 0 410	4 11 0 0 420	4 11 C C 430
Œ	4	4	4	4	4	4	4	4

22C2-2-2-C 222-1----222-1----2262-6---222-C----222-1----222-1----222-2-6---2200-----3 14 5 13 2 15 2 12

C123456789	2202-2-1-0	2202-2-1-0	222-1	222-1	222-1	222-1	222-1	222-1	222-1	2202-2-1-0	2262-2-1-6	2202-2-1-C	2200	2262-2-1-6	2202-2-1-0	22C2-2-2-C	2202-2-2-C	2202-2-2-6	2262-2-2-6	2262-2-2-6	2262-2-2-6	2202-2-2-C	2266	2202-2-2-6
1	2.0	20	13	13	13	13	13	13	13	30	36	3 C	15.8	26	30	23	23	53	23	23	23	23	8 27	23
	4	C)	4	4	4	4	4	4	m	rt 1	(*)	(L)	(*)	(r)	E.	(F)	m	r)	m	rı,	r)	(T)	m	m
-	۲,	7	C)	mı	m	r,	m	C)	~	-	-	~	~	~	_	-		-	-	-	-	-	-	-
ب	C,	4	~	C)	r.	ויי	2	~	7	יי	4	4	7	4	r1	4	6.1	17	~	4	C)	ניז	m	(C)
-	-	ניז	C)	~	m	4	m	C1	-	12	-	-	-	-	-	-	~	-	-	-	-	-	-	-
·,	m	4	-	_	-	-	-	-	-	r,	4	4	(N	4	m	u.	un.	w	un	41	רש	U 1	4	ĸ
Œ	rı	6.3	r,	C.I	6.3	6,1	C.)	61	m	6.1	ויח	C.1	**	(F)	61	r,	m	61	•	6.1	C)	6.1	e,	וח
G	-		۵,	ניז	4	4	u	4	-	-	-	-	-	-	_	~		_	-	~	~	~	61	-
t.	u,	uı	_	-	-	~	-	_	u	41	uı	u ı	•	æı	•	יט	u v	41	ur.	a,	W1	41		gr)
<u>ن</u>	41	in.	_	۲,	_	~	_	-	un	41	u ·	un .		un.		E,	u1	uı	un	61	41	u ı	4	Ľ
2		~i		-	4	m	4	4	_		7		_	~	~	2	6	2	2	2	~	~	···	2 2
	_	_	F)	 		_	Ţ	_ _	~	~	_	_	_	_	_	2		_			_	_	_	
~ ×	_	_	41	···	41	#1	w,	u1	·*	rv.	(3)	~	N	~	···	_	_		_	_		_	~	_
_ ¬	60	m	~	_	_	_	_		un.	เก	m	นา	m	5	u,	4	~	~	.	u n	LC1	eri	7	•
1	m	m	_	_	_	_	_	_	~	4	m	4	2	m	m	4	4			m	5	ru.	2	4
ن	4	4	~	m	C1	m	7	m	4	4	4n	4n	Œ1	ur.	u,	4	4	er.	V n	4	uv	k n	4	u n
u.	173	7	~	-	_	~	-			~	7	m	-	~	~	m	m	m	~	~	u1	L IN	-	m
ш	8	2	~	7	2	7	7	2	7	m	7	m	2	~	7	7	2	7	7	7	7	2	~	~
c	2	2	2	7	7	7	7	2	9	m	m	•	2	m	6	m	m	m	~	7	m	m	~	m
S	m	m	7	7	7	~	7	7	m	4	4	4	m	4	4	4	4	4	4	m	ξ.	ĸ	6	4
œ	m	m	7	~	2	7	7	~	m	4	•	J	m	m	m	4	4	m	•	m	4	ĸ	~	4
٩	m	4	7	7	~	~	~	2	6	4	4	ĸ	6	4	4	K)	ĸ	4	4	4	'n	'n	m	£,
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	9	0	ပ	0
a a																								
* * -	ပ	0	0	0	0	0	0	ပ	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0
NSN	60	0	-	7	æ	4	'n	o	-	7	٣	4	Ŋ	9	0	1	2	m	4	ĸ	•	7	ω	0
REGIONSNUMMER	S.	ī	9	•	•	9	•	•	₩	₩,	6 0	6 0	æ	æ	6 0	σ	o	•	σ	œ	0	o-	0	σ
œ	5	72	2	S	S	S	S	ī.	2	r.	۳v	5	S	r.	~	S.	5	S.	S.	S	2	2	S	S

Ubersicht 4.4: Ergebnisse der Klassifizierung der Regionsaggregate

α detriebe m. 30 u.m. βetriebe m. 30 u.m. ha LE Mondonon or own-t-t- t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t	MMM 1000 1000 1000 1000 1000 1000 1000
** ** ** ** ** ** ** ** ** **	00001 *** 00001
** ** ** ** ** ** ** ** ** **	***
** ** ** ** ** ** ** ** ** **	* * * *
** ** ** ** ** ** ** ** ** **	* * * *
** On hat Lie in the contraction of the contractio	* * *
** NOO ha Lift Detriebe m. 30 u.m. ha Lift Betriebe insg. Betriebe insg. Mitti. Regenmenge in mm mu twaw tway way two www www www www www tway tway tway tway	* * *
** ** ** ** ** ** ** ** ** **	
**	
The state of the s	
O .tlsd'tal-rgr.M0	/心心4 * * * * *
Nununun-n *wk	าพพด
E mm ni .Inozraederniederschi	~~~
H sd ni Fd	.₩~ *
H Taple Viehbest, in FE	W
Fun nutroutenut + nu-un + nu-un Bevölkerung * * km² Gesantfläche	7.7.0. * * * * *
H = R-20sq.teahoiv.danu'IT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A www. www. www. www. www. www. www. ww	* * * *
F. Trainition of the state of t	NMM
Harri. taeddeiv. ndanedoäl?	ımma
Usinos, in Konstant cecolonee eeronee over www.	* mm
And an ook tages, tages	
The state of the s	
A Ti non vonununununununununununununununununununu	
	
मूं तं वं	
Mont Coll	÷
rring to the control of the control	aban
er (Teil) (CR Teil) (CR Te	Sht 1-Bra
Hannover Stade (Teil) Stade (Teil) Stade (Teil) Stade (Teil) Stade (Teil) Disseldorf Minster Detwolf (Teil) Niederbayern Nord Pas de Calais Côtes du Nord Finistère Ille-et-Vilaine Morbihan Landes Lombardia Romagna (Lombardia Pinn. Veneto Coll. Weneto Finn. Veneto Finn. Emilia Romagna Lombardia Pinn. Emilia Romagna Lombardia Pinn. Emilia Romagna Lombardia Pinn. Emilia Romagna I Combardia Pinn. Emilia Romagna Golderiand Gelderland	Utrecht Noord-Brabant Limburg
Hanno Stade	PZU
Legg an Personal Research	
J H J	_

Ubersicht 4.4: Ergebnisse der Klassifizierung der Regionsaggregate (Forts.)

Z	Endsture der hierarch. Klassifiz.	01-10-00 000000	-4557 -5577 -4557 -5577 -4557 -557 -	9 E
W	O ni .qmətsərdst .LttiM	wwww <u></u> *	* *	νν * * * *
^	Mittl, Temp. OktMärz ^o C	NUM	~~~~~	* * 7
Þ	Wittl. Bodentyp	<i>W← U M M← ←</i>	W-W-	~~~
E	LF in ha safrive start of the second	* * * * * * * * * * * * * * * * * * * *	MMMMMM	0 m
ß	Schweine Schweine	* * * * * * * *	~ * * * * * * * *	* * 7
54	mm ni egnemmenge in LitiM TanoM	MMMMMMM	aaanmn	00
ø	Betriebe m. 30 u.m. ha LF Betriebe insg.		7 W W W W W W W W W W W W W W W W W W W	$\omega\omega$
д	M.u.gr.Schweine-Int'halt.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ N~ N~ ~	00
0	.tlsd'tml-rander-Int'halt. Tl sd OO!	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~	~~
Z	Retriebe mit Rindv.	0 C M0 T M 7 W	₩ • * * * * • * * * *	01W
M	Winterniederschl. in mm Jahresniederschl. in mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- uuuu-	~ ~
T	Dauergrünland in ha LF in ha	W - W - W	* w	~ ~
K	Fl'abh. Viehbest. in FE Viehbest.insg. in FE	0 W W - W 0 -	-400mu	← ∅
J	Rm ² Gesamtfläche	~ * * * * * *	∪™₩₩₩ * * * *	0.0
Н	AR-2024.Pehbest.Po 001	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~ N	~~
ರ	FI'sbh.Viehbest.in K ₂ O-RE 100 ha Dauergrünland	4 4 W 4 W W W * * * * * * * * * * * * *	MMMMMM	ιυ ιυ * * * *
Ŀı	Fl'unabh.Viehbest.in FE 100 ha LF	WU-UM	~ ~ ~ ~ ~ ~ ~ ~	~~
田	Flächenabh.Viehbest.in FF 100 ha LF	ω	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~
Д	Viehbest.insg. in K ₂ O-RE	maaaam m	~ N~ NN~	~ N
υ	Viehbest.insg. in P205-RE	* * * * * * * *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<i>←</i> ⋈
В	Viehbest, insg. in N-RE	* ************************************	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	← Ø
A	Viehbest. insg. in FE 100 ha LF	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ NNNNN	00
	Land Regionsaggregat	Prov. Antwerpen " Liabant " Liage " Limburg " Luxembourg " Oost-Vlaanderen	K Reg. East Anglia (Teil) "South East (Teil) "East Midlands (Teil) "Yorks & Lancs (Teil) "Wales (Teil) "Scotland (Teil)	K L. Oerne " Jylland
		В	VK	DK

4.2.1 <u>Einzelklassifizierung</u>

Die zur Einzelklassifizierung der Regionsaggregate verwandten 22 Variablen A, B, ..., W sind in den Kopfspalten der Übersicht 4.4 aufgeführt. Für einige Regionsaggregate konnte eine Zuordnung zu den Ausprägungsintervallen einiger Variablen nicht vorgenommen werden, da die hierfür benötigten statistischen Informationen nicht oder nicht vollständig zur Verfügung stehen, so insbesondere bei den Variablen zur Kennzeichnung der betrieblichen Struktur der Viehhaltung (N, O, P, S) in Frankreich und Italien sowie bei der Variablen "Anteil der landwirtschaftlich genutzten Fläche an der Wirtschaftsfläche" in den Niederlanden. Hier steht statt einer Rangziffer ein Punkt. Um diejenigen Variablen, deren Ausprägung ceteris paribus eine höhere Wahrscheinlichkeit des Auftretens von Umweltbeeinträchtigungen andeutet (vgl. Abschnitt 4.1.1) optisch heranzuheben, ist die Rangziffer 4 stets mit einem Stern (*) und die Rangziffer 5 mit zwei Sternen (**) versehen. Wegen ihres allgemeinen, alle Tierkategorien unter einem gemeinsamen Aspekt umfassenden Charakters ist die Klassifizierung der Regionen nach dem Umfang des Viehbestands in Futtereinheiten (FE) je 100 ha landwirtschaftlich genutzter Fläche vorangestellt (Variable A). Die Kennziffer Viehbestand in FE je 100 ha LF besagt, wie hoch der Nettoenergiebedarf der je Flächeneinheit gehaltenen Viehbestände ist. Sie erlaubt nur eine grobe Abschätzung der mit dem Anfall und der Verwertung tierischer Exkremente verbundenen Probleme in einer Region. Entsprechend den in Abschnitt 3.1.2.3.1 erläuterten Zusammenhängen stellt die Viehdichte in Futtereinheiten dann einen recht guten Indikator für das Ausmaß dieser Probleme dar, wenn ein Gebiet entweder ausschließlich durch Rindviehhaltung oder bei Relevanz von P₂O₅ 1) durch etwa gleich große 2) Schweine- und Hühnerbestände bei beliebig großem Rindviehbestand geprägt ist.

¹⁾ Phosphat ist besonders auf hängigen Ackerböden relevant. Vgl. Harener Studie, a.a.O., Kap. II u. IV.

²⁾ Vgl. RAGER, K. Th., Abwassertechnische und wasserwirtschaftliche Probleme der Massentierhaltung. KTBL-Bauschrift, H. 11. Frankfurt/M. 1971, S. 60 ff.

Ohne große Vorbehalte können alle jene Gebiete als Problemgebiete eingestuft werden, in denen ein Viehbestand von 400 und mehr Futtereinheiten je 100 ha landwirtschaftlich genutzte Fläche gehalten wird (Intervall 5). Denn, wie Abbildung 3.1 zeigt, korrespondieren damit auch bei Überwiegen einer einzigen Tierart mindestens 200 N-RE bzw. 280 P₂0₅-RE je 100 ha LF. Lediglich dann, wenn der Grünlandanteil an der landwirtschaftlich genutzten Fläche sehr hoch ist und die Viehdichte in FE nur wenig über 400 liegt, ist der Nährstoffanfall in den tierischen Exkrementen in diesen Gebieten weniger problematisch. Solche extrem hohen Überschüsse findet man nur in Regionsaggregaten der Niederlande, nämlich in den Provinzen Overijssel, Gelderland, Utrecht, Noord-Brabant und Limburg, sowie in den belgischen Provinzen Antwerpen und West-Vlaanderen. Eine etwas geringere Viehdichte von 300 bis unter 400 Futtereinheiten je 100 ha landwirtschaftlich genutzte Fläche (Intervall 4) weisen die beiden belgischen Provinzen Limburg und Oost-Vlaanderen auf. Im Zusammenhang mit einer ungünstigen Ausprägung weiterer der 22 klassifizierten Merkmale können auch Regionsaggregate mit einer Viehdichte von 200 bis unter 300 FE je 100 ha LF (Intervall 3) als Problemgebiete angesehen werden. Außer dem Regierungsbezirk Oldenburg in der BR Deutschland sind dies wiederum nur Regionsaggregate in den Niederlanden und Belgien, nämlich die Provinzen Friesland, Limburg und Liège 1).

Differenzierter können Umfang und mögliche Verwertung des Nährstoffanfalls in den tierischen Exkrementen anhand der Ausprägungen der Variablen B bis H beurteilt werden. Zum Beispiel deutet die Zifferfolge 3, 3, 3, 3 für die ersten vier Variablen A, B, C und D in der Provinz Friesland auf ein ausgeprägtes Übergewicht der Rindviehhaltung hin, das sich auch in der Ausprägung der vier folgenden Variablen E, F, G und H niederschlägt und durch die Ziffernfolge für die Variable K (Anteil der flächenabhängigen Tierarten am Viehbestand) und die Variable L (Dauergrünlandanteil an der landwirtschaftlich genutzten Fläche) bestätigt wird.

¹⁾ Man beachte, daß die Regionsaggregate in den Niederlanden und Belgien in Bezug auf die landwirtschaftlich genutzte Fläche kleiner sind als z.B. die Regierungsbezirke der Bundesrepublik Deutschland (vgl. Übersicht 2.14).

Gänzlich anderer Art ist die Abfolge der Ausprägungen der Variablen A bis D beim Regionsaggregat Limburg in den Niederlanden: Sie lautet 5, 3, 4, 3, 2, 3, 4, 5. Das gegenüber der Variablen A niedrigere Ausprägungsniveau der Variablen B, C und D kennzeichnet die große Bedeutung der Schweinehaltung, die Ziffer 5 beim Kennwert H belegt die mögliche Gefährdung besonders der Ackerflächen durch Nährstoffüberschüsse.

Verfolgt man die weiteren Ergebnisse der Einzelklassifizierung für die Provinz Friesland, so fallen zunächst die relativ geringe Einwohnerdichte (J = 2) und der niedrige Anteil der auf die Wintermonate entfallenden Niederschlagsmenge (M = 1) auf. Die Ziffer 4 für die Kennwerte N und O kennzeichnet die relative Größe sowie die räumliche und betriebliche Konzentration der Rinderbestände. Mit der Ziffer 1 für die Variable P und der Ziffer 2 für den Kennwert S wird dagegen angezeigt, daß die Bedeutung größerer und intensiver Schweinehaltungen relativ gering ist. Der Anteil der größeren an der Gesamtzahl der landwirtschaftlichen Betriebe schließlich liegt zwischen 20 und 30 % (Q = 3). Die jährliche Niederschlagsmenge ist nicht extrem hoch (R = 3). Auf das Fehlen statistischer Informationen für den Kennwert T wurde bereits weiter oben hingewiesen. Es ist zu vermuten, daß der Anteil der landwirtschaftlich genutzten Fläche an der Wirtschaftsfläche zwischen 60 und 80 % liegt ¹⁾. Der Boden in Friesland ist durch das Vorherrschen von Marschen, Podsolen und Mooren geprägt (U = 4), die Winter sind relativ mild (V = 2) und die Jahrestemperatur liegt im mittleren Intervall (W = 3).

Nach der ausführlichen Beschreibung der Ergebnisse für das Regionsaggregat Friesland dürfte die Interpretation der Übersicht 4.4
keine großen Schwierigkeiten mehr bereiten. Einen wenn auch recht
groben Überblick über die räumliche Verteilung und den mutmaßlichen
Umfang möglicher Umweltbeeinträchtigungen kann man bereits durch
Addieren der durch Sterne (**, *) gekennzeichneten Rangziffern

¹⁾ Vgl. Centraal Bureau voor de Statistiek, algemene milieustatistiek 1973. S'Gravenhage 1974, S. 16.

über die einzelnen Zeilen hinweg gewinnen. Unter gar keinen Umständen dürfen allerdings ein zelne Rangziffern bzw. die ihnen zugrundeliegenden Ausprägungsintervalle ein zel-ner in der Einzelklassifizierung berücksichtigter Variablen unmittelbar zur Identifikation und Abgrenzung von Regionen beispielsweise im Hinblick auf die Festlegung bestimmter Normen für die Aufbringung tierischer Exkremente auf landwirtschaftlich genutzte Flächen oder gar für die pro Flächeneinheit zulässigen Viehbestände verwendet werden. Sie können lediglich in sgesamt dazu beitragen, die in die Untersuchung einbezogenen Regionen unter allen hier relevanten Aspekten zu charakterisieren.

4.2.2 <u>Hierarchische Klassifizierung</u>

Während die Ergebnisse der Einzelklassifizierung nur exemplarisch für einige Regionsaggregate aufgezeigt und erläutert wurden, soll bei der Darstellung der Ergebnisse der hierarchischen Klassifizierung das Schwergewicht auf eine eingehendere Charakterisierung der verschiedenen Endstufen der Klassifizierung und der ihnen jeweils zugeordneten E i n z e l r e g i o n e n gelegt werden.

Bei der hierarchischen Klassifizierung werden insges. 292 Untersuchungsgebiete (in Italien ohne Aufgliederung der Provincie nach "Höhenzonen") bzw. 40 Regionsaggregate (in Italien ohne Aufgliederung der Regioni nach Höhenzonen, im Vereinigten Königreich unter Zusammenfassung der beiden schottischen Subregions) berücksichtigt. Von den 292 klassifizierten Untersuchungsgebieten entfallen 90 auf die BR Deutschland, 58 auf Frankreich, 24 auf Italien, 56 auf die Niederlande, 33 auf Belgien, 17 auf das Vereinigte Königreich und 14 auf Dänemark.

Die Verteilung auf die einzelnen Endstufen der hierarchischen Klassifizierung in den jeweiligen Mitgliedsländern der EG und insgesamt ist in Übersicht 4.5 für die Untersuchungsgebiete und in Übersicht 4.6 für die Regionsaggregate dargestellt. Ein Vergleich zwischen diesen beiden Übersichten läßt deutlich werden, daß die

Verteilung von 292 Untersuchungsgebieten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung Ubersicht 4.5:

Nr. der	DEUTS	BR DEUTSCHLAND	FRAN	FRANKREICH	ITA	ITALIEN	NIEDE	NIEDERLANDE)TEE	BELGIEN	VE KÖNI(VEREIN. KÖNIGREICH	DÄN	DÄNEMARK		EG
ascare	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.
-	41	18,9	25	43,1	10	41,7	2	3,6	0	0,0	7	23,5	7	9,82	62	2,12
2	5	5,6	-	1,7	0	0,0	0	0,0	0	0,0	0	0,0	_	7,1	7	2,4
89	0	0,0	0	0,0	0	0,0	_	1,8	0	0,0	0	0,0	0	0,0	-	0,3
12	0	0,0	0	0,0	0	0,0	12	21,4	~	3,0	0	0,0	0	0,0	13	4,5
13	4	7,4	-	1,7	0	0,0	8	14,3	10	30,3	7	23,5	0	0,0	27	9,5
14	2	2,2	2	3,5	_	4,2	0	0,0	-	3,0	0	0,0	0	0,0	9	2,1
15	777	6,84	28	48,3	13	54,1	8	5,3	7	12,1	6	53,0	6	64,3	110	37,7
dar.15a ^{1.)}	(4)	(4,5)	(3)	(2,5)	(2)	(8,02)	(3)	(5,3)	(3)	(6,1)	(3)	(17,7)	(1)	(7,2)	(22)	(2,2)
16	13	14,4	-	1,7	0	0,0	0	0,0	2	6,1	0	0,0	0	0,0	16	5,5
20	2	3,3	0	0,0	0	0,0	23	41,1	5	15,2	0	0,0	0	0,0	51	10,6
21	_	1,1	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	_	0,3
23	_	7,	0	0,0	0	0,0	2	12,5	10	30,3	0	0,0	0	0,0	18	6,2
Summe	06	100,0	58	100,0	54	100,0	95	100,0	33	100,0	17	100,0	14	100,0	292	100 0
Anteil d. Länder (v.H.)	30,8	8,	19	19,9	8,	2,	<u>, </u>	19,2	-	11,3	7.	5,8	7	4,8	1	100,0

1) Vgl. hierzu die Erläuterungen zu Übers. 4.11

Verteilung von 40 Regionsaggregaten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung Ubersicht 4.6:

Nr. der	BIOECT	BR DEUTSCHLAND	FRANK	FRANKREICH	ITALIEN	IEN	NIEDE	NIEDERLANDE	BEL(BELGIEN	VENE KONT	VEREIN. KÖNTGRETCH	DÄNE	DÄNEMARK	ᆈ	EG
Endstufe	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.	Anz.	•H•v	Anz.	•н• о	Anz.	v.H.	Anz.	v.H.	Anz.	v.H.
_	0	0,0	7	14,3	-	53,3	0	0,0	0	0,0	7-	16,7	0	0,0	2	7,5
2	0	0,0	_	14,3	0	0,0	0	0,0	0	0,0	0	0,0	بسا	50,0	2	5,0
ω	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
12	0	0,0	0	0,0	0	0,0	-	16,7	0	0,0	0	0,0	0	0,0	~	2,5
13	0	0,0	0	0,0	0	0,0	0	0,0	2	28,6	-	16,7	0	0,0	2	7,5
14	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	_	16,7	0	0,0	-	2,5
15	9	2,99	5	71,4	2	66,7	0	0,0	_	14,3	29	50,0	-	50,0	18	45,0
16	2	25,2	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	α	5,0
50	_	11,1	0	0,0	0	0,0	7	2,99	2	28,6	0	0,0	0	0,0	7	17,5
21	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0
23	0	0,0	0	0,0	0	0,0	~	16,7	N	28,6	0	0,0	0	0,0	М	7,5
Summe	6	100,0	7	100,0	3	100,0	9	100,0	2	100,0	9	100,0	2	100,0	07	100,0
Anteil d. Länder (v.H.)	22,5		17,5		7,5		15,0		17,5		15,0		5,0		100,0	

prozentuale Verteilung der Regionsaggregate teilweise erheblich von der der einzelnen Untersuchungsgebiete abweicht. Zum Beispiel gehören in der BR Deutschland zwar 18,9 v.H. der untersuchten Einzelgebiete, jedoch kein einziges der untersuchten Regionsaggregate zur Endstufe 1. Da auch die Endstufen 8 und 21 bei den Regionsaggregaten nicht vorkommen, wird die Notwendigkeit, im folgenden von den Einzelregionen auszugehen, bestätigt.

Um eine Vorstellung von der räumlichen Ausdehnung der auf die einzelnen Endstufen der hierarchischen Klassifizierung entfallenden Gebiete zu gewinnen, werden in den <u>Übersichten 4.7</u> und <u>4.8</u> der Umfang der den verschiedenen Endstufen zugeordneten landwirtschaftlich genutzten Flächen sowie ihr Anteil an der gesamten landwirtschaftlich genutzten Fläche der Untersuchungsgebiete angegeben.

Wie aus Übersicht 4.5 ersichtlich ist, sind von den 25 definierten Endstufen der hierarchischen Klassifizierung nur 11 tatsächlich mit Untersuchungsgebieten belegt. Davon umfaßt die Endstufe 1 in der EG insgesamt 62 Gebiete, die ebenso wie die 7 Gebiete der Endstufe 2 nicht näher beschrieben werden, da in ihnen regional bedeutsame Probleme des Anfalls und der Verwertung tierischer Exkremente ausgeschlossen werden können 1).

Für jede der verbleibenden 9 Endstufen werden nun in einer speziellen Übersicht die ihr zugeordneten Untersuchungsgebiete namentlich aufgeführt und die Ausprägungen einiger für die Wahrscheinlichkeit und Intensität möglicher Umweltbeeinträchtigungen wesentlich erscheinender Variablen in diesen Gebieten ausgewiesen. Zum besseren Verständnis seien diese Variablen hier noch einmal – unter Angabe ihrer Position im Computerausdruck des Teils B dieser Studie (vgl. auch Übersicht 3.4 und 3.5) – aufgeführt:

¹⁾ Vgl. Abschnitt 4.1.2.

Verteilung der landwirtschaftlich genutzten Flächen von 292 Untersuchungsgebieten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung Übersicht 4.7:

Nr. der	BR DEUTSCHLAND	LAND	FRANKREICH	EICH	ITALIEN	EN	NIEDERLANDE	ANDE	BELGIEN	EN	VEREIN. KÖNIGREICH	IN. EICH	DÄNEMARK	ARK	9a	
Endstufe	km ²	v.H.	km ²	v.H.	km ²	v.H.	km ²	v.H.	km ²	v.H.	km ²	v.H.	km ²	v.H.	km ²	v.H.
_	2 806	8,3	7 681	25,1	13 666	37,9	351	5,9	0	0	9 280	1,94	3 812	13,1	965 25	21,8
7	1 637	4,8	359	1,2	0	0	0	0	0	0	0	0	2 076	7,2	4 072	2,4
ω	0	0	0	0	0	0	250	2,1	0	0	0	0	0	0	250	0,1
12	0	0	0	0	0	0	2 689	22,6	794	7,3	0	0	0	0	2 483	2,0
13	2 043	6,1	488	1,6	0	0	1 266	10,7	2 988	27,5	4 915	24,4	0	0	11 700	6,8
14	65	0,2	1 010	3,3	879	1,8	0	0	769	6,4	0	0	0	0	2 417	1,4
15	15 756	46,7	19 725	64,5	21 731	60,3	522	4,4	1 007	9,3	676 9	29,5	23 165	79,7	87 855	51,0
dar.15a ¹⁾	(1 102)	(3,3)	(867 £)	(11,4)	(8 675)	(24,1)	(525)	(4,4)	(069)	(6,3)	(2 252)	(11,2)	(2 757)	(6,5)	(19 496)	(11,3)
16	8 139	24,1	1 315	4,3	0	0	0	0	835	7,7	0	0	0	0	10 289	6,0
20	2 085	6,5	0	0	0	0	4 625	38,9	1 512	13,8	0	0	0	0	8 222	4,8
27	909	1,8	0	0	0	0	0	0	0	0	0	0	0	0	909	0,3
23	615	1,8	0	0	0	0	2 181	18,4	2 043	28,0	0	0	0	0	5 839	3,4
Summe	33 752	100	50 578	100	36 045	100	11 884	100	10 873	100	20 144	100	29 053	100	172 329	100
Anteil d. Länder vH.	19,6	9	17,7	7	20,	6	6,9	6	6,3		11,7	7	16,9	6	100	0

1) Vgl. hierzu die Erläuterungen zu Übers. 4.11

Verteilung der landwirtschaftlich genutzten Flächen von 40 Regionsaggregaten in den Mitgliedsländern der EG auf Endstufen der hierarchischen Klassifizierung Übersicht 4.8:

DEUTSCHLAND FRANKREICH ITALIEN	AND FRANKREICH	KREICH		ITALIEN	è		NIEDERLANDE	ANDE	BELGIEN	EN	VEREIN KÖNIGR	SIN. GREICH	DÄNEMARK	ARK	DH C	
KB		v.H.	km ^Z	v.H.	km ²	v.H.	km ^Z	v.H.	km ^Z	v.H.	km ²	v.H.	km ²	v.H.	km	v.H.
	0	0	2 036	6,7	13 483	37,4	0	0	0	0	5 706	28,3	0	0	21 225	12,3
	0	0	5 153	16,8	0	0	0	0	0	0	0	0	8 745	30,1	13 898	8,1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	2 334	19,6	0	0	0	0	0	0	2 334	1,4
	0	0	0	0	0	0	0	0	3 379	31,1	2 196	10,9	0	0	5 575	3,2
	0	0	0	0	0	0	0	0	0	0	1 802	0,6	0	0	1 802	1,1
	21 024	62,3	23 389	76,5	22 562	62,6	0	0	1 731	15,9	10 440	51,8	20 308	66,69	66 454	57,7
	8 689	25,7	0	0	0	0	0	0	0	0	0	0	0	0	8 689	5,0
	4 039	12,0	0	0	0	0	6 685	56,3	2 575	23,7	0	0	0	0	13 299	7,7
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	2 865	24,1	3 188	29,3	0	0	0	0	6 053	3,5
i .	33 752	100	30 578	100	36 045	100	11 884	100	10 873	100	20 144	100	29 053	100	172 329	100

Pos. im Ausdr. I	Variable
M 6	Viehbestand insg. in FE/100 ha LF
M 8	Viehbestand insg. in N-RE/100 ha LF
M 9	Viehbestand insg. in P ₂ 0 ₅ -RE/100 ha LF
M 10	Viehbestand insg. in K20-RE/100 ha LF
N 3	Flächenabhäng. Viehbest. in FE/Viehbest. insg. in FE
I 2	Dauergrünland in ha/LF in ha
0 7	Flächenunabh. Viehbest. in P ₂ 0 ₅ -RE/100 ha Ackerl.
K 2	Mittlerer Bodentyp
K 3	Mittleres Relief
P 2	Rinder/Betriebe mit Rindvieh
Q 2	Schweine/Betriebe mit Schweinen
I 8	Betriebe mit 30 u. m. ha LF/Betriebe insg.

Innerhalb der Obergruppe der "Gebiete mit vorwiegend flächenabhängiger Viehhaltung" (Endstufen 3 bis 14) sind die Endstufen 8, 12, 13 und 14 durch Untersuchungsgebiete vertreten.

In der <u>Übersicht 4.9</u> sind die den Endstufen 8 und 12 zugeordneten Untersuchungsgebiete mit ihren charakteristischen Merkmalen aufgeführt.

Auf die Endstufe 8, die durch das mögliche Auftreten von Kaliüberschüssen gekennzeichnet ist (flächenabhängiger Viehbestand: 70 und mehr % des gesamten Viehbestands in FE, 200 und mehr FE je 100 ha LF und 300 und mehr K_2 0-RE je 100 ha Dauergrünland), entfällt nur ein einziges Untersuchungsgebiet (Oostelijk weidegebied, Prov. Overijssel, Niederlande). Angesichts der Umstände, daß der Schwellenwert von 300 K_2 0-RE je 100 ha nur geringfügig überschritten wird und das Untersuchungsgebiet insgesamt nur eine relativ geringe räumliche Ausdehnung aufweist (rd. 25 000 ha LF), dürften sich mögliche Umweltbeeinträchtigungen durch einen interregionalen

Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 8 und 12 Ubersicht 4.9:

	Unters	Untersuchungsgebiet					Ausprä Posit	Ausprägungen de Position in Au	der Merkmale Ausdruck I	æ				
Regions- Nr.		Name	9 м	M 8	6 M	M 10	8 N	7 I	20	K 2	K 3	P 2	Q 2	I 8
Endstufe 8:														
NL 4 4 0 0320	0	Omtelijk weidegebied	392	249	374	316	0,742	096,0	2 309	3,8	1,7	30	43	0,038
Endstufe 12:														
4 2 0 0310	0	Kleiweidestreek	244	243	544	238	0,955	996,0	368	3,0	1,7	51	50	0,218
4 2 0 0320	0	Veenweidestreek	227	223	228	217	0,927	0,995	4 310	4,3	1,7	58	67	0,218
4 2 0 0330	0	Eilanden	224	231	526	225	0,988	0,991	1 316	3,2	1,7	38	2	0,218
4 2 0 0410	0	De Wouden	291	278	292	265	0,858	0,970	1 580	0,4	1,7	42	09	0,218
4 4 0 0310	0	Westelijk weidegebied	298	586	293	275	0,896	0,982	2 766	4,2	1,7	42	747	0,038
4 4 0 0330	00	Gieth. en Steenwijkerw.	234	228	233	221	0,925	0,792	91	4,5	1,7	37	9†	0 038
4 5 0 0210	0	Westelijke Ijsselstreek	358	313	335	279	0,700	0,839	637	3,0	1,7	33	96	0,033
4 6 0 0310	0	De ronde venen	354	327	344	303	0,778	0,954	2 769	4,3	1,7	45	47	0,040
4 6 0 0320	20	Veenweidegebied	355	325	240	299	0,781	0,964	6 015	3,8	1,7	43	52	0,040
4 6 0 0330	20	Geb. v. Ijssel en O.R.	329	293	310	564	0,731	0,887	5 444	3,0	1,7	39	52	0,040
4 6 0 03	0320	Eemland	594	274	286	258	0,779	0,975	3 660	3,0	1,7	36	04	0,040
410 0 0210	10	Oostelijke Langstraat	274	256	267	243	0,843	0,814	275	3,0	1,7	31	62	0,047
5430	0	Verviers	274	255	265	241	0,845	0,937	588	1,5	2,8	34	58	0,033

Transfer von tierischen Exkrementen relativ leicht vermeiden lassen. Die meisten übrigen Charakteristika dieser Endstufe stimmen mit denen der eng verwandten Endstufe 12 überein.

Der Endstufe 12 sind insgesamt 13 Untersuchungsgebiete zugeordnet. 12 davon liegen in den Niederlanden; dazu kommt das Arrondissement Verviers im östlichen Belgien. Wie Übersicht 4.9 zeigt. dominieren bei den in den Niederlanden liegenden Gebieten dieses Typs solche mit der Ziffer 3 an der drittletzten Stelle der Regionsnummer, die sogenannten "weidestreken". Sie zeichnen sich in der Regel durch fast ausschließliche Grünlandnutzung und durch einen hohen, aber hinter dem Anteil des Grünlands an der landwirtschaftlich genutzten Fläche zurückbleibenden Anteil der flächenabhängigen Tierarten am Viehbestand aus. Zusätzlich zu den flächenabhängigen Tierarten werden oft beträchtliche Schweinebestände, vor allem Zuchtsauen, gehalten. Rein rechnerisch führt dies bei dem geringen Ackerflächenanteil zu immens hohen Werten der Variablen unter Position 0 7, nämlich bis zu mehr als 6 000 P_2O_5 -RE je 100 ha Ackerland allein aus flächenunabhängiger Viehhaltung. An diesen Größenordnungen wird die wichtige Funktion der Abfragen x_2 bis x_4 in der hierarchischen Klassifizierung deutlich, die den Tatbestand berücksichtigen, daß z.B. Schweineexkremente nicht nur auf Ackerland, sondern auch auf Grünland verwertet werden können.

Die Werte der Variablen in den Positionen M 8, M 9 und M 10 kennzeichnen die Höhe des Nährstoffanfalls aus den Exkrementen und das - aufgrund der Zusammensetzung der Viehbestände einigermaßen ausgewogene - Verhältnis zwischen den einzelnen Nährstoffen. Die Böden sind marschig, podsolig und moorig, die Oberfläche ist eben, so daß eher mit Nährstoffauswaschungen als mit Abschwemmungen zu rechnen ist. Bei kleineren Differenzen in den Viehbestandsgrößen zeigen sich deutliche Unterschiede im Anteil der größeren an der Gesamtzahl der landwirtschaftlichen Betriebe. Während die Gebiete der Provinz Friesland (Regionsnummer: 4 2 ...) von im Durchschnitt größeren Betrieben geprägt sind, findet man in den südlicheren

Provinzen und auch in der belgischen Provinz Verviers ein deutliches Übergewicht kleinerer Betriebe. Die Region Verviers (Regionsnummer 5 4 3 0 0) weist insofern eine Sonderstellung auf, als sie durch hängiges Relief und braunerdige Böden gekennzeichnet ist.

Zusammenfassend können die Regionen vom Typ 12 als Gebiete ohne akute regionale Nährstoffüberschüsse bezeichnet werden. Eine weitere Ausdehnung der Viehhaltung bzw. ein interregionaler Transfer von Exkrementen in diese Gebiete hinein, aber auch bereits eine langfristige Aufrechterhaltung der derzeitigen Viehdichten erscheinen dagegen angesichts der damit verbundenen Phosphatakkumulation problematisch.

In der <u>Übersicht 4.10</u> sind die den <u>Endstufen 13 und 14</u> zugeordneten Untersuchungsgebiete mit ihren charakteristischen Merkmalen dargestellt.

Von den insgesamt 33 diesen beiden Endstufen zugehörenden Gebieten entfallen 11 auf Belgien, 8 auf die Niederlande, 6 auf die BR Deutschland und 4 auf das Vereinigte Königreich. In diesen Gebieten scheint eine Zunahme der Viehdichte nicht mit ähnlichen Problemen verbunden zu sein wie bei denen der Endstufe 12. Das Niveau der Viehdichte bewegt sich zwischen 105 und 264 (Bommelerwaard) Futtereinheiten je 100 ha landwirtschaftlich genutzte Fläche. In der Regel ist der Anteil der flächenabhängigen Tierarten am Viehbestand höher als der Grünlandanteil an der LF. Nur drei Gebiete (Wesermarsch, Thierache und Bommelerwaard) weichen hiervon ab und lassen auf eine bedeutende zusätzliche flächenunabhängige Viehhaltung schließen, was durch die hohen Werte unter Position 0 7 bestätigt wird. Die hypothetische Phosphatfracht auf dem Ackerland ist hier hoch, dürfte jedoch im allgemeinen problemlos über das Grünland verwertet werden können.

<u>Ubersicht 4.10:</u> Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 13 und 14

Untersuchungsgebiet	- Lungs	gebiet					Ausprägungen Position in		der Merkmale Ausdruck I	υ [
Regions- Nr.	Name		9 W	M 8	6 M	M 10	N 3	I 2	2 0	K 2	K 3	P 2	0 2	8 H
Endstufe 13:														
1 3 8 3 0 Wilhelmshaven (KS)	Wilhelmshaven (KS)		137	131	133	127	0,879	0,702	89	3,0	1,7	50	25	0,381
13860 Friesland	Friesland		138	129	153	123	0,821	0,709	79	3,7	1,7	07	56	0,304
1389 0 Wesermarsch			148	144	146	141	0,883	0,926	321	5,7	1,7	43	16	0,303
1 9 211 0 Straubing-Bogen		ν-	152	138	148	128	0,732	0,416	7 9	2,2	2,3	•	•	0,035
21109 Thierache 1		_	164	151	158	142	0,758	0,955	833	2,0	2,2	•	•	0,119
4 2 0 0110 Het Bildt 13		~	32	124	141	111	0,764	0,365	20	3,0	1,7	34	52	0,218
4 2 0 0120 Weide-en bouwstreek 20		50	8	208	211	200	0,930	0,752	92	3,0	1,7	41	45	0,218
4 5 0 0250 Midden-Betuwe 24'		54,		221	239	199	0,700	0,672	519	3,0	1,7	31	32	0,033
4 5 0 0260 Westelijke Betuwe 22		22	_	212	218	504	0,862	0,798	400	3,0	1,7	† †	27	0,033
4 5 0 0270 Bommelerwaard 264	•	56		237	253	214	0,721	0,774	929	3,0	1,7	28	20	0,033
4 5 0 0440 Veluwezoom 24		54	0	212	232	189	0,724	0,630	183	3,7	1,8	38	59	0,033
410 0 0120 Westelijke Langstraat 26		56	2	232	254	208	0,721	0,541	177	3,0	1,7	36	47	0,047
410 0 0220 Land van Altena 20		20	0	193	509	180	0,811	009*0	134	3,0	1,7	36	45	0,047
52100 Bruxelles-Capitale 13		-	72	124	126	117	0,868	0,411	28	1,0	2,0	•	•	000,0
5 2 2 0 0 Halle-Vilvoerde 18		18	ω	167	181	150	0,734	0,394	75	1,5	2,0	•	٠	950,0
54100 Huy 13		10	2	128	133	122	0,857	0,441	28	۱,0	1,8	43	77	0,641
5 4 2 0 0 Liège 19		₹.	93	174	184	159	0,779	0,520	78	1,3	1,8	35	24	0,221
56100 Arlon		' -	137	128	131	124	0,924	0,654	56	1,5	2,5	34	7	0,505
56200 Bastogne 1		_	87	179	183	173	606,0	0,625	37	2,0	2,5	41	27	0,273

Ubersicht 4.10: Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 13 und 14 (Forts.)

	Untersuc	Untersuchungsgebiet					Ausprägungen Position in		der Merkmale Ausdruck I	Φ				·
Land	Regions- Nr.	Мате	9 м	M 8	6 M	M 10	N 3	I 2	0.7	K 2	K 3	2 d	0 2	I 8
В	56300	Marche-en-Famenne	172	167	169	163	0,929	0,721	34	2,0	2,5	۱4	54	0,344
Д	56400	Neufchâteau	162	154	158	148	0,893	0,624	35	2,0	2,5	39	23	0,359
В	56500	Virton	140	136	138	133	0,930	0,759	32	1,5	2,3	9†7	25	0,750
Д	58100	Aalst	258	229	546	207	0,743	0,508	118	1,0	1,8	18	33	0,013
VK	7 213 0 0	East Sussex	130	128	133	117	0,789	0,463	67	2,2	2,5	8	202	0,317
VK	7 701 0 0	Cheshire	179	168	179	156	0,792	0,523	75	2,3	2,0	99	114	0,309
VK	7.821 0 0	Clwyd	196	214	209	196	0,874	0,703	83	2,2	2,7	54	61	0,317
VK	7 823 0 0	Gwent	155	166	164	153	9/8/0	0,746	62	2,2	2,7	53	45	0,326
Find	Findstiife 14:													
	21000			-		_								
Д	1 5 113 0	Recklinghausen (KS)	122	107	117	95	00,700	0,517	131	1,7	2,8	23	27	0,034
Д	1922 0	Passau (KS)	121	111	120	102	0,753	0,570	87	2,2	2,0	•	•	0,013
ᄄ	21108	Hainaut	115	109	112	104	0,802	0,586	64	2,0	2,0	•	•	0,255
ĹŦij	2 7 2 0360	Monts d' Arrée	105	95	104	87	0,700	0,254	745	2,5	2,5	٠	•	060,0
н	34200	Сошо	114	107	115	100	0,800	0,764	125	1,7	4,2	•	•	950,0
Д	52400	Nivelles	122	109	116	86	0,751	0,226	31	1,0	2,0	•	•	0,486

Innerhalb der Obergruppe der "Gebiete mit gemischter bzw. vorwiegend flächen unabhängiger Viehhaltung" (Endstufen 15 bis 25) sind die Endstufen 15, 16, 20, 21 und 23 durch Untersuchungsgebiete vertreten.

Mit 110 Regionen umfaßt die Endstufe 15 die größte Anzahl von Untersuchungsgebieten (37,5 %). Es gibt demnach eine Vielzahl von Regionen mit einem Viehbestand von insgesamt 100 und mehr Futtereinheiten je 100 ha LF insgesamt, jedoch weniger als 100 Futtereinheiten je 100 ha LF an flächenabhängigen Tierarten. In den Untersuchungsgebieten dieses Typs dürften Umweltbeeinträchtigungen als Folge von Nährstoffüberschüssen aus tierischen Exkrementen in aller Regel ausgeschlossen sein, da sichergestellt ist, daß dieser Endstufe nur solche Gebiete zugeordnet sind, die einen Viehbestand unter 300 N-RE und unter 300 K₂0-RE je 100 ha LF aufweisen. Lediglich dann, wenn in einer Region der Anteil der flächenabhängigen Tierarten am Viehbestand nur wenig unter 0,7 liegt und damit eine hohe Besatzdichte der flächenunabhängigen Viehhaltung einhergeht, kann es zu einer Viehdichte von bis zu etwa 363 P_2O_5 -RE je 100 ha LF kommen. Aber auch dann dürfte wegen des wahrscheinlich ebenfalls hohen Grünlandanteils der Phosphatanfall je ha den zulässigen Schwellenwert nur in Ausnahmefällen erreichen, nämlich dann, wenn es sich bei den Ackerflächen um sandige oder hängige, mithin erosionsgefährdete Böden handelt 1).

Zur näheren Charakterisierung derartiger Regionen sind diejenigen Untersuchungsgebiete der Endstufe 15, in denen die eventuell relevante Schwelle von 150 P_2O_5 -RE je 100 ha LF bzw. von 60 kg P_2O_5 aus tierischen Exkrementen je ha LF 2) erreicht bzw. überschritten wird, als $\underline{\text{Typ 15}}$ a gesondert erfaßt und mit ihren bereits weiter oben erläuterten charakteristischen Merkmalsausprägungen, ergänzt um die Ausprägung des Merkmals "flächenabhängiger Viehbestand in FE je 100 ha LF" (Pos. N 1), in $\underline{\text{Übersicht 4.11}}$ ausgewiesen.

¹⁾ Vgl. Harener Studie, a.a.O., Kap. II und IV.

²⁾ Vgl. Harener Studie, a.a.O., Kap. IV.

<u>Ubersicht 4.11:</u> Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufe 15 mit einer Viehdichte von 150 und mehr P₂0₅-RE je 100 ha LF (Typ 15a)

	2 I 8	4 0,128				0,052	0,010	0,108	0,162	0,078	0,247	0,123	0,033	3 0,040	1 0,047	3 0,041	400,00	5 0,041		0,208	5 0,219		5 0,220
	ø	74	20	45	- 65	•	•	•	•	•	•	•	•		8	87	59	53	9	231	125	114	85
	K 3	1,7	1,8	1,8	1,7	2,2	1,8	2,2	1,7	3,2	1,7	1,8	2,7	1,7	1,7	2,2	1,7	2,2	1,7	1,8	2,5	2,7	1,8
	K 2	2,3	2,2	2,5	2,5	2,0	1,0	2,0	2,7	2,3	3,0	2,7	2,3	3,0	3,7	1,7	2,3	1,0	2,3	1,0	2,3	2,7	2,3
rkmale ruck I	2 0	133	121	122	136	26	87	89	62	147	72	8	111	1 321	124	145	185	138	118	168	285	236	83
gen der Merkmale n in Ausdruck I	I 2	124,0	0,337	0,541	0,264	0,177	0,194	0,121	0,213	0,375	0,123	990.0	0,212	0,776	0,258	0,456	0,567	0,365	946,0	0,518	0,769	0,572	0,123
Ausprägungen de Positionen in	N 3	0,499	0,462	0,627	0,480	0,435	0,542	0,489	0,670	0,560	0,671	0,570	0,514	0,689	0,572	0,684	0,683	0,597	0,570	0,445	0,697	0,550	0,503
j	N 1	95	80	109	89	72	85	84	109	26	131	114	9	219	103	157	178	148	131	72	154	104	93
	M 10	118	103	127	107	96	109	112	128	127	158	154	121	243	121	176	198	171	152	95	180	130	118
	6 M	168	155	160	163	150	152	162	154	181	192	190	167	296	171	221	253	233	508	153	225	189	165
	M 8	149	133	147	141	125	130	138	143	149	174	174	145	276	148	500	526	204	185	125	506	159	146
	9 W	190	173	174	185	164	157	172	162	173	195	201	176	318	180	230	261	248	230	161	221	190	184
Untersuchungsgebiet	Мате	Kleve	Moers	Rees	Gelsenkirchen (KS)	Bretagne Centrale (C.d.N.)	Littoral Breton Nord (F.)	Bassin de Châteaulin (F.)	Milano	Brescia	Cremona	Mantova	Reggio nell'Emilia	Kromme Rijn-streek	Land van Bergen op Zoom	Zuid-Limburg	Mechelen	Oudenaarde	Veurne	Gr. London (SE)	Lancashire	Greater Manchester	Viborg
Unter	Regions- Nr.	1 5 119 0	1 5 120 0	1 5 121 0	1533 0	2 7 1 0359	2 7 2 0358	2 7 2 0362	34400	24600	34800	34900	38300	4 6 0 0210	410 0 0410	411 0 0210	51200	58500	5980.0	72600	77200	7 710 0 0	92600
	Land	Д	А	Q	Д	ᄄ	伍	ᄄ	н	Н	н	н	н	Ŗ	Ŋ	Ŗ	м	ф	Д	VK	VK	VK	DK

In den 22 zugehörigen Untersuchungsgebieten, die in allen sieben Mitgliedsländern vorkommen, liegt die Viehdichte in "Rindviehäquivalenten" durchweg unter 300 RE je 100 ha LF, unabhängig davon, ob N, P_2O_5 oder K_2O als Kriterium gewählt wird. In fünf der Gebiete (Kromme Rijn-streek und Zuid-Limburg in den Niederlanden, Mechelen und Oudenaarde in Belgien und Lancashire im Vereinigten Königreich) wird die Schwelle von 200 N-RE je 100 ha LF erreicht oder überschritten. In sechs Gebieten (neben den fünf bereits genannten ist dies Veurne in Belgien) beträgt der Anfall an Phosphat aus tierischen Exkrementen 200 und mehr P_2O_5 -RE je 100 LF. Undin einem der bereits erwähnten Gebiete (Kromme Rijn-streek) liegt die Viehdichte auch in Bezug auf den Anfall an K_2O über 200 K_2O -RE je 100 ha LF.

Unterstellt man vorsichtig, daß alle diejenigen Untersuchungsgebiete durch sogen. "low tolerance-Böden" $^{1)}$ charakterisiert sind, in denen das Merkmal "mittlerer Bodentyp" (Pos. K 2) eine Ausprägung größer als 3 oder/und das Merkmal "mittleres Relief" (Pos. K 3) eine Ausprägung größer als 2 aufweist, so sind folgende sechs Gebiete zusätzlich zu berücksichtigen: Bretagne Centrale und Bassin de Chateaulin in Frankreich (K 3 je 2,2), Brescia und Reggio nell'Emilia in Italien (K 3 = 3,2 bzw. 2,7), Land van Bergen op Zoom in den Niederlanden (K 2 = 3,7) sowie Greater Manchester im Vereinigten Königreich (K 3 = 2,7).

Insgesamt lassen sich somit in den folgenden 12 Untersuchungsgebieten vom Typ 15a Umweltbeeinträchtigungen infolge einer Auswaschung bzw. Abschwemmung von Phosphat nicht vollständig ausschließen:

¹⁾ Vgl. Harener Studie, a.a.O., Kap. II und IV.

Land	Regions-Nr.	Untersuchungsgebiet
F F I NL NL NL B B VK VK	2 7 1 359 2 7 2 362 3 4 6 0 0 3 8 3 0 0 4 6 0 0210 410 0 0410 411 0 0210 5 1 2 0 0 5 8 5 0 0 5 9 8 0 0 7 7 2 0 0 7 710 0 0	Bretagne Centrale (C.d.N.) Bassin de Chateaulin (F.) Brescia Reggio nell'Emilia Kromme Rijn-streek Land van Bergen op Zoom Zuid-Limburg Mechelen Oudenaarde Veurne Lancashire Gr. Manchester

In vier der genannten Gebiete (Kromme Rijn-streek, Mechelen, Oudenaarde und Lancashire) übertrifft die Viehdichte in Bezug auf Stickstoff den Wert von 200 N-RE je 100 ha LF (Pos. M 8). Von einem generellen Stickstoffüberschuß kann in diesen Gebieten jedoch nicht die Rede sein, da überall dort, wo derartig relativ hohe Stickstoffmengen in den tierischen Exkrementen anfallen, zugleich auch ein erheblicher Anteil der landwirtschaftlich genutzten Fläche als Grünland genutzt wird (vgl. Pos. I 2), das diese Stickstoffmengen zu verwerten vermag.

Eng mit der Endstufe 15 verwandt ist die <u>Endstufe 16</u>. Die dieser Endstufe zugeordneten Untersuchungsgebiete sind mit ihren charakteristischen Merkmalsausprägungen in der <u>Übersicht 4.12</u> dargestellt. Allein 13 der zugehörigen 16 Gebiete liegen in der BR Deutschland.

Generell sind die der Endstufe 16 zugeordneten Untersuchungsgebiete durch eine relativ hohe Dichte der Bestände an flächenunabhängigen Tierarten bei mittlerer bis hoher Dichte der Viehbestände insgesamt charakterisiert, in Bezug auf andere Merkmale jedoch ähnlich heterogen wie die des Typs 15a. Zwei Untersuchungsgebiete (Borken in der BR Deutschland, Hasselt in Belgien) weisen eine Viehdichte in Bezug auf den Phosphatanfall von 200 und mehr P_2O_5 -RE je 100 ha LF

Ubersicht 4.12: Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufe 16

	Untera	Untersuchungsgebiet					Auspr Posî	Ausprägungen d Position in A	der Merkmale Ausdruck I	male I				
Land	Regions- Nr.	Name	м 6	8 M	M 9	M 10	8 N	I 2	2 0	K 2	K 3	P 2	Q 2	8 I
Q	13130	Hoya	189	157	169	66	692.0	0,380	166	2,2	1,7	77	71	0,181
Д	1318 0	Nienburg	170	126	152	96	0,404	0,393	140	4,2	1,8	21	54	0,144
Д	1355 0	Meppen	199	141	183	96	0,315	0,353	191	4,2	۲ , 8	54	89	0,170
Д	13560	Osnabrück	188	139	170	103	0,399	0,421	172	2,3	2,5	20	53	0,119
Д	1 5 116 0	Geldern	196	149	174	114	777,0	0,305	130	2,2	1,7	33	83	0,102
Д	15390	Borken	227	173	203	133	0,443	0,424	184	2,8	1,8	29	74	0,104
Д	1 5 310 0	Coesfeld	215	157	189	114	0,384	0,376	178	2,3	2,0	27	88	0,156
Д	1 5 311 0	Lüdinghausen	178	15.7	160	100	0,414	0,358	142	2,3	1,7	25	69	0,197
Q	153130	Recklinghausen	172	127	158	93	0,402	0,316	145	2,8	1,8	23	63	0,141
Д	1 5 314 0	Steinfurt	185	141	166	108	944,0	0,430	157	2,8	1,8	27	62	0,163
Д	1 5 316 0	Warendorf	197	146	176	108	907,0	0,395	166	2,8	1,7	23	71	0,112
Д	15430	Gütersloh	188	144	175	112	0,460	0,429	169	3,2	2,2	16	45	0,070
Д	1547 0	Minden-Lübbecke	192	139	167	101	0,385	692,0	159	2,3	2,3	14	43	0,041
ഥ	272 361	Pénépl. Bret. Nord (F.)	197	156	182	125	9,476	0,160	106	2,0	8,1	•	•	970,0
Д	5230 0	Leuven	204	153	186	114	0,429	0,275	148	1,5	٦ , 8	•	•	0,037
щ	55100	Hasselt	594	216	274	155	0,373	0,380	146	3,0	2,0	16	74	0,048

auf, davon eines (Hasselt) zugleich eine Besatzdichte von mehr als 200 N-RE je 100 ha LF. In weiteren sechs Untersuchungsgebieten beträgt die Viehdichte 175 und mehr P205-RE je 100 ha LF; es sind dies Meppen, Coesfeld, Warendorf und Gütersloh in der BR Deutschland, Pénéplaine Bretonne Nord (Finistère) in Frankreich und Louvain in Belgien. Über die bereits aufgeführten Untersuchungsgebiete hinaus weisen in der BR Deutschland noch eines, nämlich Nienburg, eine Ausprägung der Kennziffer "mittlerer Bodentyp" (Pos. K 2) von über 3 und zwei weitere, Osnabrück und Minden-Lübbecke, eine solche der Kennziffer "mittleres Relief" (Pos. K 3) von über 2 auf. Alle der Endstufe 16 zugehörigen Untersuchungsgebiete in der BR Deutschland weisen allerdings einen Anteil des Dauergrünlands an der landwirtschaftlich genutzten Fläche (Pos. I 2) von mehr als 30 % auf, der das Ausmaß möglicher Verwertungsprobleme der in den tierischen Exkrementen anfallenden Phosphatmengen erheblich einschränkt.

Insgesamt lassen sich unter den der Endstufe 16 zugehörigen Untersuchungsgebiete also elf Gebiete, darunter acht in der BR Deutschland, nennen, in denen mögliche Umweltbeeinträchtigungen als Folge eines überhöhten Anfalls an Phosphat in den tierischen Exkrementen nicht gänzlich ausgeschlossen werden können. Dies gilt natürlich verstärkt, falls in diesen Gebieten der Bestand an flächenunabhängigen Tierarten künftig weiter aufgestockt würde.

Auf die Endstufe 20 und 21 entfallen insgesamt 32 Untersuchungsgebiete, das sind immerhin knapp 11 % aller Untersuchungsgebiete, allerdings nur mit rd. 5 % der landwirtschaftlich genutzten Fläche der Untersuchungsgebiete. In Übersicht 4.13 sind diese Untersuchungsgebiete mit ihren charakteristischen Merkmalsausprägungen ausgewiesen.

Vier größere Gebiete mit rd. 30 % der den beiden Endstufen zugehörigen landwirtschaftlich genutzten Flächen liegen in der BR Deutschland. Die übrigen 28 Gebiete verteilen sich nach der landwirtschaftlich genutzten Fläche im Verhältnis drei zu eins auf die Niederlande und Belgien. Bei den insgesamt 23 niederländischen

Ubersicht 4.13: Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 20 und 21

i,

	Ur	Untersuchungsgebiet					Auspr Posi	Ausprägungen d Position in A	der Merkmale Ausdruck I	le				
Land	Regions- Nr.	Name	9 M	8 M	6 M	M 10	N 3	I 2	20	K 2	K 3	P 2	2 0	8 I
End	Endstufe 20:													
Д	13530	Bentheim	189	147	173	114	0,461	0,564	205	4,2	1,8	56	53	0,143
Д	13850	Cloppenburg	207	145	181	66	0,305	0,392	200	2,7	1,8	22	89	0,151
Д	1537 0	Ahaus	218	168	195	130	0,458	0,530	210	2,8	1,8	27	59	0,113
M	4 4 0 0210	Olst en Wijhe	401	342	375	299	999,0	0,889	1 258	3,0	1,7	34	79	0,038
N	4 4 0 0410	Zand-en veengebied	596	253	292	219	0,624	0,594	285	4,3	1,7	29	54	0,038
Ŗ	4 4 0 0420	Salland en Twente	450	369	421	307	0,587	978,0	1 064	0,4	8,1	29	69	0,038
NL	4 5 0 0220	Oostelijke Ijsselstreek	419	344	376	289	0,608	0,811	902	3,0	1,7	35	83	0,033
M	4 5 0 0230	Lijmers	430	333	392	260	0,494	0,743	911	3,0	1,7	27	47	0,033
Ŗ	4 5 0 0240	Oostelijke Betuwe	390	282	336	202	0,370	0,627	1 306	3,0	1,7	23	80	0,033
NL	4 5 0 0280	Land v. Maas en Waal-Noord	334	277	329	229	0,568	0,783	1 851	3,0	1,7	30	55	0,033
Ę	4 5 0 0290	Land v. Maas en Waal-Zuid	403	316	372	248	0,499	0,820	1 481	3,0	1,7	28	69	0,033
Ä	4 5 0 0410	Noordelijke Veluwe	387	340	375	302	0,657	0,957	2 907	0,4	1,8	28	43	0,033
Ŗ	4 5 0 0420	Westelijke Veluwe	988	684	841	531	0,329	0,879	4 921	0, 4	1,8	42	99	0,033
Ä	4 5 0 0430	Oostelijke Veluwe	451	385	429	336	0,562	848,0	1 361	0,4	1,8	29	20	0,033
Ä	4 5 0 0450	Noordelijke Achterhoek	240	422	490	335	0,503	0,825	1 325	0 , 4	2,0	59	82	0,033
Ä	4 5 0 0460	Zuidelijke Achterhoek	532	412	787	322	0,486	0,762	1 003	3,7	1,8	54	77	0,033
Ŗ	4 5 0 0470	Oude Ijssel-gebied	482	372	431	291	0,490	0,732	292	3,3	1,8	25	75	0,033
Ŋ	4 5 0 0480	Rijk van Nijmegen	441	335	410	254	0,442	0,722	927	2,3	1,7	56	92	0,033
						_								

Ubersicht 4.13: Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufen 20 und 21 (Forts.)

	Untersı	Untersuchungsgebiet					At	Ausprägungen Position in	en der Merkmale in Ausdruck I	rkmale ck I				
Land	Regions- Nr.	Name	9 м	M 8	6 M	M 10	N 3	I 2	20	K 2	K 3	P 2	Q 2	I 8
M	0460 0 9 4	Lopikerwaard	604	348	377	305	9496	676,0	19 997	3,0	1,7	07	63	0,040
Ŗ	4 6 0 0410	Zandgebied	582	797	543	375	905,0	0,925	3 888	0,4	1,8	34	27	0,040
NL	4 6 0 0420	Heuvelrug	488	388	7460	309	0,504	0,813	1 517	3,7	1,8	33	73	0,040
N.	410 0 0310	Maaskant	421	329	384	261	0,497	0,756	824	3,3	1,7	33	26	0,047
NL	410 0 0420	Noordwest. zandgronden	367	305	342	258	0,611	0,569	405	0,4	1,7	34	7 9	0,047
Ę.	410 0 0430	Land van Breda	483	385	444	311	0,514	699,0	1 417	0,4	1,7	35	92	0,047
Ŋ	411 0 0420	Noordelijke Maasvallei	247	248	335	168	0,321	0,343	530	2,5	1,8	56	91	0,041
Ę	411 0 0430	Land van Montfort	544	187	229	143	0,455	0,337	206	1,7	1,8	22	72	0,041
В	55300	Tongeren	277	506	251	153	0,418	0,349	243	2,3	2,0	22	69	0,055
В	5820 0	Dendermonde	383	309	359	253	0,562	0,555	336	2,3	1,7	21	69	0,002
ф	5830 0	Eeklo	372	293	339	234	0,527	0,372	233	3,7	1,7	29	84	0,047
м	58400	Gent	418	326	383	257	905.0	744,0	336	3,0	1,8	25	81	0,014
щ	58600	Sint-Niklaas	344	569	312	213	0,507	0,389	240	3,7	1, 8	54	84	0,022
Ends	Endstufe 21:													
Д	1387 0	Oldenburg	213	160	195	120	0,412	0,467	213	3,8	1,8	31	81	0,217

Untersuchungsgebieten handelt es sich um Teile der Provinzen Overijssel, Gelderland, Utrecht, Noord-Brabant und Limburg. Mit den Arrondissements Deendermonde, Eeklo, Gent und Sint-Niklaas weist ein Großteil der bilgischen Provinz Oost-Vlaanderen, ferner mit Tongeren noch ein Arrondissement der Provinz Limburg im Osten Belgiens die Merkmale der Endstufe 20 auf.

Generell zeichnen sich die Regionen der Endstufen 20 und 21 gegenüber denen der Endstufe 16 durch eine höhere spezifische Dichte der Bestände an flächenunabhängigen Tierarten je 100 ha Ackerland (200 und mehr P_2O_5 -RE) aus. Außerdem gilt allgemein, daß die durchschnittliche Bestandsgröße bei Schweinen zwischen 40 und 100 liegt und – mit Ausnahme des der Endstufe 21 zugehörigen Untersuchungsgebietes Oldenburg – der Anteil der Betriebe mit mehr als 30 ha LF an den Betrieben insgesamt weniger als 20 % beträgt.

Bezieht man den Viehbestand in "Rindviehäquivalenten" auf die gesamte landwirtschaftlich genutzte Fläche, dann können die vier deutschen Landkreise Bentheim, Cloppenburg, Oldenburg und Ahaus nicht weiter als durch zu hohe Nährstoffmengen aus der Tierhaltung gefährdet angesehen werden. Etwas höher liegt die Viehdichte in dem belgischen Arrondissement Tongeren sowie im südniederländischen Untersuchungsgebiet Land van Montfort. In den Untersuchungsgebieten Oost-Vlaanderens können die in den tierischen Exkrementen enthaltenen Phosphatmengen längerfristig bereits Umweltbeeinträchtigungen verursachen.

Deutlich heben sich die 22 übrigen Untersuchungsgebiete in den Niederlanden heraus. Bezogen auf die gesamte landwirtschaftlich genutzte Fläche beträgt hier die in den tierischen Exkrementen enthaltene Phosphatfracht nirgendwo weniger als 300 P_2O_5 -RE je 100 ha LF und erreicht im Gebiet Westelijke Veluwe einen Spitzenwert von weit über 800 P_2O_5 -RE je 100 ha LF. In den meisten dieser Gebiete wird zudem der Anteil der flächenabhängigen Tierarten am gesamten Viehbestand deutlich vom Anteil des Deuergrünlandes an

der landwirtschaftlich genutzten Fläche übertroffen, worin sich die große Bedeutung der flächenunabhängigen Viehhaltung widerspiegelt. Wegen des hohen Grünlandanteils an der landwirtschaftlich genutzten Fläche und der weitgehend ebenen Oberfläche dürfte zwar die Abschwemmungsgefahr für alle Nährstoffe relativ gering sein; mindestens längerfristig muß jedoch mit ernst zu nehmenden Umweltbeeinträchtigungen aufgrund von Phosphatauswaschungen gerechnet werden. In einigen der Untersuchungsgebiete in den Niederlanden scheinen darüber hinaus auch die in den tierischen Exkrementen enthaltenen Mengen an Kali die pflanzenbaulich zulässige Schwelle zu überschreiten.

Durch einen Transfer vor allem von Exkrementen der Geflügelhaltung in andere Regionen könnten die in der Mehrzahl der hier genannten Untersuchungsgebiete vermutlich bereits bestehenden Probleme der Umweltbeeinträchtigung beseitigt, mindestens aber erheblich reduziert werden. Ein Verzicht auf eine weitere Ausdehnung der Viehhaltung oder gar eine Einschränkung der derzeit gehaltenen Tierbestände wären angesichts der begrenzten Möglichkeiten der Betriebe, ihre Einkommenskapazität über eine Flächenaufstockung zu erhöhen, mit einer Stagnation oder gar einem Rückgang der Einkommen in den angesprochenen Gebieten in den Niederlanden und in Belgien gleichbedeutend. Die deutschen Gebiete der Endstufen 20 und 21, in denen der Anteil der Betriebe mit 30 und mehr ha LF an der Gesamtzahl der Betriebe durchweg über 10 % liegt, würden eventuelle Begrenzungen der genannten Art dagegen vermutlich weniger hart treffen.

In der Übersicht 4.14 sind schließlich die der Endstufe 23 zugeordneten Untersuchungsgebiete mit ihren charakteristischen Merkmalsausprägungen dargestellt. Eines dieser 18 Gebiete, der Landkreis Vechta in der BR Deutschland, umfaßt allein über 10 % der
landwirtschaftlich genutzten Fläche dieser Endstufe. Von den
übrigen entfallen sieben auf die Niederlande, von denen sechs in
der Provinz Noord-Braband liegen, und zehn auf Belgien, davon
sieben in der Provinz West-Vlaanderen.

<u>Ubersicht 4.14:</u> Ausprägungen charakteristischer Merkmale in den Untersuchungsgebieten der Endstufe 23

	Untersu	Untersuchungsgebiet					A ₁	Ausprägungen Position in		der Merkmale Ausdruck I				
Land	Regions- Nr.	Name	9 M	M 8	6 M	M 10	N 3	I 2	2 0	K 2	K 3	P 2	Q 2	1 8
Q	1388 0	Vechta	395	256	385	145	0,139	0,357	532	2,8	2,0	27	142	0,175
NL	410 0 0440	Westelijke Kempen	593	458	539	356	9,446	0,715	1 181	0,4	1,7	43	115	0,047
NL	410 0 0450	Meijerij	581	747	428	337	0,440	0,750	1 433	0,4	1,7	30	104	0,047
Ä	410 0 0460	Oostelijke Kempen	505	384	468	291	0,442	0,598	704	0,4	1,7	32	120	0,047
Ŋ	410 0 0470	Noordelijk Peelgebied	969	505	645	354	0,341	0,627	1 430	0,4	1,7	31	119	0,047
ĸ	410 0 0480	Zuidelijk Peelgebied	810	569	744	384	0,301	0,692	2 103	0,4	1,7	33	140	0,047
Ŗ	410 0 0490	Land van Cuyk	561	405	522	285	0,354	0,592	1 112	0,4	1,7	28	128	0,047
Ŗ	411 0 0410	Westel. Noord-Limburg	671	454	979	284	0,238	0,481	1 297	0,4	1,7	27	130	0,041
þ	7	A 27+1.70 mm 032	7.7 ×	727	302	777	299	707 0	n 1	6	,	77.	7	2
4	- -	Wilchel Pell	<u>,</u>	70	080	///	000.0	000,0	cc	7,0	•	<u></u>	7	0.00
щ	5130 0	Turnhout	785	378	468	295	0,455	0,630	269	0,4	1,7	32	115	0,022
В	5520 0	Maaseik	604	314	384	240	0,450	0,541	7475	3,8	2,0	59	107	0,041
М	59100	Brugge	412	314	365	242	0,475	0,507	348	3,3	1,7	32	104	0,074
м	5920 0	Diksmuide	415	308	364	230	0,433	0,469	349	2,8	1,7	33	128	0,065
м	5930 0	Ieper	385	279	334	202	0,396	0,332	272	۲,5	1,8	59	137	0,046
В	5940 0	Kortrijk.	344	259	318	194	0,437	0,309	245	1,5	1,8	25	114	0,055
м	59500	Oostende	315	241	279	186	0,483	0,432	225	3,3	1,7	33	101	0,147
м	5960 0	Roeselare	568	382	484	544	0,277	0,354	512	2,0	1,8	21	169	0,013
м	59700	Tielt	869	467	592	298	0,273	0,441	727	2,5	1,8	23	172	0,012

Die der Endstufe 23 zugehörigen Regionen weisen hinsichtlich der hier relevanten Merkmale sehr ähnliche Ausprägungen auf wie die der Endstufen 20 und 21, mit dem Unterschied, daß hier die Schweinebestände im Durchschnitt 100 und mehr Tiere je schweinehaltenden Betrieb aufweisen. Damit erreicht in diesen Untersuchungsgebieten nicht allein die räumliche, sondern darüber hinaus auch die betriebliche Konzentration der flächenunabhängigen Viehhaltung ein Ausmaß, das das Auftreten von Umweltbeeinträchtigungen infolge überhöhter Nährstoffmengen auf den landwirtschaftlich genutzten Flächen wahrscheinlich macht, sofern nicht ein Transfer überschüssiger Exkremente in andere Regionen erfolgt.

In <u>Karte 4.1</u> ist die räumliche Verteilung der durch Untersuchungsgebiete vertretenen Endstufen der hierarchischen Klassifizierung ¹⁾ auf die 292 Untersuchungsgebiete innerhalb der EG zusammenfassend dargestellt.

In der kartographischen Darstellung sind die Untersuchungsgebiete durch abgekürzte Regionsnummern gekennzeichnet. Übersicht A 5 im Anhang zu diesem Bericht enthält ein Verzeichnis dieser abgekürzten Regionsnummern.

Die Untersuchungsgebiete mit der höchsten räumlichen und z.T. auch betrieblichen Konzentration der Bestände an flächenunabhängigen Tierarten (Endstufen 20, 21 und 23) bilden ein nahezu geschlossenes Band, das sich, beginnend mit der belgischen Provinz West-Vlaanderen, zunächst in östlicher Richtung über die nördlichen Teile der Provinzen Oost-Vlaanderen und Antwerpen in Belgien sowie den östlichen Teil der Provinz Noord-Brabant und die Provinz Limburg in den Niederlanden erstreckt und danach in nördlicher Richtung über die Provinz Gelderland, den östlichen Teil der Provinz Utrecht und den südlichen Teil der Provinz Overijssel fortsetzt. Ausläufer dieses geschlossenen Bandes erstrecken sich bis in die BR Deutschland hinein (Landkreise Ahaus im Regierungsbezirk Münster und Bentheim im Regierungsbezirk Osnabrück). Den o.g. Endstufen gehört schließlich als kleineres geschlossenes Gebiet in der BR Deutschland der südliche Teil des Verwaltungsbezirks Oldenburg an.

¹⁾ Durch Aufgliederung der Endstufe 15 in die Typen 15a und 15b insgesamt 12.

Die Untersuchungsgebiete der Endstufen 15 (Typ 15a) und 16, in denen bei vorwiegend gemischter oder flächenabhängiger Viehhaltung die räumliche Konzentration der Viehbestände durchweg deutlich unter der der Endstufen 20, 21 und 23 liegt und nur unter sehr spezifischen Bedingungen zu gewissen Umweltbeeinträchtigungen führen könnte, schließen sich in Belgien und den Niederlanden südlich an das eben erwähnte Band an und erstrecken sich mehr oder weniger weit in östlicher Richtung über den Regierungsbezirk Düsseldorf und die Regierungsbezirke Münster und Osnabrück bzw. die Regierungsbezirke Detmold und Hannover in die BR Deutschland hinein. Einige kleinere geschlossene Gebiete der Endstufe 15 (Typ 15a) finden sich ferner im Nordwestteil der Bretagne, in Frankreich im südlichen und östlichen Teil der Region Lombardia in Italien sowie im westlichen Teil der englischen Region Yorks and Lancs.

Die Untersuchungsgebiete der Endstufe 12, durch eine andere Zusammensetzung der Viehbestände als die der Endstufen 15 und 16 gekennzeichnet, diesen jedoch nach Umfang und Struktur der in den tierischen Exkrementen anfallenden Nährstoffmengen nicht unähnlich, liegen ausschließlich in den Niederlande, wo sie sich in westlicher (Provinz Utrecht) bzw. nördlicher (Provinz Friesland) Richtung an das oben erwähnte Band anschließen, sowie in Belgien, wo sie den östlichen Teil der Provinz Liège einnehmen.

Auf die Niederlande, insbesondere die westlichen Teile der Provinzen Noord-Brabant und Gelderland, und auf Belgien, hier vor allem auf die westlichen Teile der Provinzen Brabant und Liège sowie die Provinz Luxemburg, konzentrieren sich auch die Untersuchungsgebiete der Endstufe 13.

Die Endstufe 8 mit einer hohen Besatzdichte der flächenabhängigen Tierarten umfaßt nur ein einziges kleineres Untersuchungsgebiet in der niederländischen Provinz Overijssel. Die verbleibenden Endstufen weisen keine vergleichbare räumliche Konzentration innerhalb der EG auf.

<u>Karte 4.1:</u> Räumliche Verteilung der durch Untersuchungsgebiete vertretenen Endstufen der hierarchischen Klassifizierung

Die Karten 3.1 - 4.1 sind in einer Mappe enthalten, die diesem Heft beigefügt ist.

5. Zusammenfassung und Schlußfolgerungen

Aufgabe der hier vorgelegten Studie war es, diejenigen Gebiete in der Europäischen Gemeinschaft zu identifizieren, in denen Tierhaltung mit besonderer Intensität betrieben wird, und diese Gebiete nach Merkmalen der Boden- und Klimaverhältnisse, der Raumnutzung und der landwirtschaftlichen Bodennutzung und Tierhaltung zu charakterisieren und zu klassifizieren. Zu diesem Zweck wurden die neun Mitgliedsländer der EG in insgesamt 300 Teilregionen aufgegliedert. Für jede dieser Teilregionen wurden die Bestände an Rindern, Schafen (z.T. auch Ziegen). Schweinen und Hühnern und deren "Dichte". gemessen in sogen. "Großvieheinheiten" je 100 ha landwirtschaftlich genutzte Fläche, ermittelt. Anhand einer Analyse der Häufigkeitsverteilungen der Teilregionen nach ihrer "Viehdichte" wurden alle diejenigen Teilregionen für die weitere Untersuchung ausgewählt, in denen entweder die "Dichte" der vier Tierarten zusammen oder die der Schweine- und Hühnerbestände oder die der Hühnerbestände allein überdurchschnittlich hoch war. Die so ausgewählten Teilregionen wurden räumlich soweit untergliedert, wie dies die in den einzelnen Mitgliedsländern verfügbaren statistischen Informationen zuließen. Insgesamt gelangten 292 - bei Aufgliederung der italienischen Provinzen nach "Höhenzonen" 340 - Untersuchungsgebiete aus der BR Deutschland, Frankreich, Italien, den Niederlanden, Belgien, dem Vereinigten Königreich und Dänemark in die weitere Analyse.

Für jedes der Untersuchungsgebiete wurden aus veröffentlichten und unveröffentlichten amtlichen Statistiken und anderen Quellen Angaben über die Ausprägungen diverser Merkmale der Boden- und Klimaverhältnisse, der Raumnutzung sowie der landwirtschaftlichen Bodennutzung und Tierhaltung zusammengetragen und aus ihnen Kennwerte abgeleitet, die zur Charakterisierung der Regionen in Bezug auf die interessierenden Merkmalsbereiche geeignet erschienen. Besonderes Augenmerk wurde einer umfassenden Charakterisierung der räumlichen und betrieblichen Konzentration der Viehhaltung in den Untersuchungsgebieten gewidmet. Zur Kennzeichnung der räumlichen Konzentration wurden die Bestände von 15 verschiedenen Tierarten

und -kategorien nach ihrem jeweiligen Bedarf an Nettoenergie auf sogen. "Futtereinheiten" und nach den in den anfallenden tierischen Exkrementen enthaltenen Mengen an Hauptnährstoffen auf sogen. "Rindviehäquivalente" umgerechnet und auf die landwirtschaftlich genutzte Fläche der Untersuchungsgebiete, unter Berücksichtigung der auf Acker- und Dauergrünland entfallenden Anteile, bezogen. Um das Ausmaß der betrieblichen Konzentration der Viehhaltung kenntlich zu machen, wurden in fünf Mitgliedsländern durch Kombination von Daten über die Größenstruktur der viehhaltenden Betriebe und der von ihnen gehaltenen Bestände an bestimmten Tierarten sogen. "Haltungstypen" bei Rindern, Schweinen, Legehennen und Masthühnern nach dem absoluten Umfang der Tierbestände und nach ihrer "Dichte", bezogen auf die landwirtschaftlich genutzte Fläche, gebildet.

Eine Klassifizierung der Untersuchungsgebiete wurde nach zwei verschiedenen Methoden durchgeführt. Einerseits wurden für 22 ausgewählte Kennwerte je fünf Ausprägungsintervalle - das unterste und das oberste jeweils offen - gebildet und mit Rangziffern zwischen 1 und 5 versehen (Einzelklassifizierung). Zum anderen wurde eine schrittweise Typisierung der Untersuchungsgebiete nach der Ausprägung von 10 hierarchisch geordneten Kennwerten vorgenommen (hierarchische Klassifizierung). Auf diese Weise konnte jedes der Untersuchungsgebiete sowohl durch eine Kombination von 22 - voneinander unabhängigen - Rangziffern für die Ausprägung der zugehörigen Kennwerte als auch durch die Zuordnung zu einer von insgesamt 25 möglichen Endstufen der hierarchischen Klassifizierung (Gebietstypen) charakterisiert werden. Bei der Auswahl der Kennwerte und bei der Festlegung ihrer Ausprägungsintervalle bzw. -schwellen wurde in beiden Klassifizierungsverfahren soweit als möglich auf Ergebnisse von Untersuchungen im Instituut voor Bodemvruchtbaarheid in Haren über die Bestimmungsgründe der Wahrscheinlichkeit des Auftretens und der Intensität von Umweltbeeinträchtigungen im Gefolge der Aufbringung tierischer Exkremente auf landwirtschaftlich genutzte Flächen zurückgegriffen.

Die Ergebnisse der Klassifizierungen lassen sich wie folgt zusammenfassen:

Von insgesamt 292 Untersuchungsgebieten in sieben Mitgliedsländern weisen 44 Gebiete Merkmalsausprägungen auf, die rein rechnerisch auf z.T. beträchtliche Überschüsse der in den Exkrementen der gehaltenen Tierbestände anfallenden Nährstoffe N, P_2O_5 und K_2O über die auf den zugehörigen landwirtschaftlich genutzten Flächen verwertbaren Nährstoffmengen schließen lassen (Gebietstypen 20, 21 und 23). Es handelt sich hierbei um den größten Teil der Provinz West-Vlaanderen sowie die nördlichen Teile der Provinzen Oost-Vlaanderen, Antwerpen und Limburg in Belgien, die östlichen Teile der Provinzen Noord-Brabant und Utrecht, den nördlichen Teil der Provinz Limburg, die Provinz Gelderland sowie den größten Teil der Provinz Overijssel in den Niederlanden und schließlich um den Landkreis Vechta im Verwaltungsbezirk Oldenburg in der Bundesrepublik Deutschland. Die errechneten Nährstoffüberschüsse werden in den genannten Gebieten durchweg durch sehr hohe Besatzdichten der sogen. "flächenunabhängigen" Viehhaltung (Schweine, Geflügel, z.T. Mastkälber) verursacht. In West-Vlaanderen, Antwerpen, Noord-Brabant und im Landkreis Vechta ist auch die betriebliche Konzentration dieser Zweige der Viehhaltung weit fortgeschritten, gekennzeichnet durch das Vorherrschen großer Tierbestände pro Betrieb.

Nur in einem einzigen Untersuchungsgebiet - in der niederländischen Provinz Overijssel gelegen - ist die Besatzdichte der Rinderbestände so groß, daß die in den anfallenden Exkrementen enthaltenen Mengen an Nährstoffen, insbesondere an K₂O, auf der überwiegend als Dauergrünland genutzten Fläche zu Verwertungsproblemen und - damit einhergehend - zu Umweltbeeinträchtigungen führen können (Gebietstyp 8).

In einer Reihe weiterer Untersuchungsgebiete sind gewisse Überschüsse der in den Exkrementen der gehaltenen Tierbestände anfallenden über die auf den landwirtschaftlich genutzten Flächen verwertbaren Mengen an Nährstoffen nicht gänzlich auszuschließen, bewegen sich jedoch auf einem deutlich niedrigeren Niveau als in den vorgenannten Gebieten.

Hierzu gehören zunächst 28 Untersuchungsgebiete, in denen die überwiegend aus "flächenunabhängiger" Viehhaltung anfallenden Mengen an P₂O₅ rein rechnerisch Werte erreichen, die angesichts der Art der landwirtschaftlichen Bodennutzung und der herrschenden Klima-, Boden- und Oberflächenverhältnisse eine Auswaschung bzw. Abschwemmung in das Oberflächen- und Grundwasser immerhin möglich erscheinen lassen (Teile der Gebietstypen 15a, 16, 20 und 21). Diese Gebiete liegen in Belgien im südlichen Teil der Provinzen Oost-Vlaanderen. Antwerpen und Limburg, in den Niederlanden im südlichen Teil der Provinz Limburg und im westlichen Teil der Provinzen Noord-Brabant und Utrrecht. In der Bundesrepublik Deutschland gehören die Landkreise Ahaus, Borken, Coesfeld, Bentheim und Meppen östlich der deutsch-niederländischen Grenze, die Landkreise Warendorf, Gütersloh und Minden sowie Osnabrück und Nienburg entlang der Grenze zwischen den Bundesländern Nordrhein-Westfalen und Niedersachsen sowie die Landkreise Cloppenburg und Oldenburg im südlichen Teil des Verwaltungsbezirks Oldenburg dazu. Weitere Untersuchungsgebiete dieser Typen finden sich verstreut in den Departements Côtes du Nord und Finistère im Nordwesten Frankreichs, in den italienischen Regionen Lombardia (Provinz Brescia) und Emilia Romagna (Reggio nell'Emilia) sowie an der englischen Westküste (Counties Lancashire und Greater Manchester).

In weiteren 13 Untersuchungsgebieten, in denen bei einem hohen Anteil des Dauergrünlands an der landwirtschaftlich genutzten Fläche neben umfangreichen Rindviehbeständen zusätzlich größere Bestände an "flächenunabhängigen" Tierarten gehalten werden, kann die Verwertung der rechnerisch in den tierischen Exkrementen enthaltenen Mengen an P_2O_5 vor allem bei weiterer Aufstockung der Schweine- und/oder Geflügelbestände Schwierigkeiten bereiten (Gebietstyp 12). Diese Gebiete konzentrieren sich in den westlichen Teilen der Provinzen Utrecht und Overijssel sowie in der Provinz Friesland in den Niederlanden; ein weiteres Gebiet dieses Typs umfaßt den östlichen Teil der belgischen Provinz Liège.

Für die verbleibenden 206 der insgesamt 292 Untersuchungsgebiete ließen sich anhand der verfügbaren statistischen Informationen rein rechnerisch keine akuten Probleme bezüglich der Verwertung der in den anfallenden tierischen Exkrementen enthaltenen Nährstoffmengen auf den landwirtschaftlich genutzten Flächen feststellen. Für die Zukunft kann das Auftreten derartiger Probleme, insbesondere bei einer raschen Aufstockung der Viehbestände und/oder einer wesentlichen Änderung der landwirtschaftlichen Bodennutzung, allerdings nicht vollständig ausgeschlossen werden.

Eine Abschätzung der in den verschiedenen Teilregionen der EG bei der Haltung landwirtschaftlicher Nutztiere anfallenden Mengen an tierischen Exkrementen und der in ihnen enthaltenen Nährstoffmengen im Verhältnis zum Nährstoffbedarf der landwirtschaftlich genutzten Flächen anhand von Ergebnissen der amtlichen und sonstiger Statistiken, wie sie in der vorliegenden Studie im Rahmen einer umfassenderen Charakterisierung einer größeren Zahl von Gebieten versucht wurde, vermag eine gewisse Vorstellung über die Größenordnung und die räumliche Verteilung möglicher Nährstoffüberschüsse zu vermitteln. Als Ansatzpunkt für eventuelle staatliche Maßnahmen mit dem Ziel, nachteilige Folgen solcher Überschüsse für die Bodenfruchtbarkeit, für den Zustand von Oberflächen- und Grundwasser und für die Qualität landwirtschaftlicher Produkte zu vermeiden, eignen sich die Ergebnisse solch einer Analyse aus den im folgenden genannten Gründen jedoch nicht.

a) Der Nährstoffbedarf landwirtschaftlich genutzter Flächen und die Menge, Verfügbarkeit und Ausnutzung der ihnen in tierischen Exkrementen, pflanzlichen Reststoffen, mineralischen Düngemitteln u.a. zugeführten Nährstoffe werden von einer Vielzahl von Faktoren bestimmt. Einige dieser Faktoren können bei Analysen, die auf der Grundlage von Ergebnissen der amtlichen und sonstiger Statistiken durchgeführt werden, nicht berücksichtigt werden wie z.B. die Art der Sammlung tierischer Exkremente in den viehhaltenden Betrieben, die zeitliche Verteilung ihrer Aufbringung auf landwirtschaftlich genutzte Flächen und die

- Höhe und Zusammensetzung der Mineraldüngerzufuhr. Andere für den Nährstoffbedarf wie für die Ausnutzung zugeführter Nährstoffmengen bedeutsame Faktoren lassen sich mit Hilfe derartiger Daten nur unvollkommen erfassen wie beispielsweise die spezifischen Klima- und Bodenverhältnisse in den viehhaltenden Betrieben.
- b) Auf der Grundlage von Ergebnissen der amtlichen und sonstiger Statistiken können lediglich Durchschnittswerte für den Umfang und die Zusammensetzung der Viehbestände und für den Umfang und die Art der Nutzung der landwirtschaftlich genutzten Flächen in den kleinsten Gebietseinheiten ermittelt werden, für die jeweils entsprechende Angaben zur Verfügung stehen. Informationen über die Streuung der Einzelwerte um die ermittelten Durchschnittswerte fehlen. Es ist deshalb durchaus möglich, daß auch innerhalb solcher Gebietseinheiten, in denen die errechneten Durchschnittswerte für den Nährstoffanfall aus tierischen Exkrementen je ha landwirtschaftlich genutzte Fläche unter bestimmten Normen bleiben, die genannten Normen in einzelnen Betrieben oder kleineren Teilgebieten sogar wesentlich überschritten werden. Dieser Möglichkeit kommt umso größeres Gewicht bei, je stärker die untersuchten Gebietseinheiten hinsichtlich ihrer Flächenausdehnung streuen. Andrerseits ist bekannt, daß in verschiedenen Regionen innerhalb der EG teils mit Hilfe staatlicher Förderungsmaßnahmen, teils auch aufgrund privater Initiativen bereits ein Transfer von tierischen Exkrementen zwischen Betrieben und zwischen Regionen erfolgt. In solchen Regionen könnte ein allein aus den vorhandenen Viehbeständen und landwirtschaftlich genutzten Flächen errechneter eventueller Nährstoffüberschuß nicht unwesentlich überschätzt sein.
- c) Die Festlegung verbindlicher Normen für den zulässigen Umfang des Viehbesatzes oder der in tierischen Exkrementen zuzuführenden Nährstoffe je ha landwirtschaftlich genutzte Fläche und die Überprüfung ihrer Einhaltung kann aus den genannten Gründen nur auf der Ebene des einzelnen viehhaltenden Betriebes erfolgen, und zwar unabhängig davon, ob ein Betrieb innerhalb oder außerhalb einer "Überschußregion" liegt. Dabei sollten zweckmäßigerweise die Zusammensetzung des Viehbestandes und die Art der

Nutzung der Flächen im Jahresablauf, wenn möglich darüber hinaus auch die jeweiligen Klima- und Bodenverhältnisse und der Umfang der Mineraldüngerzufuhr, Berücksichtigung finden. Betriebe, in denen mit Hilfe geeigneter Indikatoren unter Berücksichtigung der genannten Bedingungen eine Überschreitung der gesetzten Normen festgestellt wird, sollten dazu veranlaßt werden, die über die Normen hinaus erzeugten Mengen an tierischen Exkrementen außerhalb ihrer eigenen Flächen zu verwerten. Dies setzt eine Intensivierung des überbetrieblichen und interregionalen Transfers von tierischen Exkrementen voraus, die durch eine entsprechende Beratung, eventuell auch durch zeitlich begrenzte staatliche Förderungsmaßnahmen erreicht werden könnte. Erst wenn die diesbezüglichen Möglichkeiten ausgeschöpft sind, sollten weitergehende Sanktionen in Erwägung gezogen werden.

6 Quellenverzeichnis

6.1 Allgemeines:

- BAETJER, D., Der Wasserhaushalt Nordwestdeutschlands. Schriftenreihe der Landwirtschaftskammer Weser-Ems, H. 4. Berlin-Hamburg 1968
- BENEKER, G., Gewässereuthrophierung durch Konzentration der Tierhaltung. Diplomarbeit aus dem Institut für Agrarökonomie. Göttingen 1974
- BOCK, H.H., Automatische Klassifikation. Studia Mathematica/ Mathematische Lehrbücher, Bd. 24. Göttingen 1974
- BOUSTEDT, O., Grundriß der empirischen Regionalforschung.

 Teil IV: Regionalstatistik. Tachenbücher zur Raumplanung, Bd. 7. Hannover 1976
- BROEDERS, W.M., Kronuitspraken hinderwet. Publicatieblad van de S.E.V. Ohne Ortsangabe, Juli 1976
- CONZE, E., Ökonomische Beurteilung von Maßnahmen zur Begrenzung der Umweltbelastung in der tierischen Produktion dargestellt am Beispiel der Schweinemast.

 Dissertation Göttingen 1975
- DUDAL, R., TAVERNIER, R. und OSMON, D., Soil Map of Europe
 1: 2.500.000. Hrsg. v.d. Food and Agriculture
 Organisation of the United Nations. Bd. 1: Map,
 Rom 1965. Bd. 2 Explanatory Text; Rom 1966
- EYSEL, H., Rechtsfragen zum Umweltschutz. Hrsg. v. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. KTBL-Schrift 211. Hiltr.p 1977
- FOERSTER, P. und NIESCHLAG, F., Klima und Boden als Standortfaktoren in der Landwirtschaft. Teil 2: Boden und Pflanzenbau in Weser-Ems in ihrer Abhängigkeit vom Klima. Schriftenreihe der Landwirtschaftskammer Weser-Ems, H. 8. Berlin-Hamburg 1971

- KERSTEN, L., Ansätze zur Harmonisierung der Mengenstatistik für Eier und Geflügelfleisch in der Gemeinschaft. Agrarstatistische Studien, Hrsg. v. SAEG, H. 15. Luxemburg 1973
- KOLENBRANDER, G.J. et al., Wetenschappelike basis voor een eventuele beperking van de toediening von dierlijke mest aan landbouwgrond. Ontwerp-rapport 0564.

 Haren 1975
- RAGER, K.TH., Abwassertechnische und wasserwirtschaftliche Probleme der Massentierhaltung. KTBL-Bauschrift, H. 11, Frankfurt/M. 1971
- SCHWERTMANN, U., Der landwirtschaftliche Anteil am Phosphateintrag in Gewässer und die Bedeutung des Bodens hierfür.

 Wasser und Abwasserforschung, H. 6, 1973
- STRAUCH, D., BAADER, W. und TIETJEN, C. (Hrsg.), Abfälle aus der Tierhaltung. Anfall, Umweltbelastung, Behandlung, Verwertung. Stuttgart 1977
- THIEDE, G., Agrarstatistisches Instrumentarium für regional gegliederte Untersuchungen in der EWG. Forschungsund Sitzungsperichte der Akademie für Raumforschung und Landesplanung, Bd. XX, Raum und Landwirtschaft,
 Teil 3. Hannover 1962, S. 115-147
- VANACKER, L., Bijdrage tot een planologische visie op de intensieve veehouderij in Belgic. Rijksuniversteit Gent,
 Hoger Instituut voor Stedebouw, Ruimtelijke Ordening en Ontwikkeling. Vervielfältigtes Manuskript, 1975
- VANACKER, L., Veredelingslandbouw en milieu: Mestverzadiging. CLEO-Schriften, Nr. 4. Heverlee, März 1974
- VETTER, H., und KLASINK, A., Einfluß starker Wirtschaftsdüngergaben auf Boden, Wasser und Pflanzen. Landwirtschaftliche Forschung, 25 (1975), H. 3, S. 249-268

- WINDHORST, H.-W., Spezialisierte Agrarwirtschaft in Südoldenburg. Eine agrargeographische Untersuchung. Leer 1975
 - . Agro Climatic Atlas of Europe. Hrsg. v. Pudoc Centre for Agricultural Publications and Documentation,
 Wageningen. Amsterdam, London, New York 1965
 - . Begriffs-Systematik für die landwirtschaftliche und gartenbauliche Betriebslehre. Hrsg. v. Hauptverband der landwirtschaftlichen Buchstellen und Sachverständigen, H. 14. 5. Aufl., Bonn-Beuel 1973
 - . Klimakunde des Deutschen Reiches. Hrsg. v. Reichsamt für Wetterdienst. Bd. II: Tabellen. Berlin 1939
 - . Regionalwirtschaftliche Struktur und Politik im Vereinigten Königreich. Hrsg. v.d. Kommission der Europ. Gemeinschaften, Generaldir. Regionalpolitik. Brüssel 1972
 - . Studie betreffende het vaststellen van maxima per hectare voor mest- en gier verspreiding op land-bouwgrond. Hrsg. v. Instituut voor Bodenvrucht-barheid Haren, Juni 1976
 - . Umweltgutachten 1974. Hrsg. v. Rat der Sachverständigen für Umweltfragen. Stuttgart-Mainz 1974
 - . Umweltschutz in Land- und Forstwirtschaft, 3. Teil: Tierische Produktion. Berichte über Landwirtschaft, N.F. 50 (1972), H. 3
 - . Veehouderij en hinderwet. Hrsg. v. Ministerie van Volksgezondheid en Milieuhygiene, Ministerie van van Landbouw en Visserij, Vereniging van Nederlandse Gemeenten, Landbouwschap. 0.0. u. J.
 - . World Atlas of Agriculture. Hrsg. v. Commitee for the World Atlas of Agriculture. Istituto Geografico de Agostini. Novarra 1969

6.2 Statistiken

6.2.1 Europäische Gemeinschaften

Statistisches Amt der Europäischen Gemeinschaften (SAEG):

Agrarstatistik Nr. 1 und 7, 1973.

Agrarstatistisches Jahrbuch 1972 und 1974.

Regionalstatistik, Jahrbuch 1972

6.2.2 <u>Bundesrepublik</u> <u>Deutschland</u>

Bundesministerium für Ernährung, Landwirtschaft und Forsten:

Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland, versch. Jg.

Statistisches Bundesamt:

Fachserie A: Bevölkerung und Kultur, Reihe 1: Gebiet und Bevölkerung, Teil IV: Bevölkerung der Gemeinden 1974.

Fachserie B: Land- und Forstwirtschaft, Fischerei, Reihe 1: Bodennutzung und Ernte, und Reihe 2: Viehwirtschaft, versch. Jg.

Statistisches Jahrbuch für die Bundesrepublik Deutschland 1973 und 1976.

Niedersächsisches Landesverwaltungsamt - Statistik:

Rindvieh, Schweine und Geflügel nach Betriebs- und Bestandsgrößenklassen 1973 (unveröffentlichte Ergebnisse auf Kreisebene).

Statistik von Niedersachsen: Bodennutzung und Ernte, versch. Jg.

Statistische Monatshefte Niedersachsen, versch. Jg.

Landesamt für Datenverarbeitung und Statistik Nordrhein-Westfalen:

Rindvieh, Schweine und Geflügel nach Betriebs- und Bestandsgrößenklassen 1973 (unveröffentlichte Ergebnisse auf Kreisebene).

Beiträge zur Statistik des Landes Nordrhein-Westfalen: Die Landwirtschaft in Nordrhein-Westfalen, versch. Jg.

6.2.3 Frankreich

Ministère de l'Agriculture, Direction Générale de l'Administration et du Financement, Service Central des Enquêtes et Etudes Statistiques (SCEES):

Recensement Général de l'Agriculture 1970-71, Fascicules Départementaux, vol. 22, 29, 35, 40, 56.

Statistiques Agricoles, Suppl. "Série études".

Institut National de la Statistique et des Etudes Economiques (INSEE):

Annuaire Statistique de la France, versch. Jg.

Cahiers Régionaux, versch. Jg.

Recensement Général de la Population de 1975.

Service Régional de Statistique Agricole à Rennes:

Annuaire Statistique Régionale 1973, Bretagne.

6.2.4 Italien

Istituto Centrale di Statistica (ISTAT):

2° Censimento Generale dell'Agricoltura 25 ottobre 1970.

vol. I: Dati riassuntivi su alcune principali caratteristiche strutturali delle aziende (dati provvisori), 1971;

- vol. II: Dati sulle caratteristiche strutturali delle aziende:
 - a) Dati regionali e provinciali (Lombardia, Veneto, Emilia-Romagna, Umbria, Toscana), 1972;
 - b) Dati provinciali e comunali, fasc. 11 (Milano), 13 (Brescia), 15 (Cremona), 16 (Mantova), 19 (Verona), 22 (Treviso), 36 (Reggio nell'Emilia), 37 (Modena), 1972;

vol. III: Coltivazioni, 1973;

vol. IV: Bestiame, 1974.

Annuario Statistico Italiano, versch. Jg.

Annuario di Statistica Agraria, versch. Jg.

Annuario di Statistiche Zootecniche, versch. Jg.

Annuario di Statistiche Meteorologiche, 1970 und 1974.

Bollettino Mensile di Statistica, versch. Jg.

Circoscrizioni Statistiche: Metodi e Norme. Serie C, Nr. 1, August 1958.

6.2.5 Niederlande

Centraal Bureau voor de Statistiek:

Jaarcijfers voor Nederland, versch. Jg.

Maandstatistiek van de Landbouw, versch. Jg.

Agrarische Bedrijfstypen, 1971 und 1972.

Algemene Milieustatistiek, 1973.

Vieharten nach Betriebs- und Bestandsgrößenklassen (unveröffentlichte Ergebnisse der Landbouwtelling Mei 1970). Centraal Bureau voor de Statistiek und Landbouw-Economisch Instituut:

Landbouwcijfers, versch. Jg.

Koninklijk Nederlands Meteorologisch Instituut:

Unveröffentlichte Klimadaten.

6.2.6 Belgien

Institut National de Statistique, Ministère des Affaires Economiques:

Annuaire Statistique de la Belgique, versch. Jg.

Bulletin de Statistique, versch. Jg.

Statistiques Agricoles, versch Jg.

Bodennutzung (unveröffentlichte Ergebnisse).

Rindvieh- und Schweinebestände nach Betriebs- und Bestandsgrößenklassen 1974 (unveröffentlichte Ergebnisse).

Ministère de l'Agriculture, Institut Economique Agricole (IEA):

Landbouwstatistieken, versch. Jg.

Statistiques de l'IEA, versch. Jg.

6.2.7 <u>Vereinigtes Königreich</u>

Central Statistical Office, HMSO:

Annual Abstract of Statistics, versch. Jg.

Ministry of Agriculture, Fisheries and Food, HMSO:

Agricultural Statistics England and Wales, versch. Jg.

Vieharten nach Betriebs- und Bestandsgrößenklassen 1972 (unveröffentlichte Ergebnisse).

Department of Agriculture and Fisheries for Scotland, HMSO:

Agricultural Statistics Scotland, versch. Jg.

Ministry of Agriculture, Fisheries and Food, Department of Agriculture and Fisheries for Scotland, Ministry of Agriculture Northern Ireland:

Agricultural Statistics United Kingdom, versch. Jg.

6.2.8 Irland

Central Statistics Office:

Irish Statistical Bulletin, versch. Jg.

6.2.9 <u>Dänemark</u>


Det Statistiske Departement:

Statistisk Årbog, versch. Jg.

Statistiske Efterretninger, versch. Jg.

Landbrugsstatistik herunder Gartneri og Skovbrug, versch. Jg.

Vieharten nach Betriebs- und Bestandsgrößenklassen 1974 (unveröffentlichte Ergebnisse).

Inhaltsverzeichnis

- Übers. A 1 Kennziffern und Namen der 300 Teilregionen der EG
- Übers. A 2.1 Landw. genutzte Fläche in ha und Bestände an Tieren in Stück in den Teilregionen
- Übers. A 2.2 Landw. genutzte Fläche in ha und Besatz an Tieren in Stück je 100 ha LF in den Teilregionen
- Übers. A 2.3 Landw. genutzte Fläche in ha und Besatz an Tieren in GVE je 100 ha LF in den Teilregionen
- Übers. A 3.1 Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Tierarten zusammen (GVE/ 100 ha LF
- Übers. A 3.2 Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Rinder ($GVE_R/100$ ha LF)
- Übers. A 3.3 Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Schweine (GVE_S/100 ha LF)
- Übers. A 3.4 Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Hühner (GVE $_{\rm H}/100$ ha LF)
- Übers. A 3.5 Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Schweine und Hühne (GVE_{S+H}/ 100 ha LF)
- Übers. A 3.6 Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Schafe und Ziegen (GVE_{S+Z}/ 100 ha LF)
- Abb. A 1 Verteilungen der 300 Teilregionen der EG auf je 50 gleichbreite Größenklassen der Viehdichte (GVE/ 100 ha LF) bei verschiedenen Tierarten
- Übers. A 4.1 Teilregionen der EG mit der höchsten Dichte der Viehbestände zusammen
- Übers. A 4.2 Teilregionen der EG mit der höchsten Dichte der Schweine- und Hühnerbestände
- Übers. A 4.3 Teilregionen der EG mit der höchsten Dichte der Hühnerbestände
- Abb. A 2.1 Viehdichte in der EG
- Abb. A 2.2 Dichte der Schweine- und Hühnerbestände in der EG
- Abb. A 2.3 Hühnerdichte in der EG
- Übers. A 5 Verzeichnis der Untersuchungsgebiete und Regionsaggregate mit den in den Karten verwendeten abgekürzten Regionsnummern

Übersicht A 1: Kennziffern und Namen der 300 Teilregionen der EG

Lfd.Nr. der Region	Kenn ziff		Name	Lfd. Nr. der Region	Ken zif		Name
-	100	000	Bundesrepublik Deutschland	33	110	000	Saarland
1	101	000	Schleswig-Holstein	34	111	000	Berlin (West)
2	102	000	Hamburg				
	103	000	Niedersachsen	_	200	000	Frankreich
3	103	010	Hannover				
4	103	020	Hildesheim	_	201	000	Nord
5	103		Lüneburg	35	201	010	Nord
6	103		Stade	36	201	020	Pas-de-Calais
7	103	050	Osnabrück		202	000	Dicamiic
8	103		Aurich	-		000	Picardie
9	103		Braunschweig	37 30		010	Aisne
10	103		Oldenburg	3 8		020	Oise
			_	39	202	030	Somme
11	104	000	Bremen	-	203	000	Région Parisienne
-	105	000	Nordrhein-Westfalen	40	203	010	Seine-et-Marne
12	105	010	Düsseldorf	41	203	020	Ile-de-France
13	105	020	Köln	_	204	000	Centre
14	105	030	Münster	42		010	Cher
15	105	040	Detmold	43		020	Eure-et-Loir
16	105	050	Arnsberg	44		030	Indre
_	106	000	Hessen	44 45		040	Indre-et-Loire
17	106		Darmstadt	45 46		050	Loir-et-Cher
18	106		Kassel	47		060	Loiret
10				77			
-	107		Rheinland-Pfalz	-	-	000	Haute Normandie
19	107		Koblenz	48	205	010	Eure
20	107		Trier	49	205	020	Seine-Maritime
21	107	030	Rheinhessen-Pfalz	-	206	000	Basse Normandie
_	108	000	Baden-Württemberg	50	206	010	Calvados
22	108	010	Nordwürttemberg	51	206	020	Manche
23	108	020	Nordbaden	52	206	030	Orne
24	108	030	Südbaden		207	000	Dratama
25	108	040	Südwürttemberg-Hohenzollern	- 53		000 010	Bretagne Côtes-du-Nord
_	109	000	Bayern	54		020	Finistère
- 26	109		Oberbayern	55 55		030	Ille-et-Vilaine
20 27	109		Niederbayern	56		040	Morbihan
28	109		Oberpfalz	90			Morbinan
			Oberfranken	-	208	000	Pays de la Loire
29 30	109		Mittelfranken	57		010	Loire-Atlantique
30 31	109 109			5 8		020	Maine-et-Loire
31 32			Unterfranken	59		030	Mayenne
32	109	010	Schwaben	60	208	040	Sarthe
				61	208	050	Vendée

Übersicht A 1: Kennziffern und Namen der 300 Teilregionen der EG (Forts.)

Lfd. Nr. der Region	Kenn- ziffer	Name	Lfd. Nr. der Region	Kenn- ziffer	Name
_	209 000	Poitou-Charentes	_	217 000	Bourgogne
62	209 010	Charente	96	217 010	Côte d'Or
63	209 020	Charente-Maritime	97	217 020	Hievre
64	209 030	Deux Sèvres	98	217 030	Saône-et-Loire
65	209 040	Vienne	99	217 040	Yonne
-	210 000	Limousin	-	218 000	Avergne
66	210 010	Corrèze	100	218 010	Allier
67	210 020	Creuse	101	21 8 0 2 0	Cantal
6 8	210 030	Haute-Vienne	102	218 030	Haute-Loire
-	211 000	Aquitaine	103	218 040	Puy-de-Dôme
69	211 010	Dordogne	-	219 000	Rhône-Alpes
70	211 020	Gironde	104	219 010	Ain
71	211 030	Landes	105	219 020	Ardèche
72	211 040	Lot-et-Garonne	106	219 030	Drôme
73	211 050	Pyrénées-Atlantiques	107	219 040	Isère
	212 000	_	108	219 050	Loire
-		Midi Pyrénées	109	219 060	Rhône
74 75	212 010	Ariège	110	219 070	Savoie
75 76	212 020	Aveyron	111	219 080	Haute-Savoie
76	212 030	Haute-Garonne			Tananada - Bana
77	212 040	Gers	440	220 000	Languedoc-Rous.
78 70	212 050	Lot	112	220 010	Aude
79	212 060	Hautes-Pyrénées	113	220 020	Gard
80	212 070	Tarn	114	220 030	Herault
8 1	212 080	Tarn-et-Garonne	115	220 040	Lozère
-	213 000	Champagne	116	220 050	Pyrénées-Orientales
82	213 010	Ardennes	-	221 000	Provence-Côte d'Azur, Corse
83	213 020	Aube	117	221 010	Alpes de Haute Provence
84	213 030	Marne	11 8	221 020	Hautes-Alpes
85	213 040	Haute-Marne	119	221 030	Alpes Maritimes
_	214 000	Lorraine	120	221 040	Bouches du Rhône
86	214 010	Meurthe-et-Moselle	121	221 050	Var
87	214 020	Meuse	122	221 060	Vaucluse
88	214 030	Moselle	123	221 070	Corse
89	214 040	Vosges			
_	215 000	Alsace	_	300 000	Italien
- 90	215 000	Bas-Rhin	-	J00 000	10011011
91	215 010	Haut-Rhin	124	301 000	Piemonte
_	216 000	Franche-Comte	125	302 000	Valle d'Aosta
92	216 010	Doubs	126	303 000	Liguria
93	216 020	Jura			-
94	216 030	Haute-Saône	127	304 000	Lombardia
9 5	216 040	Belfort	128	305 000	Trentino-Alto Adige
))	_,0 0+0				

<u>Übersicht A 1:</u> Kennziffern und Namen der 300 Teilregionen der EG (Forts.)

Lfd. Nr. der Region	Kenn- ziffer	Name	Lfd. Nr. der Region	Kenn- ziffer	Name
129	306 000	Veneto	-	500 000	Belgien
130	307 000	Friuli-Venezia Giulia	156	501 000	Antwerpen
131	308 000	Emilia Romagna	157	502 000	Brabant
132	309 000	Marche	1 5 8	503 000	Hainaut
133	310 000	Toscana	159	504 000	Liège
134	311 000	Umbria	160	505 000	Limburg
135	312 000	Lazio	161	506 000	Luxembourg
136	313 000	Campania	162	507 000	Namur
137	314 000	Abruzzi	163	508 000	Oost-Vlaanderen
13 8	315 000	Molise	164	509 000	West-Vlaanderen
139	316 000	Puglia		2.2	
140	317 000	Basilicata	165	600,000	T
141	318 000	Calabria	165	600 000	Luxemburg
142	319 000	Sicilia			
			-	700 000	Vereinigtes Königreich
143	320 000	Sardegna	-	701 000	Eastern
			166	701 010	Cambridgeshire
_	400 000	<u>Niederlande</u>	167	701 020	Huntingdon a. Peterborough
144	401 000	Groningen	168	701 030	Norfolk
145	402 000	Friesland	169	701 040	Suffolk
146	403 000	Drenthe	- 170	702 000 702 010	South-Eastern Bedfordshire
			170	702 010	Berkshire
147	404 000	Overijssel (o. NOP)	172	702 030	Buckinghamshire
14 8	405 000	Gelderland	173	702 040	Essex
149	406 000	Utrecht	174	702 050	Gr. London (East)
150	407 000	Noord-Holland	175	702 060	Gr. London (South-East)
151	408 000	Zuid-Holland	176	702 070	Hampshire
	409 000	Zeeland	177 178	702 080 702 090	Isle of Wight Hertfordshire
152			179	702 090	Kent
153	410 000	Noord-Brabant	180	702 110	Oxfordshire
154	411 000	Limburg	181	702 120	Surrey
155	412 000	Landbouwgebieden	182	702 130	Sussex (East)
			183	702 140	Sussex (West)
			-	703 000	East-Midland
			184	703 010	Derbyshire
			185	703 020	Leicestershire
			186	703 030	Lincolnshire-Holland
			187	703 040	Lincolnshire-Kesteven
			188	703 050	Northampshire
			189 100	703 060	Nottinghamshire
			190	703 070	Rutland

Übersicht A 1: Kennziffern und Namen der 300 Teilregionen der EG (Forts.)

Lfd. Nr. der Region	Kenn- ziffer	Name	Lfd. Nr. der Region	Kenn- ziffer	Name
_	704 000	West-Midland	_	709 020	North-East
191	704 010	Herefordshire	231	709 021	Aberdeen
192	704 020	Shropshire	232	709 022	Banff
193	704 030	Staffordshire	233	709 023	Caithness
194	704 040	Warwickshire	234	709 024	Kincardine
195	704 050	Worcestershire	235	709 025	Moray
	, -		236	709 026	Nairn
-	705 000	South-Western	237	709 027	Orkney
196	705 010	Cornwall (ohne Scilly)	-21		•
197	705 020	Devon		709 030	East-Central
198	705 030	Dorset	238	709 031	Angus
199	705 040	Gloucestershire	239	709 032	Clackmannan
200	705 050	Somerset	240	709 033	Fife
201	705 060	Wiltshire	241	709 034	Kinross
_	706 000	Northern	242	709 035	Perth
202	706 010	Cumberland	-	709 040	South-East
203	706 020	Durham	243	709 041	Berwick
204	706 030	Northumberland	244	709 042	East-Lothian
205	706 040	Westmorland	245	709 043	Midlothian
206	706 050	North Riding	246	709 044	Peebles
_	707 000	Yorks & Lancashire	247	709 045	Roxburgh
- 207	707 000	Cheshire	24 8	709 046	Selkirk
207 20 8	707 010	Lancashire	249	709 047	West-Lothian
208	707 020			709 050	South-West
209 210	707 040	Lincolnshire-Lindsey East Riding	- 250		
210		•		709 051	Ayr
211	707 050	West Riding	251	709 052	Bute Dumfries
-	708 000	Wales	252	709 053	
212	708 010	Anglesey	253 254	709 054	Dunbarton
213	708 020	Breconshire	254	709 055	Kirkcudbright
214	708 030	Caernarvonshire	255	709 056	Lanark
215	708 040	Cardiganshire	256	709 057	Renfrew
216	708 050	Carmarthenshire	257	709 058	Stirling
217	708 060	Denbigshire	25 8	709 059	Wigtown
218	708 070	Flintshire	259	710 000	Northern Ireland
219	708 080	Glamorgan			
220	708 090	Merioneth	-	800 000	<u>Irland</u>
221	708 100	Monmouthshire	_	801 000	Leinster
222	708 110	Montgomeryshire	260	801 010	Carlow
223	708 120	Pembrokeshire	261	801 020	Dublin
224	708 130	Radnorshire	262	801 030	Kildare
225	708 140	Isle of Man	263	801 040	Kilkenny
_	709 000	Scotland	264	801 050	Laoighis
_	709 010	Highland	265	801 060	Longford
226	709 011	Argyll	266	801 070	Louth
227	709 012	Inverness	267	801 080	Meath
228	709 012	Ross and Cromarty	268	801 090	Offalv
229	709 014	Sutherland	269	801 100	Westmeath
230	709 015	Zetland	270	801 110	Wexford
-20	, 5, 5,		271	801 120	Wicklow
			-, ,	20	

Übersicht A 1: Kennziffern und Namen der 300 Teilregionen der EG (Forts.)

Lfd. Nr. der Region	Kenn- ziffer	Name
_	802 000	Munster
272	802 010	Clare
273	802 020	Cork
274	802 030	Kerry
275	802 040	Limerick
276	802 050	Tipperary N.R.
277	802 060	Tipperary S R.
278	802 070	Waterford
-	803 000	Connacht
279	803 010	Galway
280	803 020	Leitrim
281	803 030	Mayo
282	803 040	Roscommon
283	803 050	Sligo
-	804 000	Ulster (Teil)
284	804 010	Cavan
285	804 020	Donegal
286	804 030	Monagham
	000 000	D#:
-	900 000	<u>Dänemark</u>
-	901 000	Øerne
287	901 010	København
2 88	901 020	Frederiksborg
289	901 030	Roskilde
290 201	901 040 901 050	Vestsjælland Storstrømen
291 292	901 050	Bornholm
293	901 070	Fyn
		-
- 20/:	902 000	Jylland
294 205	902 010 902 020	Sønderjylland Ribe
295 296	902 020	Vejle
290 297	902 040	Ringkøbing
298	902 050	Århus
299	902 060	Viborg
300	902 070	Nordjylland
- '		JJ

LANCH. GENUTZTE FLAECHE IN HA UND BESTAENDE AN TIEREN IN STUECK IN DEN TEILREGIONEN

	j	ICENTIFIKATON			I HEKTAR LF	RINDER	SCHWEINE	FUEFNER	ISCHAFE/ZIEG.
0 0 0 0 1152281.CO 1421061.0O 1598057.CC 15025.CO 1 1779.CC 116.CC 1 16.CC 1 1					(1)	(2)	(3) I	(4)	(5) 1
0 C C 116CECC 15CFO 14798 CC 146CC CC 146CC CC 146CC CC 146CC CC 1475		O	0	ပ	I 1152381.CO I	1421061.00	1598057.CC I	50125.CO	I 95848.0C
0 C 116556.CC 17752.CC 17762.CC	2	0	0	၁	1 31C55.CC I	15699.00	14798.00	60.0	1 1758.
0 0 118C27.CC 1566.CC 9388.CC 2547.CC 1566.CC 9388.CC 2547.CC 1566.CC 9388.CC 2547.CC 25631.CC 2564.2CC 25642.CC	4		ပ	ပ	1 16058.00 1	16605.00 I	7792.CC I	775.00	8
0	0		ပ	O	1 118627.60 1	11915.00	76112.0G I	8083.00	1 10001.00
0		ပ	0	ပ	1 4175.00	1506.00	9358.00	2547.00	J3.287 I
2 0 0 1 262831.00 1 183505.00 1 322820.00 1 12126.00 1 4 0 0 1 536811.00 1 36512.00 1 36712.00 1 39324.00 1 37331.00 1 36496.00 1 81305.00 1 1 184311.00 1 36996.00 1 36712.00 1 1 184311.00 1 36996.00 1 121018.00 1 36712.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m	7	0	0	1 418643.CC	361055.00	1101386.00 1	52782.00	1 21661.CC
4 C 536801.00 36712.00 759974.00 29005.00 4 C 1461181.00 13531.00 1366496.00 81305.00 7 O 184331.00 1366496.00 81305.00 8 O 244136.00 22521.00 121018.00 9822.00 1 184331.00 70025.00 121018.00 81205.00 81205.00 1 184331.00 70055.00 121018.00 81225.00 81205.00 2 0 184331.00 70055.00 121018.00 81225.00 1 0 184331.00 70055.00 121018.00 81225.00 2 0 31805.00 70055.00 121018.00 81225.00 3 0 41235.00 12666.00 124996.00 24944.00 4 0 1412354.00 141910.00 225833.00 5 0 26186.00 1441910.00 225833.00 1 0 1412354.00 141910.00 225833.00	6	7	0	0	I 262831.00 I	183505.00	322820.00 I	12126.00	1 24479.0C
6 C C 241181.CC 318531.00 1360496.00 81305.00	9	m	ပ	ပ	1 5368C1.CC	368412:00	759974.00 I	29005.00	1 2
6 C C 244136.CC 322921.CO 1336496.OO 181305.CO 1 184351.CC 1 322921.CO 1 1282953.CC 1 33246.CO 1 398588.CO 1 1282953.CC 1 333246.CO 1 31866.CC 3 36662.CO 1 723596.CO 1 28744.CO 1 37574.CC 318657.OO 1 265690.OO 1 24994.CC 1 37574.CC 318657.OO 1 265690.OO 1 24994.CC 1 412354.CC 1 318657.OO 1 265690.OO 1 24994.CC 1 37574.CC 318657.OO 1 265690.OO 1 24994.CC 1 365960.OO 1 1177758.CC 1 365960.OO 1 22583.CO 1 1177758.CC 1 325960.OO 1 22583.CO 1 117000.CC 1 325960.OO 1 326960.OO 1 32	~	4	ပ	ပ	1 461181.CC	588427.00 [649510.0C	36712.00	1 I 11456.
6 C C I 244136.CC 322521.CO 100851.00 5365.CC 8 0 0 184351.CC 76225.00 121018.00 9822.00 1 0 C 398568.CC 515698.00 1282953.CC 133246.CC 2 0 C 37574.CC 316657.00 265650.00 24954.00 4 C C 412354.CC 316677.00 1659662.CC 28744.00 5 0 C 472354.CC 31657.00 141910.00 24954.00 1 0 C 472354.CC 35526.CO 141910.00 22583.CO 2 C C 434762.CC 453597.00 441910.00 22583.CO 1 0 C 325362.CC 453597.00 441910.00 22583.CO 2 C C 434762.CC 453597.00 311718.0C 18130.CO 1 C C 22711.CC 23695.00 311718.0C 18130.CO 2 C C 244764.CC 156806.CO 227743.CC 25528.0C 2 C C 244764.CC 156806.CO 227443.CC 25528.0C 3 C C 341764.CC 156806.CO 227743.CC 25528.0C 4 C D 414611.CC 237555.00 406204.00 17346.CC 5 C D 247764.CC 165516.CC 238268.OO 17346.CC 6 C 247764.CC 165516.CC 238268.OO 17346.CC 7 C D 747611.CC 747655.00 766204.00 15651.CO 8 C D 747611.CC 176516.CC 165516.OO 17346.CC 8 C D 747611.CC 176516.CC 165516.OO 17346.CC 9 C D 747611.CC 176516.CC 165516.OO 17346.CC 10 C D 1747611.CC 176516.OO 174611.CO 11 C C 1747611.CC 176516.OO 174611.CO 12 C D 1747611.CC 176516.OO 174611.CO 13 C D 1747611.CC 176516.OO 174611.CO 14 C D 1747611.CC 176516.OO 176616.OO 176611.CO 14 C D 1747611.CC 176516.OO 176611.CO 176611.CO 15 C D 1747611.CC 176616.OO 176616.OO 176611.CO 16 C D 1747611.CC 176616.OO 176616.OO	•	Ŋ	0	0	284	3/3531.00	1360496.00 I	81305.00	1 7004.00
7 0 0 1 184351.CC 7CC25.00 121018.00 9822.00 1	(F)	Ŷ	ပ	U	1 244136.CC	322521.60	190851.00	5365.00	1 6248.CC
8 0 0 1 3985E8.CC 515658.00 1282953.CC 13324C.CO 1 28744.00 2 37574.CC 318657.00 265690.00 24994.00 2 488638.0C 318657.00 265690.00 24994.00 2 65690.00 2 6583.CC 2 37574.CC 3 252C.CO 1177758.CC 2 5513.CC 2 513.CC	60	7	0	o	1 184351.00 1	70055.00	121018.00 1	9822.00	1 15798.00
1 0 C 1 375574.CC 1 318657.00 1 265690.00 1 24994.00 1 1 1 2 0 C 1 375574.CC 1 318657.00 1 265690.00 1 24994.00 1 1 25690.00 1 24994.00 1 1 25690.00 1 24994.00 1 1 25690.00 1 24994.00 1 1 25690.00 1 257743.00 1 266000.00 1 26600.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 266000.00 1 26600	~	ω	0	0	1 3985E8.CC 1	515698.00	1282953.0C I	133246.00	1 8722.00
2 0 C 1 37574.CC 1 318657.00 1 265660.00 1 24994.00 1 4 C 0 1 412354.CC 1 38592C.CO 1 117758.CC 1 55213.CC 1 5 0 0 1 305696.CC 1 38592C.CO 1 117758.CC 1 25583.CO 1 1 C C 1 501326.CC 1 453597.00 1 441910.00 1 22583.CC 1 1 C C 1 434762.CC 1 428116.CO 1 771558.CC 1 170CC.CC 1 1 0 0 1 325362.CC 1 253695.OO 1 311718.OC 1 18130.OO 1 2 C C 1 23711.CC 1 227544.CO 1 204164.OO 1 5722.CC 1 2 C C 1 247764.CC 1 63596.CO 1 204164.OO 1 32559.CC 1 2 C C 1 247764.CC 1 63596.OO 1 881203.OO 1 32559.CC 1 3 C C 1 247764.CC 1 1568CC.CO 1 227743.CC 1 25528.CC 1 2 C C 1 247764.CC 1 1568CC.CO 1 204164.OO 1 32559.CC 1 3 C C 1 247764.CC 1 1568CC.CO 1 204164.OO 1 32559.CC 1 3 C C 1 247764.CC 1 1568CC.CO 1 207763.CC 1 25528.CC 1 3 C C 1 247764.CC 1 16516.CC 1 238268.OO 1 17346.CC 1 3 C C 1 247764.CC 1 27555.CO 1 406204.OO 1 15491.CC 1 4 C C 1 277066.CC 1 238268.OO 1 20416.CC 1 17346.CC 1 5 C C 1 247764.CC 1 25655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 247764.CC 1 25655.CO 1 406204.OO 1 15491.CC 1 5 C C 1 24776.CC 1 27655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 24776.CC 1 27655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 15491.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 17706.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 17706.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 17706.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 17706.CC 1 5 C C 1 27706.CC 1 276506.CC 1 27706.CC 1 27706.CC 1 5 C C 1 27706.CC 1 27655.CO 1 206204.OO 1 17706.CC 1 5 C C 1 27706.CC 1 2770	10	-	0	ပ	1 3118CC.CO	306062.00	723596.CO I	28744.00	1 31144.CC
3 C C 1488438.0C 156187C.00 1177758.0C 155213.0C 4 C 0 1412354.0C 135522.0O 1117758.0C 155213.0C 1 C 1305656.0O 1233226.0O 141910.0O 125583.0O 1 2 C 1434762.0C 1428116.0O 171558.0C 17000.0C 17000.0C 1 O 135362.0C 1227544.0O 171558.0C 17000.0C 17000.0C 2 C 122711.0C 1227544.0O 171558.0C 17150.0C 17150.0C 3 C 122711.0C 1227544.0O 1204104.0O 15722.0C 17150.0C 3 C 122774.0C 1227743.0C 12528.0C 17746.0C 1 C 124764.0C 125764.0O 127743.0C 12558.0C 2 C 124764.0C 125764.0O 127743.0C 12558.0C 3 C 124764.0C 125764.0O 125763.0C 125763.0C 4 C 126	S	7	0	ပ	1 375574°CC 1	318657.00	265690.00	24994.00	I 48891.00
4 C 0 1 412354.CC 1 3552C.CO 1 117756.CC 1 55213.CC 1 1 C C 1 501326.CC 1 453597.00 1 641682.00 1 22583.00 1 1 C C 1 434762.CC 1 428116.CO 1 771558.CC 1 170CG.CC 1 1 0 0 1 325362.CC 1 253695.00 1 311718.0C 1 170CG.CC 1 2 C C 1 23711.CC 1 227544.00 1 204104.00 1 5722.CC 1 3 0 C 1 341764.CC 1 15680C.CO 1 227743.CC 1 25528.0C 1 1 C C 1 247764.CC 1 63996.00 1 881203.00 1 32559.CO 1 2 C C 1 247764.CC 1 16516.CC 1 238268.00 1 17346.CC 1 3 0 C 1 414C11.CC 1 27555.00 1 406204.00 1 15541.CC 1 1 C C 1 247764.CC 1 165516.CC 1 238268.00 1 17346.CC 1 15680C.CC 1 17346.CC 1 15680C.CC 1 17346.CC 1 15680C.CC 1 17346.CC 1 15741.CC 1 15741.CC 1 1 15741.CC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S		ပ	ပ	1 488638.00 1	561870.00 I	1699062.00	65083.00	1 14426.
C SCI326.CO 253C26.00 441910.00 22583.00 C SCI326.CC 45357.00 641682.0C 40742.CC C 434762.CC 428116.CO 771558.0C 170CC.CC O 325362.CC 25365.00 311718.0C 18130.CO O 347764.CC 227544.00 204164.00 5722.CC O 23711.CC 227544.00 204164.00 5722.CC O 247764.CC 1566C.CO 227743.CC 25528.0C O 17766.CC 16516.CC 17766.CC 17366.CC O 17766.CC 17766.CC 17766.CC 17766.CC O 17766.CC	ľ	-	ပ	0	I 412354.CC	365520.00	1177758.00 1	55213.00	2:
1 C C I 501326.CC I 453597.00 I 641682.0C I 40742.CC I 1 325362.CC I 253695.00 I 311718.0C I 170C0.CC I 2 C C I 232711.CC I 227544.00 I 204104.00 I 5722.CC I 3 O C I 341764.CC I 15680C.CO I 227743.CC I 25528.0C I 1 C C I 247764.CC I 15680C.CO I 881203.00 I 32555.CO I 2 C C I 247764.CC I 16516.CC I 838268.00 I 17346.CC I 3 C C I 247764.CC I 16516.CC I 237655.00 I 406204.00 I 15491.CO I 3 C C I 247764.CC I 165516.CC I 238268.00 I 17346.CC I 4 C C I 247764.CC I 165516.CC I 238268.00 I 17346.CC I 1	5		0	0	1 305696.C0 I	253626.00	441910.00 1	22583.00	37557.00
2 C C 434762.CC 428116.CO 771558.0C 17000.0C 1 0 0 325362.0C 233655.0O 311718.0C 18130.0O 2 C C 232711.0C 227544.0O 204104.0O 5722.0C 1 0 C 341764.0C 15600.0C 127743.0C 25528.0C 1 0 C 587250.0C 633596.0O 881203.0O 32559.0C 2 C C 144011.0C 370555.0O 406204.0O 17346.0C 3 C O 517000.0C 16516.0C 238268.0O 17346.0C 4 O O 517000.0C 165585.0O 620526.0O 25471.0O 1 25471.0O	•	-	ပ	ပ	1 5C1326.CC 1	453597.00	641682.0C I	40742.CC	1 57890.00
1 0 0 1 325362.CC 1 223544.00 1 311718.0C 1 18130.CO 1 2 C C 1 23711.CC 1 227544.00 1 204164.00 1 5722.CC 1 3 0 C 1 341764.CC 1 1568CC.CO 1 227743.CC 1 25528.OC 1 1 C C 1 58725C.CC 1 633996.00 1 881203.00 1 32559.CC 1 2 C C 1 242764.CC 1 165516.CC 1 238268.CO 1 17346.CC 1 3 C C 1 414611.CC 1 376555.00 1 406204.00 1 15491.CC 1 4 0 0 1 517CC6.CC 1 625885.CC 1 620526.00 1 25471.CO 1	9	2	ပ	ပ	1 434762.CC	428116.00	771558.00 1	17000.00	1 48532.CC
2 C C I 232711.CC I 227544.00 I 204164.00 I 5722.CC I	-	-	0	0	1 325362.00	253695.00	311718.0C I	18130.00	1 27505.00
3 0 C I 341764.CC I 1568CC.CO I 227743.CC I 25528.0C I 1 C C I 58725C.CC I 633596.0O I 881203.0O I 32559.CO I 2 C C I 242764.CC I 165516.CC I 238268.OO I 17346.CC I 3 C O I 414011.CC I 370555.0O I 406204.OO I 15491.CO I 4 O O I 517CC6.CC I 625985.CO I 620526.OO I 25471.CO I	2	7	ပ	ပ	1 232711.CC	227544.00	2041C4.00 I	5722.00	
2 C 0 1 24725C.CC 1 633596.00 1 881203.00 1 32559.CO 1	~	m	0	O	1 341764.CC	1568CC.CO I	227743.CC I	25528.00	24356.
2 C 0 I 242764.CC I 165516.CC I 238268.CO I 17346.CC I I 1746.CC I I 1746.CC I I 1746.CC I I I 1746.CC I I I 1746.CC I I I 1746.CC I I I 1740.I I I 1740.I I I 1740.I I I I I I I I I I I I I I I I I I I	œ	1	ပ	ပ	1 58725C.CC	63356.00	881203.00 I	32559.00	1 59502.
3 C 0 I 414C11.CC I 37C555.00 I 406204.00 I 15491.C0 I I 4 C 0 0 I 517CC6.CC I 625985.CO I 62C526.00 I 25471.CO I	αu		ပ	0	1 242764.00	169516.00	238268.00 I	17346.00	1 15957.CC
4 0 0 1 517CC6.CC 1 625985.CO 1 62C526.0O 1 25471.CO	8		O	0	1 414011.00	376555.00	406204.00 I	15491.00	1 18850.00
	ထ	4	O	0	1 517006.00	625985.00	620526.00 I	25471.00	I 47284.CC

	45C18.CC I	26562.CC I	11652.00 1	10551.CC I	3C795.CC I	36713.CC I	32135.CC I	C7547.CC I
	1 508789.00 I 1173241.00 I 588169.00 I 31718.00 I 45018.00 I	1 613382.CC 686815.CO 842688.00 57062.CC 26562.CC	1 454656.CC 1 448CC8.CO 1 4C2350.00 1 361C5.CO 1 11652.CC	36CC14.CC 34582C.00 356362.0C 8262.CC 1C551.CC	1 353565.C0 1 453126.00 1 623923.00 1 16502.00 1 3C795.CC 1	1 4C4657.CC 1 328111.CC 1 532668.CC 1 13413.CC 1 36713.CC	I 6038CC.CC I 516425.0C I 575878.0C I 16161.CC I 32135.CC	113455856.C1 1138519C3.CC 12CC28185.C2 I 997124.CC I 967547.CC I
	I 9C8789.CO I 1173241.CO I 588169.CO I	1 613362.CC 1 686815.CO 1 842688.0O I	4C2350.00 I	1 36CC14.CC 1 34582C.CO 1 356362.CC 1	623923.00 I	532668.CC I	575878.0C I	2CC28185.02 I
	1173241.00	686815.00	448008-00	345820.00	453126.00	328111.00	\$16425.0C I	13651503.00
	1 508785.00	I 613382.CC	I 454656.CO	1 36CC14.CC	1 353585.00	I 4C4657.CC	1 663866.66	113455856.01
ts.)	72 1 9 1 C C	ပ	0	ပ	0	၁	ပ	
BR Deutschland (Forts.)	ပ	72 1 9 2 0 C	72 1 9 3 0	72 1 9 4 C C	72 1 9 5 0 0	72 1 9 6 0 C	72 1 9 7 C C	æ.
and	-	7	m	4	ĸ	ę	1	NSOM
schl	5	5	σ	5	5	Ç.	5	STAATENSUMME
Deut	-	-	1	-	-	1	-	ST
BR	72	7.2	12	72	7.2	12	72	

Frankreich

ISCHAFE/ZIEG. I	(5)	33500.00	1 632CC.CC	40	72500.00	2	57800.00	18200.00	155400.00	36100.00	221500.00	71200.00	05.00.00	567C0.CC	61100.00	23000.00	23900.00	79.00.84	33200.00	41300,00	17000.00	26000.00	27500.00	70004	151200.00	31200.00	38000.00	96800.00
I FLEFNER	(4)	1 10	22010.00	9433.00	5	721.	4	61.				20438.00	0438.0	39303.00	17253.00	005.0	11005.00	20438.00	144	457.	4328.	20°C	80.5	987C.	42448.CC	40875.00	25154.00	75456.00
I SCHWEINE	(3)	547700.00	00.008559	800.	5600.0	182100.00	300.	0.000	. ~ .	200	24800.00	58700.00	30.0005€	45000.00	101100.00	8700.0	100700.00	117700.00	91000.00	0.0	1330100.00	3300.0	700.0	0.0008	112500.00	257800.00	126800.00	187700.00
RINDER	(5)	514952.00	580514.00	i un i	C515.00	356464.00	0	356.0	220733.00	115057.00	201568.00	175955.00	00*69955	116393.00	336255.00	748324.00	564487.00	756656.00	625045.00	80.	732662.00	106.00	583318.00	3865.0	622343.00	764584.00	513765.00	707531.00
I HEKTAR LF 1	3	425600.00	545400.00	523800.00	30	500		2786CC.CC	500700.00	478CCC.CC	756000.00	386500.00	375900.00	4348CC.CO	415000.00	4685CC.CC	474666.66	23050000	477500.00	505800.00	4782CC.CC	5325C0.CC	4626CC.CC I	531000.00	576900.00	453700.00	4658CC.CC	567600.00
		0	0	O	0	O	0	υ	S	0	o	O	0	ပ	S	v	v	S	0	v	0	0	ن ن	0	o o	٥	ر د	0
		0	0	ပ	ပ	0	0	0	ပ	0	0	ပ	0	ပ	ပ	0	ဝ	ပ	0	o	o	0	ပ	၁	0	ပ	Ç	0
ATCN			2	-	2	m	-	2	1	7	m)	4	S	ę	-1	7	1	2	m	-	7	m	4	1	2	~	4	'n
IF IK		-	-	7	7	7	ю	6	4	4	4	4	4	4	r.	5	9	9	9	7	7	1	7	æ	သ	ဃ	80	ဆ
ICENTIFIKATON		2	2	7	7	7	2	2	7	7	7	7	7	7	7	7	7	7	2	2	2	2	7	2	5	7	2	7
-		73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73

Frankreich	krej		(Forts.	•						
73	7	σ	-	ပ	ပ	1 4C24CC.CC 1	205471.00 I	13050C.CO I	12577.00	175106.00 1
73	7	6	7	0	0	I 4780CC.CC	288276.C0 I	43900.00	9433.00	56900.00
73	7	6	m	0	ပ	1 4935CC.CC		14260C.CC I	42448.CC I	3
13	2	5	4	ပ	ပ	1 511500.00	231214.00		1.0	685000.00
73	7	10	-	0	ပ	1 2468CC.CO	241042.00 [33°C	1500.0
73	2	10	7	ပ	ပ	346400.00	330786.00	300.	16.0	50
73	7	10	m	ပ	ပ	335000.00	330510.00	53700.00	9433.00	650C°CC
13	7	11	-	ပ	0	421600.00	268300.00	120200.00	44020.00	10800.00
73	2	11	7	ပ	ပ	1 3436CC.CC	173378.00	2610C.00 I	2.0	200002
73	7	11	m	ဝ	o	1 2171CC.CC	111043.00	96100.00	45591.00	700.00
7.3	7	11	4	O	0	3534CC.C0	224264.00	77100.00	18866.00	5800.00
73	~	11	ĸ,	ပ	ပ	401500.00	278563.00	225300.00	2987C.CC	210,000
73	7	12	-	ပ	ပ	1 240000.00	58035.00	29100.00 I	6285.00	1000.001
73	7	12	2	0	0	1 5334CC.CO	335644.00	171100.00 1	12577.00	4400.00 I
13	7	12	60	ပ	ပ	1 460500.00	185276.00	155000.00 I	26726.CC	1100.00
73	7	12	4	0	0	1 453300.00	223624.00	101400.00 I	33015.00	53300.00
73	7	12	ĸ	o	0	1 2359CC.CO	121973.00	68700.0C	9433.00	308600.0C
73	7	12	ę	ပ	0	1 215000.00	111705.00	146200.00 I	17293.00	138500.CC I
73	7	12	7	0	0	I 3532CO.CO	152422.00	1 00.00996	22010.00	215400.00
73	7	12	æ	ပ	ပ	1 2635CO.CO	116189.00	43700.00 I	15721.CC	722CC.CC
73	7	13	-	ပ	0	330600.00	324100.00	31300.00	3144.00	48500.001
73	Ν.	13	7	0	0	360200.00	130854.00	21206.00 I	4716.00	136700.00
73	7	13	m	0	ပ	1 5613CC.CG	151568.00	32900.0C	4716.00	108500.CC I
73	7	13	4	ပ	ပ	314100.00	261226.00	65000.00 I	3144.00	54400.CC I
73	7	14	7	0	0	1 295800.00	258144.00	53000.00	4.0	85600.00
73	7	14	7	ပ	0	1 3287CC.CO	232560.00	27766.00 I	1:0	.000
73	7	14	m	0	0	1 3518CC.CO	153230.00	92000.00	6285°CC	35700.00
73	7	14	4	0	ပ	1 2548CO.CO	167544.00	46700.00 I	16.0	29400.0C I
73	8	15	-	ပ	0	1 193000,00	195627.00	117700.00 I	7861.00	2450C.0C I
13	7	15	7	0	0	1 156000.00	108573.00		4716.00	1600.00
73	2	16	-	0	0	1 255ccc.co	255898.00	68900.00	2.0	
13	8	16	7	o	0	1 236700.00	150124.00	47300.CO I	4716.CO 1	20,00,00

23766.00 4 23766.00 4 23766.00 4 237203.00 4 327203.00 14 1 453648.00 14 1 453648.00 14 1 16212.00 12 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1 1572.00 1 39406.00		I 7861.C	C I 7861.00 I 153600.00	1 33C15.CC I 1782CC	0 I 11005.CC I 7840C.CC	I 40875.0	4	9	1 15721.	0 1 40875.00 1 60400.00	C I 6285.CO I 166700.CC	1 39303.0	1 12577	1 9433.00 1	0 I 6285.C0 I 5050C.00	1 1572.C0 I 4	3144	C I 18866.CC I 64200.0C	0 I 9433.CO I 13346C.CC	1 628	0 I 1572.CC I 2351CC.CC	1 0.00 1 60200	1 4716.00 1 26060	0 I 3144.CC I 3656CC.CC	1 4716,00 1 5	I 4716	C I 1572.CC I 5650C.CC	
(Forts.) 9		1 46500.00	1800.00	1 55300.00	1 47000.00	142200.00		1 165400.00	125600.00	3700.0	71300.00	131700.00	1 20900.00	1 59100.00	43200.00	0	800.0	1 27800.00	86400.00	1 45900°CC	18100.00	2400.00	12900.00	1 5400.CC	14460.00	3400.0	1500.00	1 136200.00	0.0027	
Forts.) 3 0 0 1 255CC0.CO 4 0 0 1 259CC0.CO 5 0 0 1 4292C0.CO 6 0 0 1 4292C0.CO 7 0 0 1 4451CC.CC 8 0 0 1 4451CC.CC 9 0 0 1 4451CC.CC 1 0 0 1 332CCC.CC 1 0 0 1 345CC.CC 1 0 0 1 2717CC.CC 1 0 0 1 2717CC.CC 2 0 0 1 2717CC.CC 3 0 0 1 2717CC.CC 4 0 0 1 2717CC.CC 5 0 0 1 2717CC.CC 6 0 0 1 2779CO.CO 7 0 0 1 2779CO.CC 8 0 0 1 2779CC.CC 9 0 0 1 2779CC.CC 1 0 0 1 2779CC.CC 1 0 0 1 2779CC.CC 2 0 0 1 2779CC.CC 3 0 0 1 2779CC.CC 4 0 0 1 2779CC.CC 5 0 0 1 2779CC.CC 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 218571.00	23766.00	278862.00	327203.00	562514.00	185440.00	453648.00	348912.00	152121.00	317476.00	261411.00	58515.00	37946.00	205853.00	1 245074.00	64166.00	104120.00	143838.00	26013.00	6957.00	3087.00	88826.00	7746.00	12056.00	34826.00	4245.00	5726.00	877.00	
		1 255CC0.C0	I 253C0.C0	I 4617CC.CC	I 4252C0.C0	I 592CCO.CO	I 4451CC.CC	1 5319C0.CG	1 384500.00	9	I 4451C0.00	1 332CCC.CG	I 2651C0.CC I	1 277900.00	1 3529CC.CC	1 294500.00	1 1858CC.CO	1 211166.66	1 175000.00	1 3C86CC.CO 1	1 2454CC.CC	1 273900.00	I 2914CC.CC I	1 157100.00	1 2952CC.CO I	487CC.C	1 1463CC • CO I	I 1884CC CO I	٥	
	_	o	0	ပ	0	o	ပ	0	ပ	o	0	Ö	Ö	o	0	0	0	ပ	0	ပ	U	O	ပ	ပ	ပ	o	0	0	ပ	•
	rts.	0	0	ပ	ပ	ပ	ပ	0	O	ပ	0	0	ပ	O	0	ပ	0	ပ	Ö	0	ပ	0	ပ	0	0	ပ	Ö	0	ပ	c
ankreick 2 16 2 16 2 16 2 17 2 17 2 17 2 18 2 19 2 19 2 20 2 20 2 20 2 20 2 21 2 20 2 20 2 20		m	4	1	2	6	4	-	2	9	4	-	2	e.	4	ī	9	7	80	-	2	m	4	5		2	٣	4	ĸ	4
	eich		16	17	17	17	17	18	18	18		-	19	13	19	19	19	13	13	20	20	20	20	20	21	21	21	21	21	2.1
	ankr		7	2	-	7	2	7	2				2	2	2	7	7	7		2	7	2	7	2	~	7			7	7.2

LANGM. GENLIZTE FLAECHE IN HA LNG BESTAENGE AM TIEREN IN STLECK IN GEN TETLREGICNEN

Italien

I C F N	I CENT I F TK ATON	ATON			I PEKTAR IF	I KINDER I	SCHWEINE	H	TSCHAFF/71FG.
	.							(10C ST.)	I
					3	(2)	(8)	(4)	(5) I
72 3	-	ပ	ပ	ပ	1 1366543.CC	1 1273000.00	452000.00	96240.00	1 118000.00
72 3	2	ပ	ပ	ပ	I 100442.00	00.0008	3000.00	440.00	30.3338 1
72 3	κ.	ပ	0	ပ	1 141165.00	43000.00	8000.00	5625.00	1 28000.00
72 3	4	ပ	ပ	ပ	1 1264522.CC	1 1874000.00	1608000.00	264245.CC	1 75CCC.CC
72 3	'n	O	ပ	ပ	I 454837.CC	177000.00	61000.00	21000.00	1 42000.00
72 3	Ç	0	0	ပ	I 551264.C0	1 11830CC.CO	476000.00	00.027705	30.000000
72 3	_	ပ	ပ	ပ	1 3C6537.CC	1 225ccc.co	85000.00	29505.00	1 5cc.cc
72 3	æ	0	ပ	ပ	1 134828C.CC	1 1001000.00	1995000.00	293755°C0	113000.00
72 3	6	ပ	0	0	I 616519.CC	1 373CCC.CO	353000.00	3386C.00	1 175000.00
72 3	10	0	ပ	o	I 105545C.CC	1 258CCC.CO	649000.00	61880.00	1 561000.00
72 3	11	Ö	0	0	I 42C7C2.C0	1 2CCCCC.CC	468000.00	25795.00	1 185000.00
72 3	12	ပ	ပ	0	1 983127.CO	35600.00	254000.00	31350.00	00.000079 1
72 3	13	ပ	o	ပ	1 755251.CC	431000.00	336000,00	52800.00	1 452000.00
72 3	14	0	0	ပ	1 601751.00	197000.00	133000.00	29365.00	1 480000.00
72 3	15	ပ	0	ပ	1 272364.00	(00°00009	00.00059	79.5494	1 107000.00
72 3	16	O	ပ	ပ	1 1577055.00	175000.00	85000.00	17975.00	00°000058 I
72 3	11	0	0	0	1 671542.00	74606.60	150000.00	2740.00	1 593000.00
72 3	18	0	O	O	I 635C68.CO	1 (180000:00	2916CC•00	20770.00	1 495cco.cc
72 3	19	0	ပ	ပ	1 1520364.00	30.000000	262000,00	20.026.66	1 812CCC.CC
72 3	20	0	0	0	1 1761864.00	1 282000.00	248000.00	24845.00	1 2920000.00
S	TAATE	STAATENSUMME	Ψ.		117491455.02		7590000:00	1381015.00	I 8767CCC.CC

Niederlande

	<u> </u>						-						
ISCHAFE/ZIEG.1 I (5)	I 51909.00	1 1345C2.00	1 1 11362.CC	14015.00	34520.00	30511.00	211187.00	I 61722.CC	12497.00	15197.00	00°5626 I	1 5672.CC	I 552C89.CC
HUEHNER (100 ST.) (4)	14709.00	31225.00	25388.00	59376.00	105374.00	13822.00	13192.00	18658.00	7533.00	168439.00	124845.CC	2294.00	584255.00
SCHWEINE	65797.00	92548.00	170288.00	860517.00	1586765.00	303126.00	63874.00	263998.00	60658.00	1996129.00	754341.60	14741.00	6232782.00
RINCER I	200985.00	567658.00 I	301152.00	590876.00	857517.00	213266.60	242254.00	255946.00	78376.00	116794.00	192527.00	44571.00 1	4306310.00
HEKTAR LF	1 2C5632.CC I	282725.CC I	2C4582.CC I	300507.00	335014.00	\$21C3.CC I	192015.00	214132.CC	155628.00	351352.00 I	152535.00	5C721.CC	2536750.00
	S	0	0	0	S	ပ	0	0	0	0	O	ပ	
	ပ	ပ	ပ	0	0	ပ	0	ပ	ပ	0	0	ပ	
NOT	0	0	0	0	0	0	0	ပ	0	ပ	0	0	SUMME
ICENTIFIKATON	-	2	3	4	S	ę	7	80	6	10	11	12	STAATENSUMME
CENT 1	4	4	4	4	4	4	4	4	4	4	4	4	STA
ī	12	12	12	12	72	72	72	72	12	72	72	72	

LANDN. GENLIZIE FLAECHE IN HA LND BESTAENDE AN TIEREN IN STUECK IN DEN TEILREGICNEN

Belgien

ISCHAFE/ZIEG.I	(5)	623C.CC 1	11418.00 I	17228.CC I	6559°CC I	4574.00	5635.CC I	7603.00	15CC3.0C I	13540.00	85154.00
HUEFNER I	(4) I	71090.0017	23110.00	1 20.0556	50.00.00	46540.00	1770.00	2850.CC I	56200.00	71280.00	28788C.CC I
SCHWEINE I	(3)	403840.00	335285.00	171334.00	261728.0C I	445334.00	84259.00 1	75500.00	759342.00	462485.C0 I 1746227.00 I	152C564.CC 1 2825C88.OO 1 4282849.CC 1
RINDER	(2)	265353.CC I	230273.00	387519.00	364773.CC I	157926.00	254577.00	266316.00	355862.00	:	2825088.00
FEKTAR LF I	(1)	572C5.CC I	176975.00 [235621.CC I	186C54.CC I	30,03702	155697.CC I	178575.00	172206.00	227431.CC I	1520564.00 1
				υ.		0	0	υ	٠ د	٠.	
		ပ	0	ပ	ပ	ပ	ပ	0	o	ပ	u.
TON		0	0	0	0	0	0	ပ	0	ပ	STAATENSUMME
ICENTIFIKATON		-	2	m	4	S	9	~	80	6	AATEN
CENT		'n	2	S	Ŋ	r.	'n	ī.	ď	Ś	ST
-		72	12	72	72	72	72	72	72	72	

LANCM. CENUTZTE FLAECHE IN HA LNC BESTAENCE AN TIEREN IN STUECK IN DEN TEILREGIONEN

Luxemburg

- - - -	ICENTIFIKATON	N D				HEKTAR LF	-	RINDER		SCHWEINE		HUEFNER ISCHAFE/ZIEG.I (10C ST.) I (F) I	1 1 1	FAFE/215(
					.	:		771	٠	3	.	Ì	٠ ــ. ١		· ·
72 6 0 C C O	0	ပ	ပ	0	<u> -</u>	132395.00 i 191675.00 i 102694.00 i 2975.00 i 4576.00 i	<u> </u>	191675.00	<u>.</u>	102694.00	<u>.</u>	2975.00	<u>!</u>	4576.0	<u>-</u>
STA	STAATENSUMME	SUMP	<u>u</u>		-	132395.CC I 181675.00 I 1C2694.CC I 2975.CC I 4976.CC I		132355.CC I 151675.00 I 1C2694.CC I	<u>.</u> _	102694.00	<u>-</u>	2975.00		2975.CC I 4576.CC I	

UEBERSICHT A 2.1 LANGW. GER

Vereinigtes Königreich

LANGW. SENUTZTE FLAECFE IN FA LNC HESTAENCE AN TIEREN IN STUECK IN CEN TEILREGIONEN

,		- - -	<u> </u>						 ! !	 !					!							, m, r	 ! !			F	 ! . !	<u> </u>
ISCHAFE/ZIEG	(5)	18377.00	15635.00	67556.CC	543.C	25682.00	51332.00	115418.00	46816.CC	2048.00	2515.00	82545.CC	7453.00	24528.CC	557782.00	113711.00	27755.00	201057.00	41227.00	213002.00	208055.00	2489	74725.CC	308520.00	78135.00	56467.00	563665.00	586785°CC
FUEFNER 1	(4)	18512.00	7194.00		42005.00	8476.00	9342.00	19428.00			2654.00	37445.00	678.00	15330.00	0	10163.00	12529.CC	763.	15142.00	15.	10015.00		14658.00	8350.00	39243.CC	550.00	22057.00	254C1.CC
SCHWEINE	(3)	172897.0C I	71797.06 1	479456.0C I	560937.00 1	286.	126132.00 1	96737.00	276445.00 1	8614.00 I	24564.00	177855.00 1	16995.00 I	95306.00 I	137857.CC I	128406.00 I	77464.00 I	79687.00	64953.00 I	67471.00 1	00	82.	82458.00 1	82928.00 I	133876.00 1	8803.00	61524.00	194567.0C I
RINDER	(2)	31825.00 I	26515.00	151022.00 1	100.721.00 1	35763.00	1 00.19848	127267.00	11180.00	3417.00	6173.00 I	156705.00 1	30397.00	59227.00	133877.00	113214.00 1	41	144832.00 [100525.00	22689C.CO I	177686.00	197	59191.00 [140609.00	104088.00	17614.00	157591.00	353966.00
I HEKTAR LF I	(1) I	I 186577.24 I	I 106452.31 I	1 41538C.14 I	I 3C5158.73 I	1 91510.43	1 130555.45	141982.C5 I	1 27516C.58 I	6831.90	1 16754.53	1 256352.39 1	26539.54	1 105143.40 1	1 255521.89 I	153900.06	I 70985.16 I	1 137127.44 1	1 106024.89	1 2CC352.41 I	1 172677.08	1 99203.51	1 162427.60	1 194411.55	I 156052.58 I	1 33C13.C6 I	1 185773.13	1 285132.76 I
		ပ	O	ပ	0	ပ	c	0	ပ	0	ပ	O	O	ပ	ပ	ပ	ပ	ပ	0	U	o	0	o	0	ပ	0	0	0
)		0	ပ	၁	ပ	ပ	ပ	0	ပ	0	ပ	ပ	0	0	0	ပ	ပ	ပ	O	ပ	0	0	ပ	0	ပ	ပ	ပ	ပ
ATCN		-	7	m	4	-	7	m	4	2	ę	7	œ	σ	10	11	12	13	14	-	7	m	4	Ŋ	9	7	-	7
ICENTIFIKATON		-	~	-	-	2	7	2	7	2	2	7	7	7	7	7	2	7	7	E		e	6	т	e	6	4	4
CENT		7	7	7	7	1	7	7	7	7	~	7	7	7	7	~	7	7	7	7	7	7	~	7	7	7	7	7
-		72	12	72	72	72	72	72	7.5	12	72	12	12	12	7.2	12	72	7.2	72	72	72	72	72	72	72	12	7.5	72

13753.CC I 131473.CC I 17537.00 I 217614.CC I 221591.CC 15342.CC I 385422.CC 47445.00 I 1245092:00 00.86738 327615.00 10081.00 I 1058338.00 84654.CC 483722.00 573.CC I 691337.CC 85552.CC 113443.CC 582530.00 846658.00 152462.00 3C4484.CC 499851.0C 257727.00 375408.00 863509.00 18215C.CC 790557.00 505686.00 4343C8.0C 718299.0C 108225.CC 350550.00 636557.00 I 252835.CC 931898.00 1909.CC I 13634C.CC 22560.CC I 21103.00 1 36839.00 I 25111.CC I 25C56.CC I 45058.CC I 2112.CC 1 5421.C0 I 17653.CC I 10652.00 I 26278.CC 65867.00 625.CC 375.00 11261.00 46558.00 16153.00 41565.00 2391.00 5828.CO 3906.00 00.505 2178.00 6337.00 7685.CC 114855.0C I 510120.00 1 80542.00 160597.00 190249.00 345364.00 24797.00 58435.00 103510.00 261681.00 113347.00 35193.00 275198.0C 141324.00 308171.00 2225.00 15435.00 24824.00 117174.00 228098.00 130538.00 65019.CC 43970.0C 12253.00 14936.00 5971.00 14065.00 16977.00 14634.00 33587.CC 29731.00 22494.0C 206361.53 I 282335.00 I \$1445.68 I 65825.00 I 178077.62 I 156482.00 I 130C13.47 I 18C738.00 I 122385.00 245852.06 I 24380C.00 287568.00 136359.00 264282.21 I 136C26.00 75277.00 407871.00 588512.59 I 649271.00 197CE2.48 I 248455.00 335450.00 347091.00 395178.00 73782.00 125256.00 146834.00 458627.00 253676.00 367795.00 145820.00 274365.00 143954.00 72041.00 205027.00 138872.00 76558.00 88872.00 46838.00 104728.00 134615.15 I 253536.15 I 336364.88 I 175919.02 1 325245.29 I 356657.49 187621.73 306251.79 145176.57 525891.07 101442.23 87531.38 334865.92 277255.28 182253,98 184316.26 473476.54 108598.53 181072.70 108983.55 117566.13 58101.58 132036.52 48758.55 ပ 0 O O O c O O O O O 9 12 13 4 72 72 72 72 7.5 72 12 12 27 72 72 72 72 72 12 12 12 12 72 72 72 72 12 72 72 72 12 12 12 12 72

209

Königreich (Forts.)

Verein.

3	(Forts.	49300.06	37166.00	4980.00	1291.00	107168.00
64575	6457	57.85	E 8 7 4 . CO	2396.00	287.00	117567.00
863217	86321	7.50	62513.00	8297.00	1986.00	1 576C22.CC
689164	689164	88		2.0	772.00	386487°CC
463540	463540	.52 I	12532,00	160.00	107.00	283
135673	3567	.81	0	26.00	114.00	245371.00
386656	386656	.42	355105.00	217311.00	16352.00	335602.00
93866	93856	6.62 I	143.C	53537.00	1804.00	1 128437.CC
	153440	5 CO 1	46250.00	2766.00	378.00	230365.00
68357	835	.53	61038.00	37215.00	2118.00	I 56542.CC
73665	LCJ 1	.14 I	48371.00	0	1311.00	30.637.00
20687.1	20487	.14 1	13315.00	8418.00	802.00	1 8576.0C
77248	77248	. 32	87137.00		700.00	74952.00
186101.73	186101	.73 1	\$2618.00	34755.00 I	6333.00	188402.0C
11829.37	11829	37 1	5616.00	840.00	357.00	1 20536.CC
96166.	\$61CC.	37 [E8335.C0 I	31855.00	31558.00	1 103727.CC
18518	18518.	.02 1	14486.00	2235.0C I	7548.00	38145.00
548864.	548864.	.39 1	131398.00	41022.0C	14492.CO	I 654833.CC
104880.	164886.	85 1	55546.00	14111.00	1354.00	30C527.CC
58727.	~ .	.62 1	24034.00	15260.00	2044.00	22.2357.00
70235.	50 1	68 1	33863.00	34605.00	15481.00	I 16851C.CC
77874	77874	.53	21058.00	2405.00 1	1295.00	I 19CE42.CC
141215	141215	.98		3	95.	
59557	59557	.23 I	11681.00	0	273.CC	I 171334.0C
21035	TLJ 1	.57 I	18885.00	7214.00	5.	17088.00
234869.	234865.	.23 I	221700.00	20556.00	88.0	420436.00
41020.1	41020.	18 1	18595.CO	193.0	65.00	1 46502.00
225421.	225421	C2 1	171627.00			551919.00
48009	(7)	.52	21180.00	0	415.00	80405.00
157617	157617	.51	9	4425.00	27.C	333732.CC
171280	71280	.92	133184.00	23249.00	5190.00	1 286881.CC
35735		11.	41569.00		776.00	44697.00

ere	in.	Kön:	lgre.	ich	Verein. Königreich (Forts.)	(s.)					
2	~	σ	ß	æ	72 7 9 5 8 C		\$3106.10 1	1 00.24595	56545.00 j 12767.00 j	2135.00	2135.00 [155356.00 [
2	7	72 7 9 5 9 C	€	σ	O	<u>.</u>	108731.43	108731.43 I 122311.00 I 18282.00 I	18282.0C	1975.00	108731.43 I 122311.00 I 18282.00 I 1979.00 I 165148.00 I
2	7	72 7 10 C C C	ပ	ပ	ပ		1078535.41	1 1078535.41 1 1443536.00 1 1046853.00 I 1472C6.CC I 1064352.CC	1046853.00	147206.00	1078535.41 1443530.00 1046853.00 147206.00 1004352.00
	STA	STAATENSUMME	SUM	ш		Ĩ	3742415.10	18742415.10 11357C371.00 I 8677644.CC I 1333947.00 I26984361.C2	8677644.CC I	1333947.00	18742415.10 11357C371.00 I 8677644.0C I 1333947.00 I26984361.C2 I

LANDA. GENUTZTE FLAECHE IN HA UND BESTAENDE AN TIEREN IN STUECK IN CEN TEILREGIONEN

Irland

7		- 4 4	Ś				(1) [1]	(2)	3CHWEINE 1	(100 ST.)	13CFAFE/21EU-1 I I (5) I
72	89	_	_	ပ	O	<u> </u>	76242.84	30.30505	13600.00	3148.60	171766.00
72	ر س	_	2	ပ	ပ		65154.51	628CC.CO I	1730C.0C	1848.00	22.00.23
12		_	ю	ပ	О		143784.53	173100.00 [17806.00	3592.00	138300.00
7.2	E0	_	4	0	0		185553.68	255700.00	46300.00	. 5	122000.00
72	 	_	u۱	၁	J			1664CC.CC	4280C.CC	2133.00	54700.00
7.2	- -		ę	ပ	O		•	1145CC.CO I	15500.00	1274.60	21500.00
7.2	80	_	7	၁	ပ	<u>.</u>	71163.33	E87CC.CO	14200.00	1575.00	00.00709
7.2			6 0	0	U		222561.58 1	310400.00	22000.00	7003.00	242400.00
2	- -		o,	ပ	ပ		149248.19	152300.00	24300.00		72600.00
7.2	- ω	1	10	ပ	0	<u>.</u>	153335.52	2C3CCC.CO I	16400.00	1561.00	38400°00
72		1 1	1.1	0	0	<u>.</u>	2C7563.44 I	251000.00	74600.00	5263.00	263100.00
12	80	_	12	ပ	0	<u> </u>	105665.50	119800.00	22800.00	3132.00	283500.00
7.2	80	~	_	ပ	ပ		237672.C8 I	31000.00	15000.00	1772.00	53400.00
7.2	80	2	2	ပ	Ö		548106.71	£243CC.00 I	250300.00	11353.00	215800.00
7.2	80	~	€0	0	0		22282C.11 I	341700.00	56800.00	2686.00	247300.00
7.2	80	~	4	ပ	ပ	<u>.</u>	243378.16	3767CC.CO I	44200.00	20.8356	18600.00
7.2	. · ·	2	S.	0	0		16588C.79 I	240100.00 1	38700.00	1061.00	80800.00
7.2	80	7	v	ပ	ပ		186236.49	255300.00	76600.00	1282.CC	24000.00
12	80	~	7	ပ	ပ		134C32.CC	1525CC.0C	42600.00	2964.00	74500.00
7.2	œ	m	-	0	0		336577.34	407200.00	50800.00		798600.00
7.2	œ	•	2	ပ	ပ		113105.73	103.331831	16800.00	1152.00	42400.00
7.5	œ	е	m	ပ	ပ		245205.63	336500.00	40100.00	4565.00	371560.00
12	xo	~	4	0	ပ		8.6	24830C.CO	15400.00		235500.00
7.2	œ	m	K)	ပ	ပ		122134.23	151266.00	18500.00	1237.00	88400.00
7.5	89		-	o	o		161267.37	215466.00	84700.00	4508.00	36600.00
12	80	χ	7	0	0		183666.03	16500000	46500.00	3828.00	276200.00
72	8		~	ပ	ပ	Ϊ.	115659.25	151800.00	68300.00	2146.00	18400.00
						<u>i</u>					

LANDW. GENLIZIE FLAECHE IN HA LND BESTAENCE AN TIEREN IN STLECK IN CEN TEILREGICNEN

Dänemark

IEG.I		730.00 I					546.00 1	1 00.		1 00	1 00	1 00	00	. CC 1	1 20.	I 20.
ISCHAFE/ZIEG.I	(2)	I 730	1 2C66.0C	1 1075.00	1 2826.0C	1 1669.CC	1 546	1 4286.00	1 14310,CC	1 2623.CC	3302.00	33.878.CC	1 4229.00	1 3733.CC	1 6213.CC	1 51586.00
I FUEFNER	(4)	420.00	3460.00	3710.00	12310.00	13520.00	5546.00	21350.00	18660.00	8320.00	11670.00	10710.00	15470.00	19910.00	37770.00	182820.00
I SCHWEINE	(8)	11645.0C	144747.66	1 187675.00	721338.00	I 606421.CC	154672.00	I 8C0327.0C	736649.00	1 486863.00	671167.00	00.250089	998361.00	11104654.00	1 1319285.00	1 8922667.0C
RINCER	(2)	1664.00	33405.00	21874.00	104783.00	100185.00	23776.00	226594.00	323657.00	276714.00	225505.00	338067.00	280476.00	345724.00	471325.C0	2778591.00
HEKTAR LF	3	12617.00	64536.00	57644.00	205345.00	245451.00	37278.CC	247641.00	252324.CC	211705.00	210054.00	325648.00	3C1118.CC	276933.00	424867.00	2521161.00
		ი	0	v	0	٥	v	ပ ပ	U	o	ر ن	٥,	· · ·	0	ر د	
		0	ပ	ပ	O	ပ	ပ	0	ပ	ပ	ပ	ပ	0	0	ပ	ñ
ATON		7	7	m	4	5	ę	7	7	7	m	4	Ś	ę	7	STAATENSUMME
ICENTIFIKATON		-	-	7	-	-	-		2	7	7	7	7	2	7	AATE
CENT		σ	6	σ	σ	6	σ	6	6	σ	6	5	6	6	5	ST
-		72	72	72	72	72	12	72	72	72	72	12	72	72	72	

LANDA. GENUTZTE FLAECHE IN HA UND BESATZ AN TIEREN IN STUECK JE 100 HA LF IN CEN TEILREG.

BR Deutschland

ICENTIFIKATON	N.				I HEKTAR LF I I I (1) I	RINDER I	SCHWEINE	I FUEFNER I I (100 ST.) I I (4) I	ISCFAFE/ZIEG. I (5)
		!	!		I				- 1
0 0 0 111	0 0 111				52381.CO I	123.31	138.67	4.34	8.31
0 0 0	0 0	0	C 1 2	~ ~ ~	31055.CC I	51.19	47.65	4.70	5.66
0 0 0	0 0 (0 0	0		6C58.CC I	103.40	48.52	4.82	~
C C C I 11	0 0 1	C I 11	C I 11	111	118C27.CC I	66.93	64.48	6.84	6.47
					4175.CC I	36.07	224.14	61.00	18.85
1 C C I 418					418643.CC I	86.24	263.08	12.6C I	5.17
2 C C I 262	C C I 262	c I 262	C I 262	1 262	262831.CC I	65.81	122.82	4.61	ויחן
3 0 0 1 5368	0 0 1 5368	0 0 1 5368	0 1 5368	1 536	01.00	68.63	141.57	5.40 I	2
4 C C I 461	C C I 461	0 0 1 461	C I 461	1 461	461161.CC I	127.59	140.83	7.56	1 7 1
5 0 C I 353284	1 0 0 I 3532	0 0 I 3532	2635 1 0	265E I	264.CC I	1 25.48		20.67	1.76
6 C C I 2441	C C I 2441	C I 2441	C I 2441	I 2441	244136.CO I	132.27	78.17	2.19 1	2.55
, ω	1 1843	C I 1843	C I 1843	1 1843	51.00 I	37.58	65.64	5.32	10.73
8 C C I 3985E8	C C I 3985	C I 3985	C 1 3985	3985	88.CC I	125.38	321.87	32.42	2.18
1 C C I 3118	C C I 3118	C I 3118	C I 3116	3116	311866.00	98.15	232.07	5,21	35.5
2 6 6 1 3795	3795	3795	954E I 0	3755	375574.CO I	83.56	66.69	6.58 1	12.88
3 C C I 488638	3 C C I 4886	C I 4886	C I 4886	I 4886	38.00	114.58	347.71	13.31	2.95
4 C C I 4123	, C C I 4123	C I 4123	C I 4123	1 4123	412354.CC I	93.58	285.61	13.38	7.31
5 0 0 I 3C56	1 0 0 1 3C56	0 I 3C56	9536 1 0	3056	305696.00	1 58.36 I 58.36	144.55	7.38 1	12.28
1 C C 1 5C13	C C I 5C1	C 1 5C13	C I 5C13	1 501	5C1326.CC I	90.47	127.59	8 • 12 I	11.54
2 C 0 I 434762	0 0 1 434	434	0 1 434	7 7 7 7	00	1 79.85	177.46	5.1	11.16
25	C C I 3255	C I 325	C 1 325	1 325	362.CC	90.26	95.80	5.57	6.57
2 0 0 1 232				1 232	1 → 1	1 77.72	87.70	2.45	4.
3 C C I 341				341	341764.00 I	45.87	66.63	7.46	7.12
1 0 0 1 5872				1 587	8725C.CC 1	107.95	150.04	40.0	10.19
2 C C I 242	7 1	7 1	7 1	1 242	42764.CC I	69.82	98.14	7.14 1	6.57
3 C C I 414	1	1	1	414	414C11.CC	85.60	98.11	3.74	4.56
4 0 0 1 517				1 517	517006.00 1	121.67	120.02	1 24.5	9.14
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					·		•	

	5.35	4.33	2.56	2.53	7.81	5.07	5.32	7.0.7
	r.	,	2.	5.0	7.8	6.0.5	, re) ~ _
	1 54.5	9.29	7.94	2.29 I	4.18 I	3.31	2.67 1	
	64.72 I	137,38 I	88.49 I	98.58 I	158.36 I	131.63 1	1	143.53
	129.09 1	111.97	98.53 I	97.16 I	115.00	81.C8 I	151.77	
	1 00.836808	613362.CC I	454656.CC I	36CC14.CC I	393969.CC I	4C4657.CC I	603800.00 1	
<u>.</u>								
BR Deutschland (Forts.)	72 1 9 1 C C	72 1 9 2 0 0	72 1 9 3 6 0	72 1 9 4 C C	72 1 9 5 0 0	72 1 9 6 C C	72 1 9 7 0 0	
) pur	1	7	m	4	ĸ	ę	7	SUVME
schla	Մ	5	6	თ	6	5	6	ATEN
Deut	7	-	~	-	-	-	-	STAATENSUMME
BR	7.5	72	12	72	72	12	12	

Frankreich

		ن ــ ـ	<u></u> .		<u> </u>			ن ـ ـ ـ	<u>.</u>	<u>.</u>	<u>.</u>		<u>.</u>	<u></u>	<u>.</u>	<u>.</u>	<u> </u>	<u></u> .	<u>.</u>	<u>.</u>	<u></u> .		<u>.</u>	<u> </u>		<u></u>	ا _ ا	<u>.</u>
SCHAFE/Z1EG.	(3)	7.75	11.58	11.51	18.06	10.83	16.07	6.53	31.83	7.55	44.73	18.42	17.45	13.64	14.72	11.30	5.04	9.21	55*9	8.10	E.I	4.87	6.03	C.75	26.20	6.87	8 0 8	17.05
HLEHNER I	I (4)	11.71	4.03	1.80	1.56		0.87	00	2.82		1.58	5.28	5.43	5.03	.16	2.34	2.32	3.84	0.65	12.64	15.72	8.26	18.25	5.62	7.35	00.5	5.35	13.29
SCHWEINE I	(3)	127.49	128.30	21.72	13.85	35.81	6.48	69.6	11.46	59.6	19.11	15.18	10.37	10.34	24.36	21.04	21.24	22.16	15.05	253.41	278.14	131.97	117.53	20.33	19.50	80	26.99	33.06
RINDER I	(2)	115.86	106.51	65.81	55.53	7.56	20.60	65	44.08	24.07	.71	45.53	26.51	26.76	81.02	5.5	115.09	150.05	131.73		153.21	172.66	126.09	8.C7	107.87	168.61	109.35	124.65
I PEKTAR LF I	(1)	1 4256CC.CC	1 5454CC.CC 1	1 5238CC.CC	, 0	03580	I 3555C.C.	-	306	-	1 45600.00	1 3865CC.CC	1 375966.66	1 4348CC.CC		1 468900.00	474000.00	1 530900.00	1 4775CC.CC	22852	1 4782CC.CC	ו ניס ו	1 462600.00	0.0	I 5765CC.CC		I 4658CC.CC	1 5676CC.CO
		ပ	O	ပ	ပ	ပ	U	0	ပ	ပ	o	ပ	0	ပ	O	ပ	ပ	ပ	ပ	0	ပ	o	၁	ပ	0	ပ	0	ပ
		ပ	ပ	0	ပ	ပ	ပ	o	ပ	ပ	ပ	ပ	0	ပ	0	ပ	ပ	ပ	ပ	0	ပ	ပ	ပ	ပ	0	ပ	ပ	O
ATON		-	2	-	~	m	-	7	-	7	m	4	r	÷	-	7	-	7	m	-	7	(1)	4	-	7	m	4	r.
ICENTIFIKATON		-		2	2	2	3	ю	4	4	4	4	4	4	10	Ŋ	9	9	49	7	7	1	7	œ	æ	œ	c o	œ
CENT		2	7	2	7	7	7	2	2	2	2	2	7	7	2	7	2	2	2	2	7	7	2	7	7	7	7	2
I		73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	13	73	73	73	73

7.00		43.51	11.90		5		5	2.05			C.32 I	1.64 1	ויש	C.41	80	2	ω,	130.81	3.2	5	27.40	14.67	37.55	19.33	17.31	28.53	un i	11.28	3	12.65	-2	6.86 I	8.7C
C 478CCCCC 51.C6 32.43 91.18 1.00 1.0		7.1	5	÷	5	ω :			4.	80	1.0		4	9.		5.80	9	5	8		5.	5	en l	8	1.00 1	1.06	4.78	1.78	ωı	• ,	0	• 1	1.59 1
Forts.		4	.18	8.89	9	6	5.59	6.02	8.5		4.	: :	0	2.1	~ ~ 1	3.6	0.5	9.12	.75	7.34	6.58	4.	8	œ (59.	7.51	4	6.1	6	6 . 0	3.3	~	6.
Forts.) C		2	6.3	8.7	5.2	7.6	5.4	8.6	3.6	4.0		3.4	5.4	6.8	2.	C • 2	5.3	1.7	-	3.1	4.0	8 0	6.	4.1	3.1	7.2	C • 7	4 . 9	5.7	1.3	5.5	C • 3	6C.32 I
		462466.66 1	478CC0.C	4535CC.C	2009	468CC.C	46400.	٠,	21600.	43600	217100.00 1	534CC • C		40000	5334CC.CG I	١٠١		35500		32cc.	635CC.C		3€C2CC.CC I	•		•	328700.00	51800.	54800.	23006	26000.0	.0008E	2367CC.CC I
_		۰.۱ د	0	О	<u>.</u>	0	0				ر د	·		0	0	ر د د	د		0	ر د	 		ر د	0	ر د	ا ۔ ا	0	. n .	0	[.]	0	0	0
_	ts.)	ပ	0	Ü	0	ပ	ပ	o	ပ	0	ပ	ပ	ပ	ပ	ပ	ပ	0	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	0	0	၁	O	ပ	ပ	ပ	U
ankreich 2 9 2 9 2 9 2 9 2 10 2 10 2 10 2 11 2 11 2 11 2 11 2 12 2 12	_	-	8	m	4	-	7	m	-	7	m	4	δ.	-	2	E	4	5	9	7	æ	-	7	m	4	1	7	6 0	4	1	7	7	7
	eich		б	Մ	σ	10	01	10	11	11	11	11	11	12	-	12	12	12	12	12	12	13	13	-	13	14	14	14	14	15	15	16	16
	rankr	2	2	2	2	2	2	2	2	2		2	~	2		3	2	2	3	2	2	3	3		2	3 2	2 8	3 2	3	3 2	3 2	2	3 2

•	2 16		_	ပ	0	1 2550CC.00	1 85.87 1	18.39	0.61	15.45
	2 16	4		0	0	1 253CC.CC	1 63.63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.11	6.21	19.36
• •	71 2	-	_	0	0	30.		11.97	1.70 1	21.96
	2 17	~		o	0	1 4252CC.CC	1 76.23 1	10.95	1.83 1	35.78
	71 2	m		ပ	ပ	1 592CCC.CO	1 85.01	24.62	5.57	30.10
. •	71 2	4	-	0	0	1 445100.00	:	10.42	2.47	17.61
• •	3 18	_		ပ	ပ	1 531500.00	5.2	31.05	7.68 1	47.75
. •	2 18	~	_	0	0	1 364500.00	0.7	33.70	1.22	19.37
	2 18	ω.	_	ပ	0	1 271766.00			2.31	80.30
• •	18	4	_	0	5	1 445100.00	1.3	16.01	170	40.68
. •	2 19	_	_	0	0	320CC•C	1 78.73	39.66	ויי) ו	
. •	19	~	_	ပ	ပ	1 265100.00	22.22	· •		62.88
. •	2 19	m	_	o	O	1 277900.00	13.65 1	21.26	14.14	80.49
. •	51 3	4		Ų	ပ	1 352900.00	im	12.24	3.56	34.40
. •	2 19	2		0	ပ	1 254500.00	3.2	32,76	.20	3.3
	5 19	•	-	o	o	1 1858CC.CC	1 49.61	10.43	ו ויי ו	26.60
. •	5 19	_	_	ပ	ပ	100.0		13.16		19.55
٠.٠	2 19	c c	_	0	0	1 179000.00			1.75 1	12.84
•••	2 20	_	-	ပ	ပ	1 3C86CC.CC	8.42 1	14.87	6.11	2C.EC
. •	2 20	2		0	0					53.48
٠.٠	2 2 C	m	_	ပ	ပ	73500.00	1 1.12 1	1 CO 1	. 2	30.26
. •	2 20	4		ပ	0	1 251460.00	4	4.	r.	
. •	5 20	Ŋ	_	ပ	ပ	I 1571CC.CC	I 65.4	•	00	38.31
. •	2 21	-	_	ပ	ပ	1 2552CC.CO		ω :	1.57	87.C9
. •	2 21	7	_	0	ပ	I 2487CC.CC	14.00 1		2	148.61
. •	2 21	m	_	o	ပ	1 146366.66	2.90		2	35.5
• •	2 21	4	_	0	0	1 1884CC.CC	0		2.50 1	153.55
. •	2 21	ľ	_	o	ပ	1 113000.00	1 6 7 1	6.99	1.39	85.39
. •	2 21	Ð	_	0	ပ	1 152700.00	1.56 1		3.08	102.48
• •	2 21	7		O	၁	1 475500.00	1 65.5	4.87		

•

IN CEN TEILREG.																								
LANDN. GENUTZTE FLAECHE IN HA UNC BESATZ AN TIEREN IN STUECK JE 100 HA LF IN CEN TEILREG		ISCHAFE/ZIEG.I	I (5)	8.63 I	7.96 1	15.83	6.24 1	9.23 1	3.62 1	1.61 I	8.38	29.C3 I		I 2.5.54	68.14 1	56.83	19.76	39.29 1	56.43 I	86.30 I	58.55 I	42.28	165.73	42.34 I
AN TIEREN IN		HUEFNER IS	(4)	7.04	0.43	3.58	20.89 1	4.61	31.05	1 55.5	21.78 I	5.49 I	5.86 I	6.13 1	3.18 1	6.63 1	4.87 I	1.70 1	1.13 [C.4C I	2.47 1	2.93	1.41	7.08
A LNE BESATZ		SCHWEINE I	(3)	33.07	2.58	5.66	127.12	13.41	48.01	28.8C	148.26 I	57.25	61.48 I	111.24	25.83	42.25	22.10 [23.87 [5.38	22.33	34.68 I	13.64 [14.07	42.07
FLAECHE IN H		RINGER I	(2) I	93.15 1	38.82	30.45	148.15 1	38.51	115.34 1	74.12 1	78.69 I	60.50	28.23	47.53	36.21	54.19 1	32.73	22.03 I	11.34 1	11.01	21.45 1	16.09 1	16.00 1	48.95 I
LANDW. GENLT2TE		I PEKTAR LF I		I 1366543.CC I	1 1CC442.CC I	141169.CC I	I 1264522.CC I	1 454837.CC I	1 991264.00 1	1 00.75892	1 134828C.CC I	1 616519.CC I	1 1055450.00	1 42C7C2.CC 1	1 983127.CO I	1 755251.CC I	1 6C1751.CC I	1 2723C4.CC I	1 157725.00 1	I 671542.CO I	I 835C68.00 I	I 19203C4.CO I	1 1761864.CC I	117491455.02 1
				ပ	ပ	ပ	ပ	ပ	ပ	ပ	U	O	ပ	ပ	ပ	ပ	0	ပ	ပ	o	ပ	o	၁	
2.				ပ	၁	ပ	0	0	ပ	0	ပ	ပ	ပ	o	ပ	ပ	ပ	ပ	0	ပ	ပ	o	ပ	Ä
A 2.2		ATON		ပ	0	0	0	ပ	ပ	ပ	ပ	ပ	ပ	ပ	0	ပ	0	ပ	0	o	o	ပ	0	STAATENSUMME
CHI		IFIK		-	7	£,	4	Ŋ	9	7	æ	6	10	11	12	13	14	15	16	11	18	13	20	AATE
UEBERSICHT	Italien	ICENTIFIKATON		EL)	6	m	m	Ю	3	60	ĸ.	ю	m	ю	m	m	m	ю	m	m	m	m	6	ST
UEE	Iti	-		72	72	72	7.2	72	12	72	72	72	72	72	72	12	72	72	72	72	72	72	72	

LANCH. GENUTZTE FLAECHE IN HA UND BESATZ AN TIEREN IN STUECK JE ICG HA LF IN DEN TEILREG.

Niederlande

SCHAFE/ZIEG.I	(5)	25.24	47.57		4.65	10.30	32.8C I	109.98	26.82 I	E.C.	4.32	6.05	11.18	Z4.55 I
HUEFNER I	(4)	7.15	11.04	12.40	15.73	31.45	15.00	6.87	8.45	4.85	47.54	81.84	4.52	50.94
SCHWEINE	(3)	31.99	32.73	83.23	285.57	473.64	329.11	33.26	123.28	39.12	568.12	494.52	25.06	210.34
RINDER	(2)	67.74	200.78	147.20	156.36	255.96	231.54	126.16	140.07	50.55	204.01	126.21	99.88	155.43
I PEKTAR LF		1 205632.00 I	1 282725.CC I	2C4582.CC	300507.00	335014.00	1 251C3.CC I	192015.CC I	1 214132.CC I	1 155C28.CC I	1 351352.CC I	1 152535.CC I	50721.00	1 253675C.CC I
		ပ	0	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	0	
		Ç	o	ပ	ပ	ပ	ပ	ပ	ပ	ပ	0	ပ	ပ	ш
TON		ပ	ပ	ပ	ပ	ပ	ပ	0	o	ပ	ပ	ပ	ပ	SUM
I CENT I FIKATON		-	2	3	4	5	ę	7	ထ	5	10	11	12	STAATENSUMME
ENT		4	4	4	4	4	4	4	4	4	4	4	4	811
11		72	12	72	72	7.2	12	72	12	12	7.2	72	72	

LANGW. GENUTZTE FLAECHF IN HA LNG BESATZ AN TIEREN IN STUECK JE ICC HA LF IN GEN TEILREG.

Belgien

					PEKTAR LF	RINCER	SCHWEINE	1 +CEFNER (100 ST.)	ISCFAFE/ZIEG.I
<u> </u>		: 	: :::	-	_	(2)	(3)	(4)	(3)
1 5720	0 1 5720	0 1 5720	0 1 5720	572C	\$72C5.CC	272.98	415.45	73.13	1 6.40
1 176575.CC	C I 17657	C I 17657	C 1 17657	17657	5.CC	130.11	189.45	13.05	1 6.45
1 23562	C I 23562	C I 23562	C I 23562	23562	235621.CC	164.46	72.71	4.21	
1 18609	C I 186C9	C I 186C9	C I 186C9	18609	186C54.CC	196.01	140.64	2.72	1 3.73
1 5076	C I 5076	C I 5076	C I 5076	3C76	30.09702	174.00	490.67	51.27	
1 15569	0 1 15569	1 15569	0 1 15569	15569	155657.CG	189.19	54.11	1.13	3.75
1 1785	C I 1785	C I 1785	C I 1785	1785	178575.CC	145.13 I	42.27	1.61	4
1 1722	0 1 1722	0 1 1722	0 1 1722	1722	172206.00	225.87	440.94	32.63	I 8.71
1 2274	C I 2274	C I 2274	C I 2274	2274	227431.CC	203.35	767.80	31,34	I 6.12
I 152C564.CC	1 15205	1 15205	I 152C5	15205	64.CC I	185.50 I	290.45	23.46	1 5 . 8C

LANCH. GENUTZTE FLAECHE IN HA UND BESATZ AN TIEREN IN STUECK JE 100 HA LF IN CEN TEILREG.

Luxemburg

1.1	I CENT I F IK ATON	IKAT	Z O			I HEKTAR LF I		RINCER) 	CHREINE		FLEFNER (100 ST.)	SCHREINE I FLEFNER ISCFAFE/ZIEG.I I (ICC ST.) I I	
						3	- •	(7)	٠		·	È		
72 6 0 C C	9	0	ပ	ပ	0	1 132395.00 1		144.77 1 77.56 1	<u>.</u>	77.56	<u>:</u>	2.24	132395.CG I 144.77 I 77.56 I 2.24 I 3.75 I	 !
	STAA	STAATENSUMME	UMME			I 132355.CC I	10	144.77 1	-	77.56 I		2.24 1	132355.CC I 144.77 I 77.56 I 2.24 I 3.75 I	

LANCH. GENUTZTE FLAECHE IN HA UND BESATZ AN TIEREN IN STUECK JE ICC HA LF IN CEN TEILREG.

Vereinigtes Königreich

-		<u>.</u>				·											-											<u>-</u> -
ISCHAFE/21EG.	(s)	48.6	18.62	16.10	14.52	28.C6	36.96	84.10	17.01	25.57	23.38	1 .2	27.66	22.47	\$14.52	73.88	50.55		38.88	166.25	120.51	12.58	46.00	156.50	50.07	170.86	303.41	202.54
	(10C ST.) 1 (4)	9.92	6.75	14.14	13.76	5.25	7.15	13.68	12.06	1 35.5	25.04	14.60	2.51	14.64	1 6.5	9.9		18.78	14.28	8.74	5.80	4.62	5.02	4.29	25.14	1.66	11.87	8.78
SCHWEINE	(3) I	92.66	67.41	114.32	183.81	93.19		68.13	100.46	6.0		69.37		87.32	:	83.43.1	109.12	58.11	61.26	33.66	80 1	49.37	50.76	42.65	85.78	26.66	33.11	
RINDER	(2)	17.05	24.90	36.01	34.80	43.38	73.19	B5.59	36.77	50.01	75.99	76.73	112.83 [54.26	51.58	73.56 1	162.01	105.61	94.51	113.22	102.89	12.29	36.44	72.32	66.70	53.96	106.36	122.40 1
HEKTAR LF I	(1)	186577.24	1C6452.31 I	19380.	305156.73 1	i in	130595.45	141962,05 1	275160.58	6831.50	10754.53	256352.39	26535.54	109143.40 I	255521.89	153500.06	70985.16 1	12	C 2	2CC352.41 I	172677.08	5263.	162427.6C	4411.	156052.58	3013.	· ~ i	289132.76
_		0																			-					0		
		9	ں ن		0	0	0	ບ		ن ن		0			<u>ن</u>	0	0			S	0		6	<u>ن</u>		0		0
) 6		_	2	ر	4	_	2	(1)	4	un.	9	_	80	6	0	_	2	m	4	_	7	m)	4	K)	9	~	1	2
IKAT		1	_	-	-	2	2	2	7	2	2	2	2	2	2 1	2 1	2 1	2 1	2 1	æ	m	m	m	m	m	9	4	4
ICENTIFIKATON		7	7	7	_	7	7	7	7	7	~	7	~	7	7	7	7	7	7	7	7	7	7	~	7	7	7	~
101		7.2	72	7.2	12	7.2	72	72	72	7.2	7.2	12	7.2	12	7.2	12	7.2	72	12	72	72	7.5	7.2	72	7.2	12	12	7.2

,	•	•	.,,,,	,		`	
	ပ	υ ,	• i	8	5.6	٠!٠	63.1
	ပ	ပ	I 178C77.62 I	87.87	45.22 I	1 48.2	122.2C
	ပ	ပ	1 134615.15 1	0	68.9		4.6
	ပ	U	7.	• 1	.81		ריז
	0	Ç	1 588512.99 I	C • 3	4.4	•	211.56
	ပ	ပ		٠	7.5	5	u)
	0	ပ	45852°C	5.1	7.65	•	
10	0	ပ	6.5.9		8.1		10
v o	ပ	ပ	1 277255.28 1	1 64.15	7.0	· •	
	O	S	1 329249.29 I	111.70	10.68	• •	211.00
2	ပ	ပ	1 182253.98 I	1 00.08	5.6	-	175.75
m	O	ပ	96657.4	65.16	11.08	10	
4	ပ	O	1 164316.26	78.10	6.64	-	12
'n	ပ	ပ	1 473476.54 1	1.6	8.1	5.51	
-	ပ	o	1 187621.73	153.27	75.32	14.00	45.14
2	ပ	ပ	I 3C6251.79 I	113.33	•	21.50	
m	0	0	6364.8	40.53	7.7	m I	
4	ပ	၁	I 264282.21 I	51.46	193.02	7	115.21
S	ပ	0	I 525891.C7 I			5	164.15
-	0	0	I 581C1.98 I	123.59	5.7		313.56
7	ပ	ပ	C1442.2	· • i	88	9.	• 1
m	ပ	ပ	I 108998.53 I	-	2.9		458.58
4	ပ	ပ	149176.97	•	, e	• 6	4.1
'n	ပ	0	1 181072.70	115.43	8.0	2	39
ę	o	ပ	2038.5		4	~	544.00
7	O	o	I 48758.59 I	157.09		~	2
80	0	0	1 108983.55	:	9	(n)	21
5	ပ	ပ	1 117566.13 1	35.83		m)	41.
0	ပ	0	(m)	9.1	2.1	80	33
-	ပ	ပ	1 175915.02	83.46	14.11	٠	iori
21	ပ	o	4.	135.01	0.5	4	104.86
6	ပ	ပ	1 89*5**15 1	76.35	63.90 I	C.62	756.CC

										<u>.</u>													-									
	217.37	111.17	66.72	56.08	45.21	180.85	87.83	128.58	0:1	83,30	1.4	41.45	57.C2	101.23	173.60	107.53	365.58	126.60	286.54	166.70	230.65	245.C6	6 . 5		81.23	0.5	112.36	244.83	167.48	211.73	167.49	112.58
	2.61	0.04		0.11	C • C 2 I	C.C8 1	N	1.80 1	0.24 I			3.87	05.0		2		5		2	3.48	22.04	1.66	9	4	80	65.	.16	.2	v i	. 2	9	1.95 1
	10.10	0.37	I 96°0	1.62	0.03	0.01		,	1.80	54.44	0	9.	2.89	18.67	7.10	-	0	7.47	13.45 1	25.58	9.5	3.08		-	.2		C.47 I		9	80		21.11
	75.38 I	13.70 I		7.59	2.78 1		.2	84.23	1	85.29 I	4	64.36 I	112.80 1	1 92.64	4	• 1		23.54 [53.34 I	4C.52 I		27.04	4	15.61		Ė	.34	76.13 I	44.11	1 11.57	17.75	104.61
s.)	1 45300.06 1	645757.85	863217.9C I	689164.88 I	463540.52	135673.81	386656.42	59886.62 1	153446.00	68357.53	885.1	20687.14	77248.08	186101.73	11825.37	96100.37	18518.02	548864.39 I	104860.85 I	58727.62	76235.68 1	17874.53	141215.98 I	55557.23 I	21035.57	34865.2	41020.18 1	225421.C2 I	5 • 5)	157617.91	17128C.52 I	39735.71
(Forts.	ပ	0	ပ	0	ပ	ပ	0	ပ	0	ပ	0	ပ	O	O	v	0	0	0	0	υ	S	U	ပ	ပ	U	ပ	ပ	0	v	0	ပ	v
1ch	ပ	-	2	m	4	ĸ	-	7	m	4	'n	v	7	-	2	m	4	5	-	7	m	4	ľ	ų	7	-	2	e,	4	Ŋ	æ	7
Königreich	14	-	1	-	-	-	7	7	7	7	2	7	7	9	6	m	9	r	4	4	4	4	4	4	4	r n	r.	ហ	u)	u n	Ľ١	'n
	Φ)	σ	5	σ	σ	6	C.	6	ď	σ	σ.	σ.	σ	6	σ	6	5	σ	5	o	σ	σ	6	o.	σ	6	6	σ	5	б	σ	σ,
Verein.	7	7	^	~	^	7	7	^	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Λ	72	72	72	72	72	72	72	72	12	72	72	72	72	72	72	72	72	72	72	72	12	12	12	72	12	12	72	12	72	72	72	72

u	α	c	, .	72 7 9 5 8 0 1 C31C6.101	1 41.14 1	13.71	1 62.2	171.15 1
	2 2 2 2 27	, _U	1 1	I 108731.43 I	-		1.82 I	1.82 I 151.88 I
0	72 7 10 0 0	0	1 10.	I 1C78935.41 I	133.79	1678935,41 I 133,79 I 97,02 I 13,64 I 93,09 I	13.64 I	.I 60°E6
STAATENSUMME	¥E		1187	[18742419.10 I	75.42	18742419.10 I 75.42 I 45.28 I 7.72 I 164.77 I	7.72 I	7.72 I 164.77 I

227

LANDA. GENUTZTE FLAECHE IN HA UND BESATZ AN TIEREN IN STUECK JE ICC HA LF IN CEN TEILREG.

Irland

2.66 115.22 25.7C 4.12 4.53 2.63 2.63 2.63 3.68 137.47 24.89 0.56 1.55 126.84 135.91 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.47 137.48 1.55 1.65	Ë	ICENTIFIKATON	CN			I FEKTAR I I (1)	R LF 1	RINDER I	SCHWEINE I	HUEFNER 1 (100 ST.) 1 (4)	ISCFAFE/21EG. I I (5)
1 C C C C C C C C C										1	
2 C		-	-	ပ	ပ	1 762	42.84 1	115.22	25.7C I	4.12	225.20
9 C C 115573.88 1126.38 17.37 24.89 2.66 6 C C 11716.08 131.47 17.79 11.46 1.26 7 C C 11716.08 131.47 17.79 11.46 1.26 9 C C 122541.88 135.20 9.86 3.14 11.46 1.26 11 C 222541.88 135.20 9.86 3.14 11.46 1.26 10 C 222541.88 135.20 9.86 1.46		-	7	ပ	ပ	1 651	1 15.45 1 1	96.32	26.53	2.83	96.36
4 C C 165593.68 137.47 24.89 C C C 131146.08 137.47 24.89 C C C 131146.08 135.91 11.79 11.46 2 7 C C 13124.1 17.79 11.46 2 2 2 11.46 2 2 2 11.46 2 2 2 2 11.46 1 2 11.46 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 2 2 3 4 4 2 2 3 4 4 6		-	(C)	ပ	U	1 1437	E4.53 I	120.38	12.37	5.45	96.18
6 C C C 13714E CE 135.91 31.20 155 19 19 10 10 10 10 10 10		-	4	ပ	ပ	5531 I	53.68 I	137.47	24.89 I	0.56	65.59
C C C E E C C C E C C		-	Ś	ပ	Ç	1721	48.CB I	135.91	31.20	1.55	38°5E I
C C C C C C C C C C		-	9	ပ	ပ	1 870	88.42	131.47	1 52.71	1.46	25.14
C C 222561.09 135.20 5.86 2.14 10.09 1.00 1.45246.15 1.26.84 10.089 1.00 1.45246.15 1.26.84 10.089 1.00 1.55 1.31 1.00 1.20 1.20 1.20 1.20 1.20 1.20 1.30		-	7	၁	ပ	I 711	C3.33 I	124.74	19.61	2.21	85.36
9 0 0 145248.19 128.84 16.28 15.28 15.57 11 0 153335.52 132.38 16.69 16.69 16.67 135.94 2.53 13 11 0 15669.56 165.23 26.78 2.65 2.65 15 2 0 1666.56 165.23 26.78 2.65		_	œυ	ပ	ပ	1 2225	61.58	135.20	7 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	3.14	108.70
10		-	σ	ပ	0	1 1452	48.19 I	128.84	16.28	1.95	1 48.64
11		-	10	ပ	ပ	1 1533	35.52	132.38	10.69	C.57	[64.17
1 12 C C 1 C C G G G G G G G G G G G G G G G G G		-	11	0	ပ	I 2075	63.44	126.92	35.94	2.53	136.39
2 1 C C 227672.08 130.43 6.31 1 C.74 2 2 2 2 2 2 2 2 2		-	12	ပ	ပ	1 1056	69.90 I	105.23	26.78	2.85	758.5C
2 C C I 5461C6.71 I 157.39 45.66 2.67 11 4 O C I 2222C.11 153.35 25.49 1.26 11 5 O C I 243378.16 144.74 23.33 0.68 1 7 C C I 186226.49 158.56 411.13 0.68 1 7 C C I 134032.00 143.62 31.78 2.16 53 8 C C I 245277.34 120.58 15.09 14.65 23 9 C C I 24526.63 135.18 16.09 1.83 146 23 9 C C I 27238.63 124.00 7.69 1.63 11 1 O C I 18266.03 123.79 15.47 1.01 7 1 O C I 183606.03 102.93 25.32 2.08 15 9 C C I 18659.25 131.24 59.05 1.85		7	-	ပ	v	1 2376	72.C8 I	136.43	6.31	C.74	22.46
3 C C I 22222C.11 I 153.35 I 25.49 I 1.20 I 4 O C I 2622C.79 I 144.74 I 23.33 I C.63 I 4 5 O C I 16622C.49 I 158.56 I 41.13 I C.63 I 4 7 C C I 134032.00 I 143.62 I 31.78 I 2.16 I 5 1 C C I 136577.34 I 120.59 I 144.85 I 146.85 I 146.85 I 146.15 I 5 1 146.15 I		7	2	ပ	ပ	I 5481	C6.71 I	150.39	•66	2.07	15.25
4 0 C I		7	m	ပ	ပ	1 2228	20.11	35	49	1.20	1 110.58
2 6 C C I 1658EC.75 I 144.74 I 23.33 I C C.63 I 4 2 7 C C I 134C32.CC I 143.62 I 31.78 I 2.16 I 5 3 1 C C I 336577.34 I 12C.58 I 15.05 I 1.46 I 5 3 2 C C I 1121C5.73 I 96.45 I 14.85 I 1.05 I 3 3 4 C C I 2452C5.63 I 135.18 I 16.09 I 1.83 I 14 3 5 C C I 122134.23 I 123.79 I 15.47 I 1.01 I 7 4 1 C C I 1836C6.03 I 102.93 I 25.32 I 2.08 I 15 4 2 C C I 115655.25 I 131.24 I 59.05 I 1.85 I 1.01 I 100		2	4	0	ပ	I 2433	78.16	154.77	18.16	3.84	1.64
2		7	u n	ဝ	ပ	1 1658	EC.79 I	144.74	23.33	C.63	1 48.70
2 7 C C 134622.CG 143.62 31.78 2.16 3 1 C C 235577.34 126.58 15.05 146.6 3 2 C C 112105.73 96.45 14.85 16.05 3 3 C C 245265.63 135.18 16.09 1.83 3 4 C C 245265.63 124.00 7.69 0.79 4 1 C C 122134.23 123.79 15.47 1.01 4 2 C C 183666.03 102.93 25.32 2.08 4 3 C C 183666.03 102.93 25.32 2.08 7 8 1 C C 183666.03 18267.37 183.56 25.32 2.08 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	Ą	ပ	ပ	1 1862	36.49 1	158.56	41.13	0.68	
3 2 C C 1121C5.73 96.45 14.85 1.05 1.46 1.25		7	~	ပ	ပ	1 134C	32°CC	143.62	31.78	2.16	100 100 100 100 100 100 100 100 100 100
3 2 C C 1 245265.63		ю	-	ပ	ပ	1 3365	77.34 1	120.58	15.051	1.46	72.7E3 I
3 5 C C [2452C5.63 135.18 16.05 1.83 1.33		m	2	ပ	o	1 1131	C5.73 I	96.45	14.85	1.05	37.48
3		m	e,	ပ	ပ	1 2452	C5.63 I	135.18	160-91	1.83	145.23
3 5 C C 122134,23 123,79 15,47 1,01		m	4	၁	ပ	1 2002	38.63	124.00	· ~	0.79	119.60
133.56 52.52 2.79		3	W	ပ	ပ	1 1221	34.23 I	123.79	15.47	1.01	12.37
1 131.24 59.05 1.85		4	-	၁	ပ	1 1612	67.37	133.56	52.52	2.79	1 22.65
1 131.24 1 59.05 1 1.85 1		4	7	o	0	1 1836	C6.C3 I	162.93	25.32 I	2.08	150.43
		4	6	ပ	ပ	1 1156	55.25 I	131.24	59.05	1.85	15.90

LANCH. GENUTZTE FLAECHE IN HA LNC BESATZ AN TIEREN IN STUECK JE ICC HA LF IN DEN TEILREG.

Dänemark

																Ē.
ISCHAFE/ZIEG.I	(5)	5.78	3.20 I	1.86 I	1.34 1	C.66 I	1.46	1.73	4.85	1.23	1.57	1.22 I	1.40	1.34 I	1.46 I	2.C8 I
FLEFNER 1	(4)	3.32	5.36	6.43	88.8	5.41	14.86	8.62	6.38	3.92	5.55	3.28	5.13	7.18	8.88	6.44
SCHWEINE	(3)	92.29	224.28	324.54	344.56	243.10	413.30	323.18	251.99	229.57	319.52	300.95	331.55	398.88	310.51	293.47
RINDER	(2)	13.18	51.76	37.54	50.05	40.16	63.76	51.66	110.73	130.70	109.45	103.81	53.14	124.84	110.93	80.98
HEKTAR LF I	3	12617.00	64536.CC I	57644.CC I	20345.00	245451.CC I	37278.00 [247641.CC	292324.00	211705.00	216654.00	325648.CC I	301118.CC I	276933.00 I	424867.00 I	2521161.00 I
		0	v	o	ى ن	0	o	v	O	0	٠ ن	0	S	0	U	
		0	o	ပ	ပ	ပ	0	ပ	ပ	ပ	ပ	0	ပ	0	ပ	ш.
ATON		-	7	m	4	2	9	7	-	7	m	4	ഗ	ę	4	STAATENSUMME
ICENTIFIKATON		-	-	-	-	-	-	-	7	7	7	7	7	7	2	AATEN
CENT		σ	σ	6	σ	6	σ	თ	Φ.	σ	σ	σ	σ	6	σ	ST
-		72	72	72	72	72	12	72	72	72	72	72	72	72	72	

BR D	BR Deutschland	hlan	70		,	i.		•		•	
ICE	ICENTIFIKATON	IKATO	z		I FEKTAR LF	SINCER I	SCHWEINE I	HUEFNER	ISCHAFE/ZIEG.I	SUMME	SUMME
					()	(5)	(3)	(4)	(5)	(6)	
72		1 C	ပ	ပ	23E1.C			1 (7)	C.83 I	1 17	125.86
7.2	,	2 C	S	ပ	1 31055.CO	36.86	10.95	4.70	C.56 I	15.66	53.08
7.2	1 4	4	0	ပ	1 16C58.CC	74.45	11.16	4.82	0.32	15.58	5C.76
72	1 10	0	ပ	O	I 118C27.CC	ω :	.83	6.84	C.84 I		66.35
7.2	1 11	1 0	0	0	1 4175.00		51.55	61.00	ıω	2.5	146.42
7.2	-	3 1	0	υ	I 418643.CC	62.09 1	60.50	12.60	0.51	73.11	135.73
12	-	3 2	ပ	0	1 262831.CG	50.26	28.24	4.61	1 E5°0	32.86	84.CE
72	-	60	O	ပ	1 5368C1.CC	6	32.56		C.52 I	37.56	19.50
7.2		3	ပ	ပ	I 461181.CC	91.86	32.39	7.56	C.24 I	46.35	132.46
7.2		3	O	0	I 393284.CO I	68.38	79.56	20.67		.2	168.75
72	-	3	S	O	I 244136.CC I	I 62.23	17.98	2.19	C . 25 I	, 0	115.67
7.2	-	3 7	0	O	I 184351.CC I		15.09 1	5.32	1.67	20.42	48.65
7.2		9	S	0	398588.00	93.15	74.03	33.42	C.21 I	167.45	2CC.83
7.2	,	5 1	O	o	1 3116CC.CC	70.67	53.37	5.21	1 55*3	62.59	134.26
12	٠ ٦	5 2	0	O	75574°C	60.45	16.09 1	6.58	2		84.42
72		5	ပ	ပ	1 488638.00	82.79	1 79.97	13.31	C.29 I	53.25	176.37
7.2	-	5	0	0	I 412354.CC	67.38	65.69	13.38	0.73	75.06	147.15
72	,	e e	O	S	1 305656.00	65.01	33.24	7.38	1.22 [40.63	110.88
7.2	1	6 1	O	ပ	I 5C1326.CC	65.14	29.43		1.15 [41	103.66
7.2	1	6 2	ပ	Ö	1 434762.60		40.81	0 1	1,11		116.74
72		7 1	ပ	ပ	1 325362.00		22.03	ונטו	C.85 I		59.65
12	-	1 2	0	0	1 232711.CO	70.40		2.45	7	9 1	53.46
72		7 3	ပ	ပ	1 341764.CC 1	33.03	15.32	7.46	C.71	22.75	56.54
12	1 8	8 1	0	0	I 58725C.CC	17.77	5	42.8	1,01	40.05	118.80
12	3	8 2	0	o	I 242764.CO	•	22.57	7.14	0.65 [25.71	80.65
12	1	33	0	ပ	4C11.CC	.51		3.74	C.45 I		51.27
12	1	4	O	0	I 517CC6.CO	87.17	27.60 1	4.92	I 15.0	32.53	120.62

•								
		121.54	1 54.55	1 12.33 1 15.31	124.20	52.E7 I	134.42	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.37 I	40.89 1	28.25 I	25.06	4C.61 I	1 53.55	24.61 1	42.C1 I
	0.53	C.43 I	C.25 I	C.29 1	C.78 I	1 35.3	1 65.0	0.70
		5.29 I	7.94 1	2.29 1	4.18 1	1	2.67 [1 65*8
		31.59 1		1	36.42	3C.27 I	21.53	33.01 I
		8C.62 I	70.54	1 95.59	82.80	28	105.27	67.85 I
	1 20.83.00 1	1 613362.CC I	1 454656.00 1	1 36CC14.CC 1	1 30*53555	1 4C4657.CC I	1	113455856.C1 I
ts.)	ပ	ပ	ပ	ပ	0	ပ	ပ	
For	ပ	ပ	ပ	ပ	0	ပ	ပ	ш
and	-	7	m)	4	Ŋ	ç	7	SUMM
schl	ი	5	σ	O.	σ.	σ	6	STAATENSUMME
BK Deutschland (Forts.	-	-	-	-	7	1	1	STA
Ä	12	12	12	12	12	12	7.2	

Fran	Frankreich	ų										
101	ENTIF	ICENTIFIKATON	z			HEKTAR LF I	GVE- I RINCER I	GVE- I SCHWEINE I	GVE- FUEFNER	I GVE- I ISCHAFE/ZIEG.I	SUMME	SUPPE
						(1)	(2)	(3)	(4)	(5) I	(6)	(7)
73	2		0	0	<u> </u>	4256CC.CO I	86.30 I	29.32	11.71	I 22.0	41.03	128.11
73	7	1 2	0	0	<u> </u>	1 20.021	76.68	29.51	4.03		1 40.00	111.35
13	7	2 1	o	0		5238CC.CC I	5C.26 I	1 66.4	1.80	1 10 1	6.75	56.25
73	7	2 2	-	0		300.	43.15	3.18 I	1.56	1 1.80 1	1 52.4	45.71
73	7	2 3	S	Ö		508500.00	56.13	8.23	3.05	I 1.68 I	11.32 I	68.54
73	7	3 1	O	0	<u> </u>	1 00.005556	14.83	1.49 1		1 1.60 1	2.36 1	16.61
7.3	7	3 2	0	ပ			12.23	1 (2)	2.82	I C.65 I		17.54
73	2	4 1	O	0		50070036	31.74 I	2.63	1 00 1	3.18	5.46 1	40.36
73	7	4 2	S	0	<u> </u>	478CCC.CO I	17.33	1.36.1		I C.75 I	3 + 53	22°C2 I
73	7	4	0	0		456000.00	25.31	4.39	l RU	I 64.47	5.58	35.77
73	~	4	0	Ö	<u>.</u>	386500.00	32.78	3.49	5.28	1 1 1 84 1	8 - 7 8 I	43.4C
73	2	4 m	O	Ü	<u> </u>	375900.00	15.08 1	2.38	4 1	1 1 1 1 1 1	7.82	28.65
73	8	4	0	0	<u> </u>	4348CC.CO I	15.27	2.38 1	60.6	1.30 1	11.41	31.55
73	2	5 1	O	5	!		58.33 I	5.6C I	• 1	-	1 66.5	65.58
73	2	5 2	O	0		4685CC.CC I	114.90 I	4.84	34	1.13	7.18 1	123.22
73	2	6 1	0	0	L	474CCO.CO I	85.74 I	1 88 4 1 88 I		I 0 .5	7.20 1	53.45
73	2	6 2	ပ	ى		1 00.005088	108.04	5.09	3.84		E . 54 I	117.51
73	2	6 3	0	0	<u>_</u>	477500.00 1	1 58.48	4.38	0.65	1 0.00	5 C4 I	100.58
73	2	7 1	O	O	<u> </u>	505800.00	10C.41 I	58.28	12.64	I C.81 I	7C • 52 I	172.15
73	. 2	7 2	S	0		4782CC.CC I	110.31	1 79.69	19.72	C . 35 I	23.65	154.36
13	7	7 3	O	o	<u>_</u>	5329CC.CC I	124.31	30.35	8.26		38.61 I	163.41
73	2	4 1	O	Ü	L	4626CC.CC I	50.78	27.03 I		I C.6	45.38	136.77
73	7	8 1	0	ن -	<u> </u>	531000.00	77.81 I	4.67	5.62	0.0	10.30	68.15
73	7	8 2	ပ	S		5769CC.CC I	17.67	1 84.4 I 84.4		2.6	11.84	52.13
73	7	8	O	0		4537CC.CC I	121.39 I	13.06 I	00.5		22.C7	144.16
73	7	8 4	O	0		4698CC.CC I	78.73 I	6.2C I	50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0	11.56	91.10
73	2	8 5	O	Ü	-	567666.00 1	85.75 1	7.6C I	13.29	I 1.7C I	20.85	112.35

***************************************	51.70	48.69	95.85 I	51.30 1	E3.62 I	78.75 I	77.74	63.07	I 55.44	68.C4 I		70.56	34.86	55.12		45.14 I	61.00	66.30 1	49.69	44.26 I	75.17	32.61		67.37	70.51	55.21 I	46.47 I	54.56	52.34 1	41.62.1	
	-			·		<u>.</u>					- I						· · · · · · · · · · · · · · · · · · ·			1										I	T
	10.58	4.08	15.24		12.83		25.3	16.55	6.61	31.16	10.35	20.55	5.40	i •	1 47	1 4		23.25	12.52		3.12	2.66		-	-		7.80		16.09	10.68	
- - - - - - - - - - - - - - - - - - -	4.35	1.19	5.52	13.39 1	C.46 I	1 4				0.03	0.16	i -	0		0.02	1.08 1	13.08	6.32	6.09	2.74 1	1.46 1	-	5	1.73	2.69 1	1.55.1	1.12 1	1.15 1	1.26 1	1.02 1	
1	3.12 [1.57 I	8.60	1.53	3.82 I	l w	-1	10.44 1	6.86 I	21.00 I		1.4	9	ויייו		• 6	I 55*E	1 00	im	5.56	1 56.0	(1)	, ao		1.06 1		1.78 [1.851	4.07	3.02 1	-1
	7.45 I	2.11 1	1 59.9	ıω	9.01	-	3.68 I		1.74 1	10.18	5.01	13.12		i m	7.74		1 69.9	15.35	.29	8	2.17 [.34	4.75	4.12 1		6.01	4.21	14.02 1	7.66 1	
* * * * * * * * * * * * * * * * * * *	36.76 1	43.42 I	71.08 1	32.54 1	C.3		71.03 I	5	36.33	36.82 1	9	I 26.54		5.3	0	9.	7.2	-	: :	1.7	41	-	4.57	9 · 8	2.8	5	35.54	m	2.9	5C.11 I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	462460.00 1	4780CC.CO I	4535CC.CO I	5115C0.CO I	2468CC.CC I	3464C0.CO I	33500.00	21600.0	3436CC.CO I	217100.00 I	353400.00 1	4C15CC.CO I		533400.00 I	460500.00 1	1 00.008884	235500.00	21500.00	5320	63500.0	33C6CC.CC I	366266.00 1	561300.00 1	314166.00 I	2958CC.CC I	328700.00 1	351866.00	254800.00	1 22.232621	156000.00	
_	0	0	0	0	v	0	0	0	O	O	0	ပ	0	v	υ	υ		0	U	υ	0	v	0	O	U	0	υ.	0	υ υ		•
(Forts.)	O	ပ	ပ	0	ပ	ပ	o	0	ပ	ပ	ပ	၁	0	0	ပ	ပ	ပ	0	ပ	0	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	
		2	m	4	-	2		-	~	м	4	<u></u>		2	m)	4	In.	9	-	80	-	2	m	4		2	m	4	-	. 5	
Frankreich	2 9	5 9	2 9	2 9	2 10	2 10	2 10	2 11	2 11	2 11	2 11	2 11	2 12	2 12	2 12	2 12	2 12	2 12	2 12	2 12	2 13	2 13	2 13	2 13	2 14	2 14	2 14	2 14	2 15	2 15	
rank	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 .2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	73 2	

-									- H -										4 H-4 H-				•							•	
	68.21	17.42	50.13	62.81	62.52	36.62	E1.C1	76.25	66.64	62.64	75.54	26.47	36.51	51.61	72.56	44.05	41.28	71.55	17.68	12.80	6.33	31.57	8.17	14.25	34.84	5.54	36.67	12.05	16.68	8.84	62.73
	4.84	7.84	4.45	4.35	11.16	4.87	14.63	8.57	7.76	7.21	21.43	4.18	15.03	6.37	1C.73 I	5.71	3.77	12.85	5.53	2.0	2.45	1.55	C.75	2.68	1 36.8	3.4.5	15.13	2.99	5.30	1.12	11.87
	1.54	1.53	2.15 1	7.5	3.01	1.76	4.77	1.53	8 C3 I	4.06	1.81	6.28 1	8.04	3.44	2.33	2.66	1.55 1	1.28	2.CE 1	3.34	3.02	8.C6	80 1	8 .7C I	14.86	1 55.5	15.35	80	10.24	3.65	2.54
	C.61 I	6.21	1.70	1.83 1	5.57	2.47	7.68	1.22	2.31	3.53	12.31	2.37	14.14	3.56 1	3.20 1	3.31	C.74 I	1.75 1	6.11	3,78	2.29	C.53 I	9	1.57 1	1.26 [3.22 I	2.50 I	1.39	3.08 I	1 00 0	4.55
	4.23	1.63 1	2.75	2.51	5.52	1 (1)	7.15 1	7.75	5.39	3.68	9.12	80	4.89	2.81	7.53	2.39 1	3.62	11.10	3.42	1.66	0.20	1.01	0.79 I	1.10 [8.63	C.23 I	16.62	1.60	2.21	1.12 [7.31
-	61.82	67.63	43.47 I	54.88 I	68.41	29.99	61.40 I	65.33	50.91	51.35	56.69	16.00	1 88.5	41.99 1	55.91	35.71	35.51 I	57.85	1 90.9	2.00 1	C.81 I	21.94	3.55	2.90 I	10.08	2.09 1	2.18 1	0.55	1.12	4.02	47.52 I
	255CC0.CC I	253CC.CC I	461700.00	4252CC.CC I	1 555000.00	4451C0.CC I	531500.001	384500.00	2717CC.CC I	445100.001	332000.00	265100.001	277900.00	352500.00	2945CC.CC I	185800.00	211100.00	179000.00	1 30.039826	245400.00	2739CC.CC I	2514CC.CC I	157100.001	2952CC.CC	2487CC.CO I	1463CC.CC	1884CC.CO I	113000.00	1527CC.CG I	4755CC.CO I	1325C34CC.C1 I
	0	U	0	υ	v	ပ	S	0	0	ပ	o	ပ	0	0	O	O	O	0	ပ	O	ပ	O	0	v	0	0	ပ	0	o	0	
ts.)	ပ	ပ	ပ	ပ	O	ပ	ပ	0	ပ	O	ပ	ပ	0	0	O	0	ပ	0	0	ပ	ပ	ပ	ပ	ပ	0	o	o	o	o	ပ	W E
(Forts	m	4	7	2	e)	4	-	2	m	4	-	2	m	4	'n	Ø	7	80	-	7	6	4	'n	-	7	m	4	r	9	7	AATENSUMM
eich	16	16	17	17	11	1.7	18	18	18	18	19	19	19	19	19	19	13	19	20	20	20	20	20	21	21	21	21	21	21	21	STAATE
Frankreich	3 2	3 2	3	3 2	3 2	3 2	3 2	3 2	3	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3	3 2	3	3 2	3 2	3 2	3 2	3 2	3 2	3 2	3	S
1	73	73	~	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	

IONEN		KE I	(7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	82.58 I	25.67 I	25.2C I	57.42 I	36.64 1	128.32 1	65.7C I	113.38 1	65.12 I	45.64 I	70.34 1	42.C1 I	61.06 1	41.5C I	26.55 I	16.19 1	22.3C I	31.75 1	21.68 1	32.74 1	56.23 I
TEILREGIONEN		I SLPPE	1 (7) I	· · · · · · · · · · · · · · · · · · ·		,			1		7													
LF IN CEN		SUMME	(6)	14.65	1.12	5.28	5C.12	7.10	42.05	16.17	7.53 8.88	18.66	20.05	31.71	5.13	16.35	35.5	7.19	5.37	5.54	10.45	£3.3	4.64	16.75
GVE JE 10C FA		I GVE- I ISCHAFE/ZIEG.I	I (5)	0.86	1 52.0	1.98 I	0.62	C • 52 I	C . 3C 1	C.16 I	0.83	2.9C I	5.31	1 56.4	6.81	5.68 1	1 72.7	1 25.5	5.64 1	8 . 8 3 I	5.85 I	4.22 1	16.57 I	4.23 I
AN TIEREN IN		CVE- I PLEPNER I	(4)	7.04	C.43	3.58	2C.89 I	4.61	31.05 I	1 55.5	21.78 I	5.49	5.86 I	6.13 1	3.18	6.63 I	4.87	1.70	1.13 1	0.40	2.47	2.53	1.41	7.C8 I
HA UNG BESATZ		GVE- I SCHWEINE I	(3)	7.60 I	0.68	1.30	29.23	3.08	11.04	6.62	34.10	13.16	14.14	25.58	5.94	9.71	5.08	5.45	1.23	5.13	1.97	3.13	3.23	9.67 I
FLAECHE IN		GVE- I RINCER I	(2)	67.67	27.95	21.53	106.66	28.C1 I	85.52	53.37	56.65	43.56	20.32	34.22	26.07	35.02	23.56	15.86	8.17	1 65.7	15.44	11.58	11.52	35.24 I
LANDM. GENUTZTE		I I HEKTAR LF I	(1)	I 1366543.CC I	I 100442.00 I	1 141165.CC I	1 1264522.CC I	1 454837.CC 1	I 991264.CO I	1 308537.00 1	1 13482EC.CC I	I 616519.CC I	1 105545C.CC I	I 42C7C2.CC I	I \$83127.CC I	1 755251.CC I	I 6C1751.CC I	1 2723C4.CC I	1 157765.00 1	I 671542.CC I	I 835C68.CC I	1 152C3C4.CC I	1 1761864.CC I	117491455.C2 I
				0	ပ	ပ	ပ	ပ	0	ပ	0	ပ	ပ	0	ပ	ပ	ပ	ပ	ပ	ပ	0	ပ	ပ	
2.3				0	ပ	ပ	0	ပ	0	ပ	0	0	ပ	ပ	ပ	0	ပ	ပ	0	ပ	ဝ	ပ	ပ	Σ.
₹		ATCN		0	0	O	0	ပ	ပ	ပ	0	ပ	ပ	O	ပ	ပ	ဝ	O	ပ	ပ	0	ပ	0	STAATENSUMME
CHI	ц	TIFIK		-	2	٣	4	r.	9	1	æ	σ	10	11	12	13	14	15	16	17	18	19	20	FAATE
UEBERSICHT	Italien	ICENTIFIKATON		3	m	m	m	m	m	m	m	m	m	m	m	m	æ	m	m	m	m	М	m	S
UE	II			72	72	72	72	72	12	72	72	72	72	72	72	12	72	72	72	72	72	12	12	

LANDW. GENLIZTE FLAECHE IN HA LNC BESATZ AN TIEREN IN GVE JE 10C HA LF IN GEN TEILREGICNEN

	VE 1		E7.4C	167.89	138.05	227.35	325.71	266.65	116.35	140.54	51.06	325.52	287.67	76.16	
	SUMME			7		2	i in	2(7			2		
	SUMME I	I (9)	14.51	16.57	1 56 1 1	1)5*53	146.39 1	5C.7C 1	14.52	36.80 1	13.65	176.6C I	195.58	11.20	T
	I GVE- I ISCHAFE/ZIEG.I	(5)	2.52	1 51.4	1 44.0	C.46 I	1.03 [3.28	10,95 I	2.88 1	0.00	C.43 I	C.6C I	1.11	
	GVE- I FUEFNER I	(4) I	I7.15 I	11.04 1	12.40 I	15.73	31.45	15.CC I	6.87 I	64.8	1 58.4	1 45.74	81.84 I	4.52	
	SCHWEINE I	(3) I I	7.35	7.52	19.14 1	65.77	108.93	75.69 I	7.65 1	28.35	1 55*B	130.66	113.74	1 89.9	
	GVE- I RINDER I	(2)	7C.37 I	144.56	105.58	141.38	184.29	166.71	5C.83 I	100.85	36.39 1	146.88 1	9C.87 I	63.83	
	I FEKTAR LF I		 2C5632.CC	Z82725.CC I	204582.00 I	1 20.5225	335014.00	521C3 · CC I	192015.CC I	214132.CO I	155C28.CC	351352.CC I	152535.CO I	50721.CC I	. []
			υ	ပ	O	ပ	v	ပ	ပ	O	ပ	0	o	0	•
			ပ	ပ	0	၁	O	o	ပ	ပ	ပ	0	ပ	၁	
	NOTE		ပ	o	Ö	ပ	o	ပ	0	ပ	Ö	ပ	ပ	ပ	
Niederlande	ICENTIFIKATON		-	7	6	4	5	ç	7	80	σ	01	Ξ	12	
gerl	CENT		4	4	4	4	4	4	4	4	4	4	4	4	
N	I		12	72	72	12	72	12	72	12	72	72	72	72	

LANDA. GENUTZTE FLAECHE IN HA LND BESATZ AN TIEREN IN GVE JE ICC HA LF IN DEN TEILREGICNEN

				1 11 1				1			, II	1 2
	SLMME	(7)	365.87	150.56	140.08	176.57	285.56	150.16	115.14	3CC • 43	354.56	227.57
•	SUMPE I	(9)	166.66	56.63	20.53	35.07	164.13	13.56	11.34	134.05	2C7.53 I	\$C•26 I
1	GVE- I ISCHAFE/ZIEG.I	(3)	C.64 I	0.64 1	C.73 I	C.37 I	C.54 I	C.37 I	C.42 I	C.87 I	C.61 I	C.58 I
,	GVE- I HUEFNER I	(4)	73.13 I	13.05	4.21	2.72	51.27	1.13	1.61	32.63	31.34	23.46 I
!	SCHWEINE I	(3) I (E)	95.55	43.57	16.72	32.34	112.85 1	12.44	9.72	101.41	176.59	1 08.99
	GVE- I RINDER I	(2)	196.54	53.68	118.41	141.13	125.28	136.22	107.37	165.51	146.41	136.73 I
٠	FEKTAR LF I	(1)	972C5.CC I	176575.CG I	235621.CC I	186C54.CC I	90760.00 1	155697.00 1	178575.CO I	172266.00 1	227431.CC I	1520564.00 1
			٥.	· υ	0		0		0	υ	٠ ن	
			ပ	o	0	ပ	ပ	ပ	ပ	ပ	ပ	נט
	10N		0	0	0	ပ	o	ပ	0	ပ	ပ	SUMMI
	ICENT IF IKATON			7		4	S	49	1	αυ	6	STAATENSUMME
Belgien	CENTI		ĸ	2	S	5	ľ	ĸ	ĸ	เก	ľ	STA
Bel	11		72	72	72	72	7.2	12	12	12	7.5	

LANCH. GENUIZTE FLAECHE IN HA UNC BESATZ AN TIEREN IN GVE JE 1CC HA LF IN CEN TEILREGICNEN

cuxemburg	-		GVE		1 505-1	-	-
CENTIFIKATON	I PEKTAR LF I	RINDER	I SCHWEINE I	HUEFNER	ISCPAFE/ZIEG.I	SLMME	SLAME
		(2)	(3)	(4)	(5)	(+)+(=) I (+)	(7) (7) I
0 0	I 132355.CC I	104.23 [132355.CC I 1C4.23 I 17.84 I	2.24 1	2.24 I C.37 I 2C.CE I 124.7C	2C.CE 1	124.70
TAATENSUMME	I 132355.CO I	104.23 I	1 17.84 I	2.24 I	132395.00 I 104.23 I 17.84 I 2.24 I 0.37 I 20.0E I 124.70	20.08 1	124.7C I

SUMME 1 (2)BIS(5) I (7) 134.51 I -----I 89.03 I

1C1.C3 75.44

17.51

64.73

55.58

67.57

102.27 | 63.34 | 63.34 | 12C.67 I

100.30

80.32

£6.14

102.94 | 26.29 |

E2.C7

[124.35 I	1 67.38	116,36	133.44 I	118.87 1	117.51	101.41	136.48 1	91.29 1	107.22	57.53	81.56 1	51.48 1	52.78	146.19 I	144.84 1	55.28	I 30°55	51.58 1	13C.17 I	132.30	103.38	57.E¢ I	110.16	146.77	165.05	108.30 1	83.59	136.54 1	115.35 I	116.43 1	145.9C I
	15.47	2C.25 I	34.44	2C.13 I	18.28 I	22.16 1	15.54	26.66 1	21.32 I	5.69 1	21.55 1	5.05	3.64 1	23.2E I	21.33 1	1 75.64	24.37 I	1 0 0 0 0	21,45 I	5.54	1.5¢ I	5.16 1	2.22 1	3.06.1	10.64	25.75 I	10.05	C • 75 I	17.89 1	6.32 1	5.65 1	15.32 I
[6.37 [12.22 I	16,46 1	13.26 1	21.15 1	4.56 1	10.48 1	11.21	4.05	21.10 1	17.57 I	26.67 1	31.60 1	17.86 1	4.51	15.75 I	5.72 1	11.52 1	16.41	31,25 1	1 72.57	45.85 1	34.16 1	23.58 1	54.40 I	22.19 1	32.16 1	54.14 1	33.30 1	52.57	10.48 1	75.60 1
	6.66 1	5.84	16.75 1	5.22 I	8 . C 6 1	8 . 5.5 I	8.58 1	11.00 I	10.49 1	3.23 1	13.74 1	2.54 1	2.11 I	9.91 I	14.00 1	21.50 I	13.39 1	6.11	7.98	a.ea.	0.61	2.19 1	C.6C I	1.20 I	4.79	15.76 1	5.34	C.32 I	12.80 1	3.08	1.46 [0.62 1
	12.8C I	10.4C I	17.68 1	14.90	10.22 1	13.22 1	196.01	15.66 1	10.82	2.45 [8.20 I	2.54 1	1.52 [13.36 [17.32 1	25.93	10.98 I	44.39 I	13.47 [5.91	1.35 [2.96 I	2.61	1.85 1	5,85 1		4.74	0.43	5.08 1	3.24	4.38	14.69 I
	98.50 1	63.26	65.45 1	100.04	79.43	1 92.08	71.38 1	98.61	65.87	8C.43 I	57.60 [1 62.55	56.23 [110.35 1	81.60 [25.18 I	37.05 1	54.10 [.2	52.36 1		6C.47 I	83.11 I	75.72	113.10 1	66.04	28.68 1		60°09	100.001	54.97 I
)	2C6361.53 I	178077.62 I	134615.15 1	293536.15 1	568512.59 1	157CE2.48 I	245892.06 1	334665.92 I	277255.28 1	329245.29 I	182253.98 1	356657.49 I	164316.26 1	473476.54 1	187621.73 1	366251.79 I	336364.88 I	264282.21 1	525891.07 I	581C1.98 I	1C1442.23 I	108558.53 1	145176.57 1	181072.70 1	132C38.52 I	4875E.59 I	108983.55 I	117566.13 1	87531.38 1	175919.C2 I	130013.47 1	91445.68 I
Forts.	<u>!</u>	!	ا د		<u>.</u>	 		- I - I		 	ָּן װ [ָ]	0	<u>.</u> 		 o	 	- - -			J ;	C	0	!	 	0	 o	٠	U I	0	 		1 0
$\overline{}$	ပ	0	ပ	ပ	ပ	ပ	0	ပ	ပ	0	ပ	ပ	ပ	o	ပ	o	ပ	ပ	0	ပ	ပ	ပ	ပ	၁	ပ	U	O	ပ	ပ	၁	ပ	0
Königreich	m	4	'n	-	2	60	4	5	Ą		2	ю	4	'n	,	2	~	4	5	-	2	m	4	ľ	Ą	7	8 0	5	1.0	11	12	13
	4	4	4	2	5	Ś	2	7	2	9	ø	9	ę	•	1	1	7	1	7	œ	۵	æ	œ	œ	ဆ	80	æ	æ	80	œ	80	89
Verein.	7	7	7	7	7	7	7	7	7	7	7	7	~	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Ver	72	12	12	12	12	22	7.2	12	7.2	12	12	12	12	12	12	12	12	12	12	12	12	12	72	12	12	12	7.2	72	12	12	12	72

	80.95	21.11	12.33	11.42	6.95	21.57	100.25	67.64	37.37	88.24	30.03	63.72	55.45	53.65		117.89	122.61	34.25		5. 5. 5. 5. 5. 5.	52°C7	46.35	66.83	43.38	105.49	30.80	44.25	£1.51	52.50	E1.45	78.86	53.43
,	4.54 I	C-12 I		C.34 I			17.15	14.13 I	49			13.23	u\	7.69.1	4.65	4C.52 I	•		(7)	4	1 25.55	I 75.5	. • (C 4 9 I	· • i	I 55.5	C.27 I	• (I 55°E			6.81 I
,	21.73	11.11	6.67 I	5.60	5	18.C8 I	8.78 I	12.85 1				: :	-1	10.12	17.36 I	10.79 1	ın i	12.66 I	9	16.67 1	1 53.52		31.65 1	28.76 I	8.12 I	5	11.33 1			21.17 1	· ~	11.25 I
•	2.61	0.04		C.11 1	0.02	0.08	1 N	1.80	. 0	. 0	1.77.1	1 00	I 06.0	4.	3.01	2	5	9	. 2	4	٥	9	9 1	4	8	• 1	7	~ 1		. 2	0	1.55 1
,	2.32	0.08	0.22	0.23		1 00 0	6	12.32	4	12.52 [10		C.66 I	.2	1.63	9	-		! 0	ויסו	(m)			0	ω .	0	- 1	1.35 1	3.12	1 49.0	-	4.85
•	54.27 1	1 98.5	.2	4	! 0:	3.80 I			:	64.29 I	•	m	81.21	80		-	56.32 [17.23 1	4	4.	. 7	4	32.73 1	14.12	9 1	5	32.64 I	æ (1.7		55.98 1	75.32 1
•	45300.06	645757.85 1	863217.9C I	685164.88 I	463940.52 [135673.81 I		55886.62 I	153446.CC I	7.5	73865.14 I	į ω	77246.08 1	186101.73 1	11825.37 1	56100.37 1	18518.C2 I	548664.39 I	104860.85 1	58727.62 1	76235.68 1	77874.53 I	141215.58 1	59557.23 1	21035.57 1	234865.23 I	41C2C.18 I	545	48005.92 1	157617.51	171286.52 1	35735.71
Forts	0	0	0	v	0	٠ د	0	υ	0	٠ ن	v	· ·	v	0	v	v	0	v	0	· · ·	v	0	v	0	٠	v	υ υ	v			0	ن
) ч	ပ	_	2	en	4	5	-	7	m	4	2	ę	~	~	~	m	4	u۱	-	17	e i	4	Ľ١	ę	7	1	2	(n)	4	r.	G	~
Verein. Königreic	14	-	-		-	-	7	7	7	7	7	7	7	m	~	(C)	m	C)	4	4	4	4	4	4	4	ĸ	ĸι	ιν	Ŋ	r,	2	u n
Köní	œ	6	5	6	6	σ	5	ᢐ	σ	5	6	6		6	5	5	5	5	6	σ	σ	6	σ	σ	5	σ.	O.	5	5	5	5	σ
in.	7	7	7	7	7	7	7	~	7	7	7	7	~	-	7	۷	7	7	7	7	7	7	7	7	~	7	7	7	7	7	7	7
Vere	72	72	72	12	12	72	72	12	72	12	72	12	12	12	12	12	12	72	72	72	12	12	12	12	72	12	72	72	12	72	72	72

Verein. Königreich (Forts.) ပ ပ U ω σ Ų STAATENSUMME ပ ß เก 01 2 72 22

TEILREGIONEN		SUPPE 1 (2)BIS(5) I (7) I	118.40	86.72	101.64	112.23	110.57	162.73	105.16	116.50	103.33	105.17	111.50	112.13	58.35	124.8C I	126.56 1	126.22	115.09	125.36	116.44 1	115.76	77.66	117.75	103.60 1	100.54	113.31	97.CE I	111.52 1
LF IN CEN		SLMME I (3)+(4) I (6) I	10.04	1 55.3	5.34	6.69 I	E - 73 1		1 33.9	5.40 1	5.70 1	3.43	1C.8C I	7.63 1	2.15	12.56	1 -0° L	8 • C 2 I	6.00	1C.14 I		1 65.4	4.46 I	u)	56	4.57 I	14.87	7.9C I	15.43 1
GVE JE 10C FA		I GVE- I ISCLAFE/ZIEG.I I (5) I I (5) I I	22.52 I	8.43	. •	6.55	3.58 1	2.51	6.53	1C.87 I	4.86 1	6.41	9 1	25.85	~ 1	3.53 I	11.09 1	C.76 I	4.87 I	5.04 1	ווי אין אין אין אין אין אין אין אין אין אי	23.72 I	3.74 I	14.52	11.96 I	7.23 1	2,26 I	15.C4 I	1.55 I
AN TIEREN IN		CVE- FLEFNER 19 (4) I	4.12 1	2.83	649		1.88.	1.46		3.14 1	וואו	1 2.0			74	2.07	1.20	84	0.63	C.68 I	2.16 1	1.46	0.5	1.83.1	C.79	1.01	2.79	2.C8 I	1.85.1
FA LND BESATZ		GVE- I SCHWEINE I (3) I	5.91	6.10 [2.84 I	5.72	7.17	1 60.4	I 65.4	2.26	3.74	2.45	8.26	4.78	1.45 I	10.50	5.86	4.17	5.36 1		7.31	3.47	4 1	3.7C I	1.76	3.55 I	12.C7 I	5.82	13.58 1
FLAECHE IN		GVE- I RINDER I (2) I	85.84	65.35	86.67	1 85.98	97.85	1 99.46	85.81	100.22	92.76	95.32	87.06	•65	1 15.65	108.28 I	110.41	111.44	104.21	114.16	103.40 1	87.10 1	65.44	57.33 1	85.28	85.13	96.16	74.11	I 64.49 I
LANDW. GENUTZTE		HEKTAR LF I I (1) I I	76242.84	65194.91 I	143764.53	185553.68	137148.CB	87C88.42 I	71103.33 1	222581.98 1	145248.19 [153335.52	207563.44 [5.59953	237672.CB I	8166.71	22282C.11 I	243378.16 I	165886,79 1	186236.49 1	134632.00 1	336577.34 1	3169.7	245205.63 1	238.6	122134.23 I	161267.37 1	183666.03 1	115655.25 I
ب		нннн	0	0	0	0	0	0	0	0	0	0	0	0	0	0	·	0	0	0	. n .	· •	0	 	0	. II .	0	0	o U
£.			ပ	ပ	ပ	0	ပ	0	ပ	ပ	ပ	ပ	O	၁	0	ပ	ပ	o	ပ	ပ	ပ	ပ	ပ	ပ	0	ပ	ပ	ပ	ပ
A 2.		TON	-	2	m	4	'n	v	~	æ	თ	10	11	12	-	2	m	4	u,	ę	~	-	(2)	m	4	u1	-	2	m
C F 1		ICENTIFIKATON	-	-	-	1	~	-		-	-		7		7	2	7	2	2	7	2	(C)	m	E	m	m	4	4	4
UEBERSICHT	Irland	CENT	80	ဃ	œ	Φ)	œ	œ	æ	œ	œ	80	89	6 0	ω	ထ	80	80	αυ	œ	80	œ	œ	æ	œ	œ	80	æ	80
UEB	I	-	72	72	12	72	72	7.5	72	12	72	12	12	12	12	72	12	72	12	72	12	72	72	72	12	72	12	72	72

•		105.58 1
•		.44 1
		1 1
		8.80
•		1.50 1
•		5,53 1
•		83°33 I
•	· • • • • • • • • • • • • • • • • • • •	I 4825275.ES I
		ш

Irland (Forts.)
STAATENSUMME

SUMME (2) 12 (5) 12 (7) 108.58 151.05 34.63 121.30 50.31 158.00 155.57 LANCW. GENUTZTE FLAECHE IN HA UNC BESATZ AN TIEREN IN GVE JE 10C HA LF IN CEN TEILREGICNEN 145.12 144.55 147.37 El.CE I 105.52 I 61.33 64.34 56.94 85.13 82.95 24.55 56.82 15.04 72.5C SUMME (3)+(4) (6) I CVE- I ISCHAFE/ZIEG.I C.18 I 0.06 0.48 0.13 C.14 C.17 0.12 C.15 0.12 (3) 5.41 6.43 I GVE-HLEFNER 5.88 8.62 6.38 3.92 14.86 (4) 57.55 I -----I 52.89 I 95.06 I 55.91 74.64 79.25 74.33 73.48 21.22 69.22 GVE-SCHWEINE (3) 27.32 I 28.51 I 36.03 94.10 78.80 37.26 45.91 65.99 15.12 74.74 GVE-RINDER (5) 57644.CC 209345.00 245451.CC 247641.00 211705.00 12617.CO 64536.00 37278.CC 252324.CC 210054.00 325648.00 **PEKTAR LF** (1) 0 0 ပ O 0 ပ UEBERSICHT A 2.3 I CENT I FIKATON Dänemark

72

148.55 186.55

81.35 I

0.14

5.13 7.18

76.25

67.C6

0 ပ I 2921161.CC I

STAATENSUMME

* '.'

σ

424867.CO

276533.CC 301118.00

55.35

72

12 12

<u>Übersicht A 3.1:</u> Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte; Tierarten zusammen (GVE/100 ha LF)

KLASSE	UNTERE GRENZE	MITTE	CBERE GRENZE	HAELFIGKEIT	RELATIVE FAEUFIGKEIT
1	6.33	9.92	13.52	9	C.03C
2	13.52	17.11	20.71	6	0.020
3	20.71	24.3C	27.9C	8	C.C26
4	27.9C	31.49	35.C9	13	C.C43
5	35.09	38.68	42.28	11	C.C36
6	42.28	45.87	45.47	14	C.C46
7	49.47	53.C7	56.66	17	C.C56
8	56.66	€C.26	63.85	13	C.C43
9	63.85	67.45	71.04	18	0.060
10	71.04	74.64	78.23	11	0.036
11	78.23	81.83	85.42	19	C.C63
			52.61	21	C.C7C
12	85.42	85.C2			
13	92.61	96.21	55.81	17	0.056
14	99.81	103.40	1C7.CC	17	C.C56
15	1C7.CC	110.59	114.19	17	C.C56
16	114.19	117.78	121.38	22	C.C73
17	121.38	124.97	128.57	12	0.040
18	128.57	132.16	135.76	11	C.C36
19	135.76	139.35	142.95	9	C.C3C
20	142.95	146.55	15C.14	9	0.030
21	150.14	153.74	157.33	4	0.013
22	157.33	160.93	164.52	4 `	C.C13
23	164.52	168.12	171.71	3	C.C1C
24	171.71	175.31	178.50	3	C.C10
25	178.9C	182.5C	186.CS	С	C.CCC
26	186.C9	189.69	193.29	1	0.003
27	193.29	196.88	200.48	ī	C.CO3
28	200.48	2C4.C7	207.67	ī	0.003
29	207.67	211.26	214.86	č	C.CCC
30	214.86	218.45	222.C5	Č	C.CCC
31	222.05	225.64	229.24	ĭ	C.CO3
32	229.24	232.84	236.43	Ĉ	c.ccc
33	236.43	240.03	243.62	č	C.CCC
34		247.22	25C.81	č	C.CCC
3 4 35	243.62 250.81	254.41	258.CC	Č	0.000
35 36		254.41	265.19	1	C.CC3
	258.0C			C	0.000
37	265.19	268.79	272.38	C	0.000
38	272.38	275.98	279.58		
39	279.58	283.17	286.77	C	C.COO
40	286.77	290.36	253.56	2	C.CC6
41	293.96	297.35	3C1.15	1	C.CC3
42	301.15	304.74	308.34	0	0.000
43	308.34	311.53	315.53	C	C.CCC
44	315.53	319.12	322.72	Ç	c.ccc
45	322.72	326.32	329.91	2	C.CO6
46	329.91	333.51	337.1C	С	0.000
47	337.1C	34C.7C	344.29	С	C.CCC
48	344.29	347.89	351.48	C	C.COC
49	351.48	355.C8	358.67	1	0.003
50	358.67	362.27	365.86	1	0.003

 $\frac{\text{Ubersicht A 3.2:}}{\text{Rinder (GVE}_{R}/\text{100 ha LF)}} \ \ \text{Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte;}$

KLASSE	UNTERE GRENZE	NITTE	CDEDE CDENIC	LACUETOVETT	RELATIVE HAELFIGKEIT
					
] 1	C.54	2.50	4.46	11	C.C3€
2	4.46	6.42	8.38	5	C.C16
3	8.38	1C.34	12.30	9	C.030
4	12.30	14.26	16.22	5	C.C16
5	16.22	18.18	20.14	6	C.C2C
6	20.14	22.10	24.C6	5	C.C16
7	24.06	26.02	27.58	11	C.036
8	27.98	25.54	31.90	14	C.C46
9	31.90	33.86	35.82	11	C.C36
10	35.82	37.78	39.74	18	C.C6C
11	39.74	41.7C	43.66	5	0.016
12	43.66	45.62	47.58	ς	0.030
13	47.58	49.54	51.50	11	0.036
14	51.5C	53.46	55.42	14	C.G46
15	55.42	57.38	59.34	12	C.C4C
16	59.34	61.30	63.26	11	C.C36
17	63.26	65.22	67.18	15	C.C5C
18	67.18	69.14	71.10	20	0.066
19	71.10	73.CE	75.C2	5	0.030
20	75.02	76.98	78.94	11	C.C36
21	78.94	80.90	82.86	12	C. C4C
22	82.86	84.82	86.78	7	0.023
23	86.78	88.74	90.70	11	C.C36
24	90.70	92.66	94.62	11	
25				12 9	C.C4C
	94.62	96.58 100.50	98.54	7	0.030
26 27	98.54		102.46		C.C23
	102.46	104.42	106.38	4	C • C 1 3
28	106.38	108.34	110.30	5 6	C.C16
29	110.30	112.26	114.22		C.C20
30	114.22	116.18	118.14	1	C • C C 3
31	118.14	120.10	122.C <i>t</i>	2	C.CC6
32	122.06	124.C2	125.98	2	C.CC6
33	125.98	127.94	129.90	Ċ	c.ccc
34	129.9C	131.86	133.82	Ç	C.CCC
35	133.82	135.78	137.74	l	C.CO3
36	137.74	139.70	141.66	2	0.006
37	141.66	143.62	145.58	1	0.003
38	145.58	147.54	149.5C	2	C.CC6
39	149.50	151.46	153.42	С	C.CCO
40	153.42	155.38	157.34	С	C.CCC
41	157.34	159.3C	161.26	С	C.CCC
42	161.26	163.22	165.18	C 2	0.000
43	165.18	167.14	169.1C	2	0.006
44	169.10	171.06	173.C2	С	C.CCC
45	173.02	174.98	176.94	С	C.CCC
46	176.94	178.9C	18C.86	C	C.CCC
47	180.86	182.82	184.78	1	C.0C3
48	184.78	186.74	188.70	C	C.CCC
49	188.7C	190.66	192.62	С	c.ccc
50	192.62	194.58	196.53	1	0.003
1				=	

 $\frac{\text{Übersicht A 3.3:}}{\text{Schweine (GVE}_{S}/\text{100 ha LF)}} \ \ \text{Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte;} \\$

KLASSE	UNTERE GRENZE	PITTE	CBERE GRENZE	HAEUFIGKEIT	RELATIVE HAEUFIGKEIT
1	C.CC	1.76	3.53	77	C.256
2	3.53	5.29	7.06	6C	C.2CC
3	7.06	8.82	10.59	36	C.120
4	10.59	12.36	14.12	29	C.096
5	14.12	15.89	17.65	18	0.060
6	17.65	15.42	21.19	9	0.030
7	21.19	22.95	24.72	11	C.C36
8	24.72	26.48	28.25	7	C.C23
9	28.25	30.02	31.78	ġ	C.C3C
10	31.78	33.55	35.31	7	C•C23
11	35.31	37.CE	38.84	i	C.CC3
12	36.84	40.61	42.38	2	0.006
13	42.38	44.14	45.91	2	C.CC6
14	45.91	47.67	49.44	Ô	C.CCC
15	45.44	51.21	52.97	4	C.C13
16	52.97	54.74	56.5C	2	C • C C 6
17	56.50	58.27		2	
18	6C.C4	61.80	60.04	1	0.006
19			63.57	-	0.003
	63.57	65.33	67.1C	3	C.C1C
20	67.1C	68.87	70.63	1	C.CC3
21	70.63	72.4C	74.16	3	C.C1C
22	74.16	75.93	77.69	4	0.013
23	77.69	75.46	£1.23	3	C.C1C
24	81.23	82.55	84.76	C	C.CCC
25	84.76	86.52	88.29	0	0.000
26	88.29	90.06	91.82	1	C.CC3
27	91.82	93.59	95.35	1	C.CC3
28	95.35	97.12	98.89	1	0.003
29	98.89	100.65	102.42	1	0.003
30	102.42	104.18	105.95	С	C • C C C
31	105.95	107.71	109.48	1	C.CC3
32	109.48	111.25	113.C1	1	C•CO3
33	113.01	114.78	116.54	l	C.CC3
34	116.54	118.31	120.08	0	C.CCC
35	120.08	121.84	123.61	С	C.CCC
36	123.61	125.37	127.14	С	0.000
37	127.14	128.91	130.67	1	C.CC3
38	130.67	132.44	134.2C	С	0.000
39	134.20	135.97	137.74	С	C.COC
40	137.74	139.50	141.27	C	C.CCC
41	141.27	143.C3	144.8C	Č	c.ccc
42	144.80	146.56	148.33	Ğ	C.CCC
43	148.33	150.10	151.86	Č	C.COO
44	151.86	153.63	155.39	č	c.ccc
45	155.39	157.16	158.93	č	C.CCC
46	158.93	160.69	162.46	Ö	C.000
47	162.46	164.22	165.99	Č	0.000
48	165.99	167.76	169.52	Č	C.CCC
49	169.52	171.29	173.05	C	0.000
50	173.05	174.82	176.58	1	C.CO3
JU	113.03	114.02	110.00	1	U • U U 3

 $\frac{\hbox{\tt Ubersicht A 3.4:}}{\hbox{\tt Hühner}} \quad \hbox{\tt Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte;}}{\hbox{\tt Hühner (GVE}_{H}/100 \text{ ha LF)}}$

KLASSE	UNTERE GRENZE	MITTE	CBERE GRENZE	FAEUFIGKEIT	RELATIVE HAEUFICKEIT
1	0.00	C.81	1.63	58	C.193
2	1.63	2.45	3.27	7 C	C.233
3	3.27	4.09	4.51	39	C.13C
4	4.91	5.72	6.54	3C	C.100
5	6.54	7.36	8.18	25	C.C83
6	8.18	9.00	9.82	17	0.056
7	9.82	10.63	11.45	8	0.026
8	11.45	12.27	13.09	9	C.C3C
9	13.09	13.51	14.73	14	C.C46
10	14.73	15.54	16.36	3	C.C1C
11	16.36	17.18	18.00	1	0.003
12	18.CC	18.82	19.64	3	C.C1C
13	19.64	20.45	21.27	5	C.C16
14	21.27	22.09	22.91	3	C.C1C
15	22.91	23.73	24.55	С	C.CCC
16	24.55	25.37	26.18	2	C.CC6
17	26.18	27.CC	27.82	č	0.000
18	27.82	28.64	29.46	i	0.003
19	29.46	30.28	31.09	ī	0.003
20	31.09	31.91	32.73	3	C.C1C
21	32.73	33.55	34.37	2	0.006
22	34.37	35.19	36.CC	Ċ	C.CCO
23	36.CC	36.82	37.64	č	C.CCC
24	37.64	38.46	39.28	Č	C.CCC
25	39.28	40.10	40.91	Č	C.CCC
26	40.91	41.73	42.55	č	C.CCC
27	42.55	43.37	44.19	ĭ	£00.0
28	44.19	45.C1	45.83	Ċ	C.COC
29	45.83	46.64	47.46	Č	C.COO
30	47.46	48.28	49.1C	ĭ	C.CC3
31	49.1C	49.52	5C.74	Ċ	0.000
32	5C.74	51.55	52.37	1	0.003
33	52.37	53.19	54.C1	Ċ	C.CCC
34	54.C1	54.83	55.65	C	C.CCC
35	55.65	56.46	57.28	C	C.CCC
36	57.28	58.10	58.92	C	C.CCC
37	58.92	59.74	6C.56	C	C.CCC
38	60.56	61.37	62.19	1	0.003
39	62.19	63.01	63.83	Č	0.000
40	63.83	64.65	65.47	C	0.000
41	65.47	66.29	67.10	C	C.CCC
42	67.1C	67.92	68.74	C	C.CCC
43	68.74	69.56	70.38	C	0.000
44	70.38	71.20	72.C1	Č	0.000
45	72.01	72.83	73.65	1	
46	73.65	74.47	75.29	C	C.CC3 C.CCC
47	75.29	76.11	76.92	C	
48	76.92	77.74			0.000
49	78.56	79.38	78.56	C	C.CCC
50			8C.2C	C 1	C.CCC
, ,,,	80.20	81.C2	81.83	1	0.003

 $\frac{\hbox{\tt Übersicht A 3.5:}}{\hbox{\tt Schweine und H\"{u}hner}} \ \ {\tt Verteilung der 300 \ Teilregionen der EG auf Gr\"{o} Benklassen der Viehdichte;} \\ {\tt Schweine und H\"{u}hner} \ \ ({\tt GVE}_{S+H}/{\tt 100 \ ha \ LF})$

C.C2 2.1C 4.1E 39 C.12C 2.4C 4.1E 39 C.12C 2.4C 4.1E 4.2E 6.26 8.34 68 C.226 37 C.123 4.1E 6.26 8.34 68 C.226 37 C.123 4.1E 6.26 8.34 68 C.226 37 C.123 4.1E 6.26 8.34 68 C.226 62 62 62 62 62 62 62				`S+H'		
2 4.1E	KLASSE	UNTERE GRENZE	#ITTE	CBERE GRENZE	HAEUFIGKEIT	RELATIVE FAEUFICKEIT
3		C.C2	2.10	4.18		C•13C
4 12.5C 14.5E 16.6E 25 C.CE3 6 20.81 22.85 24.97 2C C.CEE 7 24.97 2C C.CEE 7 C.C22 8 29.13 31.21 33.25 14 C.C4E 9 33.25 35.37 37.45 11 C.C3E 10 37.45 35.53 41.6C 12 C.C4D 11 41.60 42.6E 45.7E 6 C.C22 12 45.7E 47.6E 47.6E 2 C.C6E 12 45.7E 47.6E 45.7E 6 C.C22 13 45.7C 52.CC 54.CE 2 C.C6E 14 54.0B 56.1E 58.24 5 C.C1E C.CC3 14 54.0B 56.1E 58.24 5 C.C1E C.CC6 17 66.55 68.63 7C.71 C.CC6 C.CC6 C.CC6 17<	2	4.18	€.26	8.34	6.8	C.226
5	3	8.34		12.5C		C.123
6	4	12.5C	14.58	16.66	25	0.083
6	5	16.66	18.74	20.81		C.C76
7	6	20.81	22.89		2 C	C.C66
9 33.26 35.37 37.45 11 C.346 10 37.45 25.53 41.6C 12 C.400 11 41.60 42.68 45.76 6 C.220 12 45.76 47.84 45.52 1 C.CC3 13 44.92 52.CC 54.08 2 C.CC66 14 54.08 56.16 58.24 5 C.016 15 58.24 6C.32 62.35 1 C.CC3 17 66.55 68.62 7C.71 C C.000 18 7C.71 72.79 74.87 3 C.010 19 74.87 76.55 75.03 1 C.CC2 20 75.02 61.11 63.18 6 C.220 21 83.18 85.26 87.34 3 C.010 22 87.34 85.42 51.50 1 C.CC3 23 51.50 53.58 55.66 1 C.CC2 24 55.66 57.74 55.25 1 C.CC3 25 95.82 1C1.90 1C3.97 1 C.CC3 26 1C2.97 1C6.C5 1C8.13 1 C.CC3 27 108.13 11C.21 112.29 1 C.CC3 28 112.29 114.27 116.45 1 C.CC3 29 116.45 118.53 12C.61 C C.CC3 31 124.76 122.65 124.76 C C.CCC 31 124.76 125.84 155.55 C C.CCC 31 124.76 125.84 155.55 C C.CCC 31 124.76 125.84 155.55 C C.CCC 32 128.92 131.CC 133.08 C C C.CCC 33 15.87 1 C.CC3 34 137.24 135.32 141.40 1 C.CC3 35 141.40 142.48 145.55 C C.CCCC 36 15.87 1 15.75 153.87 C C.CCC 37 15.87 1 1 C.CC3 38 153.67 1 151.75 153.87 C C.CCC 39 156.34 166.34 166.34 166.34 1 C.CC3 30 150.61 127.66 163.30 C C.CCC 31 127.76 126.26 172.65 1 C.CC3 32 128.92 131.CC 133.08 C C.CCC 33 153.08 155.16 137.24 1 C.CC3 34 137.24 135.32 141.40 1 C.CC3 35 141.40 142.48 145.55 C C.CCC 36 152.97 156.51 1 C.CC3 37 158.77 1 151.75 153.87 C C.CCC 38 153.87 166.31 1 C.CC3 39 156.03 16C.11 162.15 C C.CCC 40 162.15 144.77 166.34 1 C.CC3 41 166.34 166.42 176.56 1 C.CC2 42 17C.5C 172.56 174.66 C C.CCC 43 174.66 176.74 178.62 1 C.CC3 44 174.66 176.74 178.62 1 C.CC3 45 182.98 185.65 167.53 155.61 1 C.CC3 46 187.13 189.29 155.61 1 C.CC3 47 191.29 155.65 155.61 1 C.CC2 48 155.45 167.53 155.61 1 C.CC2	7	24.97	27.05	29.13		0.023
9 33.26 35.37 37.45 11 C.346 10 37.45 25.53 41.6C 12 C.400 11 41.60 42.68 45.76 6 C.220 12 45.76 47.84 45.52 1 C.CC3 13 44.92 52.CC 54.08 2 C.CC66 14 54.08 56.16 58.24 5 C.016 15 58.24 6C.32 62.35 1 C.CC3 17 66.55 68.62 7C.71 C C.000 18 7C.71 72.79 74.87 3 C.010 19 74.87 76.55 75.03 1 C.CC2 20 75.02 61.11 63.18 6 C.220 21 83.18 85.26 87.34 3 C.010 22 87.34 85.42 51.50 1 C.CC3 23 51.50 53.58 55.66 1 C.CC2 24 55.66 57.74 55.25 1 C.CC3 25 95.82 1C1.90 1C3.97 1 C.CC3 26 1C2.97 1C6.C5 1C8.13 1 C.CC3 27 108.13 11C.21 112.29 1 C.CC3 28 112.29 114.27 116.45 1 C.CC3 29 116.45 118.53 12C.61 C C.CC3 31 124.76 122.65 124.76 C C.CCC 31 124.76 125.84 155.55 C C.CCC 31 124.76 125.84 155.55 C C.CCC 31 124.76 125.84 155.55 C C.CCC 32 128.92 131.CC 133.08 C C C.CCC 33 15.87 1 C.CC3 34 137.24 135.32 141.40 1 C.CC3 35 141.40 142.48 145.55 C C.CCCC 36 15.87 1 15.75 153.87 C C.CCC 37 15.87 1 1 C.CC3 38 153.67 1 151.75 153.87 C C.CCC 39 156.34 166.34 166.34 166.34 1 C.CC3 30 150.61 127.66 163.30 C C.CCC 31 127.76 126.26 172.65 1 C.CC3 32 128.92 131.CC 133.08 C C.CCC 33 153.08 155.16 137.24 1 C.CC3 34 137.24 135.32 141.40 1 C.CC3 35 141.40 142.48 145.55 C C.CCC 36 152.97 156.51 1 C.CC3 37 158.77 1 151.75 153.87 C C.CCC 38 153.87 166.31 1 C.CC3 39 156.03 16C.11 162.15 C C.CCC 40 162.15 144.77 166.34 1 C.CC3 41 166.34 166.42 176.56 1 C.CC2 42 17C.5C 172.56 174.66 C C.CCC 43 174.66 176.74 178.62 1 C.CC3 44 174.66 176.74 178.62 1 C.CC3 45 182.98 185.65 167.53 155.61 1 C.CC3 46 187.13 189.29 155.61 1 C.CC3 47 191.29 155.65 155.61 1 C.CC2 48 155.45 167.53 155.61 1 C.CC2	8	29.13	31.21		14	C.C46
10	9	33.29	35.37	37.45	11	C.C36
11	10	37.45			12	
12	11	41.60	43.68	45.76		
13					1	
14 54.08 56.16 58.24 5 C.016 15 58.24 6C.32 62.35 1 C.003 16 62.39 64.47 66.55 2 C.006 17 66.55 68.63 7C.71 C C.000 18 7C.71 72.79 74.87 3 C.010 19 74.67 76.55 75.03 1 C.002 20 75.03 81.11 83.18 6 C.02C 21 83.18 85.26 87.34 3 C.010 22 87.34 85.42 51.50 1 C.003 23 \$1.50 \$2.58 \$5.66 1 C.003 24 \$95.66 \$7.74 \$5.82 1 C.003 25 \$9.82 \$101.90 \$10.397 \$1 C.003 26 \$103.97 \$106.05 \$108.13 \$1 C.003 27 \$108.13 \$10.02 \$10.00 \$10.00 \$10.00 30 \$102.61 \$122.65					2	
15					5	
16 62.39 64.47 66.55 2 C.CC6 17 66.55 68.62 7C.71 C C.000 18 7C.71 72.79 74.87 3 C.010 19 74.87 76.55 75.03 1 C.CC3 20 79.62 81.11 83.18 6 C.CC2 21 83.18 85.26 87.34 3 C.010 22 87.34 85.42 91.50 1 C.CC3 23 91.50 92.58 95.66 1 C.CC3 24 95.66 97.74 95.82 1 C.CC3 25 99.82 101.90 103.97 1 C.CC3 27 108.13 110.21 112.29 1 C.CC3 28 112.29 14.437 116.45 1 C.CC3 29 116.45 118.53 120.61 0 C.000 30 120.61 122.69 124.76 0 C.000 32 128.92 131.00 0						
17 66.55 68.63 7C.71 C C.000 18 7C.71 72.75 74.87 3 C.010 19 74.87 76.55 75.03 1 C.003 20 79.02 £1.11 £3.18 6 C.022 21 £3.18 £5.26 £7.34 3 C.010 22 £7.34 £5.26 £7.34 3 C.010 22 £7.34 £5.26 £7.56 1 C.003 23 £1.50 £3.56 £5.66 1 C.003 24 £5.66 £7.74 £6.62 1 C.003 25 £9.82 £10.90 £2.57 1 C.003 26 £2.97 £6.05 £6.13 1 C.003 27 £6.13 £1.02 £1.02 £6.23 £6.23 £6.24 £6.24 £6.24 £6.24 £6.24 £6.24 £6.25 £6.24 £6.24 £6.25 £6.24 £6.25 £6.24 £6.25 £6.24 £6.25 £6.25 £6.25					2	
18 7C.71 72.76 74.87 3 C.010 19 74.87 76.95 79.03 1 C.002 20 75.02 £1.11 £3.18 £ C.020 21 £3.18 £5.26 £7.34 3 C.010 22 £7.34 £5.26 £7.34 3 C.010 22 £7.34 £5.26 £7.55 1 C.003 23 £1.50 £2.56 £5.66 1 C.003 24 £5.66 £7.74 £5.26 1 C.003 25 £9.82 £10.90 £2.97 £ C.003 26 £0.397 £10.60 £0.397 £ C.003 27 £1.13 £10.21 £12.29 £ C.003 28 £12.29 £14.27 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £					č	
19					3	
20						
21 83.18 85.26 87.34 3 C.010 22 87.34 89.42 91.50 1 C.003 23 91.50 92.58 95.66 1 C.003 24 95.66 97.74 99.82 1 C.003 25 99.82 1 C.000 1 C.3.97 1 C.003 26 1 C.3.97 1 C.6.05 1 C.6.13 1 C.003 27 1 C.8.13 1 C.003 28 112.29 114.27 116.45 1 C.003 29 116.45 118.53 120.61 0 C.000 30 120.61 122.69 124.76 C C.000 31 124.76 126.84 128.92 C C.000 32 128.92 131.00 133.08 C C.000 33 133.08 135.16 137.24 1 C.003 34 137.24 125.32 141.40 1 C.003 35 141.40 142.48 145.55 C C.000 36 145.55 147.63 146.71 C C.003 37 145.71 151.79 153.87 C C.000 38 153.87 155.95 158.03 C C.000 39 158.03 160.11 162.19 C C.000 30 162.19 164.27 166.34 1 C.003 31 124.76 C C.000 32 128.92 131.00 C C.000 33 133.08 135.16 137.24 1 C.003 34 137.24 125.32 146.71 C C.003 35 141.40 142.48 145.55 C C.000 36 145.55 147.63 146.71 C C.000 37 145.71 151.79 153.87 C C.000 38 153.87 155.95 158.03 C C.000 40 162.19 164.27 166.34 1 C.003 41 166.34 168.42 170.50 1 C.003 42 170.50 172.58 174.66 C C.000 43 174.66 176.74 178.82 1 C.003 44 178.82 180.90 172.58 174.66 C C.000 45 182.98 185.06 187.13 C C.000 46 187.13 189.21 151.29 O C.000 47 191.29 193.37 155.45 C C.000 48 195.45 197.53 199.61 1 C.002 49 199.61 201.65 203.77 C C.000						
22 87.34 85.42 91.50 1 C.CC3 23 91.50 92.58 95.66 1 C.CC3 24 95.66 97.74 95.82 1 C.CC3 25 99.82 101.90 103.97 1 C.CC3 26 103.97 106.05 108.13 1 C.CC3 27 108.13 110.21 112.29 1 C.CC3 28 112.29 114.37 116.45 1 C.CC3 29 116.45 118.53 120.61 0 C.000 30 120.61 122.65 124.76 C C.CCC 31 124.76 126.84 128.92 C C.CCC 31 124.76 126.84 128.92 C C.CCC 32 128.92 131.00 133.08 C C.CCC 33 133.08 135.16 137.24 1 C.CC3 34 137.24 135.32 141.40 1 C.CC3 35 141.40 142.46 145.55 C C.CCC 36 145.55 147.63 145.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.55 158.03 C C.CCC 39 158.03 160.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 166.42 170.50 1 C.CCC3 42 170.50 172.58 174.66 C C.CCC 43 174.66 176.74 178.82 1 C.CCC3 44 178.82 180.90 185.45 1 C.CCCC 45 182.98 185.06 187.13 C C.CCCC 46 187.13 189.21 191.29 O C.CCCC 47 191.29 192.37 195.45 C C.CCCC 48 195.45 197.53 195.61 1 C.CCC2 49 199.61 201.65 203.77 C C.CCCC						
23						
24 95.66 97.74 \$9.82 1 C.CC3 25 99.82 1C1.9C 1C3.97 1 C.CC3 26 1C3.97 1C6.C5 1C8.13 1 C.CC3 27 1C8.13 11C.21 112.29 1 C.CC3 28 112.29 114.37 116.45 1 O.CC3 29 116.45 118.53 12C.61 0 C.OCC 30 12C.61 122.69 124.76 C C.CCC 31 124.476 126.84 128.92 C C.CCC 32 128.92 131.0C 133.02 C C.CCC 33 133.08 135.16 137.24 1 C.CC3 34 137.24 129.32 141.40 1 C.CC3 35 141.40 143.46 145.55 C C.CCC 36 145.71 151.79 153.87 C C.CCC 37 145.71 151.79 153.87 C C.CCC 39 158.03 16C.					-	
25						
26 1C3.97 1C6.C5 1C8.13 1 C.CC3 27 108.13 11C.21 112.25 1 C.CC3 28 112.29 114.37 116.45 1 O.CC3 29 116.45 118.53 12C.61 0 C.000 30 12C.61 122.65 124.76 C C.CCC 31 124.76 126.84 128.92 C C.CCC 32 128.92 131.CC 133.08 C 0.000 33 133.08 135.16 137.24 1 C.CC3 34 137.24 139.32 141.4C 1 C.CC3 35 141.4C 143.46 145.55 C C.CCC 36 145.55 147.63 149.71 C C.CCC 37 145.71 151.75 153.87 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 1						
27 108.13 11C.21 112.29 1 C.CC3 28 112.29 114.27 116.45 1 O.CC3 29 116.45 118.53 12C.61 0 C.000 30 12C.61 122.65 124.76 C C.CCC 31 124.76 126.84 128.92 C C.CCC 32 128.92 131.0C 133.0C C 0.000 33 133.0E 135.16 137.24 1 C.CC3 34 137.24 139.32 141.4C 1 C.CC3 35 141.4C 143.4E 145.55 C C.CC0 36 145.55 147.63 149.71 C C.CCC 37 146.71 151.75 153.87 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 1					_	
28 112.29 114.37 116.45 1 0.000 29 116.45 118.53 120.61 0 0.000 30 120.61 122.69 124.76 0 0.000 31 124.76 126.84 128.92 0 0.000 32 128.92 131.00 133.08 0 0.000 33 133.08 135.16 137.24 1 0.002 34 137.24 139.32 141.40 1 0.002 35 141.40 143.48 145.55 0 0.000 36 145.55 147.63 149.71 0 0.000 37 149.71 151.79 153.87 0 0.000 38 153.87 155.95 158.03 0 0.000 40 162.19 164.27 166.34 1 0.000 40 162.19 164.27 166.34 1 0.000 41 166.34 168.42 170.50 1 0.000 42 170.50 1						
29 116.45 118.53 12C.61 0 C.000 30 12C.61 122.69 124.76 C C.CCC 31 124.76 126.84 128.92 C C.CCC 32 128.92 131.0C 133.08 C 0.000 33 133.08 135.16 137.24 1 C.CC3 34 137.24 139.32 141.40 1 C.CC3 35 141.40 143.48 145.55 C C.CC0 36 145.55 147.63 149.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.03 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 170.50 1 C.CC3 42 170.50 172.58 174.66 C C.CCC C.CCC 43 17						
30 12C.61 122.69 124.76 C C.CCC 31 124.76 126.84 128.92 C C.CCC 32 128.92 131.0C 133.08 C 0.000 33 133.08 135.16 137.24 1 C.CC3 34 137.24 139.32 141.40 1 C.CC3 35 141.40 143.48 145.55 C C.CC0 36 145.55 147.63 149.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.03 C C.CCC 39 158.03 160.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 170.50 1 C.CC3 42 170.50 172.58 174.66 C C.CCC 43 174.66 176.74 178.82 1 C.CCC 45 182.98 1	20					
31 124.76 126.84 128.92 C C.CCC 32 128.92 131.CC 133.C8 C 0.00C 33 133.C8 135.16 137.24 1 C.CCC 34 137.24 135.32 141.4C 1 C.CCC 35 141.4C 143.4E 145.55 C C.CCC 36 145.55 147.62 145.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.C3 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 17C.5C 1 C.CC3 42 17C.5C 172.5E 174.66 C C.CCC 43 174.66 176.74 178.82 1 O.CCC 45 182.98 185.66 187.13 C C.CCC 46 187.13 1						
32 128.92 131.CC 133.C8 C 0.000C 33 133.08 135.16 137.24 1 C.CC3 34 137.24 135.32 141.4C 1 C.CC2 35 141.4C 143.48 145.55 C C.CC0C 36 145.55 147.63 145.71 C C.CCC 37 145.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.C3 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 17C.5C 1 C.CC3 42 17C.5C 172.58 174.66 C C.CCC 43 174.66 176.74 178.82 1 O.CC3 44 178.82 185.06 187.13 C C.CCC 45 182.98 185.06 187.13 C C.CCC 46 187.13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
33 133.08 135.16 137.24 1 C.CC3 34 137.24 139.32 141.4C 1 C.CC3 35 141.4C 143.48 145.55 C C.CCC 36 145.55 147.63 149.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.C3 C C.CCC 39 158.03 16C.11 162.19 C C.CCC 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 17C.5C 1 C.CC3 42 17C.5C 172.58 174.66 C C.CCC 43 174.66 176.74 178.82 1 O.CC3 44 178.82 18C.9C 182.98 C C.CCC 45 182.98 185.06 187.13 C C.CCC 46 187.13 189.21 191.29 O C.CCC 47 191.29 1						
34 137.24 139.32 141.40 1 C.002 35 141.40 143.48 145.55 C C.000 36 145.55 147.63 149.71 C C.000 37 149.71 151.79 153.87 C C.000 38 153.87 155.95 158.03 C C.000 39 158.03 160.11 162.19 C C.000 40 162.19 164.27 166.34 1 C.003 41 166.34 168.42 170.50 1 C.003 42 170.50 172.58 174.66 C C.000 43 174.66 176.74 178.82 1 O.003 44 178.82 180.90 C C.000 45 182.98 185.06 187.13 C C.000 47 191.29 0 0 0 0 47 191.29 193.37 195.45 0 0 0 48 195.45 197.53 15						
35 141.4C 143.4E 145.55 C C.COC 36 145.55 147.63 149.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.C3 C C.CCC 39 158.03 16C.11 162.19 C C.COO 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 17C.5C 1 C.CC3 42 17C.5C 172.5E 174.66 C.CCC C.CCC 43 174.66 176.74 178.82 1 O.CO3 44 178.82 18C.9C 182.9E C C.CCC 45 182.9E 185.C6 187.13 C C.CCC 46 187.13 189.21 191.29 O O.COC 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 199.61 C.CCC C.CCC 49 199.61	2/					
36 145.55 147.63 149.71 C C.CCC 37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.03 C C.CCC 39 158.03 16C.11 162.19 C C.COO 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 170.50 1 C.CC3 42 170.50 172.58 174.66 C C.CCC 43 174.66 176.74 178.82 1 O.CC3 44 178.82 180.90 182.98 C C.CCC 45 182.98 185.06 187.13 C C.CCC 46 187.13 189.21 191.29 O O.COC 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 195.61 1 C.CCC 48 199.61 201.69 203.77 C C.CCC						
37 149.71 151.79 153.87 C C.CCC 38 153.87 155.95 158.C3 C C.CCC 39 158.03 16C.11 162.19 C C.C00 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 17C.5C 1 C.CC3 42 17C.5C 172.58 174.66 C C.CCC 43 174.66 176.74 178.82 1 O.CC3 44 178.82 18C.9C 182.98 C C.CCC 45 182.98 185.C6 187.13 C C.CCC 46 187.13 189.21 191.29 O C.CCC 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 199.61 1 C.CCC 49 199.61 201.69 203.77 C C.CCC						
38 153.87 155.95 158.C3 C C.CCC 39 158.03 16C.11 162.19 C C.C00 40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 17C.5C 1 C.CC3 42 17C.5C 172.5E 174.66 C C.CCC 43 174.66 176.74 178.82 1 O.CC3 44 178.82 18C.9C 182.9E C C.CCC 45 182.9E 185.06 187.13 C C.CCC 46 187.13 189.21 191.29 O C.CCC 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 159.61 1 C.CCC 49 199.61 2C1.69 2C3.77 C C.CCC						
39 158.03 16C.11 162.19 C C.000 40 162.19 164.27 166.34 1 C.003 41 166.34 168.42 170.50 1 C.003 42 170.50 172.58 174.66 C C.000 43 174.66 176.74 178.82 1 O.003 44 178.82 180.90 C.000 C.000 45 182.98 185.06 187.13 C C.000 46 187.13 189.21 191.29 O C.000 47 191.29 193.37 195.45 C C.000 48 195.45 197.53 159.61 1 C.003 49 199.61 201.69 203.77 C C.000						
40 162.19 164.27 166.34 1 C.CC3 41 166.34 168.42 170.50 1 C.CC3 42 170.50 172.58 174.66 C.CC0 43 174.66 176.74 178.82 1 O.CC3 44 178.82 180.90 182.98 C.CC0 C.CC0 45 182.98 185.06 187.13 C.CC0 C.CC0 46 187.13 189.21 191.29 O.C00 C.CC0 47 191.29 193.37 195.45 C.CC0 48 195.45 197.53 159.61 1 C.CC2 49 199.61 201.69 203.77 C.CC0 C.CC0						
41 166.34 168.42 170.50 1 C.CC3 42 170.50 172.58 174.66 C.CO0 43 174.66 176.74 178.82 1 0.CC3 44 178.82 180.90 182.98 C.CCC 0.CCC 45 182.98 185.06 187.13 C.CCC 0.CCC 46 187.13 189.21 191.29 O.CCC 0.CCC 47 191.29 193.37 195.45 C.CCC 0.CCC 48 195.45 197.53 159.61 1 0.CCC3 49 199.61 201.69 203.77 C.CCC 0.CCC						
42 170.50 172.58 174.66 C C.000 43 174.66 176.74 178.82 1 0.003 44 178.82 180.90 182.98 0 0.000 45 182.98 185.06 187.13 0 0.000 46 187.13 189.21 191.29 0 0.000 47 191.29 193.37 195.45 0 0.000 48 195.45 197.53 159.61 1 0.003 49 199.61 201.69 203.77 0 0.000						
43 174.66 176.74 178.82 1 0.003 44 178.82 180.90 182.98 0 0.000 45 182.98 185.06 187.13 0 0.000 46 187.13 189.21 191.29 0 0.000 47 191.29 193.37 195.45 0 0.000 48 195.45 197.53 159.61 1 0.003 49 199.61 201.69 203.77 0 0.000						
44 178.82 18C.9C 182.98 C C.CCC 45 182.98 185.C6 187.13 C C.CCC 46 187.13 189.21 191.29 O G.COC 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 199.61 1 G.CC3 49 199.61 2C1.69 2C3.77 C C.CCC						
45 182.98 185.C6 187.13 C C.CCC 46 187.13 189.21 191.29 0 C.CCC 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 199.61 1 C.CC2 49 199.61 201.69 203.77 C C.CCC						
46 187.13 189.21 191.29 0 0.000 47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 199.61 1 C.CC3 49 199.61 201.69 203.77 C C.CCC						
47 191.29 193.37 195.45 C C.CCC 48 195.45 197.53 199.61 1 C.CC3 49 199.61 2C1.69 2C3.77 C C.CCC						
48 195.45 197.53 199.61 1 C.CC3 49 199.61 2C1.69 2C3.77 C C.CCC						
49 199.61 2C1.65 2C3.77 C C.CCC					_	
20 203-11 203-65 201-92 1 0-003						
	50	203.11	263.83	261.72	1	C.CU3

 $\frac{\text{Ubersicht A 3.6:}}{\text{Schafe und Ziegen}} \ \ \frac{\text{Verteilung der 300 Teilregionen der EG auf Größenklassen der Viehdichte;}}{\text{GVE}_{S+Z}/\text{100 ha LF})}$

KLASSE I					
	UNTERE GRENZE	MITTE	CBERE GRENZE	HAELFIGKEIT	RELATIVE FAELFIGKEIT
1	C.01	C.79	1.57	117	C.39C
2	1.57	2.35	3.13	3.8	C.126
3	3.13	3.91	4.69	27	0.090
4	4.69	5.47	6.25	16	0.053
5	6.25	7.03	7.81	9	C.C3C
6	7.81	8.59	9.37	14	C.C46
7	9.37	10.15	10.93	1 C	C.C33
8	10.93	11.71	12.49	1 C	C.C33
9	12.49	13.27	14.C5	6	C.C2C
10	14.05	14.83	15.6C	7	C.023
11	15.6C	16.38	17.16	1 C	C.C33
12	17.16	17.54	18.72	5	C.C16
13	18.72	19.50	20.28	С	c.ccc
14	20.28	21.06	21.84	7	C.023
15	21.84	22.62	23.40	2	C.CC6
16	23.4C	24.18	24.96	5	C.C16
17	24.96	25.74	26.52	1	C.CO3
18	26.52	27.3C	28.C8	ī	0.003
19	28.08	28.86	29.64	2	C.CC6
20	29.64	30.42	31.19	ī	600.0
21	31.19	31.97	32.75	4	C.013
22	32.75	33.53	34.31	2	0.006
23	34.31	35.09	35.87	Č	C.CCC
24	35.87	36.65	37.43	č	C.CCC
25	37.43	38.21	38.99	č	0.000
26	38.99	39.77	4C.55	č	C.CCC
27	40.55	41.33	42.11	č	C.CCC
28	42.11	42.85	43.67	Ö	0.000
29	43.67	44.45	45.23	č	C.COC
30	45.23	46.C1	46.78	ĭ	C.CC3
31	46.78	47.56	48.34	Ċ	0.000
32	48.34	49.12	45.90	č	0.000
33	49.90	50.68	51.46	č	C.CCC
34	51.46	52.24	53.C2	ì	0.003
35	53.02	53.80	54.58	2	0.006
36	54.58	55.36	56.14	Č	C.GCC
37	56.14	56.92	57.7C	Č	c.ccc
38	57.7C	58.48	59.26	C	C.CCC
39	59.26	60.04	60.82	Č	0.000
40	6C.82	61.60	62.37	C	C.CCC
41	62.37	63.15	63.93	Č	C.CCC
42	63.93	64.71	65.49	Č	C•CCC
43	65.49	66.27	67.C5	Č	C.CCC
44	67.05	67.83	68.61	Č	C.CCC
45	68.61	69.39	70.17	C	0.000
46	70.17	70.95	71.73	C	C.COO
47	71.73	72.51	73.29	C	C.00C
48	73.29	74.07	74.85	Č	C.CCC
49	74.85	75.63	76.41	1	0.003
50	76.41	77.19	77.96	1	0.003
	10.441	11017	11.50		

Größenklassen Schafe und Ziegen zusammen: Abbildung A 1: Verteilungen der 300 Teilregionen der EG auf je 50 gleichbreite Größenklassen der Viehdichte (GVE/100 ha LF) bei verschiedenen Tierarten Anzahl der Teilregionen 20. 40 10 120 20 20 Größenklassen Größenklassen Hühner Rinder Anzahl der Teilregionen V C C Anzahl der Teilregionen 9 20 10. 20 Größenklassen Größenklassen Schweine und Hühner zusammen: Tierarten zusammen: Anzahl der Teilregionen 5 % % 5 Anzahl der Teilregionen 7 6 7 88 40 8 07

<u>Übersicht A 4.1:</u> Teilregionen der EG mit der höchsten Dichte der Viehbestände zusammen

	Teilregion		Dicht	e der Viehbes	tände	Rangziffer nach		•••
Kenn- ziffer	Name	Staat	zus. GVE 100 ha LF	Schweine u. Hühner GVE _{S+H} 100 ha LF	Hühner GVE _H 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
501 000	Antwerpen	В	365,87	168,68	73,13	1	4	2
509 000	West-Vlaanderen	В	354,96	207,93	31,34	2	1	11
410 000	Noord-Brabant	NL	325,92	178,60	47,94	3	3	5
405 000	Gelderland	NL	325,71	140,39	31,45	4	6	10
508 000	Oost-Vlaanderen	В	300,43	134,05	32,63	5	7	9
505 000	Limburg	В	289,96	164,13	51,27	6	5	4
411 000	Limburg	NL	287,07	1 95,5 8	81,84	7	2	1
406 000	Utrecht	NL	260,69	90,70	15,00	8	14	29
404 000	Overijssel	NL	227,35	85,50	19,73	9	15	22
103 080	Oldenburg	D	200,83	107,45	33,42	10	10	7
207 020	Finistère	F	194,36	83,69	19,72	11	17	23
902 060	Viborg	DK	188,95	98,93	7,18	12	12	-
504 000	Liège	В	176,57	35,07	2,72	13	62	-
105 030	Münster	D	176,37	93,29	13,31	14	13	43
207 010	Côtes du Nord	F	172,15	70,92	12,64	15	27	47
103 050	Osnabrück	D	168,79	100,23	20,67	16	11	21
402 000	Friesland	NL	167,89	18,57	11,04	17	-	_
708 070	Flintshire	VK	165,09	29,79	15,76	18	78	28
207 030	Ille-et-Vilaine	F	163,41	3 8,61	8,26	19	54	-
902 070	Nordjylland	DK	160,32	80,30	8,88	20	21	-
902 030	Vejle	DK	158,00	79,04	5,55	21	23	-
304 000	Lombardia	I	157,42	50,12	20,89	22	37	20
901 060	Bornholm	DK	155,97	109,92	14,86	23	9	30
902 020	Ribe	DK	151,05	56,82	3 , 92	24	32	-
502 000	Brabant	В	150,96	56,63	13,05	25	33	45
506 000	Luxembourg	В	150,18	13,58	1,13	26	-	-
901 070	Fyn	DK	149,12	82,95	8,62	27	18	-
902 050	Arhus	DK	148,59	81,39	5,13	28	19	-
902 040	Ringkøbing	DK	147,37	72,56	3,2 8	29	26	-
105 040	Detmold	D	147,19	79,08	13,38	30	22	42
707 010	Cheshire	VK	146,19	31,33	14,00	31	73	36
708 130	Radnorshire	VK	145,90	15,32	0,62	32	-	-
707 020	Lancashire	VK	144,84	47,44	21,50	33	3 8	18
902 010	Sønderjylland	DK	144,55	64,34	6 ,3 8	34	28	-
208 030	Mayenne	F	144,16	22,07	9,00	35	-	-
710 000	Northern Ireland	VK	141,59	35,95	13,64	36	60	40
708 060	Denbigshire	VK	140,77	10,64	4,79	37	-	-
408 000	Zuid-Holland	NL	140,54	36, 80	8,45	3 8	57	
111 000	Berlin (West)	D	140,42	112,55	61,00	39	8	3
503 000	Hainaut	В	140,08	20,93	4,21	40	-	-

Übersicht A 4.1: Teilregionen der EG mit der höchsten Dichte der Viehbestände zusammen (Forts.)

	Teilregion		Dicht	e der Viehbes	tände	Rang	ziffer nach	ı
Kenn- ziffer	Name	Staat	zus. GVE 100 ha LF	Schweine u. Hühner GVE _{S+H} 100 ha LF	Hühner GVE _H 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
403 000	Drenthe	NL	138,09	31,55	12,40	41	72	49
708 100	Monmouthshire	VK	136,94	17,89	12,80	42	-	46
207 030	Morbihan	F	136,77	45 ,3 8	18,35	43	40	25
705 050	Somerset	VK	136,48	22,66	11,00	44	-	-
103 010	Hannover	D	135,73	73,11	12,60	45	25	48
702 060	Gr. London (S.E.)	VK	134,51	77,45	25,04	46	24	15
109 070	Schwaben	D	134,42	24,61	2,67	47	_	-
105 010	Düsseldorf	D	134,26	62,59	9,21	48	29	-
705 010	Cornwall	VK	133,44	20,13	5,22	49	_	_
704 020	Shropshire	VK	132,68	24,26	8,78	50	-	-
103 040	Stade	D	132,46	40,35	7,96	51	51	-
708 020	Breconshire	VK	132,30	1,96	0,61	52	_	-
708 010	Anglesey	VK	130,17	9,54	3,63	53	_	-
802 060	Tipperary (S.R.)	IR	129,36	10,14	0,68	54	_	-
802 030	Kerry	IR	128,58	7,06	1,20	55	_	-
306 000	Veneto	I	128,32	42,09	31,05	56	44	12
201 010	Nord	F	128,11	41,03	11,71	57	45	-
704 010	Herefordshire	VK	126,41	19,49	11,87	58	_	_
101 000	Schleswig-Holstein	D	125,86	36,24	4,34	59	59	_
802 020	Cork	IR	124,80	12,58	2,07	60	_	-
600 000	Luxemburg	L	124,70	20,08	2,24	61	_	-
704 030	Staffordshire	VK	124,35	19,47	6,66	62	-	-
109 050	Mittelfranken	D	124,20	40,61	4,18	63	49	-
205 020	Seine-Maritime	F	123,22	7 , 18	2,34	64	-	-
702 130	Sussex (East)	VK	122,86	32 , 15	18,78	65	70	24
709 034	Kinross	VK	122,61	45,69	42,92	66	39	6
109 020	Niederbayern	D	121,94	40,89	9,28	67	47	-
901 040	Vestsjaelland	DK	121,30	85,13	5,88	68	16	-
702 120	Surrey	VK	120,67	43 , 31	18,21	69	43	26
108 040	Südwürttemberg-Hohz.	D	120,62	32,53	4,92	70	69	-
802 040	Limerick	IR	120,22	8,02	3,84	71	-	-
708 110	Montgomeryshire	VK	119,39	6,32	3,08	72	-	-
507 000	Namur	F	119,14	11,34	1,61	73	-	-
705 020	Devon	VK	118,87	18,28	8,06	74	-	-
108 010	Nordwürttemberg	D	118,80	40,05	5,54	75	52	-
802 070	Waterford	IR	118,44	9,47	2,16	76	-	-
801 010	Carlow	IR	118,40	10,04	4,12	77	-	-
206 020	Manche	F	117,91	8,94	3,84	78	-	-
709 033	Fife	VK	117,89	40,92	33,29	79	46	8
803 030	Mayo	IR	117,79	5,53	1,83	80	-	-

	Teilregion		Dichte der Viehbestände			Rangziffer nach		
Kenn- ziffer	Name	Staat	zus. GVE 100 ha LF	Schweine u. Hühner GVE _{S+H} 100 ha LF	Hühner GVE _H 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
705 030	Dorset	VK	117,51	22,18	8,95	81	-	_
106 020	Kassel	D	116,74	44,72	3,91	82	42	-
801 080	Meath	IR	116,50	5,40	3,14	83	_	-
708 120	Pembrokeshire	VK	116,43	5,85	1,46	84	-	-
704 050	Worcestershire	VK	116,36	34,34	16,75	85	63	27
407 000	Noord-Holland	NL	116,35	14,52	6,87	86	_	-
803 010	Galway	IR	115,76	4,93	1,64	87	-	-
103 060	Aurich	D	115,67	20,17	2,19	88	-	-
802 050	Tipperary	IR	115,09	6,00	0,63	89	_	-
308 000	Emilia-Romagna	I	113,38	55, 88	21,78	90	35	17
804 010	Cavan	IR	113,31	14,87	2,79	91	-	-
208 050	Vendée	F	112,35	20,89	13,29	92	_	44
801 040	Kilkenny	IR	112,23	6,69	0,96	93	-	-
801 120	Wicklow	IR	112,13	7,63	2,85	94	-	-
109 010	Oberbayern	D	111,86	18,37	3,49	95	_	-
804 030	Monagham	IR	111,52	15,43	1,85	96	-	-
801 110	Wexford	IR	111,50	10,80	2,53	97	_	_
201 020	Pas-de-Calais	F	111,39	33,54	4,03	98	66	-
105 050	Arnsberg	D	110,88	40,63	7,38	99	48	_
801 050	Loighis	IR	110,57	8,73	1,55	100	-	-
							l	ì

<u>Übersicht A 4.2:</u> Teilregionen der EG mit der höchsten Dichte der Schweine- und Hühnerbestände

	Teilregion		Dichte	der Viehbes	tände	Rangz	iffer nac	h
Kenn- ziffer	Name	Staat	Schweine u. Hühner GVE _{S+H} 100 ha LF	zus. GVE 100 ha LF	Hühner GVE _H 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
509 000	West-Vlaanderen	В	207,93	354,96	31,34	1	2	11
411 000	Limburg	NL	195,58	287,07	81,84	2	7	1
410 000	Noord-Brabant	NL	178,60	325,92	47,94	3	3	5
501 000	Antwerpen	В	168,68	365,87	73,13	4	1	2
505 000	Limburg	В	164,13	289,96	51,27	5	6	4
405 000	Gelderland	NL	140,39	325,71	31,45	6	4	10
508 000	Oost-Vlaanderen	В	134,05	300,43	32,63	7	5	9
111 000	Berlin (West)	D	112,55	140,42	61,00	8	39	3
901 060	Bornholm	DK	109,92	155,97	14,86	9	23	30
103 080	Oldenburg	D	107,45	200,83	33,42	10	10	7
103 050	Osnabrück	D	100,23	168,79	20,67	11	16	21
902 060	Viborg	DK	98,93	188,95	7,18	12	12	_
105 030	Münster	D	93,29	176,37	13,31	13	14	43
406 000	Utrecht	NL	90,70	260,69	15,00	14	8	29
404 000	Overijssel	NL	85,50	227,35	19,73	15	9	22
901 040	Vestsjaelland	DK	85,13	121,30	5,88	16	68	_
207 020	Finistère	F	83,69	194,36	15,76	17	11	23
901 070	Fyn	DK	82,95	149,12	8,62	18	27	_
902 050	Arhus	DK	81,39	148,59	5 , 13	19	2 8	_
901 030	Roskilde	DK	81,08	108,58	6,43	20	-	-
902 070	Nordjylland	DK	80,30	160,32	8,88	21	20	-
105 040	Detmold	D	79,08	147,19	13,38	22	3 0	42
902 050	Vejle	DK	79,04	158,00	5,55	23	21	_
702 060	Gr. London (S.E.)	VK	77,45	134,51	25,04	24	46	15
103 010	Hannover	D	73,11	135,73	12,60	25	45	4 8
902 040	Ringkøbing	DK	72,50	147,37	3,2 8	26	29	-
207 010	Côtes du Nord	F	70,92	172,15	12,64	27	15	47
902 010	Sønderjylland	DK	64,34	144,55	6 ,3 8	2 8	34	-
105 010	Düsseldorf	D	62,59	134,26	9,21	29	4 8	-
901 050	Storstrøm	DK	61,33	90,31	5,41	3 0	-	-
901 020	Frederiksborg	DK	56,94	94,53	5,36	31	-	-
902 020	Ribe	DK	56,82	151,05	3,92	32	24	-
502 000	Brabant	В	56,63	150,96	13,05	33	25	45
701 000	Suffolk	VK	56,04	82,59	13,76	34	-	37
308 000	Emilia-Romagna	I	55, 88	113,38	21,78	35	90	17
707 040	East-Riding	VK	50,50	99,08	6,11	36	-	-
304 000	Lombardia	I	50,12	157,42	20,89	37	22	20
707 020	Lancashire	VK	47,44	144,84	21,50	3 8	33	18
709 034	Kinross	VK	45,69	122,61	42,92	39	66	6
207 040	Morbihan	F	45,38	136,77	18,35	40	43	25

	Teilregion		Dichte	der Viehbes	tände	Rangz	iffer nac	h
Kenn- ziffer	Name	Staat	Schweine u. Hühner GVE _{S+H} 100 ha LF	zus. GVE 100 ha LF	Hühner GVE _H 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
703 060	Nottinghamshire	vĸ	44,87	97,90	25,14	41	_	14
106 020	Kassel	D	44,72	116,74	3,91	42	82	_
702 012	Surrey	VK	43,31	120,67	18,21	43	69	26
306 000	Veneto	I	42,09	128,32	31,05	44	56	12
201 010	Nord	F	41,03	128,11	11,71	45	57	_
709 033	Fife	vĸ	40,92	117,89	32,29	46	79	8
109 020	Niederbayern	D	40,89	121,94	9,28	47	67	_
105 050	Arnsberg	D	40,63	110,88	7,38	48	99	_
109 050	Mittelfranken	D	40,61	124,20	4,18	49	63	_
701 030	Norfolk	vĸ	40,44	67,97	14,14	50		34
103 040	Stade	D	40,35	132,46	7,96	51	51	_
108 010	Nordwürttemberg	D	40,05	118,80	5,54	52	75	_
702 050	Gr. London (East)	vĸ	38,90	77,91	9,90	53	_ '_	_
207 030	Ille-et-Vilaine	F	38,61	163,41	8,26	54	19	_
103 030	Lüneburg	D	37,96	87,90	5,40	55 55	_	_
106 010	Darmstadt	D	37,56	103,86	8,12	56	_	_
408 000	Zuid-Holland	NL	36,80	140,54	8,45	57	3 8	_
709 046	Selkirk	VK	36,71	109,49	0,45	58	_	_
101 000	Schleswig-Holstein	D	36,24	125,86	4,34	59	59	-
710 000	Northern Ireland	VK	35,95	141,59	13,64	60	36	40
702 040	Essex	VK	35,16	63,34	12,06	61	-	_
504 000	Liège	В	35,07	176,57	2,72	62	13	_
704 050	Worcestershire	VK	34,34	116,36	16,75	63	85	27
702 090	Hertfordshire	VK	34,12	75,44	14,04	64	-	35
109 060	Unterfranken	D	33,59	92,87	3,31	65	-	-
201 020	Pas-de-Calais	F	33,54	111,39	4,03	66	98	-
709 043	Midlothian	VK	33,37	92,07	22,04	67	-	16
103 020	Hildesheim	D	32,86	84,06	4,61	68	-	_
108 040	SüdwürttbgHohz.	D	32,53	120,62	4,92	69	70	-
702 013	Sussex (East)	VK	32,15	122,86	18,78	70	65	24
311 000	Umbria	I	31,71	70,34	6,13	71	_	-
403 000	Drenthe	NL	31,55	138,09	12,40	72	41	49
707 010	Cheshire	VK	31,33	146,19	14,00	73	31	36
701 010	Cambridgeshire	vĸ	31,23	44,56	9,92	74	-	_
211 030	Landes	F	31,18	68,04	21,00	75	-	19
702 010	Bedfordshire	VK	30,69	64,73	9,25	76	-	_
702 070	Hampshire	VΚ	30,56	89,03	14,60	77	_	31
708 070	Flintshire	VK	29,79	165,09	15,76	78	18	28
108 020	Nordbaden	D.	29,71	80,65	7,14	79	-	-
702 020	Berkshire	VK	29,36	85,99	7,15	80	- :	-
		-						

Übersicht A 4.3: Teilregionen der EG mit der höchsten Dichte der Hühnerbestände

	Teilregion		Dichte	der Viehbes	tände	Rangzi	ffer nach	• • •
Kenn- ziffer	Name	Staat	Hühner GVE _H 100 ha LF	zus. GVE 100 ha LF	Schweine u. Hühner GVE _{S+H} 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
411 000	Limburg	NL	81,84	287,07	195,58	1	7	2
501 000	Antwerpen	В	73,13	365,87	168,68	2	1	4
111 000	Berlin (West)	D	61,00	140,42	112,55	3	39	8
505 000	Limburg	В	51,27	289,96	164,13	4	6	5
410 000	Noord-Brabant	NL	47,94	325,92	178,60	5	3	3
709 034	Kinross	VK	42,92	122,61	45,69	6	66	39
103 080	Oldenburg	D	33,42	200,83	107,45	7	10	10
709 033	Fife	VK	33,29	117,89	40,92	8	79	46
508 000	Oost-Vlaanderen	В	32,63	300,43	134,05	9	5	7
405 000	Gelderland	NL	31,45	325,71	140,39	10	4	6
509 000	West-Vlaanderen	В	31,34	354,96	207,93	11	2	1
306 000	Veneto	I	31,05	128,32	42,09	12	56	44
709 047	West Lothian	VK	28,83	109,49	36,71	13	-	58
703 060	Nottinghamshire	VΚ	25,14	97,90	44,87	14	_	41
702 060	Gr. London (S.E.)	VK	25,04	134,51	77,45	15	46	24
709 043	Midlothian	VK	22,04	92,07	33,37	16	_	67
308 000	Emilia-Romagna	I	21,78	113,38	55,88	17	90	35
707 020	Lancashire	VK	21,50	144,84	47,44	1 8	33	3 8
211 030	Landes	F	21,00	68,04	31,18	19	-	75
304 000	Lombardia	I	20,89	157,42	50,12	20	22	37
103 050	Osnabrück	D	20,67	168,79	100,23	21	16	11
404 000	Overijssel	NL	19,73	227,35	85,50	22	9	15
207 020	Finistère	F	19,72	194,36	83,69	23	11	17
702 013	Sussex (East)	VK	18,78	122,86	32,15	24	65	70
207 040	Morbihan	F	18,35	136,77	45 ,3 8	25	43	40
702 012	Surrey	VK	18,21	120,67	43,31	26	69	43
704 050	Worcestershire	VK	16,75	116,36	34,44	27	8 5	63
708 070	Flintshire	VK	15,76	165,09	29,79	2 8	1 8	78
406 000	Utrecht	NL	15,00	260,69	90,70	29	8	14
901 060	Bornholm	DK	14,86	155,97	109,92	30	23	9
702 070	Hampshire	VK	14,60	89,03	30,56	31	-	77
702 140	Sussex (West)	VK	14,28	100,30	28,37	32	-	-
219 030	Drôme	F	14,14	36,91	19,03	33	-	-
701 030	Norfolk	VK	14,14	67,97	40,44	34	-	50
702 090	Hertfordshire	VK	14,04	75,44	34,12	35	-	64
707 010	Cheshire	VK	14,00	146,19	31,33	36	31	73
		L	Ļ				L	L

<u>Übersicht A 4.3:</u> Teilregionen der EG mit der höchsten Dichte der Hühnerbestände (Forts.)

Te	ilregion	lregion			tände	Rangziffer nach		• • •
Kenn- ziffer	Name	Staat	Hühner GVE _H 100 ha LF	zus. GVE 100 ha LF	Schweine u. Hühner GVE _{S+H} 100 ha LF	Sp. 4	Sp. 5	Sp. 6
1	2	3	4	5	6	7	8	9
701 040	Suffolk	VK	13,76	82,59	56,04	37	-	34
706 020	Durham	VK	13,74	97,53	21,95	3 8	-	-
702 030	Buckinghamshire	VK	13,68	102,27	29,35	39	-	-
710 000	Northern Ireland	VK	13,64	141,59	35,95	40	3 6	60
707 030	Lincolnshire-Linds.	VK	13,39	59,28	24,37	41	-	-
105 040	Detmold	D	13,38	147,19	79,08	42	30	22
105 030	Münster	D	13,31	176,37	93,29	43	14	13
208 050	Vendée	F	13,29	112,35	20,89	44	92	-
502 000	Brabant	В	13,05	150,96	56,63	45	25	25
708 100	Monmouthshire	VK	12,80	136,94	17,89	46	42	-
207 010	Côtes du Nord	F	12,64	172,15	70,92	47	15	27
103 010	Hannover	D	12,60	135,73	73,11	48	45	25
403 000	Drenthe	NL	12,40	138,09	31,55	49	41	72
219 010	Ain	F	12,31	79,94	21,43	50	-	-

Abbildung A 2.1 Viehdichte in der EG.

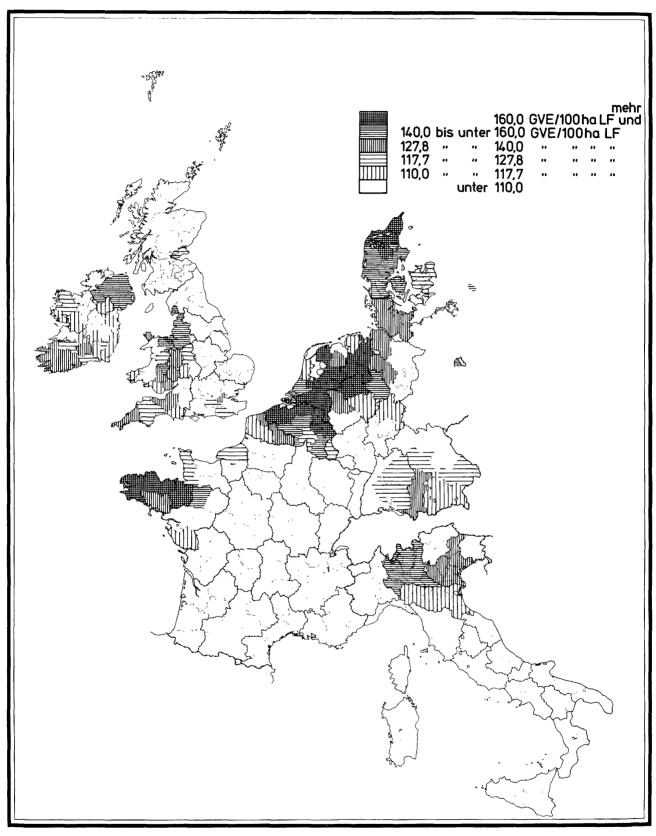


Abbildung A2.2 Dichte der Schweine - und Hühnerbestände in der EG.

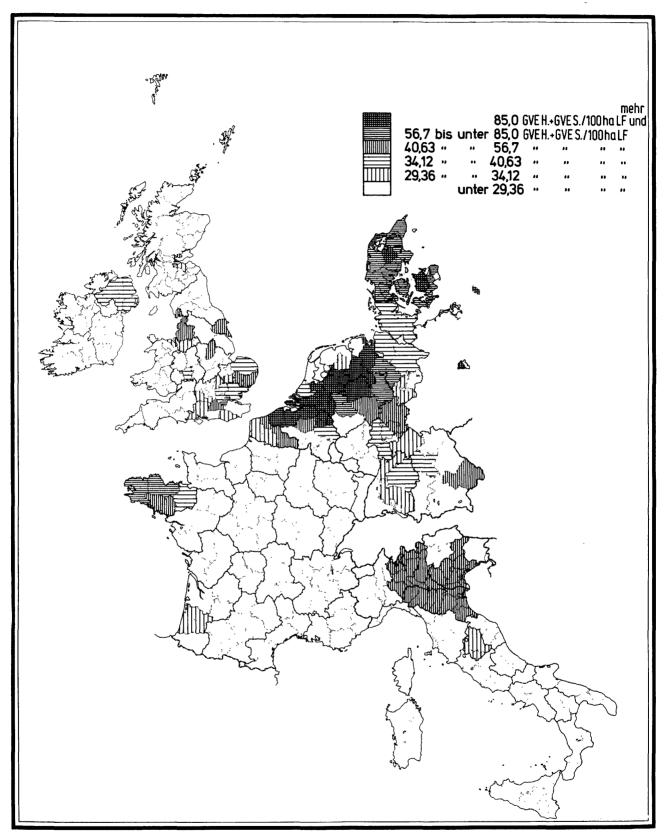
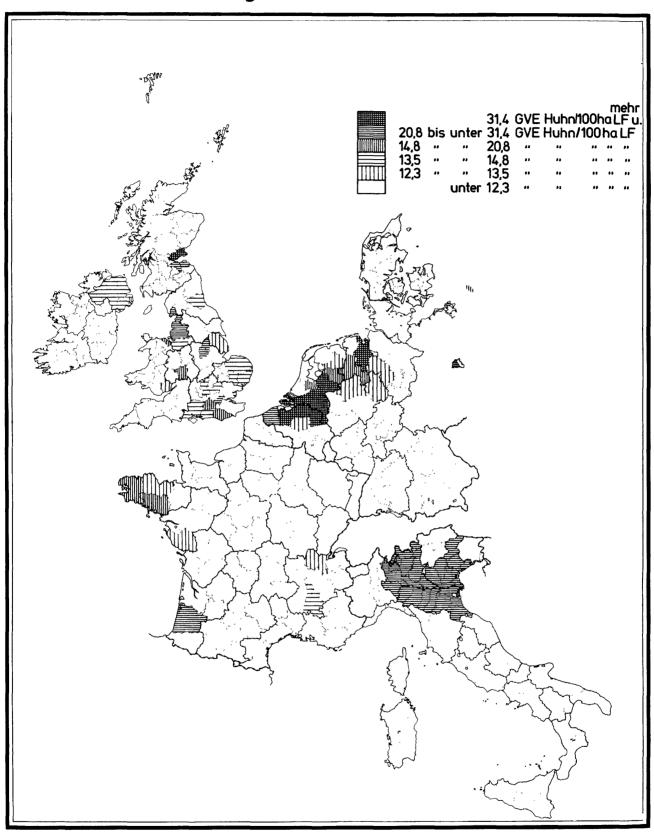



Abbildung A 2.3 Hühnerdichte in der EG

<u>Übersicht A 5:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate mit den in den Karten verwendeten, abgekürzten Regionsnummern

Bundesrepublik Deutschland:

Name:	Regions-Nr.:	Name:	Regions-Nr.:
Hannover (KS)	3101	Bocholt (KS)	5301
Diepholz	3102	Bottrop (KS)	5302
Hoya	3103	Gelsenkirchen (KS)	5303
Schaumburg	3103	Gladbeck (KS)	5304
. =			5305
Hame In-Pyrmont	3105	Münster (KS)	
Hannover	3106	Recklinghausen (KS)	5306
Neustadt am Rbg.	3107	Ahaus	5307
Nienburg a.d.W.	3108	Beckum	5308
Schaumburg-Lippe	3109	Borken	5309
Springe	3110	Coesfeld	5310
, -		Lüdinghausen	5311
RB Hannover	131	Münster	5312
		Recklinghausen	5313
Bremervörde	3402	Steinfurt	5314
			5315
Stade	3406	Tecklenburg	
Verden	3407	Warendorf	5316
RB Stade (Teil)	134	RB Münster	153
Osnabrück (KS)	3501	Bielefeld	5401
Aschendorf-Hümmling	3502	Büren	5402
Bentheim	3503	Gütersloh	5403
			5404
Lingen	3504 3505	Herford	
Meppen	3505	Höxter	5405
0snabrück	3506	Lippe	5406
		Minden-Lübbecke	5407
RB Osnabrück	135	Paderborn	5408
		Warburg	5409
Delmenhorst (KS)	3801	-	
Oldenburg (KS)	3802	RB Detmold	154
Wilhelmshaven (KS)	3803	No occinoca	
	3804	Linnetadt	5516
Ammerland		Lippstadt	
Cloppenburg	3805	Soest	5521
Friesland	3806	Unna	5522
0ldenburg	3807		
Vechta	3808	RB Arnsberg (Teil)	155
Wesermarsch	3809		
		Landshut (KS)	9201
VB Oldenburg	138	Passau (KS)	9202
otacii ar g	.20	Straubing (KS)	9203
Düsseldorf (KS)	5101	Deggendorf	9204
			9205
Duisdorf (KS)	5102	Freyung-Grafenau	9206
Essen (KS)	5103	Kehlheim	
Krefeld (KS)	5104	Landshut	9207
Leverkusen (KS)	5105	Passau	9208
Mönchengladbach (KS)	5106	Regen	9209
Mülheim a.d. Ruhr (KS)	5107	Rottal-Inn	9 210
Neuss (KS)	5108	Straubing-Bogen	9211
Oberhausen (KS)	5109	Dingolfing-Landau	9212
Remscheid (KS)	5110	gg	
Rheydt (KS)	5111	RB Niederbayern	192
Solingen (KS)	5112	ND Wiederbayerii	1,72
Wuppertal (KS)	5113		
Dinslaken	5114		
Düsseldorf-Mettmann	5115		
Geldern	5116		
Grevenbroich	5117		
Kempen-Krefeld	5118		
Kleve	5119		
Moers	5120		
Rees	5121		
Rhein-Wupper-Kreis	5122		
RB Düsseldorf	151		

<u>Übersicht A 5:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate mit den in den Karten verwendeten, abgekürzten Regionsnummern (Forts.)

Frankreich

Name:	Regions-Nr.:	Name:	Regions-Nr.:
Flandre maritime Flandre intérieure Plaine de la Lys	1001 1002 1003	Pays de Born Marensin Marenne	3130 3131 3132
Region de Lille Pevele	1004 1005	Marsan Petites Landes de Roquefort	3133 3134
Plaine de la Scarpe Cambresis Hainaut	1006 1007 1008	Seignanx Pays de Gosse Grandes Landes	3144 3145 3378
Thierache	1009	Vallée du Gave d'Oloron Vallée du Gave de Pau	3379 3380
Dep. Nord	211	Chalosse Tursan	33 82 33 87
Pays d'Aire Collines Guinoises	2023 2024	Bas Armagnac	3388
Boulonnais Haut Pays d'Artois Bethunis	2029 2030 2031	Dep. Landes	2113
Ternois Pays de Montreuil	2032 2039		
Bas Champs Picards Plaine de la Lys Waterinques	2040 2324 2325		
Artois	2326		
Dep. Pas-de-Calais	212		
Littoral Breton Nord Bretagne Centrale	1358 1359		
Landes des Mts. d'Arrée Pénéplaine Bretonne Nord Région du Sud Ouest	1360 1361 1362		
Dep. Côtes du Nord	271		
Zone de Brest Zone de Plougastel daoulas Presqu'île de Crozon Z. Legumière de la Pénéplaine Littoral Breton Nord Monts d'Arrée Pénépl. Bretonne Nord Bassin de Chateaulin Pénépl. Bretonne Sud	2100 2101 2102 2103 2358 2360 2361 2362 2363		
Dep. Finistère	272		
Région Centrale Polders du Mont St. Michel Marais du Dol Région de Fougères Région de St. Malo Bretagne Centrale Pays de Redon	3097 3098 3099 3357 3358 3359 3363		
Dep. Ille-et-Vilaine	273		
Bretagne Centrale Region Nord Région Centrale Littoral Breton Sud	4359 4362 4363 4364		
Dep. Morbihan	274		

<u>Übersicht A 5:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate mit den in den Karten verwendeten, abgekürzten Regionsnummern (Forts.)

Italien:

Name:	Regions-Nr.:
Varese	41
Como	42
Sondrio	43
Milano	44
Bergamo	45
Brescia	46
Pavia	47
Cremona	48
Mantova	49
Reg. Lombardia	34
Verona	61
Vicen za	62
Belluno	63
Treviso	64
Venezia	65
Padova	66
Rovigo	67
Reg. Veneto	36
Piacenza	81
Parma	82
Reggio nell 'Emilia	83
Modena	84
Bologna	85
Ferrara	86
Ravenna	87
Forla	88
Reg. Emilia Romagna	38

Übersicht A 5: Verzeichnis der Untersuchungsgebiete und Regionsaggregate mit den in den Karten verwendeten, abgekürzten Regionsnummern (Forts.)

Niederlande:

Name:	Regions-Nr.:	Name:	Regions-Nr.:
Het Bildt	211	Noordwesthoek	1011
Weide- en bouwstreek	212	Westelijke Langstraat	1012
Kleiweidestreek	231	Biesbosch	1013
Veenweidestreek	232	Oostelijke Langstraat	1021
Eilanden	233	Land van Altena	1022
De Wouden	241	Maaskant	1031
		Land van Bergen op Zoom	1041
Pr. Friesland	42	Noordwestelijke zandgronden	1042
		Land van Breda	1043
Olst en Wijhe	421	Westelijke Kempen	1044
Westelijk weidegebied	431	Meijerij	1045
Oostelijk weidegebied	432	Oostelijke Kempen	1046
Giethoorn en Steenwijkerwold	433	Noordelijk Peelgebied	1047
Zand- en veengebied	441	Zuidelijk Peelgebied	1047
Salland en Twente	442	Land van Cuyk	
	772	Land van Cuyk	1049
Pr. Overijssel	44	Pr. Noord-Brabant	410
Westelijke Ijsselstreek	521	Zuid-Limburg	1121
Oostelijke Ijsselstreek	522	Westelijk Noord-Limburg	
Lijmers	523	Noordelijke Maasvallei	1141
Oostelijke Betuwe	524	Land van Montfort	1142
Midden-Betuwe	525	Land van Montfort	1143
Westelijke Betuwe	526	De Liebure	144
Bommelerwaard	527	Pr. Limburg	411
Land van Maas en Waal-Noord	528		
Land van Maas en Waal-Zuid	529		
Noordelijke Veluwe	541		
Westelijke Veluwe			
Oostelijke Veluwe	542		
Veluwezoom	543		
	544		
Noordelijke Achterhoek	545		
Zuidelijke Achterhoek	546		
Oude Ijssel-gebied	547		
Rijk van Nijmegen	548		
Pr. Gelderland	45		
Kromme Rijn-streek	621		
De ronde venen	631		
Veenweidegebied	632		
Gebied van Ijssel en Oude Rijr			
Lopikerwaard	634		
Eemland	635		
Zandgebied	641		
Heuvelrug	642		
	042		
Pr. Utrecht	46		

<u>Übersicht A 5:</u> Verzeichnis der Untersuchungsgebiete und Regionsaggregate mit den in den Karten verwendeten, abgekürzten Regionsnummern (Forts.)

Belgien:		Vereinigtes Königreich:	
Name:	Regions-Nr.:	Name:	Regions-Nr.:
Antwerpen	11	Cambridgeshire	101
Mechelen	12	Suffolk	104
Turnhout	13		704
		Reg. East Anglia (Teil)	71
Pr. Antwerpen	51	Gr. London (SE)	206
Bruxelles Capitale	21	Surrey	212
Halle-Vilvoorde	22	East Sussex	213
Leuven	23	2401 040000	213
Nivelles	24	Reg. South East (Teil)	72
			· -
Pr. Brabant	52	Nottinghamshire	306
Huy	41	Reg. East Midlands	73
Liège	42		
Verviers	43	Cheshire	701
Waremme	44	Lancashire	702
		Humberside	706
Pr. Liège	54	Gr. Manchester	710
		Merseyside	711
Hasselt	51		
Maaseik	52	Reg. Yorks & Lancs (Teil)	77
Tongeren	53		
		Clwyd	821
Pr. Limburg	55	Gwent	823
Arlon	61	Reg. Wales (Teil)	78
Bastogne	62		
Marche-en-Famenne	63	Fife	933
Neufchâteau	64	Kinross	934
Virton	65		
		Reg. East Central Scotl. (insg.)	793
Pr. Luxembourg	56		
	0.4	Midlothian	943
Aalst	81	West Lothian	947
Dendermonde	82		
Eeklo	83	Reg. South East Scotl. (insg.)	794
Gent	84		
Oudenaarde	85 84	Reg. East Central u. South East	
Sint-Niklaas	86	Scotl. (Teile)	79
Pr. Oost-Vlaanderen	58		
_	0.1	Dänemark:	
Brugge	91 92	Name -	
Diksmuide	93	Name:	Regions-Nr.:
Ieper	94		
Kortrijk	95	København	11
Oostende Roeselare	96	Frederiksborg	12
Tielt	97	Roskilde	13
Veurne	98	Vestsjælland	14
veurne	,6	Storstrømen	15
Pr. West-Vlaanderen	59	Bornholm	16
ri: west-vtaanderen		Fyn	17
		L. Øerne	91
		Sønderjylland	21
		Ribe	22
		Vejle	23
		Ringkøbing	24
		Arhus	25
		Viborg	26
		Nordjylland	27
		I Ind Lee 4	00
		L. Jylland	92

Europäische Gemeinschaften - Kommission

Die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in der Gemeinschaft

Charakterisierung der Regionen mit intensiver Tierhaltung A. Bericht

Luxemburg: Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften 1978 – 268 S. + Karten (H S. Text und 7 Karten) – 21 x 29,7 cm.

Reihe Mitteilungen über Landwirtschaft - 1978 - 48

DE

ISBN 92-825-0520-0

Katalognummer: CB-NA-78-048-DE-C

BFR 250 DKR 43 DM 16 FF 35 LIT 6600 HFL 17 UKL 4 USD 8

II. Charakterisierung der Regionen mit intensiver Tierhaltung

Nr. 48 A - Bericht

Nr. 49 B – Statistische Daten: Regionale Grunddaten und Kennwerte

Nr. 50 C - Statistische Daten: Räumliche Konzentration der Viehhaltung

Reihe: Mitteilungen über Landwirtschaft

Die vorliegende Studie ist der zweite Teil einer Untersuchung über die möglichen Umweltwirkungen der Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in der EWG.

In der Studie werden zunächst diejenigen Gebiete der EWG identifiziert, in denen die Tierhaltung mit besonderer Intensität betrieben wird. Diese Gebiete werden sodann nach Merkmalen des Bodens, des Klimas, der Raumnutzung, der Tierhaltung und der landwirtschaftlichen Bodennutzung und Struktur charakterisiert und klassifiziert. Dabei wird zugleich der Versuch unternommen, solche Teilgebiete innerhalb der EWG zu bestimmen, in denen die rechnerisch auf die jeweils vorhandenen landwirtschaftlich genutzten Flächen entfallenden Mengen an tierischen Exkrementen möglicherweise zu Umweltbeeinträchtigungen führen können.

Die Studie umfaßt einen Bericht sowie zwei Bände mit statistischen Daten. Im Bericht werden die angewendeten Methoden erläutert sowie ausgewählte Ergebnisse dargestellt. Die statistischen Bände enthalten für jede der 292 ausgewählten Regionen — je nach Datenverfügbarkeit — detaillierte Angaben der o.g. Merkmale und Kennziffern.

Die übrigen Teile der Gesamtstudie werden in der gleichen Reihe veröffentlicht.

Mitteilungen über Landwirtschaft

		Datum	Sprachen
Nr. 1	Kredite an die Landwirtschaft I. Frankreich, Belgien, G.H. Luxemburg	Februar 1976	F
Nr. 2	Kredite an die Landwirtschaft II. Bundesrepublik Deutschland	Februar 1976	D
Nr. 3.	Kredite an die Landwirtschaft III. Italien	Februar 1976	F I
Nr. 4	Kredite an die Landwirtschaft IV. Niederlande	Februar 1976	E N
Nr. 5	Karte der Dauer der Vegetationsperiode in den E.G. Mitgliedstaaten	März 1976	F D
Nr. 6	Modelle zur Analyse von Ackerbau-Rindviehhaltungsbetrieben – Technisch-wirtschaftliche Grundangaben-Schwäbisch-bayerisches Hügelland (B.R. Deutschland)	März 1976	D
Nr. 7	Modelle zur Analyse von Ackerbau-Rindviehhaltungsbetrieben – Technisch-wirtschaftliche Grundangaben: South-East Leinster (Ireland), West Cambridgeshire (Vereinigtes Königreich), Fünen (Dänemark)	März 1976	E'
Nr. 8	Bestimmungen über die Rinderhaltung	März 1976	F
Nr. 9	Formen der Zusammenarbeit im Fischereisektor: Dänemark, Irland, Vereinigtes Königreich	April 1976	Е
Nr. 10	Die Milch- und Rindfleischmärkte der EG – Regionale Lösungsansätze für ein Gleichgewicht	Juni 1976	D E
Nr. 11	Beitrag der "Berggemeinschaften" in Italien zur Entwicklung der Landwirtschaft in Berggebieten	Juli 1976	1 '
Nr. 12	Rolle der "Landwirtschaftlichen Entwicklungsgesellschaften in Italien" bei der Strukturreform — Anpassungsschwierigkeiten und -aussichten	Juli 1976	ı
Nr. 13	Märkte für frische Zitronen und Zitronensäfte in der Europäischen Gemeinschaft	Juli 1976	E F
Nr. 14	Rückstände von Pflanzenschutzmitteln in Tabak und Tabak- erzeugnissen I. Tätigkeitsbericht	Juli 1976	E (2) F
Nr. 15	Der Wassergehalt von gefrorenem und tiefgefrorenem Geflügel — Prüfung von Bestimmungsmethoden	Juli 1976	F E
Nr. 16	Methoden zum Nachweis von Viren bestimmter Krankheiten in Tieren und tierischen Erzeugnissen	August 1976	E
Nr. 17	Tierärztliche Impfstoffe — Vergleichende Analyse der Bestimmungen der Mitgliedstaaten über drei wichtige Tierseuchen	August 1976	Е

⁽¹⁾ In Vorbereitung (2) Vergriffen

		Datum	Sprachen
Nr. 18	Die voraussichtliche Entwicklung der internationalen Versorgung mit landwirtschaftlichen Erzeugnissen und ihre Folgen für die Gemeinschaft I. Weizen, Futtergetreide, Zucker, Gesamtzusammenfassung	August 1976	D F (¹)
Nr. 19	Die voraussichtliche Entwicklung der internationalen Versorgung mit landwirtschaftlichen Erzeugnissen und ihre Folgen für die Gemeinschaft II. Rind -und Schaffleisch, Milcherzeugnisse	September 1976	D (2) F (1)
Nr. 20	Formen der Zusammenarbeit zwischen landwirtschaftlichen Betrieben in Produktion und Vermarktung in den neuen Mitgliedstaaten	September 1976	Е
Nr. 21	Sachliche Kriterien für die Beurteilung der bakteriologischen und organoleptischen Qualität der Trinkmilch	September 1976	Е
Nr. 22	Untersuchung über die hygienischen Probleme der Kühlverfahren für Schlachtköper von Geflügel	Oktober 1976	E
Nr. 23	Rückstände von Pflanzenschutzmitteln in Tabak und Tabak- erzeugnissen II. Verwendete phytosanitäre Substanzen – Gesetzgebungen – Analysemethoden	Oktober 1976	F E
Nr. 24	Praktische Bedingungen für die Anwendung der Methoden des Integrierten Pflanzenschutzes	November 1976	F
Nr. 25	Forstwirtschaftliche Probleme und deren Auswirkungen auf die Umwelt in den Mitgliedstaaten der EG I. Ergebnisse und Empfehlungen	November 1976	D F E
Nr. 26	Rückstände von Pflanzenschutzmitteln in Tabak und Tabaker- zeugnissen III. In Tabak vorgefundene Rückstände von Pflanzenschutzmit- teln – Toxikologische Aspekte der Rückstände in Tabak	November 1976	F E
Nr. 27	Die Vermarktung von in die EWG eingeführtem Obst und Gemüse	Februar 1977	F
Nr. 28	Kredite an die Landwirtschaft in den Mitgliedstaaten der EG $-$ Eine vergleichende Analyse $$	Februar 1977	F E
Nr. 29	Kosten der ersten Verarbeitung und der Aufbereitung von in der Gemeinschaft erzeugtem Rohtabak	März 1977	l F
Nr. 30	Schlachttierbetäubung in den Mitgliedstaaten der EG	März 1977	D E
Nr. 31	Forstwirtschaftliche Probleme und deren Auswirkungen auf die Umwelt in den Mitgliedstaaten der EG II. Öffnung des Waldes für die Allgemeinheit und seine Nutzung als Erholungsraum	Mai 1977	D
Nr. 32	Forstwirtschaftliche Probleme und deren Auswirkungen auf die Umwelt in den Mitgliedstaaten der EG III. Stand, Entwicklung und Probleme der Mechanisierung bei der Bestandsbegründung und Holzernte und deren Auswirkungen auf die Umwelt	Mai 1977	D

⁽¹⁾ Vorbereitung (2) Vergriffen

		Datum	Sprachen
Nr. 33	Forstwirtschaftliche Probleme und deren Auswirkungen auf die Umwelt in den Mitgliedstaaten der EG IV. Staatliche Beihilfen (Subventionen) im Nichtstaatswald	Mai 1977	D
Nr. 34	Forstwirtschaftliche Probleme und deren Auswirkungen auf die Umwelt in den Mitgliedstaaten der EG V. Systeme der Waldbesteuerung und die steuerliche Belastung privater Forstbetriebe	Mai 1977	D
Nr. 35	Vorausschätzungen für den Agrarsektor – Prognose der Entwicklung der Agrarstruktur und des Faktoreinsatzes in der Landwirtschaft der EG I. Theoretische Grundlagen und Analyse vorliegender Untersuchungen	Juni 1977	D
Nr. 36	Die voraussichtliche Entwicklung der internationalen Versorgung mit landwirtschaftlichen Erzeugnissen und ihre Folgen für die Gemeinschaft III. Öle und Fette, Eiweissfuttermittel	Juli 1977	D F (1)
Nr. 37	Modelle zur Analyse von Ackerbau – Rindviehhaltungsbetrieben Technisch-Wirtschaftliche Grundangaben Bassin de Rennes – Gebiet (Frankreich)	August 1977	F
Nr. 38	Ermittlung des Muskelfleischanteils an Schlachttierkörpern von Schweinen mit dem Dänischen KSA-Gerät	August 1977	D E (1)
Nr. 39	Modelle zur Analyse von Ackerbau — Rindviehhaltungsbetrieben Technisch-Wirtschaftliche Grundangaben Volvestre-Gebiet (Frankreich)	August 1977	F
Nr. 40	Der Einfluss verschiedener Fettarten in Nahrungsmitteln auf die Gesundheit	Dezember 1977	E
Nr. 41	Modelle zur Analyse von Ackerbau-Rindviehhaltungsbetrieben Technisch-Wirtschaftliche Grundangaben East Aberdeenshire-Gebiet (Schottland)	Dezember 1977	E
Nr. 42	Wassergehalt von gefrorenem und tiefgefrorenem Geflügel Prüfung von Bestimmungsmethoden (Truthühnern)	Februar 1978	F E
Nr. 43	Ein Prognose- und Simulationsmodell für den EG-Getreidemarkt Teil I: Grundlagen, Modellkonzeption und Quantifizierung der Bestimmungsgründe von Angebot und Preisbildung Band I: Theoretische Grundlagen und Konzeption	Mai 1978	D
Nr. 44	Ein Prognose- und Simulationsmodell für den EG-Getreidemarkt Teil I: Grundlagen, Modellkonzeption und Quantifizierung der Bestimmungsgründe von Angebot und Preisbildung Band II: Entwicklung und Bestimmungsgründe des Angebots, sowie der Getreideerzeugerpreise	Mai 1978	D
Nr. 45	Produktion, Verbrauch und Handelsaustausch von Getreide und Fleisch in Osteuropa Teil I: Textband	Mai 1978	D E(1)

		Datum	Sprachen
Nr. 46	Produktion, Verbrauch und Handelsaustausch von Getreide und Fleisch in Osteuropa Teil II: Tabellenband	Mai 1978	D E(1)
Nr. 47	Die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in der Gemeinschaft I. Wissenschaftliche Grundlagen für die Begrenzung der Ausbringung und Kriterien für regulierende Maßnahmen	Juli 1978	F N E(1)
Nr. 48	Die Ausbringung tierischer Exkremente auf landwirtschaftlich genutzten Flächen in der Gemeinschaft II. Charakterisierung der Regionen mit intensiver Tierhaltung A. Bericht	August 1978	D

Salgs- og abonnementskontorer · Vertriebsbüros · Sales Offices Bureaux de vente · Uffici di vendita · Verkoopkantoren

Belgique - België

Moniteur belge - Belgisch Staatsblad

Rue de Louvain 40-42 — Leuvensestraat 40-42 1000 Bruxelles — 1000 Brussel Tél. 512 00 26 CCP 000-2005502-27 Postrekening 000-2005502-27

Sous-dépôts - Agentschappen:

Librairie européenne — Europese Boekhandel Rue de la Loi 244 — Wetstraat 244 1040 Bruxelles — 1040 Brussel

CREDOC

Rue de la Montagne 34 - Bte 11 - Bergstraat 34 - Bus 11 1000 Bruxelles - 1000 Brussel

Danmark

J.H. Schultz - Boghandel

Møntergade 19 1116 København K Tel. (01) 14 11 95 Girokonto 1195

Underagentur:

europa-bøger Gammel Torv 6 Postbox 137 DK-1004 København K

Tel. (01) 14 54 32

BR Deutschland

Verlag Bundesanzeiger

Breite Straße – Postfach 10 80 06 5000 Köln 1 Tel. (0221) 21 03 48 (Fernschreiber: Anzeiger Bonn

8 882 595)

Postscheckkonto 834 00 Köln

France

Service de vente en France des publications des Communautés européennes

Journal officiel 26, rue Desaix

75732 Paris Cedex 15 Tél. (1) 578 61 39 — CCP Paris 23-96

Ireland

Government Publications

Sales Office G.P.O. Arcade Dublin 1

or by post from

Stationery Office Beggar's Bush Dublin 4 Tel. 68 84 33

Italia

Libreria dello Stato

Piazza G. Verdi 10 00198 Roma — Tel. (6) 8508 Telex 62008

CCP 1/2640

Agenzia

Via XX Settembre (Palazzo Ministero del tesoro) 00187 Roma

Grand-Duché de Luxembourg

Office des publications officielles des Communautés européennes

5, rue du Commerce Boîte postale 1003 — Luxembourg Tél. 49 00 81 — CCP 19190-81 Compte courant bancaire: BIL 8-109/6003/300

Nederland

Staatsdrukkerij- en uitgeverijbedrijf Christoffel Plantijnstraat, 's-Gravenhage Tel. (070) 62 45 51 Postgiro 42 53 00

United Kingdom

H.M. Stationery Office
P.O. Box 569
London SE1 9NH
Tel. (01) 928 69 77, ext. 365
National Giro Account 582-1002

United States of America

European Community Information Service

2100 M Street, N.W. Suite 707 Washington, D.C. 20 037

Tel. (202) 862 95 00

Schweiz - Suisse - Svizzera

Librairie Payot
6, rue Grenus
1211 Genève
Tél. 318950
CCP 12-236 Genève

Sverige

Librairie C.E. Fritze
2, Fredsgatan
Stockholm 16
Postgiro 193, Bankgiro 73/4015

España

Librería Mundi-Prensa Castelló 37 Madrid 1 Tel. 275 46 55

Andre lande · Andere Länder · Other countries · Autres pays · Altri paesi · Andere landen

Kontoret for De europæiske Fællesskabers officielle Publikationer · Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften · Office for Official Publications of the European Communities · Office des publications officielles des Communautés européennes · Ufficio delle pubblicazioni ufficiali delle Comunità europee · Bureau voor officiële publikaties der Europese Gemeenschappen

Luxembourg 5, rue du Commerce Boîte postale 1003 Tél. 49 00 81 · CCP 19 190-81 Compte courant bancaire BIL 8-109/6003/300

BFR 250 DKR 43 DM 16 FF 35 LIT 6600 UKL 4 USD 8 **HFL 17**

Katálognummer: CB-NA-78-048-DE-C