
€ ESPRIT

COMMISSION OF THE EUROPEAN COMMUNITIES

Directorate-General
TELECOMMUNICATIONS. INFORMATION
INDUSTRIES AND INNOVATION

ESPRIT'87
Achievements

and Impact
Parti

North-Holland

ESPRIT '87
Achievements and Impact

vu s^o^v

ESPRIT '87
Achievements and Impact
Proceedings of the 4th Annual ESPRIT Conference
Brussels, September 28-29,1987

Edited by

COMMISSION OFTHE EUROPEAN COMMUNITIES
Directorate-General TELECOMMUNICATIONS,
INFORMATION INDUSTRIES and INNOVATION

Parti

NH
flA-C

m
1987

NORTH-HOLLAND
AMSTERDAM • NEW YORK • OXFORD • TOKYO J>

Q\ y>

0
t

PARL. EUROP. Biblioth.

® ECSC-EEC-EAEC, Brussels-Luxembourg, 1987

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the copyright owner.

ISBN Parti: 0 444 70331 4
ISBN Part 2: 0 444 70332 2
ISBN Set : 0 444 70333 0

Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 1991
1000 BZ Amsterdam
The Netherlands

Sole distributors for the U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52 Vanderbilt Avenue
New York, N.Y. 10017
U.S.A.

Publication No. EUR 11192 of the
Commission of the European Communities,
Directorate-General Telecommunications,
Information Industries and Innovation,
Luxembourg

LEGAL NOTICE
Neither the Commission of the European Communities nor any person acting on behalf of the
Commission is responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

FOREWORD

The 4th ESPRIT Conference will be held in the Palais des Congres in
Brussels from the 28th to 30th September 1987. Well over 1,000 participants
are expected to attend about 120 presentations, and develop contacts with
colleagues in their own and other disciplines. Some 50 of the ESPRIT projects
are planning to demonstrate over one hundred computer systems, to highlight
the achievements of ESPRIT during the past twelve months. Bearing in mind
that we are only one third of the way into this ten year programme, the scale
of the event is especially gratifying.

The first two days are traditionally devoted to presentations, on the
achievements and impact of selected ESPRIT projects, structured into plenary
and parallel sessions, with a majority of papers read in sessions that cover
more than one of the ESPRIT action areas : Microelectronics, Software
Technology, Advanced Information Processing, Office Systems and Computer
Integrated Manufacturing, as well as one sesssion of papers on the network
development projects of ESPRIT.

On the third day of the Conference, the Information Technology Forum
Day, industrial and political leaders will discuss the theme Europe 1992 :
Technology and Market in the morning, while the afternoon is devoted to the
presentation of the second phase of ESPRIT. The Conference is a good
opportunity for the participants to get a first-hand report on the
substantial work going on in ESPRIT, and on the many results already obtained
and now being exploited. The participants also take advantage of the
opportunity to meet each other and discuss items of mutual interest, this
being particularly useful because of the good balance between the various
specialised areas and also across different European national boundaries.
This closer relationship will reap greater benefits as we look to the second
phase of ESPRIT.

I would especially like to thank the contributors whose presentations
are essential to the overall success of the Conference, as well as the
project teams who set up the demonstrations, and thank the various
organisations who have made equipment available to them.

J.M. Cadiou
Director
Information Technologies - ESPRIT

ACKNOWLEDGEMENTS

The Commission of the European Communities thanks the following members of
the conference programme committee and reviewers for their contribution to
the 4th ESPRIT Conference.

Andre, E.
Antreich
Arrowsmith, P.
Baldi, L.
Balk, P.
Baiter, R.
Bardsley, W.
Barrow, C.
Bensahel, D.
Bentley, M.
Bjoern-Andersen,
Coeure, P.
Dato, M.
Dirks, H.
Doumeingts, G.
Drechsel, G.
Eggermont, L.D.J.
Encarnacao, J.L.
Evans, R.
Haton, J.P.
Heckl, H.
Hemment, P.L.F.
Heuberger, A.
Hezel, R.
Holt, W.
Jacquart, R.
Kirchoff, U.
Koch, G.
Leproni, L.
Levi, G.
Littlewood, B.

Madsen, O.B.
Maes, H.
Marechal, G.
Mertens, R.
Meyer, W.
Morgan, D.
Murchio, P.
O'Brien, C.
O'Mathua, C.
Parker, G.A.
Prini, G.
Ricco, B.
Robertson, J.
Schneider, B.
Schneider, B.
Schulz, M.J.
Shorter, D.
Tedd, M.
Thorp, T.L.
Treleaven, P.
Trullemans, C.
Turini, F.
Van de Wiele
Van der Wolf,
Vassiliou, Y.
Vissers, C.A.
Williams, E.W.
Wittig, T.
Young, R.W.
Zyss, J.

CONTENTS
Parti

I. MICROELECTRONICS

Bipolar CMOS ESPRIT Project (P 412)
P.A.H. HART and A. WIEDER
(Paper presented in Plenary Session) 3

1. Process Overview
Submicron Bipolar Technology II : A 3ns Access Time 4K bit ECL
RAM with an Optimized Cell Design (P 281)
W.M. WERNER, K.R. SCHOEN, K. DELKER, A. GLASL and K. WIESINGER 11
An Advanced Bipolar Process Using Trench .Isolation and
Polysilicon Emitter for High Speed VLSI (P 243)
M. DEPEY, P. SCHOULER, M. ROCHE, P. HUNT and A. HEFNER 19
A GaAs 4-Stage Serial Multiplier in Self-Aligned Technology
(P 843)
M.J. AGNEW, J. PULESTON JONES and S.W. BLAND 24
The Development of a Tungsten Self-Aligned Gate Process for GaAs
MESFETs (P 843)
I. DAVIES, K. VANNER, J. COCKRILL and B. MCALLISTER 29
Towards the 0.7 Micron Spectre CMOS : A 1 Micron Double Metal
Process (P 554)
D. BOIS 33
A European Program on Wafer Scale Integration (P 824)
J. TRILHE 42

2. Basic Technologies
SOI Materials and Processing towards 3D Integration (P 245)
D. CHAPUIS et al, J.L. REGOLINI et al, J.L. MERMET et al,
L. KARAPIPERIS et al, K.M. BARFOOT et al , D.A. SMITH et al,
C.G. CAHILL et al 55
New Three-Chamber Reactive Ion Etching System MPE 3003 (P 574)
I. HUSSLA, H.-C. SCHEER, R. SMAILES and D.E. WEBSTER 72
High Performance VLSI Interconnection Systems (P 958)
K. KURZWEIL, P. ARROWSMITH, N. CHANDLER and G. DEHAINE 82
Technology for GaAs-GaAlAs Heterojunction Bipolar Integrated
Circuits (P 971)
M. BON et al, A. REZAZADEH et al, R. G00DFELL0W et al, W.M. KELLY
et al and D. CARR et al. 103
Improvements in GaAs Material for IC's Applications (PI 128)
G. H. MARTIN, P. DECONINCK, M. DUSEAUX, J. MALUENDA, G. NAGEL,
K. LOEHNERT, M.J. CROCHET, F. DUPRET, and P. NICODEME 113

3. Application Technologies
Large Area Complex Liquid Crystal Displays Addressed by Thin Film
Transistors, (P 833)
M.G. CLARK, P. MIGLIORATO, N.J. BRYER, P.A. COXON, J. MAGARINO,
J.P. LE PESANT, W. SENSKE, K.H. GREEB, K. FAHRENSCHON, F. MORIN,
M.B. ANDERSEN 127
Poly-Si Thin Film Transistor Technologies for Liquid-Crystal
Display Drivers (P 491)
W. SENSKE, W. SCHMOLLA, J. DIEFENBACH, G. BLANG, B. LOISEL,
P. JOUBERT, Y. CHOUAN, M. KRAMMER 148
Advanced Processing Technology for GaAs Field Effect Transistors
and Lasers (P 1270)
A. CHRISTOU, N. PAPANICOLAOU and Z. HATZOPOULOS 159
Plasma Deposition Technology for Magnetic Recording Thin Film
Media (P 334)
B. CORD and P. WIRZ 164
New Horizons for the Chemical Industry in Information Technology
(P 443)
J. ZYSS 178

4. High Level Systems Design
Optimisation Steps in Silicon Compilation (P 991)
J.A.G. JESS, J.F.M.THEEUWEN, R. V.d. BORN, L. STOK, M. BERKELAAR 195
Silicon Compilation of DSP Systems with CATHEDRAL II (P 97)
H. DE MAN, J. RABAEY, J. VAN MEERBERGEN and J. HUISKEN 207
Design of Concurrent Sorter Networks for Real-Time Image
Processing (P 97)
U. KLEINE, R. HOFER, K. KNAUER and I. VANDEWEERD 218
Alcatel-BTM Layout and Floorplan Methodology (P 97)
L. CLOETENS, J. GOUBERT and P.P. GUEBELS 241
Open System Architecture of an Interactive CAD Environment for
Parameterized VLSI Modules (P 1058)
L. CLAESEN, Ph. REYNAERT, G. SCHROOTEN, J. COCKX, I. BOLSENS,
H. DE MAN, R. SEVERYNS, P. SIX, E. VANDEN MEERSCH 251
ADVICE - Automatic Design Validation of Integrated Circuits Using
E-beam (P 271)
M. COCITO, M. MELGARA, G. PROCTOR, Y.J. VERNAY, B. COURTOIS and
F. BOLAND 271

5. CAD for VLSI Design
AIDA - Advanced Integrated Circuits Design Aids - Aims and
Progress Towards a New Generation of VLSI Tools (P 888)
H.G. THONEMANN 279
CAD of Analog Cells (P 802)
G. WAGNER 287

Three Dimensional Algorithms for Robust and Efficient
Semiconductor Simulator with Parameter Extraction (P 962)
G. BACCARANI 299

II. SOFTWARE TECHNOLOGY

1. Environments
Specifying Message Passing and Real-Time Systems with Real-Time
Temporal Logic (P 937)
R. KOYMANS, R. KUIPER and E. ZIJLSTRA 311
Implementing the PCTE User Interface on Sun Workstations (P 1277)
B. HAYSELDEN 325
The Sapphire Project : Building Confidence in PCTE (P 1277)
M. TEDD 334
A Knowledge Based Environment for S/W System Configuration
Reusing Components (P 974)
J.-F. CLOAREC and R. VALENT 339
SFINX : Towards PCTE Based Software Factories (P 1262) 352

2. Advanced Environments
The Use of the Object-Oriented Approach in the GRASPIN DB (P 125)
S. GOUTAS, P. SOUPOS, C. ZAROLIAGIS, D. CHRISTODOULAKIS and
D. MARITSAS 361
ASPIS : A Knowledge-based Environment for Software Development
(P 401)
F. PIETRI, P.P. PUNCELLO, P. TORRIGIANI, G. CASALE, M. DEGLI
INNOCENTI, G. FERRARI, G. PACINI and F. TURINI 375
Integrating Graphics into Prolog (P 973)
N. PRESTON 392
Database Software Development as Knowledge Base Evolution (P 892)
M. JARKE and R. VENKEN 402

3. Metrication and Management
The REQUEST Database for Software Reliability and Software
Development Data (P 300)
C. DALE 415
SMART : A System Designer Approach to Evaluate the Performance of
Complex Fault-Tolerant Systems (P 1609)
A. KUNTZMANN and J. FIGUEIRAS 426
IMPISH : A RDBMS Extended to Handle Logical Rules and Documents
(P 938)
M. BOSCO and M. GIBELLI 432

4. Formal Methods
Software Development in RAISE (P 315)
C. GEORGE 451
A Spreadsheet Specification in RSL - An Illustration of the RAISE
Specification Language (P 315)
E. MEILLING 466
Guide-Lines for Building Adaptable Browsing Tools (P 432)
J-L. GIAVITTO, Y. HOLVOET, A. MAUBOUSSIN and P. PAUTHE 480
Formalisation of Developments : An Algebraic Approach (P 390)
B. KRIEG-BRUECKNER 491
Term Rewriting Systems in the GRASPIN Environment Used for the
Verification of Software Development Steps (P 125)
B. DEHM, H.-R. FONIO, H. GERLACH, W. SOMMER and R. TOBIASCH 503
Towards Reliable Computing (P 1072)
J. KOK, D.T. WINTER, M.J. ERL and G.S. HODGSON 521
A Procedure for the Evaluation of Arithmetic Expressions with
Guaranteed High Accuracy (P 1072)
H.C. FISCHER, R. HAGGENMUELLER and G. SCHUMACHER 535
ESTELLE and LOTOS Software Environments for the Design of Open
Distributed Systems (P 410)
M. DIAZ, C. VISSERS and S. BUDKOWSKI 543
A New Language to Describe Analog Circuits (P 881)
C. VAN REEUWIJK and M.G. MIDDELHOEK 559
A Compositional Method for the Design and Proof of Asynchronous
Processes (P 1033)
R.J. CUNNINGHAM, A. NONNENGART and A. SZALAS 566

III. ADVANCED INFORMATION PROCESSING

Phase 2 of the Reconfigurable Transputer Project (P 1085)
J.G. HARP
(Paper presented in Plenary Session) 583

1. Knowledge Engineering
Status and Evolution of the EPSILON System (P 530)
G. LEVI, M. MODESTI and J. KOULOUMDJIAN 593
Introduction to Prolog III (P 1106)
A. COLMERAUER 611
An Experimental Protocol for the Acquisition of Examples for
Learning (P 1063)
J. BLYTHE and D. NEEDHAM 630
A Production Rule Language for Databases Extended Towards the
Support of Complex Domains (P 1133)
G. KIERNAN, C. DE MAINDREVILLE and E. SIMON 640

How to Build Knowledge-Based Systems : Techniques, Tools and Case
Studies (P 1098)
S.A. HAYWARD 665
The Design of an Information Retrieval Assistant System (P 1117)
G.S. PEDERSEN and H.L. LARSEN 688

2. Systems Architecture and Design
Overview of a Parallel Reduction Machine Project (P 415)
D.I. BEVAN, G.L. BURN and R.J. KARIA 701
SETHEO : A SEquential THEOrem-Prover for First Order Logic (P 415)
S. BAYERL and R. LETZ 721
Multi-Level Simulator for VLSI - An Overview (P 415)
P. MEHRING and E. APOSPORIDIS 736
An Overview of DDC : Delta Driven Computer (P 415)
R. GONZALEZ-RUBIO, J. ROHMER and A. BRADIER 750
A Two-Level Approach to Logic Plus Functional Programmming
Integration (P 415)
M. BELLIA, P.G. BOSCO, E. GIOVANNETTI, G. LEVI, C. MOISO and
C. PALAMIDESSI 771
DELTA-4 : Definition and Design of an Open Dependable Distributed
Computer System Architecture (P 818)
P. MARTIN 790
PADMAVATI : Parallel Associative Development Machine as a Vehicle
for Artificial Intelligence (P 967)
P. ARSAC 798

3. Signal Processing, Natural Languages
User Modelling in the GRADIENT Project (P 857)
E. HOLLNAGEL, G. WEIR and G. SUNDSTROEM 811
Dialogue Design for Dynamic Systems (P 857)
J.L. ALTY and G.R.S. WEIR 819
Text Generation in the EUROHELP Project : The Utterance Generator
(P 280)
L. STAUSHOLM 826
A Control Strategy for a Knowledge-Based Approach to Signal
Understanding (P 26)
E. GIACHIN and C. RULLENT 836
Stereo Reconstruction Using a Robot Manipulating Arm (P 940)
G. GARIBOTTO 850
Dialogues with Language, Graphics and Logic (P 393)
E. KLEIN 867
ADKMS : Advanced Data and Knowledge Management System (P 311)
J. PETERS 874

4. Expert Systems
The Expert System Builder (ESB) (P 96)
F.R. JENSEN and A.D. VICI 891
Industrial Control : A Challenge for the Applications of
Artificial Intelligence (P 387)
F. ARLABOSSE, J. BIERMANN, E. GAUSSENS and T. WITTIG 909
Using KBS in Telecommunications 2 (P 387)
G.I. WILLIAMSON, J. BIGHAM, J. W. BUTLER and S.G. KING 936
Knowledge Representation for Intelligent Help Systems (P 280)
J. VAN DER BAAREN 955
Coaching Strategies for Help Systems : EUROHELP (P 280)
J. BREUKER, R. WINKELS and J. SANDBERG 963
MARGRET - A Pre-prototype of an "intelligent" process monitoring
system (P 857)
P. ELZER, H.W. BORCHERS, H. SIEBERT, C. WEISANG and K. ZINSER 973
A Toolkit for Building KBS Applications for Process Control.
First Achievements of the Project (P 820)
A. STEFANINI, F. ARLABOSSE, A. CAVANNA, P. COURTIN, M. LEVIN,
R. LEITCH and P. MARTIN 985

5. Documents Architecture, Storage and Retrieval (part 1)
INDOC - Intelligent Documents Production Demonstrator (P 1542)
A. CELENTANO and P. PAOLINI 1005

I. MICROELECTRONICS

Paper Presented in the Plenary Sessions:

A High Performance CMOS Bipolar Process
For VLSI Circuits - P 412

Parallel Sessions

1. Process Overview 11

2. Basic Technologies 55

3. Application Technologies 127

4. High Level Systems Design 195

5. CAD for VLSI Design 279

Project No. 412
BIPOLAR CMOS ESPRIT PROJECT

P .A .H . H a r t (P h i l i p s) , A. Wieder (S iemens)

Introduction

In this paper will be described the BICMOS project
412.
First of all, it should be stated that the objective of the pro
ject is to combine bipolar IC processing and CMOS processing into
a combined bipolar CMOS process. This process should be usefull
for information processing and marry in an economic way the ad
vantages of bipolar and CMOS. The advantage of bipolar processing
is particularly high gain and high speed, those of CMOS proces
sing low dissipation, the ease to build complex circuitry and
high process yield. This renders it possible to make large cir
cuits possessing "bipolarlike" speeds and CMOS like complexity
and low dissipation. The general aim is enhancement of perfor
mance. In some cases a reduction of circuit complexity of 30-40%
was observed (1) while (cf. 2,3) a reduction of circuit size by
approximately one half was observed in comparison with a bipolar-
-only circuit.

It should be mentioned that particularly in USA and
Far East there is a great number of laboratories and companies
engaged. Such companies are DEC, Honeywell, Hughes, Motorola,
National, Texas instruments, RCA, Hitachi, NEC, Ricoh, Toshiba,
Samsung etc. Not all these companies aim at the same application
but all combine bipolar and CMOS in one process. The majority of
companies places great emphasis on applications like high perfor
mance memories and high performance gate arrays or similar struc
tures. The other most important area is analog circuits having a
(large) digital content.
In this paper first some general statements will be made to out
line the project, then the nature of the work and some results
will be described.
The project

The BICMOS 412 ESPRIT project is carried out by
Philips and Siemens as the main partners. Philips is the main
contractor. The Universities of Dublin and Stuttgart are sub
contractor to Philips and Siemens respectively.
An integrated circuit technology combining bipolar and CMOS tech
nology is being developed at Philips and Siemens.
Additionally extensive physical and electronic studies and design
are being undertaken in support of the technological work. In the
matter of electronics design Philips and Siemens are being
assisted by their respective subcontractors. The project has now
entered its third year (started 1-4-1985). Over a five year
period, Philips expects to deliver 150 manyears and Siemens 50
manyears of effort.

Because of their respective product backgrounds Philips
and Siemens apply somewhat different emphasis. The emphasis by
Siemens is on digital systems, that one at Philips is analog
systems with a digital content. This gives their cooperation an
interesting aspect. In order to have full benefit from the inhouse
design culture and CAD facilitities the, compulsory, starting
point has been a standard CMOS process at both Philips and
Siemens. The work then essentially consists in the addition of the
bipolar part. As stated Philips and Siemens have somewhat differ
ent interest and histories, the way in which their cooperation is
effected is not unimportant. This difference in background,
however, makes the project more interesting, less prone to dupli
cation and it certainly leads to a deeper mutual understanding.
The basic principle of work in each company is that we exchange
process knowledge, agree on a common set of design rules for test
vehicles, design circuits in each other's processes and then ex
change these test circuits to do a common evaluation. Subordinate
to all this is an exchange of modelling knowledge and measuring
techniques.
Present CMOS and bipolar processes both comprise approximately
12 mask steps. A naif addition of both processes would double the
price of the joint process and render it economically unattract
ive. The processes therefore have to be merged in such a way that
the result is economically viable and still retains the advantages
of both the bipolar and the CMOS discipline.
A scheme to combine N-well CMOS with the bipolar process is out
lined in fig. 1a.

N-MOS P-MOS Bipolar NPN
B E C

a)

b)

=L
lid lm|

=L
LEd l£d

,. n well „

I I I

!M^ ^ n well J

p- substrate

lid lnd| lEd l£d II M n J ^
p-epi

—Jg^S^^-
p'substrate

Fig. 1 Merging of bipolar to a N-Well CMOS process

The N-well CMOS is shown at the left. A vertical NPN bipolar tran
sistor is visible on the right. For the bipolar transistors use is
made of the same diffusions as are already used for the CMOS part
except for one additional P region (hatched). In principle, there
fore, only one additional mask is needed. In practice, (cf fig.
1b) it is preferable in the Philips and Siemens processes to use
an epitaxial layer and additional N buried layers. This prevents
latch up and greatly enhances the performance of the NPN transis
tor. The latter points were investigated by Siemens at the start
of the project. They found that the collector series resistance
dropped from 200 ohms to 30 ohms and that the current amplifica
tion of a (parasitic) pnp in a latch-up circuit dropped from 40 to
1, hereby greatly enhancing freedom from latch-up.

The objectives.
The present plan provides for a bipolar CMOS process-

development which will allow a 200 K transistor complexity chip to
be made and available at the end of year five. This challenging
task has been divided up as follows.

- In the first three years a process named "BICMOS I" is
to be developed by Philips and by Siemens. By Philips
the feasibility of the process is to be demonstrated
by a circuit of 20 K transistor complexity level. The
Siemens process should have a bipolar transit frequency
of 3 GHz and a CMOS toggle frequency of 500 MHz.
Furthermore basic circuits are to be investigated and
optimized, this will include an investigation of novel
circuits now possible with a free mix of MOS and
bipolar circuitry.

- In the second half of the first three years a process
"BICMOS II" is to be designed. This process then
should be capable of yielding the 200 K demonstrator
at Philips. At Siemens a toggle frequency of 1200 MHz
and a bipolar transitfrequency of 9 GHz is expected to
be achieved.

The implementation of the work
The first year was largely spent determining the

proper requirements for the process and the circuits, and doing
all the experiments needed to confirm views on technology and
substantiate the many simulations done in the first year.

In the first year, too, a technology called BICMOS OP
using 2/um lithography, which had been developed previously to
this Esprit project by Philips(2), was used to give a "flying"
start with testing of electronic ideas and for calibration of the
process simulation tools. Both Philips and Siemens had experi
mental circuits on these test masks (3). The floorplan has been
described in (3); for convenience the list of devices and cir
cuits is reproduced here in Table I, while some new device para
meters of BICMOS OP and BICMOS 1P are presented in Table II. A
more detailed cross section of BICMOS 1P is shown in fig. 2.

poly Si

Fig. 2 Cross section of BICMOS 1P. The CMOS part also
describes that of BICMOS 2P and BICMOS 2S. eMfi,

N3

TABLE I
Test structures and circuits on BICMOS test masks.

Philips Siemens

Components for characterisation
Full adder chain with BICMOS buffers
Bipolar and C-MOS shift registers
Siemens operational amplifiers
Gyrator and other filter components
2 K RAM
Yield modules for process steps
Siemens optical dimension control

I 2C transceiver
Balaced resonater VEO
Sigma Delta Modulator
ROM

Latch up investigation
BICMOS driver for ECL
C-MOS driver for ECL
Philips process evaluation
modules Gilbert cell
BICMOS operational amplifiers
MOS differential pairs
ECL devider static and dynamic
MOS arrays, matching structure
Bipolar differential pairs

TABLE II

NPN

PNP

NMOS

PMOS

HFC
FT
Vearl
BVCEO
Wb
Hfe
FT
Vearly
BVCEO
Vt
K'
a
vt
k
13

BICMOS 0 P

200
4.2 GHz
75 V
16 V
3. 5 urn
100
30 MHz
25 V
20 V
0.75 V
0.44 V 1/2
50 p A/V2

-0.80 V
0.76 V 1/2
1 7/uA/V2

BICMOS IP
NW

105
6 GHz
23
8V
2.0 iim

46 r

NWS

100
4GHz
90 V
12 V
2.0 jum

126
not yet measured
40 V
14 V
0.9 V
0.50 V 1/2
77 ̂ A/V2

-1.1 V
0.65 V 1/2
23 ^JA/V2

15 V
17 V

-
-
_
-
~

At Siemens, basic experiments with a BICMOS OS techno
logy were performed on the basis of an existing 1.4/um N-well
CMOS process using a test chip available at the time, (4). The
results were used together with MOS, bipolar and BICMOS circuit
simulation as the basis for the design of basic BICMOS circuits.
Fig. 3 exemplifies the result of a basic study by Siemens.

a) CMOS Inverter b) BICMOS Buffer c) BICMOS Buffer
low power

Fig. 3 Circuit schematics of CMOS and BICMOS buffers.
Buffer delay versus load capacitance.

The University of Dublin assisting Philips with elec
tronic design designed circuits on a BICMOS OP test mask. Their
objective is an FIR filter having a challenging clock rate of 50
MHz.

The University of Stuttgart, supporting Siemens with
circuit optimisation, tooled up for this task in the first year.
In order to cut down CPU time a mixed strategy of stochastic and
deterministic search procedures for design centering was
developed there. A criterion to automatically switching between
the two strategies has already been implemented in the program
package.

In the second year the results of BICMOS 0 were
sorted out and a roughly similar operation started up, but now in
the BICMOS 1, process; a cross section is shown in fig. 2.
The circuits involved comprise digital and analog functions using
bipolar and CMOS both separate and in "arbitarily" mixed form,
cf. Table I and, for BICMOS 1P parameters, cf. Table II.

The point of departure for the research on the BICMOS
1 process was a standard N well process,namely 1.5 and 1.4 urn in
Philips and Siemens respectively. Philips used a LDD structure in
the NMOS and buried P and N layers whereas Siemens worked with
TaSi2 gate and buried N layers. This of course resulted in
somewhat different BICMOS processes. Nevertheless, it proved pos
sible to arrive at a common set of design rules and a common set

of test devices and circuits, making joint design and exchange of
information possible.
At Philips the first results for BICM0S1 P, have been obtained,
the results generally were in fair agreement with the theoretical
predictions. A complete characterisation of the process is now
being carried out and some circuits, including those for the
demonstrator are being designed.

0.1 0.2 0.3 0.4 0.5
Depth (urn) ~

b) I
VBC(V)=5.000

■ VBC(V)=2.000
. VBC(V)=0.000

*
^ * ^ ^ T * ## w.7^s.

*«

c
>5

10

lc (mA)

fig. 4 a) Boronconcentration in the base of the BICMOS
NPN transistor. Dotted line predicted by LSS
and SUPREH. Measurements by SIMS,

b) and c) After fitting the boronconcentration
in SUPREM, NPN cutt off frequency FT of
respectively lowly doped (NWS) and normal
well (NW) is presented. Drawn curves are
measured.

Now, at the end of year two, the first very encouraging results
of BICMOS 1 have been obtained at Siemens, and there is good
reason to expect that the objectives of BICMOS 1S viz. a bipo
lar transit frequency of 3 GHz and a CMOS toggle frequency of 500
MHz will be attained reliably by the end of year 3.

Meanwhile in the second year a start has been made
with BICMOS 2, a process similar to BICMOS 1 but denser and more
particularly having enhanced bipolar capability to emitter widths
below 1/um. The processes are now moving to be more alike; at
both firms a LDD structure, (cf. fig. 2), in the CMOS part will
be used and more importantly a second polysilicon layer to
realise high performance emitters in the bipolar transistors
(cf.fig. 5). Such emitters are already used throughout the world
for bipolar only processes.

Poly 2 Si02 ,

^SSS ^̂ W
(*

N C

fig. 5 Bipolar transistor using double polysilicon
layers as envisaged in BICMOS 2P

Finally it should perhaps be noted that the work
referred to in the papers 3, 4, 5, 6, 7 and 8 is at least to some
extent a consequence or even a part of the BICMOS project.

References
1) I.Fukushima, K. Kuwahara, K. Hoye, N. Horee, K. Itoigawa, S.

Ichinura, M. Nagata. A BIMOS FET Processor for VCR audio,
IEEE, ISSCC 1983, p 242-243

2) F. Rausch, H. Lindeman, W.J.M.J. Josquin, D. de Lang
and P.J.W. Jochems. An analog BIMOS technology
Extended abstracts of the 18th Conference on Solid
State Devices and Materials Tokyo 1986, pp 65-68

3) P.A.H. Hart, Philips, K. Bürker and A. Wieder Siemens,
BICMOS 412. Proceedings ESPRIT Technical Week Brussels
1986.

4) J. Winnerl and E.P. Jacobs, Proceedings ESSDERC
Aachen, 1985.

5) D. de Lang and W.J.M.J. Josquin, Optimization of a
1.5/um BICMOS process. BICMOS Symposion, Abstract
no. 275. Electrochemical Soc. Philadelphia. May 1987.

6) J. Winnerl, F. Neppl, B. Vollmer and M. Stegherr. The
usefulness of advanced drain structures as emitters in
scaled BICMOS, BICMOS Symposion, Abstract no. 606 RNP.
Electrochemical Soc. Philadelphia, May 1987.

7) M.F.C. Willemsen, A.E.T. Kuiper, A.H. Reader, R.
Hobbe, and J.C. Barbour. In situ investigation of TiN
formation on top of TiSi. Submitted to Journ. Appl.
Phys. 1987.

8) P.A.H. Hart. BICMOS, Dream or nightmare, Proceedings
ESSDERC conference Bologna 1987.

Project No. 281

SUBMICRON BIPOLAR TECHNOLOGY II

A 3 ns access time 4K bit ECL RAM
with an optimized cell design

W.M. Werner, K.R. Schon, K. Delker, A. Glasl, K. Wiesinger
SIEMENS AG

Introduction
The project "Submicron Bipolar Technology" started on 1.1.85 and
ends on 31.12.89. It focusses on the development of a bipolar
technology for high speed data and signal processing products.
This technology will allow the realization of gate arrays with a
complexity of 25K gates. The gate delays will be <100 ps and the
speed power product <0,1 pj. The feasibility of IC's with the
indicated integration level will be demonstrated at the end of the
project by an adequate test vehicle (demonstration chips).
Previously the state of technology development is demonstrated at
appropriate stages by 2 more demonstration chips. The first
demonstrator which is a 10K gate array was available 1,5 years
after starting the project.
The second demonstrator is a 4K bit ECL RAH with 3ns access time
and on chip latches developed for cache memories and control store
in computer applications. First silicon of this device was
availlable on schedule in March 1987. The dynamic properties of
these first samples conform completely to the specification. This
paper describes the memory cell, the proress technology, the
process- and device modeling and the circuit design of the memory.

Memory Cell
The memory cells of bipolar high speed RAM's are emitter coupled
for fast read/write operation and Schottky clamped to prevent the
transistor from saturation. In general a high ratio
B=(2CpB+CSRD)/Co>5 is necessary to reduce the access time and to
improve the cell stability, where CrR is the collector base
capacitance, Ccon the Schottky diode capacitance and C,-. the
collector-substrate capacitance of the transistor (Fig. 1).

12

A high collector node capacitance Cr = 4Cf,R + Ct,Rn + Cc. + 2CFR>800f F is
also important to assure sufficient alpha particle immunity, where
C p R is the emitter-base capacitance of the transistor. Usually
these requirements are fulfilled by increasing the SBD capacitance
C~ R n or by adding a Ta^O,- film capacitor in parallel to the SBD
/l - 3/.

In the proposed cell (fig. 1) , an external capacitor C was
introduced between the collector nodes of the cell transistors to
fulfill the mentioned requirements. This capacitor is realized
using highly doped polysilicon layers for the electrodes and a
20 nm thick silicon nitride film as dielectric. This concept has
several advantages:

a) The collector-substrate capacitance C,, can be reduced because
the said capacitor is placed outside the active transistor
area .

b) Only half of the additional capacitor value is necessary for
the same ratio (3 when placing this capacitor between the
collector nodes instead of connecting it in parallel to the two
SBD's.

c) The external capacitor has no alpha particle sensitivity.
d) Due to the Miller effect and the special arrangement of the

external capacitor only a fourth of the additional capacitance
value is necessary for the same alpha particle immunity
compared to the concepts mentioned in /l - 3/.

Process Technology
The technology is based on the 0XIS- processes described in
/4 - 6/. Lateral scaling down to a minimum feature size of 1,0 pm
is achieved by the use of 5 : 1 lithography in conjunction with
1 : 1 projection for less critical layers. For the isolation a
conventional LOCOS process including a planarisation step is used.
Besides lateral scaling down, transistor performance was improved
by a reduction of both, the epi thickness and the base-emitter
junction depths. Table 1 shows typical process parameters and
table 2 shows device parameters for minimum transistor.
Polysilicon layers are used for the electrodes of the external
capacitor, the polysilicon emitter and all resistors. For the SBD,
PtSi is applied as contact material. The two-layer metallization

13

uses a polyimide-plasmanitride sandwich with its excellent
planarizing nature as the dielectric. This allows the utilization
of non-nested vias with respect to the first metal layer /6/.

Modeling
Process, device and circuit simulation was used to develop
technology and circuit in parallel. The aims were an optimized
bipolar process for the required chip performance and a stable
technology founded on a sensitivity analysis of device character
istics with respect to realistic process parameter fluctuations.

Since actual simulation tools in general give only qualitative
results, we adapted process-dependent models and parameters to the
technology in question. For process modeling the 1-dimensional
program SUPREM III /7/ was used. The models for ion implantation
at low energies /8/ and diffusion at low temperatures were studied
and improved to give good agreement with SIMS measurements of
shallow boron and arsenic profiles. Device simulation was done in
MEDUSA /9/, where the influence of polysilicon on emitter proper
ties was represented by modifications of recombination effects.
With the resulting network simulation parameters the circuit was
designed in SPICE II.

Limited by disposable equipment we modeled the desired buried
layer, epi, base and emitter doping profiles of the basic
transistor using SUPREM III. The final doping concentrations at
the end of process were coupled by software link to- MEDUSA. The
MEDUSA output (charge, current and field distributions) was con
verted into network simulation parameters to get a better
description of the devices for optimization. Tab. 3 as an
example shows the influence of epi doping concentration and width
on various parameters with a given emitter-base-profile. Base
charge and transit time depending on ion implantation and
annealing conditions were studied in detail. Estimates on the
influence of 2-dimensional effects like the emitter edge situation
were realized by using quasi-2-dimensional calculation, in MEDUSA.
Process definition ended with a first set of SPICE-parameters,
which was the basis of the initial circuit design. Comparison to
hardware results shows reasonable agreement on all three stages of
simulation.

14

Circuit Design
The memory array consists of 64 x 64 cells organized as
IK x 4 bit. Two-stage word and bit decoder with high-speed
circuits ensure minimum access time with moderate power
consumption. The RAM is fully compatible with ^CL 100k.

To replace off-chip latches needed for synchronous operation /10/
all input and output buffers are provided with latches. The
latches are connected in parallel to the amplifiers thus not
affecting the access time in conventional RAM mode. The block
diagram of the synchronous RAM is shown in fig. 2. In the low
state of the clock, all input latches are transparent and the
outputs are latched and the reverse condition occurs in the high
state of the clock leading to minimal cycle time. An on-chip
write-pulse generator supplies the read/write control circuit with
a write pulse independently of the external write-pulse width. For
operation in conventional RAM mode, the clock input is at constant
low state (or may be let open). Also the low state of two control
inputs, WEMOD and CLKMOD, is disabling the write-pulse generator
and turning the output latches to the open state, respectively.

The RAM has a typical access time of 3.0 ns (see fig. 3) and a
minimum write-pulse width less than 2 ns. The minimum cycle time
is about the same as the access time, the power dissipation is
1.5 W typically. Table 4 summarizes the main features of the RAM.
Fig. 4 shows a micro-photograph of the memory.

REFERENCES
/l/ K. Ogine et al., "Technology improvement for high speed ECL

RAMs", IEDM Techn. Dig., p. 468 - 471, Dec. 1986
121 H. Miyanaga et al., "A 1,5 ns IK Bipolar RAM using novel

circuit design and SST - 2 technology", IEEE J. Solid-State
Circuits, Vol. SC - 19, p. 291 - 298, June 1984

/3/ J. Nolcubo et al., "A 4,5 ns access time IK x 4 bit ECL RAM",
IEEE J. Solid-State Circuits, Vol. SC 18, p. 515 - 520,
Oct. 1983

/4/ E. Gonauser et al., "A Bipolar 230 ps Masterslice Cell Array
with 2600 Gates", IEEE J. Solid-State Circuits, Vol. SC 19,
p. 299 - 305, June 1984

/5/ H. Ullrich et al., "A 150 ps 9000 Gate ECL Masterslice", IEEE
J. Solid-State Circuits, Vol. SC 20, p. 1032 - 1035, 1985

15

/6/ H. Eggers et al., "A Polyimide-Isolated Three-layer
Metallization System for Bipolar Gate Arrays", Siemens
Forsch. u. Entwickl.-Ber., Bd. 15, Nr. 2, p. 64 - 67, 1986

/7/ C.P. Ho, J.D. Plummer, S.E. Hansen, R.W. Dutton, IEEE Trans.
Electron. Devices, ED 30, 1438, 1983

/8/ H. Ryssel, K. Haberger, K. Hoffmann, G. Prinke, R. Dumke, A.
Sachs, IEEE Trans. Electron. Devices, ED 27, 1484, 1980

/9/ W.L. Engl, R. Laur, H.K. Dirks, IEEE Trans, on CAD, CAD-1,
85, 1982

/10/ K. Yamaguchi et al., "An ECL 4K bit bipolar RAM with an
effective access time of 2.5 ns and on-chip address latches",
Sympo. VLSI Tech. Dig. Papers, p. 52, 1984

CSBD

RL
n

O - - t i ll
cs

rT

t

^X
i

-r= CCB N i

I
<i 1 I—-o

I'
11
cs

r̂

Fig. 1: Memory cell with external capacitor C

16

HDR O-

D I O - ^

WEM0DO-

WE O

CE O

CLK O — 1 > -

CLKMOD O — O —

D a

c

IB 6

D 0

C

D a

c

Memory

Cal I

Rp ray

-7^ Bi t Dacoda

H r l t e -

Pulaa
Genera tor

D 0

C R

-/■—O DO

Fig. 2: Block diagram with on-chip latches

0.00000 sec

Timebase
Delta T
Start

2.00 nsec/div
3.000 nsec
8.120 nsec

10.000 nsec 20.000 nsec

Delay = 0.00000 sec

Stop = I I .120 nsec

Fig. 3: Address input and data output waveforms
of the RAM

Fig. 4: Microphotograph of the RAM

Isolation
Minimum feature size
First metal layer pitch (incl.vias)
Epi layer thickness
Emitter depth
Base depth
Polysilicon layer 1
Polysilicon layer 2

Locos
1

5

1

0

0

0

0

0

0

2

4

2

urn

pm

pm

| jm

pm

pm

0,25 pm

Table 1: Process parameters

Emitter area
Base-emitter capacitance
Collector-base capacitance
Collector-substrate capacitance
Base resistance
Cut-off frequency
External capacitor

4x1 u,m
21 fF
30 fF
60 fF
490
8 GHz
2,7 fF/un/

Table 2: Device parameters for minimum transistor

9 EPI M " 3]

d m [pm]

Is Wv']

JBF [A/M2]

VBF [V]

TF [PS]

B

CJBC[fF/M2]

0.80 E 16

1.1

1.17 E-18

1.07 E-3

34.0

13.5

77.9

0.32

1.60 E 16

1.1

1.25 E-18

1.17 E- 3

29.6

12.5

82.5

0.38

3.20 E 16

1.1

1.43 E-18

1.31 E- 3

22.4

11.0

91.4

0.50

1.60 E 16

1.0

1.27 E-18

1.25 E-3

24.8

12.0

82.8

0.42

1.60 E 16

1.2

1.26 E-18

1.10 E- 3

32.0

12.5

82.4

0.38

Table 3: Influence of epi doping concentration on device parameter;

Organization
Input and output level
Power dissipation
Address access time
Write pulse width
Chip-select access time
Cell size
Chip size

lkx4
ECL 100K
1.5 W typ.
3.0 ns typ.
2.0 ns min.
1.6 ns typ .
1690 pm2
18.0 mm2

Table 4: Characteristics of the RAH

19

Project No. 243

AN ADVANCED BIPOLAR PROCESS USING TRENCH ISOLATION
AND POLYSILICON EMITTER FOR HIGH SPEED VLSI

Maurice DEPEY, Pierre SCHOULER, Marcel ROCHE
THOMSON SEMICONDUCTEURS, BP 200 38522 Saint Egreve, France
Peter HUNT
PLESSEY RESEARCH Ltd, Caswell Towcester, Northants NN12 8EQ, UK
Aachim HEFNER
TELEFUNKEN Electronic GmbH, Theresienstrasse 2, D1700 Heilbronn, RFA

1. INTRODUCTION
A new bipolar process has been set up within the ESPRIT project N° 243,
"Submicron bipolar technology".
The overall objective of the five-year programme of this project is to develop
the capability of manufacturing submicron structures as required for very high
speed and very large scale integrated circuits. The effort devoted to this
programme is approximately 100 man x year.
In the way towards submicron minimum features, an intermediate stage of develop
ing and demonstrating a one micron process was considered to be necessary.
This process, which will be described hereafter, proves to be quite fitted to
applications requiring less than 200 ps gate delays and very high packing
density, such as signal processors, gate arrays, PROMs, etc.

2. MAIN FEATURES OF THE PROCESS
In addition to high resolution photolithography allowing small sizes and
therefore small parasitic capacitances, the following main features contributed
to good performances :

. deep trench isolation

. polysilicon emitter

. tri-layer interconnections.
The schematic cross-section of the NPN transistor in figure 1 shows the basic
structure (last interconnecting layer omitted).

3. DEEP TRENCH ISOLATION
The lateral isolation between components is provided by deep trenches. The
anisotropically etched trenches are 1.2 um wide and 5 urn deep. They are filled
with polysilicon, isolated from the substrate by a thin oxide layer. Since
they are deeper than the buried layer, a full wafer buried layer could be
adopted, thus avoiding photolithography and etching step prior to epitaxy, for
the benefit of yield and simplicity.
One of the problems that had to be overcome is the generation of defects due to
stress during the trench filling and more specifically during later oxidation
step. A solution was found which allows walled emitter structures thus
increasing the packing density.
To complete the isolation, a channel stopper is necessary. Its localisation at
the bottom of the trench is another problem : a parasitic P doping on the

20

vertical edges around the trench would add a parasitic collector-base capacitance
to the walled-base NPN transistor. From the measured value of this parameter as
compared to the theoretical value, it may be inferred that this problem has also
been satisfactorily solved.

POLYSILICON PTSl

m

p+

1 H* 1
P-

N
N+

N+

M
POLYSILICON

ft*
Figure 1 - CROSS SECTION OF THE NPN TRANSISTOR IN THE

1 Mm ESPRIT TECHNOLOGY (MASK SIZES)

4. POLYSILICON IN THE EMITTER
Adding a polysilicon buffering layer between tne metallic emitter contact and
the emitter-base junction is known as a good solution for the difficult trade
off between cut off frequency, current gain and pinched base resistance.
A simple reduction of the emitter-base junction depth as required to reduce the
parasitic stored charge of minority carriers in the emitter region and therefore
increase the speed performance, would have a detrimental effect on the emitter-
base injection ratio and hence on the current gain.
The additional polysilicon layer in the emitter introduces some degree of
freedom in the compromise between charge and current of minority carriers in the
emitter region, because of the poly/mono interface barrier. Many studies have been
carried out on this subject in several semiconductors laboratories all around
the world in recent years showing that, actually, several effects and interpreta
tions are possible.
We also studied different solutions to reach this composite emitter-base
structure. The investigated parameters were : morphology of deposited silicon,
surface preparation prior to this deposition, ion implantation and annealing
conditions. We finally optimised a process where the polysilicon layer has a
buffering effect during As+ ion implantation and allows, via subsequent small
diffusion, a very shallow monosilicon emitter zone.
Two other benefits of polysilicon were used :
- its capabilities for connections, enhanced by polycide (PtSi) formation
- its capabilities for resistors implementation.

21

5. INTERCONNECT SYSTEM
The interconnect system employs one polycide level and two metal levels. The
pitches are 2.5 pim, 4 um and 6 urn respectively. Plasma CVD Si02 isolates metal
from polycide. A planarising layer formed by a sandwich of polyimide and SiN
insures the isolation between metals 1 and 2.

6. RESULTS
A first test mask has been used to process wafers. It includes many basic struc
tures and components with size variations, and also ring oscillators and
frequency dividers.
A SEM cross-sectional view of a NPN transistor is shown in figure 2.

Fig 2 - SEM CROSS-SECTIONAL VIEW ON NPN TRANSISTOR

A tentative transistor referenced T6 with emitter width (0.75 urn drawn size)
smaller than the preliminary design rules proved to operate satisfactorily as
shown by the curves of figures 3 and 4.
Table 1 shows the measured capacitances for this transistor and for larger ones,
as used in the ring oscillators. Also given in this table is the size of the
junctions for each transistor.
The cut off frequency Ft (measured on transistor large enough to eliminate some
measuring parasitic effects) is 11 GHz. On 21-stage ring oscillators, made of
differential ECLinverters with 400 mV nominal differential logic swing, the
measured propagation delay time and speed-power product are 100 ps and 0.2 pj
respectively. Table 2 shows the effect of transistor geometry on delay times.

22

TABLE 1 JUNCTION SIZES AND CAPACITANCES

! Transistor re f ! T6 ! TRT 2 ! TRT 3 !

! BE

! BC

! CS

area JO.75 x 1.5 = 1.125 um
2
j l x 2.5 = 2.5 um

2 j l x 5.5 = 5.5 um
2 !

capacitance j 4.2 fF j 16.2 fF ; 28 fF ;

area j 7 x 1.5 = 10.5 um
2 J 11.75 x 2.5 = 29.4 (jn

2 J13 x 5.5 = 71.5 um
2 !

capacitance j 7.1 fF j 19.5 fF J 25 fF J

area [11 x 1.5 = 16.5 Mm
2 115.75 x 2.5 = 39.4 \m

z J16.25 x 5.5 = 89.4 nil
2 j

capacitance [17 fF [25 fF j 32 fF j

1E02 MA)

1E03

1E04

1E05

1E06

1E07

1E08

1E09

1E10

1 E - 1 1

1E-1Z

•• 1 r 1 t i i i i i i r — i — i i ;

J S * ^

S 3^- " ''■
^ / ^
/ S ,„

/ /
■ / /

: / /
: /

■ "^i i—■—i—'—i—■—i—■—i—■—i—'—i—
: VBE(V)

0.45 0.55 0.65 0.75 0.85 0.95 1.0 1.1

Figure 3 "GUMMEL PLOT" OF THE SMALLEST NPN TRANSISTOR
(T6 0.75 x 1.5 um emitter)

?nn

180 .

160 •

110 .

1 2 0 .

100 .

80

60 .

40 ■

20 .

0 ■

Beta

:

: /
/

/
/

/

../
/
'

s" «
\

\
>

i

\
\

\

■

■

.
■

^̂ * IC(A)
CM •-< cn co *o ir> w en CM

o o o o o

Figure 4 CURRENT GAIN BETA VERSUS COLLECTOR CURRENT FOR THE
SMALLEST TRANSISTOR (T6 0.75 x 1.5 um emitter)

23

7. FUTURE WORK
A second test mask has been designed to demonstrate the capability of this
technology in terms of yield on very complex circuits. This demonstrator is a
long shift register (more than 2 000 stages) made with identical small cells
and corresponding to an equivalent complexity of about 17 000 gates.
The maximum clock frequency expected is higher than 700 MHz.
Further improvements of the transistor characteristics are now investigated
through novel emitter-base structures. Self-aligned base contact and emitter,
with polysilicon access to both emitter and base regions are being experimented.
Our target for 1990 is a capability of 50 ps propagation delay time with at
least a 20 000 gate complexity, and at a reasonable power consumption.

Table 2 - PROPAGATION DELAY TIME IN THE RING OSCILLATORS FOR
DIFFERENT TRANSISTOR GEOMETRIES

j Ring | Transistor J Emitter j Propagation j Current/ j
J type j Ref | Geometry J (um) j (ps) J (mA) j
J 1 ; TRTI J WE - ; 1 x 5.5 | 110 | 1 |
j 2 j TRT2 j WE - | 1 x 2.5 j 120 j 0.4 j
1 3 J TRT3 j WE LOCB j 1 x 5.5 | 105 j 1 j
1 4 ; TRT4 J - LOCB j 1 x 5.5 | 100 | 1 j

(WE = walled emitter, LOCB = walling locos oxide between collector
contact and base region)

ACKNOWLEDGEMENT
The authors would like to thank €. BOREL, D. CELI, JM CHATEAU, JL IMBERT,
X. MARTEL, B. S0LIGNAC, D. THOMAS, L. FRITSCH and their associates for the
contribution to these results.

24

Project No. 843

A GaAs 4STAGE SERIAL MULTIPLIER IN
SELFALIGNED TECHNOLOGY

M.J. Agnew, J.Puleston Jones, S.W. Bland

STC Technology Ltd. London Road,
Harlow. Essex. CM17 9NA. England

INTRODUCTION

A cascadable 4stage serial multiplier has been designed and
implemented using advanced VLSI semicustom design techniques
based on a library of standard cells. The logic circuitry (414
standard logic gates) was automatically layedout in full. The
circuit has been fabricated using 1 vm gate length SAINT DCFL
MESFETs. The input and outputs are ECL100K compatible. The
input data can be in 2's compliment or magnitude only format.
The output product can be either truncated or rounded. The
circuit operates onwafer up to 800 MHz. Ringoscillators
onwafer operate with a propagation delay of 128 ps (fanin=l.
fanout=2) and a power dissipation of 0.59 mW/gate.

2. CIRCUIT DESIGN

The circuit for each stage of the multiplier (Fig. 1) uses a
shift and add algorithm^l«2].

"5—771
PPS„o—ujo-[a]—L

■°>—f^T—Id d-

K»—i—g—i—g- Rout

FIGURE 1
Serial Multiplier Circuit per Stage

25

The input data is supplied to each stage in serial form from
the previous stage. Each bit of the input multiplicand word
(B) is latched in subsequent stages of an n-stage multiplier.
The input data word (A) can be any number of bits, with the
restriction that MSB must be repeated in order to avoid
internal overflow. The partial product (PP) formed by each
stage is evaluated by multiplying (logic AND) each bit of the
input data word (A) by the latched bit of the multiplicand
(B). The partial product (PP) is combined with the partial
product sum of the previous stage (PPSin), using a full ADD
with CARRY block to form the partial product sum of a stage
(PPSout). The shift-left one bit in significance for
subsequent partial products (LSB to MSB) of normal
multiplication, is overcome by shift-right one bit and
truncation of the previous partial product sum (PPSin) with
respect to the partial product (PP). Each data word is
distinguished by supplying a high (TRUE) on the data latch line
(R) in synchronisation with the LSB of the word. For magnitude
only input data format the flag line is held low (FALSE). The
negative weighting of the MSB partial product in 2's compliment
input data format is achieved by holding the flag line high
(TRUE) on the final multiplier stage.

The circuit was implemented using semi-custom in-house design
techniques originally developed for Si CMOS circuits (Fig. 2).

Cell Library
Block Description

Custom Library
Block Description

Pre—Processor
Program

Circuit Netlist Simulator

CALMP Automatic
Layout Program

Standard
Cell Library

Custom
Cell Library

Layout File

I
Final Layout

FIGURE 2
STC Automatic C e l l - B a s e d Layout

26

The pre-processor program
data required by a tool is
expects. The circuit netl
standard, and circuit spec
description files. Once t
simulator allows the perfo
verified. Once this is ac
used to create the layout
predefined criteria. Addi
complete the circuit layou
output buffers and bond-pa
multiplier, a 1-stage mult
process test structures we

filters the data so that only the
supplied to it in the format that
ist describes the circuit in terms
ific cells, described in the block

it
of

he circuit netlist is generated, the
nance of the circuit to be
hieved, the autolayout software is
of the logic circuitry, subject to
tional features are manually added
t, these include: power lines.
ds. In addition to the 4-stage

to

iplier, 15-stage ring-oscillators and
re included in the final layout.

The process employed to fabricate the circuits used a
self-aligned gate technique known as SAINT originally developed
by NTT in Japanf3!. A photograph of the fabricated 4-stage
multiplier circuit is shown in Fig. 3.

FIGURE 3
4-Stage Serial Multiplier

3. TEST RESULTS

All circuit testing to date has been performed on-wafer. DC
FET device threshold voltages were measured as +0.243±0.048 V
for EFETs, and -0.894±0.088 V for DFETs. Ring-oscillators
with fanout=l. and a fanin of 1 and 2 showed a propagation
delay of 86±9 ps/gate. Whereas those with a fanin=l. and
fanout=2, had a propagation delay of 128±12 ps/gate.

27

Rout

Aout

Bout

PPSout

Vi 4.10 '"'

:notfn
WmSSSSOKSOBm

Rout

PPSout

FIGURE 4a
1st Stage Fully Functioning
at a Clock Freq. of 50MHz:

FIGURE 4b
Partial Function at a Clock
Freq. of 800 MHz: AIN=10
Flag=0 PPSin=101011000000

All functions of the 4-stage mu
clock frequency of 50 MHz with
generator (Fig. 4a). All stage
can be displayed up to a clock
8-bit word generator. Above th
functional operation can be dis
pulse generators. This partial
to a clock frequency of 800 MHz
signal to overcome the -10 dB s
probecard above 600 MHz. The p
circuit was 670 nW/gate at ECL1

ltiplier have been verified at a
the aid of a HP8018 word
s of the multiplier functioning
frequency of 320 MHz. using a
is limit only partial circuit
played using combinations of
function has been displayed up
(Fig. 4b), using 6 dBm of clock

ignal insertion loss of the
ower dissipation of the logic
00K levels.

CONCLUSION

A GaAs 4-stage serial multiplier has be
implemented using semi-custom standard
and successfully fabricated with 1 pi g
functional operation has been displayed
320 Mbit/s, partial operation up to a d
has been verified. The logic circuitry
of 300 mW at ECL100K I/O levels. The 1
standard gates all automatically layed-
ring-oscillator results, e.g. 128 ps (f
combined with circuit analysis suggest
rate in the region of 1 Gbit/s is possi
functional operation at 800 Mbit/s agre
predictions.

en designed using DCFL.
cell library techniques,
ate SAINT. Full
up to a data rate of
ata rate of 800 Mbit/s
has a power dissipation
ogic circuitry has 414
out in full. The
anin=l. fanout=2),
a circuit data transfer
ble. The partial
es well with these

5. ACKNOWLEDGEMENT

This work was partly funded by the EEC under ESPRIT project 843.

28

REFERENCES

[1] Myers. D.J.. 'Multipliers for LSI and VLSI signal
processing applications', MSc Report MSP5. University of
Edinburgh.

[2] Lyon. R.F.. 'Two's compliment pipelined multipliers'. IEEE
Trans, on Commun. Sci. . pp418-425. April 1976

[3] Yamasaki. K. et al.. 'Self-align implantation for n+

layer technology (SAINT) for high-speed GaAs ICs',
Electronics Lett., 18. No. 3. ppll9-21, February 1982.

29

Project No. 843

THE DEVELOPMENT OF A TUNGSTEN SELF-ALIGNED GATE PROCESS FOR GaAs
MESFETs

I. Davies, K. Vanner, J. Cockrill, B. McAllister

Plessey Research Caswell Ltd., Allen Clark Research Centre, Caswell,
Towcester, Northamptonshire, NN12 8EQ.

This paper will describe the development of a tungsten gate metal technology
for the production of self aligned GaAs FETs (SAGFETs). The realisation of
tungsten films with low stress and low resistivity have enabled the production
of both enhancement and depletion mode transistors. Good diode characteristics
are shown by these films with barrier of heights of 0.85V and ideality factors
of 1.1.

Three main topics were studied in developing the technology, namely metal depo
sition, metal etching and the annealing properties of the films. Both the
deposition and etching processes are capable of damaging the active layer and,
therefore, particular attention was given to minimising ion bombardment
damage.

Several methods for the deposition of the tungsten metal were investigated,
these were PECVD, e-beam evaporation, d.c. and r.f. sputtering. PECVD tungsten
films formed from the decomposition of WFg/l^ mixtures were evaluated. It was
found that the adhesion of these films to GaAs was poor. The resistivity of
the deposited films were measured as a function of anneal temperature and a
dramatic change was observed at 730°C. The resistivity value of 100(iQ cm falls
to a value of 15\IQ cm indicating that a phase change may have occurred. The
diode characteristics show no change upon annealing, with values of ideality
factor 1.40 and barrier heights of 0.56V being measured for both the as depo
sited and annealed devices.

There were problems encountered with e-beam evaporating tungsten films owing to
the lack of freedom in varying the process parameters in order to tailor the
properties of the deposited layer. Although low resistivity values were
obtained by this method, the films were found to be highly stressed. Improved
barrier heights were seen with these films, of the order 0.7V, however, the
ideality factor was still poor.

Both d.c. and r.f. sputtering of tungsten was assessed and this deposition
method was found to give greater flexibility in the control of the resistivity
and stress of the film produced. . Low resistivity films could be obtained with
d.c. sputtering, however, the adhesion of the film to the GaAs surface was
found to be a major problem. The physical properties of r.f. sputter deposit
ed films were studied as a function of the process parameters; power, pressure
and bias. It was found Chat although pressure and bias conditions had a small
effect on the film produced, the power had a very much greater influence on the
resultant film properties. A low power process gave low stress but high
resistivity, while a high power process gave the opposite result. Therefore,
in optimising the process a compromise was reached where films with small com
pressive stress and resistivities of 10(iQ cm (bulk value for W 5.5(iB cm) were
produced.

An important property of the metal contact is its stability when subjected to
subsequent n+ anneal conditions. The diode characteristics were monitored as
a function of anneal temperature (Fig. 1). The barrier height shows a gradual

30

0.3 800 825 850 875 900 925
Anneal temperature (RTA 5sees)

1.0

FIGURE 1
Effect of n+ anneal on diode performance

increase to a maximum value at ~875°C then decreases, whilst the ideality
factor remains constant to 900°C then degrades rapidly. The optimum anneal
temperature to activate the n+ implant has been shown to be in the range 875°C-
900°C [1], therefore, no compromise in the performance of the n+ region is
required with this contact metallisation. Using this process, planar diodes
with barrier heights of 0.85V have been made with ideality factors of 1.1 after
annealing. These results are comparable to those reported for similar geometry
devices using other refractory gate materials.

Analysis of the films by X-ray diffraction, transmission electron microscopy,
and Rutherford back scattering spectroscopy was carried out in order to obtain
data on the nature of the tungsten-GaAs interface, and to assess how it is
affected by sputtering conditions.

X-ray diffraction studies showed a preferred orientation for film growth of
[110] perpendicular to the substrate surface. No lattice changes occur during
anneal cycles up to 900°C. Also similar crystal structure is seen for high and
lower power deposition. The TEM results indicated that the low power deposit
ion gave a finer grain structure than that seen with the higher powers. No
evidence of alloying of the metal film with the GaAs was seen after annealing.
The high power films showed evidence of cracks in the film after heating,
indicating a high degree of stress present. RBS analysis showed the bulk
interface roughening to be <5A and that large scale penetration of tungsten
into GaAs does not occur. An impurity was shown to be present in the lower
power deposited films, thus accounting for the high resistivities seen with
these films.

The patterning of the tungsten film was another major aspect of the development
of the process. The SAGFET technology requires both anisotropic and controlled
isotropic etching of the gate structure. A variety of etch gas compositions
have been evaluated in the reactive ion etching mode, these include NF3, CF,,
and SF6 together with additions of either 02, H2 or N2 in various ratios. The

31

mask procedure for the etch process was studied with the evaluation of float
off and subtractive processes using photoresist, dielectrics and metal mask
materials.

The dielectric materials gave poor gate definition after etching as the etch
gases tend also to etch the mask material. Both photoresist layers and metal
films have been successfully used to fabricate devices. SIMS and Auger evid
ence suggest however, that metal migration may occur through the underlying
tungsten layer and this could possibly have a deleterious effect on device
performance.

The process parameters of gas flow, power and pressure were adjusted to give
minimum bias voltages (<50V) and hence minimise any induced damage. Under
these restrictions, SFg was found to give the optimum anisotropic etching,
producing near vertical sidewalls with little undercut of the gate stripe. The
addition of other gases (O2, H2 or N2) gave an isotropic nature to the etching.
The use of oxygen gave a self limiting undercut etch of ~0.1pm, however, mask
erosion was a problem. The inclusion of hydrogen gave larger undercut struct
ures, unfortunately poor edge control was seen. Nitrogen gives a very well
controlled isotropic etching regime, with a linear undercut etch rate. Good,
well defined submicron gate structures can readily be achieved using this
process (Fig. 2).

40QNM

FIGURE 2
Tungsten gate profile

The process technology described above has been used to fabricate both enhance
ment and depletion mode SAGFETs with sub-micron gate lengths exhibiting good
uniformity and high yields. The diode characteristics were good for both types

32

of device i.e. depletion mode 0 = 0.67V n = 1.14, enhancement mode 0 = 0.72V n
= 1.13. The FET characteristics were good with a transconductance of 170mS/mm
seen for the depletion mode devices with a greater than 70% yield (Figs. 3a and
3b). The enhancement mode material (V h»0.25V) is a particularly good monitor
of process induced damage as the active layer is very thin. This result,
therefore, emphasises the fact that a low damage process has been successfully
developed.

FIGURE 3a
D-FET characteristics (light, dark)

FIGURE 3b
E-FET characteristics (light, dark)

In conclusion the above development has produced a high yield process utilising
the advantages of a pure refractory gate metal. The use of pure tungsten
exhibits the advantage of low resistivity and high temperature stability
coupled with a less complex technology when compared to the use of composite
target or co-sputtering used by other laboratories to produce refractory type
contacts. It has been shown that r.f. sputter deposition gives the optimum in
terms of adhesion to GaAs, low stress, low resistivity and good Schottky
behaviour. The tungsten GaAs interface shows good integrity of the layers
after the n+ annealing process. A low damage process has been developed and
devices with submicron gate geometries have been successfully fabricated. The
depletion mode devices gave transconductances of 170mS/mm with a greater than
70% yield.

REFERENCES

[1] Blunt R.T., Annealing Data of Implanted Layers. Plessey Research Caswell
Ltd.

ACKNOWLEDGEMENTS

This work was supported under ESPRIT programme 843. Our thanks also go to the
Plessey Company for their support, as well as colleagues at STL Technology,
Siemens and LEP for their useful discussions and interaction.

33

Project No. 554

TOWARDS THE 0.7 MICRON SPECTRE CMOS : A 1 MICRON DOUBLE METAL
PROCESS

D. BOIS *

CNET/APF, Chemin du vieux Chene 38243 MEYLAN (F), Project nb 554

1. INTRODUCTION

The goal of the so called SPECTRE project (nb 554) is to carry out, both at
MHS and SGS, an industrial demonstration of a 0.7 urn CMOS process by the end
of year 1989. In that intent, several basic techniques and process modules
were investigated from the beginning of the project i.e. from 1985 by all the
partners involved : SGS, MHS, B.T., Bull, IMEC, UCL and CNET. At the end of
1987 an intermediary demo using 1 micron lithography was planned in order to
assess some techniques and to demonstrate the capability of the partners to
assemble a submicron process within the last two years of the program. This
demonstration was expected to be carried out : (i) in the pilot line of CNET
for parametric analysis of the various basic techniques, and for processing
of building blocks ; (ii) at SGS and MHS to assess other basic techniques and
to show the capability of the industrial partners to manufacture complex
devices.

It is the purpose of this paper to describe and discuss a few experimental
results obtained during the assembling phase of the 1 urn process. A brief
description of the 1 urn process used at CNET to test the various process
modules, and to demonstrate the capability of our pilot line, will be given
first. Then, we shall focus on three major concerns for submicron technology:
the device isolation, the optimisation of pMOS transistors, the interconnects
scheme. Finally, the demonstration which is going to be completed before the
end of 1987 will be described.

1. 1 micron CMOS process at CNET

The features of the proces now in use at CNET are summarized in table 1

Table 1 Key features of CMOS 1 WA1

Substrate epi p/p+

Well n
Isolation LOCOS
Gate polycide WSi2
LDD structure spacers
1st dielectric BPSG
Reflow and anneal RTA
1st metal tungsten
2nd dielectric planarized PECVD
2nd metal aluminium

34

Table 2 and 3 give a brief summary of the design and electrical rules
currently used to design the building blocks which will be processed as a
demonstrator circuit for SPECTRE.

Table 3 Electrical rules
Table 2 Summary of design rules of

1 micron process vTN (minimum size) 0.7 V
v 0 8 5 v

width pitch Electrical length NMOST 0.9 um
um urn PMOST 1.1 um

j o x 25 nm
Active area 1.4 3.2 n+ junction resistance 30 n/sq
n+ - p+ distance 4.8 p + junction resistance 50 n/sq
Gate 1 2.4 Contact resistance to n+ 15 CI
Minimum contacts 1 Contact resistance to p+ 25 n
Mf t al 1 1.3 3 Gate sheet resistance 4 n/sq
Vias 1.7 1st metal sheet resistance 0.4 n/sq
Metal 2 2.3 4.4 2nd metal sheet resistance 0.4 n/sq

The complete set of design rules were discussed and agreed between all
partners ; so they take into account the experiences of several partners.
They do not always stand for absolute minimum values of the process. The n+ -
p + distance is rather conservative because not enough experimental data were
available when it was fixed ; this rule will be decreased to 4 um in the
future.

2. DEVICE ISOLATION

The main concerns for submicron devices isolation are : breakdown voltage of
the field regions, leakage currents both between Source and Drain of a
transistor or between transistors, transistor channel width variation and
related narrow channel effect. At the beginning of this project it was
decided that trench or box techniques which are studied for 0.7 um process
could not be ready for 1 um demo. In addition, trenches must be used in
conjonction with some kind of LOCOS in order to insure electrical isolation
within transistors ; so SUPERPLANOX, which is an SGS proprietary process
module, was choosen as the intermediary 1 um isolation technique.

SUPERPLANOX is basically a LOCOS technique using a thick nitride barrier
which reduces the bird's beak to less than 0.3 um for 0.7 um thick oxide (as
grown at 1000°C). It has been demonstrated by SGS that to take benefit of
this short bird's beak, a twin tub process must be used. That is because for
single n tub technique the lateral boron diffusion extension is larger than
the bird's beak, and therefore, reduces the channel width and leads to strong
narrow channel effect.

As twin tub cannot be used in the CNET process, our 1 um demo will make use
of an optimised LOCOS. Actually, figure 1 shows that the effective channel
width variations of LOCOS and SUPERPLANOX are identical (AW = 1 um) except
when twin is used in conjonction with SUPERPLANOX (AW = 0.65 um). The total
channel width variation AW can be expressed as follow :
AW = 2 Lbb + AW (photo) + 2 Ld in which Lbb stands for the bird's beak, AW
(photo) for the dimensionnal variation due to photo-etch, and Ld for the
lateral boron diffusion. For the CNET LOCOS process the experimental values
for those parameters are : Lbb = 0.35 um, AW photo = 0,2 um Ld = 0,10 um.

35

The dispersion on the overall AW is of prime importance, since the bias can
be account for by a proper sizing at the mask level ; we measured this
dispersion to be : ± 0.08 urn (at one sigma).

Another significant parameter of the lateral isolation is the magnitude of
the narrow channel effect j it is shown in figure 2. It turns out that
twinwell plus SUPERPLANOX gives much better results since it leads to
threshold voltages constant down to less than 2 urn design rules for the
active area of nMOS Transistors. Therefore this last technique will be used
for the 1 urn demonstration at SGS. LOCOS will be used for the single well
CNET's process ; it will serve as a basis for assessement of other processes
which are currently being studied : SILO, trench, minitrench or BOX. first
data dealing with SILO assembled at CNET show that this technique can be used
to reduce the bird's beak to about 0.2 um without any defects being generated
in the thin oxide.

Fig 1 :

Drain current of
nMOS transistors vs
design width. The
intercepts of the
curves with the X
axis give the value
of the difference AW
between design and
electrical width of
the transistors.

SUPERPUKOX
DESIGN WIDTH (urn)

♦ SUPEBPL.+TWIN

Fig 2 :

Narrow channel
effect of nMOS
transistors for
three isolation and
well strategies
as described in the
text.

SUPBRPUNOX
DES1CN WIDTH (urn)

* SUPBR.+TWIN

At last, isolation between transistors has been characterized for different
n+ p+ distances as shown in figure 3. The breakdown voltages for n and p
field oxide parasitic transistors is quite satisfactory even for less than 1
urn design rules.

36

17 n

18 -

IB -
14 -
13 -

12 -
11 -
10 -
g -
a -
7 -i
0 -
a -
4 -
3 -
Z -

" ^ " ^ o

> v .

X *

s

X , J

/
*/ °

+^r

o

X

\
S X

X X X

*~ —. X

- IS0B0RE/N+ ovirltp, + WELiyP+ oTarlap
N+/P+=5um « N+/P+«4um

Fig 3 :

Breakdown voltage
(BVDS) of field
parasitic
transistors for
different design
rules (in ̂ m) :
overlap of the
isobore around n+ on
the left, overlap of
the well around the
n+ area on the
right. Different n+

- p + distance are
shown by different
symbols. The two
dashed curres (X)
indicate the
dispersion (a x 10
inV) on the BVDS
data within a lot of
wafers.

3. PMOS TRANSISTOR CHARACTERISTICS

The optimisation of submicron pMOS transistor is difficult since it is
basically a depletion device for threshold voltages lower than 1 Volt with n+

polysilicon gate. So, we investigated retrograde well as compared to
conventionnal ones in order to assess their effect on the pMOST.

__- drain/source

1 2
Depth (microns)

Fig 4

Retrograde

— r
1 2
Depth (microns)

Concentration profiles of : boron doped drain/source, threshold voltage
implant, and phosphorus doped n well as calculated using TITAN, (after
Ternisien et al. ESSDERC 1987).

Figure 4 describes the dopant characteristics used in our experiments. The
retrograde n well was obtained by high energy phosphorus implants. The
subthreshold characteristics of 50 ^m wide pMOS transistors realized in those
wells are compared in figure 5.

37

-2 ■

- 4 "

- 6 "

- 8 -

-1 (1 -

° *

!r^ W a

^ S D *

Classical

- i 1 1 1 1

4 -

6 "

8 •

n -

■

Retrograde

f.

o ;

* a a

0.6 0.8 1.0 1.2
Electr ical Length (microns)

0.6 0.8 1.0 1.2
Electrical Length (microns)

Fig 5 :

Substhreshold current of pMOS transistors (VDS = - 10V, VG = OV) for
conventionnal and retrograde well. The solid line represents the results from
2D simulator JUPIN. (after Ternisien et al. ESSDERC 1987).

Indeed the retrograde well technology gives better results. For a given
acceptable leakage current limit, the gain on the electrical length for pMOS
transistors turns out to be : 1 urn for conventionnal well and 0.75 urn for
retrograde well. So, such retrograde well could be satisfactory for 0.7 urn
CMOS. Anyway, for the 1 urn demo, a conventionnal well is sufficient.

A second approach to submicron devices is the use of refractory gate
materials. Tungsten was choosen for that purpose by SPECTRE partners. It will
be demonstrated by the end of the year at MHS on actual integrated circuits.

So, at the end of this first phase it will be possible to compare
experimental data of four approaches : conventionnal wells at CNET twins-well
at SGS, refractory gate at MHS and retrograde well at CNET. This should
provide a very good basis to choose which one is the best for 0.7 urn
technology.

In addition to this preparation of the future, the work carried out in this
first phase of SPECTRE program actually allows us to fabricate devices with
the design rules described in tables 2 and 3. Let us notice that those design
rules apply for general purpose digital circuits or SRAM. More aggressive
electrical lengthes could be used in some cases : e.g. 0.8 urn pMOST
electrical length if one tolerates a subthreshold current of 20 nA/^m.

4. INTERCONNECTS

Two interconnects schemes are investigated to prepare submicron SPECTRE
process : (i) the conventionnal double Aluminium with emphasis on
reliability ; and (ii) a Tungsten/Aluminium system.

After basic techniques analysis by the different SPECTRE tasks, it has been
decided to demonstrate the double Aluminium mainly at SGS and the more
exploratory W/Al scheme in the pilot line of CNET.

Table 4 summarized the key features of Tungsten as compared to Aluminium when
used as a first interconnect level.

38

Table A : Key features of tungsten int

Contact spiking
Hillocks
Electromigration
Step coverage
Planarization
Selective deposit
Reflectivity
Grains
Etching
Resistivity
(uohm.cm)

Spu

ion

:tered
W

no
no
no
medium
no
no
low
small
easy
10-17

CVD
W

no
no
no
good
yes
yes
low
large
easy
7-10

erconnects

Al

barrier needed
yes
yes
medium
no
no
high
large
difficult
3-7

The major drawback of W is, indeed, its higher intrinsic resistivity.
However, a more realistic comparison must take into account the increase of
the resistance of actual Aluminium based interconnects, because this material
can no longer be used alone in submicron devices. One has to add : (i) a
barrier on top of contact, (ii) some species such as titatium or copper in
order to avoid hillocks formation and electromigration and (iii) sometime a
top layer to improve the photo properties of Aluminium. Moreover, one has to
decrease the overall thickness of the interconnect when decreasing its pitch:
0.5 pm seems to be a good compromise for 0.7 urn design rules. This results in
a significant increase of the average resistivity of Aluminium based
interconnects : values up to 7 uohm.cm have been reported. They are indeed,
quite close to the one of Tungsten deposited by Vapor Phase (CVD).

The very good photo-etching properties of sputtered tungsten are illustrated
by figure 6 : line width control around 1 0.05 urn is obtained down to 2.2 urn
pitch (i.e. well below the goal fixed by all partners for the 1 \im demo) even
with monolayer resist, and etching with slope control which is necessary in
order to make the subsequent dielectric deposition easier.

*
— J

■

+

A
Q

2.4 2.8 2.6 3
W PITCH (mlcromstan)

Fig 6 :

Linewidth variation
of tungsten
interconnects after
photo using a
monolayer resist and
etching with slope
control. Each point
stand for
measurements on a
different lot of
wafers.

39

Fig : 7 :

Increase of the
resistance of a
snake due to non
100 % step coverage
for tungsten
deposited on top of
a grid of polycide
covered with BPSG.

2 2.2 2.4 2.8 2.0 3 3.2 3.4
W PITCH (micrometers)

The step coverage of the tungsten deposited on top of reflowed BPSG is
demonstrated by figure 7. Indeed, the resistance increase of a snakeshaped
test structure patterned on polycide/LOCOS steps as compared to the same
snake patterned on a flat surface corresponds to both the lines shrinking and
thinning at steps. The small variation experimentally measured indicates that
both effects are quite small for tungsten.

In order to decrease the contact resistance, a thin (= 30 nm) chromium layer
is deposited on top of contacts before W deposit. Experimental results are
shown in figure 8. For the same doping conditions the 1 um contact resistance
ratio between the Al and W systems is about 1/4 and 1/2 for n+ and p+
respectively in favor of tungsten system. For contact to polycide the
resistances are equal. Let us note that this parasitic resistance gain for W
compensates the larger resistance of W wires up to a few tenth of a
millimeter. So, for short range interconnects W will provide better
performance than Al.

Fig 8 :

Variation of the
contact resistance
Vs 1/d, where d
stands for the
contact size, for
contact of the Cr/W
system to n+

, p+ and
WSi,.

1/d (1/om)
♦ P+ o

40

In comparing performances achieved with W or Al systems one must also take
into account the electromigration effect. It is known that it limits the
current density ; and therefore the maximum current which can be carried out
in a wire for fixed design rules. Since, propagation delays depend on the
parasitic capacitance to current ratio, the electromigration phenomenon in Al
introduces a limit in propagation delay as drawn in figure 9. It is worth
comparing this electromigration limit to the well known sheet resistance
associated limit as done in figure 9. It appears that for short wires, up to
1 mm, refractory material such as sputtered tungsten with 0.4 O/sq leads to
better propagation delay than aluminium. For medium length CVD tungsten with
0.1 - 0.2 O/sq is the best choice. Aluminium is found to be significantly
better only for wires such as global busses.

Fig 9 :

Resistance and
electromigration

0 limited delay
(after P.D.
Chattergee

75 interconnects
(VLSI workshop

« 1985).

Max sheet r e s i s t a n c
for equal delay

LENGTH OP WIRES (mm)

Finally, one can conclude that the optimum interconnect scheme will use W as
a first level and Al for the second one. This will provide both process
simplicity, and flexibility to designers.

For the 1 urn demo at CNET, both sputtered and CVD tungsten were investigated.
In addition to the above mentionned advantages CVD has very good planarizing
properties because it refills contact holes. However, the equipements
available today are not industrial. So we decide to run the demo with
sputterred W mainly ; a few lots of wafers with both materials will be
prepared in order to assess CVD W on actual devices before to introduce it in
the 0.7 urn process.

5. DEMONSTRATION

Before the end of 1987, SPECTRE partners should demonstrate : (i) that basic
techniques suitable for future integration in a 0.7 Lim process have been
developped ; (ii) that devices with actual 1 urn electrical and design rules
can be fabricated and (iii) that the pilot or manufacturing lines of the
partners will be capable within the next two years of assembling and
demonstrating a 0.7 Lim process.

The first item (i) will be demonstrated indeed by the results described by
the different tasks dealing with basic techniques. Moreover several of those
techniques will be assembled in process demo as summarized in table 5.

Table 5 SPECTRE basic techniques to be demonstrated at

SGS MHS CNET

SUPERPLANOX with twin tub X
1 um field isolation X X
1 urn transistor with LDD X X
Refractory gate X X
1 urn contact hole etching X
Tungsten interconnects X
dielectric planarization X
Via opening with slope X
Double Aluminium X

To assess the feasibility of the 1 urn electrical and design rules agreed
between the partners (cf tables 2 and 3), CNET will process a demo circuit
including :

- a whole set of test patterns designed in such a way that not only the
design rules but also their sensitivity to process variations can be
demonstrated.

- two 4 K SRAM with 6 transistors all designed by IMEC and CNET (this last
being a reference circuit at CNET).

- an image processor (with about 80.000 transistors) designed by B.T.

At last, the capability of both SGS, MHS and CNET to process actual devices
with complexity in the range 5.105 to 10° transistors could be proved by
results they got in this range on proprietary circuits (which are no longer
in the precompetitive field as defined for ESPRIT programs).

6. CONCLUSION

The first year (1985) of SPECTRE was mainly devoted to organize the work
between so many partners. Cooperative work became effective in 1986 with a
lot of basic techniques being investigated. This year we came to many
conclusions which have been of significant help to each partner engaged in
assembling its process. 1 urn CMOS, using some of the SPECTRE basic techniques
has been debugged and validated by processing several lots of test pattern
structures. The demo circuit will be launched in the very next month.

By the end of the year, at last, three of the SPECTRE partners i.e. SGS, MHS
and CNET will have reached the 1 >im level in there pilot lines and will start
with the assembling of the 0.7 urn process. The large quantity of
technological or physical information and the process modules now available
within the SPECTRE consortium will be of great help for that.

* The work described in this paper has been carried out by several SPECTRE
partners. Much of the electrical results come from SGS and CNET.

42

Project No. 824

A EUROPEAN PROGRAM ON WAFER SCALE INTEGRATION

Jacques TRILHE
THOMSON-SEMICONDUCTEURS
BP 217
38019 GRENOBLE CEDEX, FRANCE

Six European organizations : Thomson-Semiconducteurs (F), British
Telecom (UK), Laboratoire d'Electronique et de Technologie de
1'Informatique (F), Institut National Polytechnique de Grenoble
(F), Technische Hoschule Darmstadt (FRG), National Microelectronic
Research Centre (IR) are cooperating in a European program on WAFER
SCALE INTEGRATION : Esprit 824. The main problem being addressed
is the yield of a 100 cm2 device.
The first step has been the realization of a test mask in order
to introduce the switches, necessary to discard faulty elements
and to replace them by spares, into the Thomson 1.2 urn CMOS techno
logy. The switches can then be programmed either by laser or by
e-beam (floating gate FETs). Three WSI products will then be designed
and manufactured : a 4.5 Mbits static RAM, a systolic array for
image processing and a 16 bit microprocessor tolerant to end of
manufacturing defects.
The 4.5 Mbit static RAM is organized as 256 kwords of 18 bits. The
basic cell used to build the RAM is the Thomson 64 Kword of 1 bit
static RAM. Four cells, with an extra one among four decoder, have
been put together to implement a 256 K block. The wafer scale memory
will be powered with 5 volts and will have an access time of 100ns.
The systolic array has an SIMD architecture and the fundamental
problem being addressed is the configuration of the wafer. A virtual
array of 128 x 128 processors, each of which consists of a one bit
adder and 128 bits of RAM, is to be built on the 4" wafer.
The 16 bits microprocessor tolerant to end of manufacturing defects
is the first block in a family of defect tolerant building blocks.
The goal is to build custom system on a wafer by putting together
the microprocessor, ROM, RAM, PIA, ACIA, UART, ... and making custo
mized interconnection with a sea of gates.
The program started in May 1986 for a duration of 4 years.

1. INTRODUCTION
It is clear that the increase in complexity of IC in the coming years will
be obtained by the decrease of minimum features down to 1 or .8 urn and the
increase of chip size (IBM claims 2 cm2).
In the nineties the rate of reduction of minimum features will decrease due
to the fundamental limits of the silicon device and an increase in chip size,
perhaps up to WSI level, will become a necessity.

43

The need for the increase in complexity of the component is economic. If we
consider that packaging cost of a system is higher than marketing cost plus
design cost plus silicon manufacturing cost plus testing cost, it becomes
obvious that putting several dies in a single chip will drastically decrease
the cost of a system.
In addition, the increase of integration goes with a decrease of pin-count,
leading to an extra decrease in packaging cost ; as predicted by Landman and
Russo Rent's rule (1971) |1|
This increase of integration leads to other major advantages of Wafer Scale
Integration : higher speed due to shorter interconnection length and better
reliability due to fewer inter-level interconnections.
The decrease of cost of a system while it is getting smaller, more powerful
and more reliable is a general phenomenon : see for instance the Personal
Computers. WSI will probably be the next step, at the hardware level, conti
nuing this trend.
Possibilities of Wafer Scale Integration (WSI), are being evaluated in the
form of a European project : ESPRIT 824. Partners involved in this project
are British Telecom (UK), Laboratoire d'Electronique et de Technologie de
1'Informatique (F), Institut National Polytechnique de Grenoble (F), Technische
Hoschule Darmstadt (FRG), University College Cork (IR), with the leadership
of Thomson-Semiconducteurs (F). The project started on May 15th, 1986 and
will last four years. The first step has been the study of the various wafer
scale products that have been announced |2| and the evaluation of products
needed by industrial partners : "Thomson Branche Equipement et Systeme" and
British Telecom. A test mask has been processed and tested by Thomson, LETI
and Cork university to evaluate switches programmed by e-beam or laser and
the compatibility of a field as large as a wafer with state of the art CMOS
photolithography. Three WSI demonstrators are now being designed : a 4.5 Mbit
static RAM, a 128 x 128 systolic array and a 16 bit defect tolerant micropro
cessor within Thomson, British Telecom, Darmstadt and Grenoble universities.
A first batch is expected in early 1988 and a second run in the end of 1989.
The last year of the project is dedicated to application to systems. The four
parts of this paper will describe the test chip and the three demonstrators.
We will firstly compare the three demonstrators to the worldwide work on WSI.

In the field of memories, NTT (J) was the first company to implement in 1980
a 4 Mbit ROM |3| (on a 3" wafer) for word recognition and a 1.5 Mbit SRAM
on a 4" wafer in 1984 |4| |5|. Sinclair (UK) has demonstrated a .5 Mbyte dyna
mic serial memory on a 4" wafer for replacement of Winchester disk drive of
portable computers. For this application, the announced access time of 10
^s is quite sufficient. A 7 Mbyte DRAM on a 5" wafer was announced |6|. Inova
Microelectronic Corp. (USA) had a 4 Mbit SRAM project very similar to the
one of ESPRIT 824. The main differences were a centralized decoder and a memory
cell of 4 transistors. Therefore Inova at least doubles the cost of reticles
and of photolithography and its memory cell is more sensitive to process
tolerances than ESPRIT'one. Recently Inova changes its target and plan to
use larger building blocks (256 K instead of 64 K) in order to produce, with
Japanese process, a 24 Mbit part on a 5" wafer. Micron Technology (USA) is
addressing the tricky problem of a 4 Mbit dynamic RAM. Considering that a
memory cell of a DRAM has one transistor while a static RAM has four or six
transistors the correspondance between the complexity of SRAM and DRAM can
be established. We conclude therefore that the ESPRIT 824 memory is state
of the art.
Processors interconnected only to near neighbours is also an application which
iNc«? 1 1» s u i t e d t0 WSI- P i P e - 1 i n e processors have been studied on paper at GTE
(USA). A wafer scale systolic array has been validated on a small chip in North
Carolina university (USA) |7| |8| |9| and an architecture of a string processor

44

has been proposed by Brunei university (UK), under an ALVEY grant. A 2-D array
for Fast Fourier Transform has been realized in MIT (USA). The systolic array
of ESPRIT 824 will probably be the first one to be implemented as a full

wafer on silicon. A 128 x 128 array is expected, on a 4" wafer, many times
the computational power of a NCR GAPP board of the same area.
The third ESPRIT 824 demonstrator attacks random logic circuits. It is more
advanced research and will probably be a more widespread study in the world
when three or four level metal technology is available in the industry.

2. TEST CHIP FOR WSI
Wafer Scale Integration will lead to zero yield if there is no possibility
of discarding faulty elements and replacing them by spares. This point must
be taken into account at the architecture and testability level as well as
at the technology level. Our test mask is dedicated to the optimization of
switches programmed either by e-beam or by laser. It can be advantageous for
reconfiguring a wafer to have both switches that are normally on and switches
that are normally off. If there are reversible, it is a major help for test.
Copper tracking after passivation of the device is also being studied within
project 824 and will be used to power the good parts of the wafer |10|.

2.1. Switches
2.1.1. Floating gate FETs
The floating gate FET is a very attractive switch for the following reasons :
. possibility of having a test configuration at end of manufacturing as nor
mally on and normally off switches are possible for a CMOS process,

. increased testability : possibility of programming and erasing the switch
as often as necessary,

. low cost : in a CMOS process, only an N channel depletion implant has to
be added to the process,

. high density due to the small dimension of the active element. Additionally
no extra pins are needed to control the switch (e-beam in a Scanning Electron
Microscope, SEM, is used to charge the gate).

The only limitation is the low retention time in military conditions |11|.
Floating gate FETs are illustrated on Fig. 1.
With e-beam irradiation, an N-channel depletion device is turned on and a
P-channel enhancement device is turned off.
For InA incident beam, typically 120 /JS is needed to charge a 7 x 2 um2 gate.
For erasing, standard UV techniques can be used to eliminate the charge of
the floating gate by photoinjection through the gate oxide. The UV can be
either given by a flood lamp or localized with the use of a laser beam (in
order to erase a single floating gate selectively).
It is more attractive to use an e-beam to erase the floating gate as program
ming and erasing can be done in the same machine (SEM).
For a low energy beam the secondary emission is higher than the primary emis
sion leading to a discharge of the floating gate. At high energies the gate
is discharged by electron injection through the oxide. Such high energies
may however, lead in damage in the surounding junctions and gate oxides.
In our test chip, the width of the gate was varied from 1.2 to 25 >jm in order
to be able to drive different currents. The parasitic effects on neighbouring
MOS devices can be measured for separation ranging from 1.5 to 20 jjm.

45

For programing the floating gate FETs we will use an ISI/SS40 SEM connected
to an ABT/IL200 beam control system.

N CHANNEL DEPLETION DEVICE P CHANNEL ENHANCEMENT DEVICE

END OF MANUFACTURING

N\ / I 9"t J \ IS
 ^ 3 — c

^/r^n\P
. LOCOS f-—~> *■
^» I N WELL

AFTER PROGRAMMING

FIGURE 1
Schematic of operation of a floating gate FET.

2.1.2. Laser switches

Aluminium or polysilicon fuses are in widespread use in the Integrated Circuit
(IC) business, in particular for memories. Using a laser switch for WSI
requires a high reliability laser machine, due to the large number of flashes
required on a wafer which have to be all at the correct location and at the
right energy. In this project, we will use all the refinement of hardware
and software of the ESI 8000C laser machine. The yield of the laser switches
can be measured on our test mask on a 16 K aluminium ROM, each cell of the
memory is programmed with a laser shot. The efficiency of the laser machine
will be checked by the comparison of the result of test of the laser program
med 16 K ROM with the expected values assuming a high yield of the decoder.
There is no widespread technology available to connect with laser. MIT |12|
has proposed melting a gap between two aluminiums tracks in order to obtain
an electrical connection. They obtained resistance in the range of 1 A .
Another approach from MIT requires minor modifications of CMOS process. They
add between the two layers of AlSiCu a deposit of amorphous silicon and
two very thin, 100 A, silicon oxide barriers |13|. A laser shot on this struc
ture makes a conduction between the two aluminium layers with a resistance
<10.fl.. Yields of 99,5% have been obtained for a 25 x 15^im2 laser link.

46

The poly resistor-dopant redistribution method of Minuto et al. |14| gives
a charge of resistance from 10 explO to a few kjlby heating (with a laser)
an intrinsic polysilicon film between two N+ doped areas. Such a high on
resistance is a problem for power lines and busses.
With our WSI test mak we will evaluate the technique of connection with direct
laser writing on the wafer and lift off of a subsequent aluminium deposit.
The resistance of this switch is typically the contact resistance to alu
minium (in.).
2.2. Connection through the wafer
2.2.1. Aluminium lines running through the wafer
Our target is to use a state of the art, CMOS, 1.2 pm fabrication line to
process our WSI parts. This means that we want to use a single reticle for
each level, except for the last aluminium level which will be exposed with
a reduction stepper for the central area of the wafer and with a 1:1 projection
aligner for bonding pads on the periphery of the wafer. In this way, there
will be little extra cost for WSI wafer, unlike the case if e-beam direct
writing on the wafer has been used or if 4 reticles per level are used, as
in MIT i13| or Brunei |15|.
2.2.2. Copper tracking
Copper tracking technology has been developed at the University College Cork
(IR) within ESPRIT 544. A description of the process can be found in |10|.
The copper tracking technique is a method in which low cost, high conductivity
copper patterns are formed on top of the passivation layer of a semiconductor
wafer.
The copper is deposited by electroplating through photoresist and is an addi
tive process with resultant economical use of materials. Copper patterns of
varying thickness can be deposited on the same wafer allowing different appli
cations of the technique to be used simultaneously. Contact is made to the
wafer metallization via contact windows in the flass passivation layer.
Typically, for power distribution, a 3 urn copper track is deposited leading
to a factor of 5 decrease of resistivity in comparison to an aluminium line
and with negligible increase in capacitance.
Copper tracking can also be used for discretionary wiring to repair a break
in an aluminium line.

3. THE FIRST DEMONSTRATOR : A 4.5 Mbit STATIC RAM
The highly repetitive architecture of a static RAM makes it the easiest wafer
scale product to implement. The initial goal of the 4.5 Mbit static RAM memory
was to check the reliability of the switches mentionned above. The discussion
with people building electronic systems (CIMSA-SINTRA) has indicated that
the most useful format was a byte + a parity bit. Wa have therefore organized
our memory in 2 x (8+1) bits. In doing so, the memory is not only a vehicle
to evaluate the yield of our switches, but also a usable product.
The cell used is a Thomson memory, organized as 64 Kword of 1 bit. On a 4"
wafer we will implement 256 Kwords of 18 bits, or 18 blocks of 256 x 1 bit
(Fig. 2).

47

Block 16 Blocks of 256kxlbit

1
01

a

a

16 address

AR1. AR2

■ CS, VE

Vss. Vdd

bitl bit2 bin pari ty bit bit9 bit 10 bi t l l parity bit

FIGURE 2
Virtual organization of the memory-WSI.

A block is defined by a set of 4 basic 64K cells. These 4 cells will be chosen
to be as close as possible to eachother and will be connected to the same
bit line (Fig. 3). This will optimize the use of connecting bit lines and
their floor space on the wafer.

• Block

Wafer 4" DIDD
DID DDDCKD

(D^l_QOTimD D ID
_ DIDDIJDDJIDID

D t D i D i D D i D i a a a i a a
C DDJ D D"| ■ ID ■ D ■ D DQ)D

D D I D I D j D H D i a D
DDIDDI DD'lDllD
POP D DID D D DID D

"DDDDITOD
J_ 64 k good after test
[] 64 k had after test

DGH

FIGURE 3
Reconfiguration model for Data network.

48

For each 64 K basic cell this organization requires a programmable decoder
(1 among 4) which will be able to select one 64 K in a block of 256 K. This
decoder powers only a quarter of the 4.5 Mbits (i.e. 64 K x 18 bits) during
operating conditions reducing static and dynamic current. The decoders of
the four 64 K of a same block are all different and are programmed with one
of the switches described in part 1.
The interconnection network must provide : for each 64 K
. power supply : Vdd, Vss
. addresses : 16 lines
. write enable : 1 line
. cell selection : 2 addresses and chip selection.
The interconnection lattice must allow the connection and disconnection of
cells (to discard faulty 64 K). It must also be reconfigurable to discard
faulty connection lines. This will be achieves by the use of floating gate
FETs and/or laser fuses and antifuses.
In addition 4 defects can be repaired in each 64 K cell by blowing fuses.

4. THE SECOND DEMONSTRATOR : A SYSTOLIC ARRAY
Systolic arrays are well suited to WSI because all communications are between
nearest neighbours and thus connection length is very short with the integra
tion on a wafer. Applications in the field of image processing in particular,
are numerous.
BT has applications in the field of block matching |16|. When processing video
images, in an attempt to reduce the amount of information to be transmitted
to a receiving station, it would be nice to be able to spot blocks that had
moved. Hence, it should be possible to define an arm as a block, and transmit
that the arm had moved up, down, etc. This is impossible at the present time,
but a first approximation to this is to split a picture into blocks
(say 9 x 9 pixels) and try and predict where these blocks have moved to. To
do this, a processor is required that can compute a 9 x 9 convolution for
all positions in the search area.

This leads to a requirement for a processor that can compute approx 289
9 x 9 convolutions, for every position in the image in real time.
Thomson has applications in advanced display graphics. Thomson wish to be
able to do geometric transformations on a high resolution colour image in
real time. The actual problem is to be able to do a 4 x 4 interpolation on
1024 x 1024 12 bit pixels, in l/30th of a second. In order words, it is neces
sary to be able to do 31.5 million 4 x 4 interpolations every second.
Our approach was to choose an architecture that is not only capable of solving
these applications but will be of value for many other applications.
The rationale behind this was that the design, development and realization
of any product as complex as a wafer scale array involves a level of investment
and resource commitment that could only show a satisfactory return by being
manufactured in relatively large volumes, and no single application was iden
tified that would require high volumes.
Furthermore, the use of a circuit of this scale requires software compilation
and emulation tools to manage and understand the complexity of the processing
and data flow and these tools can aid the speed with which new problems can
be tackled using general purpose hardware. The reasons for this approach are
similar to those that fueled the development of microprocessors but the exis-

49

tence of a powerful general purpose parallel processing engine capable of
performing at a rate of many thousands of MIPs opens up a whole new range
of exciting applications. Our demonstrator is an SIMD machine, every processor
performs the same operation at the same time. Communication is achieved by
4 way connectivity ; each PE connects to North, South, East and West neigh
bours. Each PE is a simple 1 bit adder/subtractor with 128 bits of local memory.
A flag resister is included in the PE to enable local modification of the
instruction according to the register content.

The configuration of a systolic array on a wafer raises many problems. All
nearest neighbours of a cell may be faulty and yet a cell must be connected
to the nearest good cell. The length of the wires is, therefore, longer than
the minimal distance between 2 PEs. Of course, as the number of faulty PEs
increases, the maximum wire length increases too. The connection length depends
on the configuration method as well as on the yield. Therefore, among the
many possible ways in which the good cells of the wafer can be connected to
form a systolic array, some of them are more desirable than others. The PE
has about 900 transistors, 84% of which are in the RAM. The area of the PE
is approximately 0.2 mm2 in the 1.2 /jm CMOS technology used. Reconfiguration
at the PE level is, therefore, not attractive since the PE yield will already
be very high. Reconfiguration will be achieved at the "chip" level (block
of 8 x 9 PEs), using a decoder to discard faulty PEs.

5. THE THIRD DEMONSTRATOR : A MICROPROCESSOR BASED SYSTEM ON WAFER |17|
The goal is to integrate a complete dedicated system, usually including
several printed circuit boards (PCBs), on a single chip by using the MegaPIL
(*) approach.
The method consists of using pre-defined (and tailorable) blocks embedded
in a flexible interconnection structure to implement a specific system. It
is obvious that different applications such as signal processing or real time
controllers cannot be implemented with the same set of blocks. The approach,
therefore, consists in providing tailorable blocks adapted to different sets
of applications. This means that, for each set of applications, a structure
including all the blocks required by the appliction will be used. The global
system uses a flexible connection structure which is implemented with a sea
of gates. This allows both the realisation of interconnections between the
blocks and the implementation of interface random logic which cannot be in
cluded inside the blocks (Fig. 6).

Since the goal is to integrate a microprocessor based system, the blocks that
will be used are the usual microprocessor and peripheral circuits. The first
block is the microprocessor itself.
Being the master block, the microprocessor has to be particularly adapted
to the application, i.e. its instruction set must be defined according to
the application specifications. It is obvious that in our approach, such a
circuit cannot be designed as a full custom chip. This would take too long.
A fast microprocessor design is based on fast design of its two blocks : the
data processing part and the controller.
Since the circuit must be perfectly adapted to the application, an approach
based on using standard bit-slice circuits such as 2901 and 2909 (as in the
WSI Inc. products |19| cannot offer the specialized operators required by
some applications. Additionally some area may be wasted because of unused
capabilities of such blocks.
(*) MegaPIL is a trademark of Thomson Semiconducteurs.

50

RAM,

- ROM,

- Microprocessor,

• Any kind of ^processor
peripherals

V.

SEA OF GATES used to Interconnect the pre-defined blocks and
to implement random logic according to the application requirements

FIGURE 6
Example of hard blocks in a sea of gates.

51

Other blocks to be used will include the usual peripheral circuits for
microprocessors. Several types of RAM and ROM memories must be available as
blocks to implement a system. These blocks must be tailorable so that the
system designer can choose exactly the memory size and access procedure he
needs to fulfill his application requirements. A second set includes interface
devices such as UART, DMA, A/D and D/A converters and so on. These circuits
may be tailorable too by allowing the user to choose the number of I/O lines
on a device, for example.

A third group consists of all the special operators such as arithmetical pro
cessors, specialized multipliers, etc.. These circuits are mainly unmodi-
fiable and have to be used as they are.
The principle advantage of the MegaPIL approach is that the system size
decreases from several PCBs to one chip. This has other advantages such as
a reduction of the power consumtion because there are fewer buffers to power
in the system. Another advantage is the reduction of connections between chips
(and between boards) which implies fewer interconnects and wire bond and
therefore fewer bad contacts. This improves the mechanical reliability by
reducing the number of PCBs.
This is particularly important for systems working in harsh environments such
as in planes, space, etc. These three first advantages are particularly inte
resting in the case of on-board systems where space, power consumption and
reliability are critical points.
Also as a consequence of the reduction of interconnections lenght at the system
level, the increased speed possibilities for chip-based systems are an impor
tant point for realizing powerful and compact computers.
Added to the fact that the design of very big circuits using new design tools
may bring some changes to usual design methods, the yield of big chips is
the most critical problem. The yield of large blocks with greater than 50 000
transistors will be low so that the final yield of a big chip made up of such
blocks would be nearly zero if nothing is done to improve the situation. The
way to improve the overall circuits yield, since the sea of gates yield is
very good (because of the small cell size), is to improve the yield of "hard
blocks".

It has been shown that reconfiguration must be performed at two levels |18| :
. big chip level : at this level, spare blocks are provided to replace those
destroyed by big defects. This is mostly used for interface circuits which
are generally smaller than microprocessors and memories. This requires
adequate bypass and replacement strategies to be defined.

. block level : in order to raise the yield values for large blocks and to
tolerate small defects, redundancy is provides within the block.

Since the biggest blocks are those requiring the most important yield increase
we had focused our attention on their problems.
Two kinds of big block structures can be encountered : memories and micropro
cessor - like circuits. Reconfiguration of memories has been studied and used
at an industrial level |10|. The reconfiguration strategy mainly consists
in providing spare pages to replace faulty ones.
The microprocessor like blocks include a DPP and a controller. The reconfigu
ration of these two parts present different requirements and constraints but
it is based on the same principle. The basic point is that one cannot easily
correct more than one defect at a time. The circuit therefore has to be parti
tioned into sub-blocks where no more than one defect may appear. Starting
from there, both the partitioning and the reconfiguration strategy differ
for the DPP and for the controller. They have been presented previously |10|.

52

Application example
In the following section, we present an application example which illustrates
the above points. This application is an automatic railway control system.
Its structure is shown in Fig. 7.

COMPARISON

(High safety hybrid comparator)

FIGURE 7
A u t o m a t i c r a i l w a y c o n t r o l s y s t e m .

53

Realisation of such a system with conventional VLSI components requires 7
to 9 PCBs for input, 1 processor board, 1 security link boards on service
link board. This involves the number of chips and the power consumption sum
marized in Table 1.

(

Boards No

ICs No in
a boord

P o w e r
c o n s u m p t i o n
f o r 1 boord

MWotl l

Processor

1

75

- 9.5

Inputs

7 to 9

42

- 5.5

Outputs

4 to 6

72

" 9.5

Serulce
link

1

35

- 4.5

Sofety
link

1

40

* 5

TABLE 1
A possible realisation for the automatic railway control system.

The total number of ICs is 875. This leads to a 110 watt power consumption
for an estimated 1.3 million logical gates system.
A big chip realisation of the system has the following features :
- it is a single chip system
- the type of pre-defined elements to be implemented allow several similar

application to use this circuit (the application specific nature is taken
into account when designing the inter-blocks connection)

- size : 50 mm x 50 mm
- power consumtpion reduced to less than 20 watts
- reduced cost
- fewer sources of failures : fewer PCBs, simple power and clock distributions
This clearly shows the interest of such an approach.

6. CONCLUSION
The ESPRIT project on wafer scale integration brings together efforts of six
European partners to investigate three types of architectures which have a
good chance of success : a memory, a systolic architecture, a microprocessor
based system.
Strong cooperation between technology experts and designers has been the
characteristic of the firsi step of the project. Starting from user defined
products, companies and universities have put together design tools and metho
dologies to cope with the challenge of wafer scale integration.

54

ACKNOWLEDGEMENTS
We acknowledge CEC for support of this work under grant ESPRIT 824.
This paper is a compilation of results obtained through the cooperation of
teams in British Telecom, LETI, Darmstadt University, Cork University,
Grenoble University and Thomson.

Many thanks to all of them.

II 12 13
14
15
16
17
18
19
110
111 112
113
114
115
116
117
118
119

Landman B.S. and R.L. Russo, December 1971, IEEE Trans. Compt., Vol. C-20
Trilhe J., September 1986, Revue Technique Thomson-CSF, Vol. 18, N3
Kitano K., S. Kodha, H. Kikuchi and S. Sakai, August 1980, IEEE Trans.
Electron Devices, ED.
Cohen C , January 1984, Electronics
Veoka Y., C. Minagawa, M. Oka and A. Ishimoto, June 1984, IEEE J. Solid-
State Circuits SC 19-3
Jesshope C , W. Moore and A. Hilgen Eds., 1986, Wafer Scale Integration
Heldund K., 1982, Thesis, Purdue university, Purdue, USA
Hedlund K., July/August 1983, VLSI Design
Hedlund K., 1985, proceedings ICCD
Saucier G. and J. Trilhe Eds., 1986, Wafer Scale Integration,
North-Holland
Shaver D.C., February 1984, Solid-State Technology
Asaitis J.Y., G. Chapman and J. Raffel, July 1982, IEEE Electron Device
Letters, Vol. EDL 9. n° 7
Uyatt P.W., J.I. Raffel, G.H. Chapman, B. Mathur, J.A. Burns and
T.O. Herdon, 1984, proceedings of IEDM
Minuto 0. et al., October 1982, IEEE Journal of Solid State Circuits
Vol. SC 17, n° 5
Jones S.R., Warren K.D. and R.M. Lea, July 1986, proceedings of Silicon
Design Conference, Wembley, UK
Hein D., August 1984, IEEE Trans, on Electromagnetic Compatibility
Vol. EMC 26, n° 3
Hanria S., E. Dupont and G. Saucier, September 1986, proceedings of ICTC
Conference, Limerick, Ireland
Genestier P. and G. Saucier, September 1986, proceedings of ICTC Conference
Limerik, Ireland
WSI Inc. data sheets

55

Project No. 245

SOI MATERIALS AND PROCESSING TOWARDS 3D INTEGRATION

D.CHAPUIS - Y. GRIS - A. MONROY - E. MACKOWIAK - M. MONTIER
THOMSON SEMICONDUCTEURS, AVENUE DES MARTYRS, BP 217,
38019 GRENOBLE CEDEX, FRANCE
JL.REGOLINI - D. BENSAHEL
CENTRE NATIONAL D'ETUDES DE TELECOMMUNICATIONS, BP 98,
38243 MEYLAN, FRANCE
JL.MERMET - H. ACHARD - H. BONO - JP. JOLY
LABORATOIRE D'ELECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATIQUE, CEA,
GRENOBLE, FRANCE
L. KARAPIPERIS - G. GARRY - D. DIEUMEGARD
THOMSON LABORATOIRE DE RECHERCHE, THOMSON CSF, DOMAINE DE CORBEVILLE,
BP 10, 91401 ORSAY, FRANCE
KM. BARFOOT - M. FIELD - GF. HOPPER - DJ. GODFREY
GEC RESEARCH LTD, HIRST RESEARCH CENTRE, EAST LANE, WEMBLEY,
ENGLAND
DA. SMITH - DA. WILLIAMS - RA. MCMAHON - H. AHMED
MICROELECTRONICS RESEARCH LABORATORY, CAMBRIDGE UNIVERSITY, ENGLAND
CG. CAHILL - B. DUNNE - S. O'FLANAGAN - A. MATHEWSON - WA. LANE
NATIONAL MICROELECTRONICS RESEARCH CENTRE, CORK, IRELAND

ABSTRACT

Progress in materials development for the mezzanine 3D smart power demonstrator
is reported. Significant improvements in the SOI starting material, especially
the use of selective epitaxial growth of silicon in the seed windows, together
with refinements of the laser and electron beam recrystallization systems has
allowed the production of device grade SOI compatible with the requirements of
the end of project demonstrator. High quality SOI devices have been produced.
Fine geometry bulk CMOS devices were found to be essentially unaffected by sub
sequent thermal cycling required to achieve an overlay of SOI material formed
by recrystallization. These device results confirm the viability of the demons
trator production technique. Full demonstrator device batches are currently in
production.

INTRODUCTION
One area of the microelectronics industry which has attracted considerable re
search interest for a number of years is the concept of vertically stacking
several planes of active devices for Three-Dimensional Integrated Circuits (1).
While a number of means of achieving this have been suggested, the most common
approach is to use stacked layers of energy beam recrystallized silicon (2),
separated from each other and the bulk material by silicon dioxide. While an
initial impression would suggest that the major benefits of such an approach
would lie in packing density and speed performance it has been shown that the
gains obtained in the context of a VLSI requirement are less than could be

56

expected (3) when the extra complexity involved in producing the devices is
considered (4). However, the stacked SOI approach does offer significant advan
tages for the realisation of integrated, nixed technology systems, where sepa
rate layers of transistors can be individually optimised and separated by a
high quality isolating oxide. In principle several varieties of radically diffe
rent devices could be used in different levels of a 3D-S0I system, without
seriously compromising the fabrication sequence of any of them. The layers
could be built up sequentially with only the thermal load of subsequent proces
sing steps affecting previous stages.
Two alternative configurations of such an approach, a fully stacked and mezza
nine structure, are shown in figure 1. The layered nature is clearly shown,
with the vertically stacked structure being seen as a desirable longer term
goal toward which the mezzanine approach used here is a logical stepping stone.
In addition, a polysilicon shield or ground plane level could also be integra
ted within the vertically stacked structure and is included as a diffused re
gion in the bulk silicon layer for the mezzanine approach, thus providing
improved DC and transient isolation for the control logic array. For the verti
cally stacked approach this ground plane has the added benefit of being a useful
heat sink during top layer recrystallization and also a means of achieving
greater planarisation.

In evaluating this concept and its realisation, Intelligent Power/Interface
applications were defined as being particularly suited to the 3D-S0I structure.
Specifically, the high quality dielectric isolation offered by the inter-layer
oxide offers great potential in this application, in addition to the capability
of building optimised bulk silicion power devices and high performance latch-up
free CMOS SOI circuits (5).
In order to provide the greatest design flexibility in a demonstration of a
3D SOI intelligent power structure, gate array implementations were adopted for
both bulk power devices and the SOI control logic. The technologies chosen for
this work are a 50V lateral DMOS bulk technology together with a 3 urn CMOS SOI
process. These two processes are being combined to fabricate a small test-bed
3D-S0I gate array, suitable for semi-custom interfacing and medium current/
voltage (1A/50V) driving applications. Packaging constraints limit total power
dissipation in a full sized version of this array to about 5 watts.

SD-SOI
Fully Sacked Gate Array

3D-SO!
Mszzanine Gate Array

CMOS-SOl
Control Logic
Gate-Array

Figure 1.a Figure l.b

57

Recrystallization techniques which are particularly suited to the 3D-S0I
approach are laser and electron beam zone-melting-recrystallization (ZMR)
because of their localised, rapid heating of the silicon. In their simplest
form these techniques produce large grain polysilicon with randomly oriented
crystallites and grain boundaries, leading to a large scatter in the characte
ristics of MOS devices fabricated in the material. In this work both techniques
are being used, with a 'seeded' approach adopted to provide bulk quality silicon
in the SOI layer. The seed structure used in the test-bed design has a 43 urn
pitch ; however, some encouraging progress is being made with both the laser
and e-beam in extending this distance. An improvement in approach this will
clearly lead to greater packing densities and larger scope in the geometry and
breakdown voltage of the power devices employed. Selective Epitaxial Growth
(SEG) is used to planarise the seed structure and to reduce the mass transport
that is currently observed as a feature of the ZMR approach.

The CMOS SOI portion of the array is designed so that the gate modules and rou
ting channels are located entirely between seed windows ; this makes reasonably
efficient use of the highly regular structure dictated by the seeding require
ments. The design of these modules is more or less traditionnal (6) ; an example
of a cell is shown in figure 2. It includes a device of each type (P and N), as
two through cell routing vias. Both metal and contact levels will be program
mable and a single level metal scheme is used.

A major consideration in the case of the bulk technology is that the devices
must fit completely between seed windows to avoid destructif melting in the
seed windows occurs during the ZMR step. This constraint on the size of the
devices requires that a medium voltage (50-70V) DMOS technology be employed.
This has been achieved by modifying the traditional circular geometry of the
LDMOS transistor to provide a device of the requisite dimensions. These tran
sistors have been produced in an n-well CMOS process which was modified to
produce the necessary Vt and breakdown voltage characteristics.

Experiments have been performed on the LDMOS devices to establish the effects
on the device characteristics of the recrystallization step and subsequent SOI
processing. Initial results indicate that, provided the ZMR step is constrained
to provide good quality seeded material without melting the bulk silicon under
the isolating oxide (i.e is within the 3D power window), no detrimental effects
are observed on bulk device performance.
This report will now consider in detail the materials improvements made by the
individual laser and electron beam recrystallization and SEG groups. Device
results are presented and the development of the end of the project demonstra
tor is reviewed.

GATE ARRAY
CMOS-SOI Cells

Metal Interconnect
tracks

Figure 2
Seed
Window

58

LASER RECRYSTALLIZED SOI
CNET-CNS
In laser Zone Melting Recrystallization (ZMR), two conditions have to be met if
good quality SOI films are required : (i) give a well defined orientation to
the recrystallized film, and(ii) avoid, as far as possible, the appearance of
defects in the SOI region, or localize them in predefined areas. The first re
quirement is basically met by opening seeding windows in the underlying oxide
in order to perform vertical epitaxy which then extends laterally over the iso
lating oxide. The second requirement has also been the subject of extensive
studies : reflectivity modulation or heat-sink structures have been used in
order to entrain the defects. The extension of the defect-free region depends
on the1entrainment technique, and/or on the behaviour of the seed during mel
ting. However, the existence of voids in the SOI region adjacent to the seeding
region and a non controllable mass-transport in the recrystallized film are the
two major problems to overcome. The technique we are going to use for the
future demonstrator of the project uses a filling of a periodic seeding network
either by a selective silicon epitaxial growth or by a polysilicon deposition
prior to the deposition of the polysilicon film to be recrystallized. Laser-
ZMR is then performed using an elliptically focused spot of a cw-Argon laser.
The elliptical spot allows the control of the solidification front during the
successive partially overlapping scans of the laser spot accross the struc
ture (7).

To demonstrate the feasibility of this process, -ilOO;*, 4 in. wafers are ther
mally oxidized up to 0.5 urn. The oxide in then Reactively Ion Etched (RIE) in
order to open 4 or 2 urn wide seed windows with 16 JJIJI periodic spacings. The RIE
etching has been chosen since it gives steep angles in the seeding region. The
seeding network is aligned with the<100^or <rl 10 7 crystal orientations. In
one set of samples, the seed window is filled up by the selective epitaxial
growth (SEG) technique developed at Thomson/LCR (8). The selective epitaxial
growth in the seed windows rises 0.3 urn above the Si02 surface level, and also
extends laterally over the oxide by about the same amount.

In the second set of samples, a polysilicon layer is deposited and subsequently
etched by RIE so as to leave the polysilicon only in the seed and on a sligh
extension around it, i.e. as in the SEG process. Preparation of both sets of
samples is completed with a 1 urn thick oxide as capping layer. The laser beam
of a cw-Argon laser is focusea in an elliptical spot giving a molten zone of
about 300x100/jm* and is scanned over the wafer with its major axis at a slanted
angle relative to the scan direction. The scanning speed is 10 cm/sec, the
molten zone overlap is 50%, and the substrate temperature is kept in the
650-750°C range.

In laser-ZMR, the solidification front is controlled by the shape of the
trailing edge of the spot. Moreover, when recrystallization proceeds at high
speed, growth is expected to be faceted, and to exhibit (111) facets. In order
to obtain a solidification front parallel to the <110>direction, the scanning
has been oriented along the <:100 > direction. In figure 3, we present a sketch
of the relative positions of the laser spot and the seed windows. In figure 4,
we show a 2 Jim seed, 40 ̂ im pitch sample. The 2 /im seed region is filled by the
SEG process. Seed windows are oriented in the <110 > direction. The absence of
interference fringes in the optical micrograph taken through an interferential
filter indicates that no mass-transport has occured in these samples. The laser
power window for 'good' recrystallization is about 10%.

The remaining defect in the SOI region is the so-called Principal Sub Grain
Boundary (SGB) situated near one seed. Note that although the sample has been
hardly chemically decorated, the SGB appears very fuzzy thus indicating a low
misorientation. The large elliptical laser spot crosses several seed windows,

59

and when it scans two adjacent seed windows, two solidification fronts originate
from the two seeds and meet together, resulting in a SGB. When the laser spot
is scanned parallel to the seed windows with a slanted axis, the SGB is pushed
towards one seed. In this work, a 30° angle has been chosen. No other defects
(such as stacking faults, dislocations clusters, or twins) can be detected, at
significant density, in the samples, and we obtain about 35)jm wide single-
crystal SOI stripes across a whole 4 in wafer.
In the case of samples whose seeding areas are filled by polysilicon, the com
plete melting of the seed is needed in order to perform the epitaxial regrowth
which requires a hiqher laser power. Therefore, the probability of producing
and propagating residual defects is higher than in the SEG filling case : we
encounter SGBs, stacking faults following the (111) planes (which may be duetoa
poor vertical epitaxy), and small voids. It should be noted that, this configu
ration is already optimal, which means that a ^100> oriented seed and a laser
scan identical to that employed with the SEG filled samples would have resulted
in even poorer results (8). Since voids are due to the volumetric contraction
of silicon when melting occurs in regions surrounded by solid silicon, the 30°
spot configuration relative to a scan direction minimises the void formation.
For a given configuration (nature of the capping layer, oxide and/or polysilicon
thickness), the larger the thermal effect of the seed, the higher the occurrence
of voids. So, the way to limit the void formation is either to have a narrow
seed, or to cross it gradually, or to have an over thickness of silicon around
the seed opening.

Transmission electron Microscopy studies have shown that the SOI stripes are
free of defects (except the Principal SGB located near a seed). In the seed
regions, the density of isolated dislocations is increased when the width of
the seed increases ; the filling of the seed with poly-Si gives a higher density
of defects than the SEG case. The occurrence of dislocations in the bulk under
the seed region is higher with a poly-Si filling than with a SEG filling.
Finally, the existence of dislocations inside the seed region must be related
to the native oxide layer between the two silicon depositions. In future,
great care has to be taken in order to minimise this deleterous effect (sample
preparation before the poly-Si deposition after the SEG filling of the seed).

The good crystallographical properties of the SOI layer have been confirmed by
electrical results obtained on 4 in. wafers of 40 urn pitch, 2 urn seeded samples
filled by SEG. The detailed results will not be discussed here since they are
similar to these presented by THOMSON on LETI wafers (in particular, the same
technology is used in the CNET lab. for the two processes). Moreover, we will
not discuss here several experiments made in order to test the recrystallization
process on underlying processed substrates. The main conclusion for the material
point of view is that we must take care in the design of the underlying subs
trate since it can act as a heat-sink for the upper level.

s*;

a) SCAN // SEED

FROM THE SEED
Fig. 3 : Schematics of the position of the laser spot relative to the scan

stripes and seed orientations

60

100um

Fig. 4 : Optical micrograph of SOI chemically decorated sample,
and 40 ̂ jm pitch.

2 urn seed

In conclusion, 35 ̂ m wide, defect-free SOI stripes have been obtained in
laser-ZMR using periodic seeding. The filling of the seed by an over-thickness
of polysilicon or monocrystal line silicon (obtained by a selective deposition
process),together with the use of a controlled slanted elliptical laser beam,
allows the production of defect-free stripes of SOI material over whole 4 in.
wafers. Voids are eliminated and mass-transport is considerably limited. Finally,
the filling of the seed by a selective growth process widens the laser power
window, thereby lowering the importance of the laser power fluctuations. It
allows also the use of a seed technique in 3D circuits where the upper levels
have to be recrystallized without a too high heat transfer to the underlying
circuits.

LASER RECRYSTALLISED SOI (continued)
CEA-LETI
The main points studies recently at LETI within the aim of the project are :
1 Low temperature process compatible with 3D integration
Many batches have been made with deposited oxide instead of thermal oxide as
an isolation layer. We have demontrated that SOI recrystallization is fully
compatible with such films.
The thicknesses (from 0.5 to I ̂ m) of ZMR SOI layers are often not compatible
with advanced CMOS SOI processes which need 0.2 to 0.35 yam thick ones.
Accordingly thinning by oxidation is often needed which is not compatible with
3D integration. We have successfully developed low temperature RIE full sheet
etching instead of oxidation with good control of the final thickness.
New low temperature processing steps (less than 900°C) have been developed and
used in place of 3D incompatible ones (like gate oxidation, Si poly doping,...)
2 ZMR on thick oxide (> l ^jm) with a view to 3D integration
To obtain the compatibility of seeded recrystallization with thick oxide layers,
as would be the case in 3D devices, we have worked in two directions.

61

We have used seed aperture filling using Selective Epitaxial Growth (SEG). (7)
This technique improves the usable laser power window (from about 0.25 to 1 W).
SEG filling allows good recrystallization in cases where classical seed windows
lead to a reduction of the laser power window to zero.
We have used in parallel a new seed design. It consists of discontinuous repea
ted seeds (perforation structure). By reducing the thermal impact of the seeds,
this configuration allows the same improvements in the power window as those
achieved by SEG using classical seed geometries but without the need of an extra
step (9) (10).
3 Study of some problems linked to 3D integration
Recrystallization on metallisation lines made of tantalum silicide obtained by
sputtering of a composite target, and compatibility of these lines with high
temperature processes have been investigated. No severe morphological defects
in the silicide are induced by recrystallization (fig. 5). The stability of the
silicide in contact with the silicon in the contact holes at high temperature
is the object of futher investigation.

reference

12W

Fig.5 : Tantalium silicide lines after laser ZMR recrystallization

62

Moreover, wafers have been recrystallized on oxide layers of nonuniform thick
ness on the same wafer, simulating the thickness variations introduced by the
bulk devices in 3D configuration. Some local modifications of the SOI layer
thickness have been observed near the oxide steps due to mass transport effects
during the recrystallization. New capping layers are presently being studied to
reduce these problems as much as possible.
4 General improvements in the SOI layers
The discontinuous seed structure mentioned above allows one to obtain a greater
area of high quality recrystallized material by reducing the stress of the
recrystallized silicon near the melting interface. Using these seeds we are
able to produce up to 100 um defect free materials at the center of the
recrystallized stripes (fig. 6). This allows defect free areas of 60 um width
to be formed if we take into account the overlapping defects.
This configuration of seeds improves noticeably the mass flow effects which are
observed in proximity to the seedsodue to their thermal impact. This thickness
variation is reduced to about 500 A, instead of the 1500 A variation which was
sometimes obtained with continuous seeds. This variation becomes of the same
order of magnitude as those due to the scan overlaps, these latter being of the
order of 10% of the Si layer thickness.
5 ZMR attempts over bulk devices
We have demonstrated that recrystallization can be obtained on existing devices
without any influence on their electrical characteristics. Two batches were
recrystallized, one with seeds and the other without seeds. If dewetting can be
avoided on such structures, the associated variation of thermal paths (varia
tion of oxide thickness, presence of interconnection lines) induces mass trans
port effects and an early appearance of critical defects. Further improvements
of 3D material are expected.
In parallel we have developed a stabilised experimental set up which can process
about ten 4" wafers per hour with good uniformity and reproducibility. The
adjustable elliptical spot size allows a good adaptation with different types
of device structure.

■v.wwtw»j.wy > M.O.^ " ̂

Fig.6 : Top view of a recrystallized layer after defect decoration
(secco etching) using discontinuous seed structure (oxide thickness 5600 A).
No subgrainboundaries can be seen expt at the close proximity of the seed
aperture.

63

SOI Electrical characterization

Thomson SC

A test batch bas been achieved by THOMSON in order to develop a low temperature
CMOS SOI process compatible with the requirements of the project demonstrator.
The SOI layer was formed by the laser recrystal l izat ion technique developed by
LETI and insulative layer was a 3000 A thick thermal oxide.

Main features of the 3 urn CMOS SOI process was :
 max temperature of 950°C (for poly doping), 850°C glass reflow
 RIE etching for Si islands
Results of the stat is t ica l measurements performed on both natural and enhanced
transistors are summarized in table 1 and 2.

NATURAL TRANSISTORS

TEST STRUCTURE

Nchannel transistor
H/L30/30 (</■)

Nchannel Transistors
with various H/L: 20/5

20/3 , 5/20 , 3/20

Pchannel transistor
H/L30/30 («/■)

Pchannel transistors
with various H/L : 20/5,

20/3 , 5/20 , 3/20

Average values on 66

PARAMETER

Threshold Voltage

nobility

Yield

Leakage current
vg—2V , Vd5V

L

Z

Threshold Voltage

Mobility

Yield

Leakage current
VgOV , vd—5V

L

Z

TABLE II : ENHANCED

TKOS tested per

VALUE

0.72

900

SO
60

0.8

0.3

1.5

205

SO
100

0.5

1

TRANSISTORS

wafer .

UNIT

V

C«'/V.s

I

nA

im

V

C N ' / V . S

t
P»

urn

Average values on 66 THOS tested per wafer

TEST STRUCTURE

Nchannel transistor
H/L30/30 [pm)

Nchannel transistor
H/L20/3 («■>

Nchannel transistors
with various H/L: 20/5,

20/3 , 5/20 , 3/20

PARAMETER

Threshold voltage

nobility

H e l d

Leakage current
VgOV , Vd5V

Leakage current
VgOV , Vd5V

VALUE

0.5

700

03

1

76

60

0.9

0.1

UNIT

V

CN'/V.s

%
(<A

Pchannel transistor
H/L30/30 (»■>

Pchannel transistor
H/L20/3 (*/■>

Threshold Voltage

Mobility

Yield
Leakage current
VgOV , V d — 5 V

Leakage current
VgOV , V d — 5 V

Nchannel transistors
with various H/L: 20/5,

20/3 , 5/20 , 3/20

1.85

180

90

40

86

80

0.6

0.9

ca'/V.s

I

PA

\
P»

64

Results on natural transistors suggest that a N-type (l.E16/cm) remaining
doping level exists in the SOI layer and the too high natural N-channel mobility
indicates some SOI film constraints.
Modifications of the process have been proposed in order to reajust the
P-channel threshold voltage and the N-channel leakage current of enhanced
transistors and are currently tested on a new test batch.
Speed performance were measured on 249 stages CMOS ring oscillators with a fan-
out of 1. Propagation delays at 5V were 2.5 ns and 1 ns for 5 urn and 3 urn
designed gate lengthes respectively with a yield of 53% and 68%.
These good results give the way of an optimised low temperature 3 urn CMOS SOI
process suitable for demonstrator fabrication.
E-beam recrystallized SOI
CU, GEC/HRC and NMRC
Improvements have been made to the SOI material by altering the structure,
orientation and deposition conditions of the material before recrystallization.
The polysilicon has been deposited under conditions which give epitaxial growth
of silicon in the seed windows and polycrystalline material over the isolating
oxide, resulting in a small increase in the usable 3D-compatible power window.
There was also an improvement in material quality because the preparation
process included a HC1 gas pre-etch before silicon depositions, which removed
residual oxide from the seed windows and so reduced the defect density in
recrystallized material compared with material which had not undergone the etch.
If the residual oxide is not removed, it can be carried along with the regrowth
front and nucleate defects such as sub-grain boundaries and small twins over
the isolating oxide. Investigations have also shown that when the seed windows
are oriented parallel to a <100? direction instead of the usual 4.110 > the
seedable distance without defects is greater, as regrowth tends to occur
parallel and perpendicular to seed windows, and <. 100? is a preferred growth
direction under conditions where faceted growth is taking place.

The greatest improvement in the material quality has been achieved by using
material in which the seed windows are filled by selectively epitaxial growth
(SEG) of single crystal silicon, produced by TH0MS0N-LCR, before deposition
of the polysilicon. This planarises both the polysilicon and the capping layers
so that the preferred stress relief of the cap does not buckle it during
recrystallization. The thickness variations in the recrystallized film can
consequently be reduced from 10-15%, obtained with non-planarised SOI films, to
<5%. The usable power window for this type of material is also greater than for
material without SEG filling and a greater seedable distance is possible
because the seed windows constrict the heat flow less and are thus more effi
cient, ensuring that lateral heat flow dominates over vertical heat flow.

Experiments also have been conducted with the aim of exploring structures and
conditions for multiple SOI layers for three-dimensional integration. Two layers
of polysilicon deposited over oxide have been recrystallised using the same
bulk Si seeding window and with conditions chosen either to recrystallize both
layers simultaneaously or to recrystallize only the upper layer of polysilicon.
In another experiment a single layer of recrystallised silicon on insulator has
been used as the seed for a second layer, which was recrystallized to give
device quality seeded single crystal silicon (see fig.7)
In order to test the effect of e-beam and laser processing on underlying
devices, fine geometry (1.5 urn gate length) CMOS transistors were fabricated
in the bulk silicon up to the contact hole etch step, using a well established
process. Single-level SOI layers were then deposited on these wafers and

65

recrystallized using 3D-compatible conditions at a background temperature of
850°C. Subsequent to confirming that the silicon layer had been recrystallized,
the SOI level was chemically removed and conventional processing of the bulk
devices completed. It was found that the electron beam recrystallization caused
an electrical channel length reduction of less than 0.1 urn. Other device para
meters tested (e.g. VT, breakdown voltage and off state leakage) did not show
major differences from controls. Figure 8 illustrates a typical result for
leakage current as a function of electrical channel length for p-type devices.

Figure 7 : SEM Micrograph of double SOI structure in which the second SOI
level is seeded from an already recrystallized lower SOI layer

,*— SOI layer 2

SOI layer 1

— bulk si 1 icon

Figure 8 : Effect of electron beam heating on leakage current of bulk devices
-? n

-5.0

-7.5

10.0

_

-

-

\
X

0

\

'

k

i .

tgfta*

i

X

0

no electron
beom

electron beom
heeled

tihP**

,
1 000 2 000 3 000 4.000

Electrical Channel Leng-.n (pml

66

Table 3 Comparison of electrical characteristics of 10 x 10 ̂m SOI MOS
transistors fabricated on thermal and deposited oxide isolating
layers.

Device
Type

Isolating
Oxide

Electrical Parameter
Mobil ';iy
(cm

2
Vlsl)

Vt Breakdown
 J

leak*
(V) voltage

+ (xlQHA^ml)

nchannel

nchannel

pchannel

pchannel

thermal

APCVD

thermal

APCVD

465± 15

535±20

300+25

220+20

+0.95

+1.06

0 .83

0 .92

+8.7

+8.0

12.5

14.3

3.0

3.5

3.0

3.0

■•"Breakdown voltage at which a S/D current of 10 ̂A is reached for a gate
bias of 1 volt below Vt.

*Leakage current, 11eak» for S/D Dlas of 5 volts and a gate bias of 1
volt below V^.

In a separate experiment, fine geometry CMOS devices were fabricated in SOI
layers recrystallised under ebeam conditions similar to the above. Two types
of isolating oxides were studied ; thermally grown oxide which is conventio
nally used in singlelevel SOI work and atmospheric pressure chemical vapour
deposited (APCVD) oxide which is used to avoid the high temperature process
required in thermal oxidation. Electrical parameters obtained for such devices
are presented in table 3. In this initial process, the electrical characteris
tics are encouragingly good with mobilities and off state leakages similar to
those expected for a bulk silicon technology. In general, no substantial diffe
rences were found between devices produced on thermal oxides or deposited
oxides, except for the case of channel mobilities. Whether this difference is
inherent to the use of deposited oxide isolating layers or whether it is due
to the recrystallization being performed under slighty different conditions
for the two oxide types is currently under investigation.

In conclusion, it has been shown that good quality CMOS SOI circuits can be
fabricated in material recrystalized under conditions which do not signifi
cantly affect the underlying fine geometry bulk CMOS devices. These results,
together with the experiments showing successful recrystallization of multiple
SOI layers, indicate the viability of true threedimensional integrated cir
cuits fabricated in material prepared by ebeam liquid phase lateral expitaxy.
Many improvements have been made to the Cambridge University electron beam
system to make processing conditions more repeatable. Since the recrystalliza
tion depends critically on the performance of the line beam noise and ripple
in the beam power have been reduced to less than!0.5 % from a worst case
figure oft 5%. The beam spot size (diameter) is now controlled tot 3% and still
further improvements are planned to achieve a target figure of £ 1%. Lateral
jitter in the spot position has been reduced to less than the variations in
spot size.

The electron source stability has been improved, partly as a result of changing
from diffusion pumping to turbomolecular pumping of the system which gives a
cleaner and a higher vaccum. Water cooled screens around the wafer have also
helped to increase stability. Changes also have been made to the background

67

heating to improve the uniformity of the wafer temperature. This plays an
important role in avoiding wafer warpage. The background temperature is set
by a pyrometer control loop to ensure reproducible process conditions.
At the beginning of 1987, a dual electron beam system, based on research at
Cambridge University, was installed at the GEC Hirst Research Center. The
equipment is already playing a significant role within the project, both in
terms of providing extra capacity for recrystallization of device wafers and
in exploring new recrystrallization approaches to improving the quality and
width of the single crystal SOI.
The developments in both wafer preparation and machine operation have permit
ted the precise determination of power windows for device quality recrystal-
lized material and a consistent attainment of these power windows during ope
ration. Material prepared by e-beam recrystallization has met in full the
specifications laid down by the requirements of the demonstrator circuits at
various preliminary stages.

SELECTIVE EPITAXIAL GROWTH IN THE SEED WINDOWS
THOMSON CSF
Practical 3D IC applications require insulating layers to electrically isolate
the different circuit levels. The traditional silicon seeding approach has
consisted of etching periodically spaced seeding windows in the insulating
layer, and then depositing a uniformly thick poly-Si layer which follows the
wafer relief structure. During recrystallization, the SOI layer is directly
seeded from the substrate.

The combined requirement of fairly thick isolation layers (1 jjm or more) and
of rather narrow seed windows (2-3 urn wide) resulted in steep, elevated steps
over which the recrystallization front has to climb. This geometry causes
significant mass flow problems, and the need to melt all the way to the sub
strate imposes a rather narrow power window for recrystallization. Melting
into the substrate can also disturb the preexisting bulk devices.

The use of selective Epitaxial Growth (SEG) for filling up the seeding win
dows with monocrystalline Si plays a decisive role in resolving these
problems, and in improving the crystalline quality, as well as increasing
the width, of recrystallized stripes.
SEG can be performed by Chemical Vapour Deposition (CVD) either at Atmosphe
ric Pressure (AP), or at Reduced Pressure (RP). For the present work, APCVD
was adopted, but the feasibility of SEG by RPCVD has also been demonstrated
in an experimental reactor (11).APCVD SEG is performed in the temperature
range from 1000-1060°C, while RPCVD SEG can be performed at temperatures as
low as 850CC.

The central problem in the SEG approach is the suppression of Si nucleation
and growth on the insulator, while maintaining epitaxial growth in the seed
windows. This can be achieved by adding an appropriate proportion of HC1 gas
in the carrier/source gas mix during growth. The APCVD work was done using a
mixture of H2/SiH4/HCl gases in the proportion 100/0.6/0.8, respectively.
Figure 9 shows a perfectly planarised structure achieved by this method. The
excellent crystallographic quality of the selectively grown material was
demonstrated by TEM studies (figure 10).

68

Fig. 9 : SEM micrograph of SEG filling of seed window
Upper part magnification : X 2000
Lower part magnification : X 10000

Fig. 10 : TEM cross-sectional view of SEG filling showing excellent
crystallographic quality

The development of the project demonstrator
Technological orientations
It has been shown previously (3) that 3D SOI CMOS for VLSI is unlikely
to provide sufficient benefit, in terms of packing density and circuit speed,
to compete with single level technologies using bulk or SOI substrates. In con
trast, the considerable interest in the development of silicon technologies

69

where devices of different types (e.g. CMOS, bipolar and power transistors)
can be fabricated on a single chip, may provide an important application area
for 3D SOI. Such mixed technologies are difficult to produce in a single level
of silicon as the requirements of the different device types often conflict.
However, using a 3D SOI approach, the development of a mixed technology with
individual optimisation of the separate device levels can be envisaged.
In the light of these findings, the orientation of the current project
and the end of year 3 demonstrator has been focused on the development of a
"smart power" technology using a 3 ̂ im CMOS SOI level to control medium current/
voltage (1A/50V) LDMOS bulk transistors. The particular application conside
red is a stepper motor controller using a gate array design approach for both
the CMOS and LDMOS levels. At this stage, a 'mezzanine' layout has been adopted
where the SOI devices are displaced laterally from the underlying bulk devices.
The bulk technology (apart from contact hole definition and metalisation) is
fabricated before SOI recrystallization and CMOS processing. A single metali-
sation step is used for both LDMOS and CMOS devices. The CMOS SOI process used
has been developed to minimise heat treatments which otherwise would result in
unacceptable diffusion in the previously fabricated buld devices. The compati
bility of the LDMOS process with the ZMR techniques has been demonstrated. It
can be seen that the mezzanine smart power process produced within this pro
ject has been developed in a manner which will be consistent with a fully
stacked structure.
Project Demonstrator Design
The detailed design of the mezzanine smart power stepper motor controller has
been performed by NMRC and Thomson SC. A gate array approach has been used
for both the CMOS and LDMOS levels to provide maximum flexibility of applica
tion. The layout of both levels has taken into account the constraints required
by the laser and electron beam recrystallization approaches. For exemple, the
CMOS devices has been placed away from the region of SOI where residual defects
may occur and the LDMOS transistors have been laid out within the pitch of the
seed windows required for SOI. Figure 11 shows a plot of the completed design
illustrating the mezzanine approach and the overall size of the demonstrator
chip. Also included on the demonstrator mask set are separate chips which will
allow characterization of the LDMOS and CMOS devices.

SOI ARRAY ,„ <-..:.5 0D."«°L LDMOS ARRAY

Fig. 11 : 3D-S0I MEZZANINE GATE ARRAY LAYOUT

70

In d e t a i l , the stepper motor c o n t r o l l e r developed as the pro ject
demonstrator uses 432 basic SOI ce l l s (846 t r a n s i s t o r s) arrayed in 8 l i nes
and 54 columns wi th 27 input or i n p u t / o u t p u t ce l l s and 18 level s h i f t e r s
f o r the DMOS i n t e r f a c e . The t o t a l area of the SOI level is 8.6 mm2. The
basic ce l l is composed of a pai r of NMOS and PMOS t r ans i t o r s wi th separate
gates (34 ^m wide and 3 ^m long) and 4 metal t racks used f o r
i n t r a - c e l l rout ing together wi th 2 p o l y s i l i c o n l i nes fo r short range
in terconnects . The level s h i f t e r s al low the DMOS gates to be dr iven at
10-15V.

The high voltage bulk devices have been designed to f i t between seed windows
and t h i s has been achieved by modifying the conventional c i r c u l a r geometry
used f o r LDMOS technologies. The process used f o r the LMOS t r ans i s t o r s has
been developed from an N-well CMOS process to provide the necessary
thresho ld voltage and breakdown voltage c h a r a c t e r i s t i c s . The LDMOS array
used in the demonstrator consists of 18 basic c e l l s , each one composed of a
pa i r of 2 mm wide LDMOS devices connected together to form a t o t a l area of
8.5 mm2. In the 4 phase stepper motor a p p l i c a t i o n , 4 DMOS pairs are used to
d r i ve each phase.

The design described above has been completed and masks have been made, the
demonstrator is cur ren t ly being fab r i ca ted at LETI and NMRC. I t is expected
tha t f i r s t samples of the completed demonstrator w i l l be ava i lab le f o r
e l e c t r i c a l assessment in October 1987.

Conclusion

Over the l as t year, s i g n i f i c a n t improvements have been made in both the
s t ruc tures of the SOI s t a r t i n g mater ia l and the laser and electron-beam
r e c r y s t a l l i s a t i o n systems. In p a r t i c u l a r , the use of se lec t ive e p i t a x i a l
growth of s i l i c o n in the seed windows has increased the 3D-compatible
power window and has s i g n i f i c a n t l y improved the qua l i t y and width (>40 urn)
of the s i ng le - c r ys ta l SOI s t r i p . The p l ana r i t y of the r e c r y s t a l l i s e d
s i l i c o n (<±5%) obtained wi th such s t ruc tures is much improved compared wi th
tha t obtained wi th the conventional non-planar s t a r t i n g ma te r i a l .

Good progress in the production of the end of pro ject demonstrator has been
made. This takes the form of a 'mezzanine' smart power chip in which high
vol tage LDMOS bulk devices are con t ro l l ed by an SOI CMOS log ic level which
is l a t e r a l l y and v e r t i c a l l y o f f se t from the under ly ing bulk power devices.
A l l the design and mask making is complete and the bulk devices have been
f a b r i c a t e d . Seed-window pat tern ing w i l l take place shor t l y and SEG
deposi t ion completed. Rec rys ta l l i sa t i on w i l l then be performed at the laser
and electron-beam labo ra to r ies . As has been discussed at length in the main
t e x t , a l l r e c r y s t a l l i s a t i o n systems are now at a level where they can be
expected to read i l y f u l f i l l the requirements of the demonstrator. This has
been v e r i f i e d both in terms of mater ia ls studies and measurements of devices
produced under 3D-compatible condi t ions in e i t he r the bulk or SOI l e v e l s .

71

References
[I] M. Kanano IEDM 1984 pp 792-794
[2] e.g. Papers in Proc. symp on Laser and e-beam Processing of

Electronic Materials eds. C.L. Anderson, G.A. Celler,
G.A. Rozgoni. vol 80-1 ECS.

[3] H. Montier ESPRIT 86 Results and achievements pp 197-205 .
[4] S.L. Partridge IEDM 1986 pp 428-430 .
[5] W.A. Lane et al. IEE Colloquium on Intelligent Power Devices

March 1987.
[6] S. Kazmi, M. Friedman GDN October 1984 p 173.
[7] J.L. Regolini, D. Dutartre, D. Bensahel, L. Karapiperis,

G. Garry, D. Dieumegard Electronic Letters, 23 , 493 , (1987)
[8] J.L. Regolini, D. Bensahel, D.Dutartre, A. Peno, D.P. Vu,

L. Karapiperis, MRS Europe, Strasbourg, June 1987.
[9] J.P. Joly, J.M. Hode, H. Achard, H. Bono, J.C. Castagner ECS

Meeting 4-6 May 1986 Extended Abstract (Optimum conditions
for Lateral Epitaxy in ZMR recrystallisation)

[10] S. Horita, H. Ishiwara Appl. Phys. Letters 50(12) (1987)
p 748.

[II] L. Karapiperis, G. Garry, D. Dieumegard, Proceedings, 18th
International Conference on Solid State Devices and Materials,
August 1986, Tokyo, p. 713.

Project No. 574

NEW THREE-CHAMBER REACTIVE ION ETCHING SYSTEM MPE 3 0 0 3

I. Hussla
Leybold-Heraeus GmbH, P.O.Box 1555, D-6450 Hanau 1,
F.R.G.
H.-C. Scheer
Fraunhofer-Institut fur Mikrostrukturtechnik
Dillenburger Strasse 53, D-1000 Berlin 33, F.R.G.
R. Smailes
UKAEA Harwell Laboratory, Oxfordshire, OX 11 ORA, U.K.
D.E. Webster
Johnson Matthey Chemicals, Orchard Rd, Royston, SG8
5HE, U.K.

A new three chamber reactive ion etching system MPE 3003
for 200 mm single wafer submicrometre pattern transfer in
Al (Si, Cu) is described for the first time. Results on
etch homogeneity and other important etch criteria are
given as well as results on aluminium etch modelling
regarding kinetics and chemistry. Pattern delineation for
0.4 jim features sizes by X-ray lithography with Si02 is
also reported. This work was performed as part of the
ongoing Esprit Project 574 "High resolution plasma
etching in semiconductor technology: fundamentals,
processing and equipment", a joint venture between
European microelectronic processing experts, high-tech
equipment manufacturers and a chemical materials
specialist.

1. INTRODUCTION
In order to attain very large scale integration (VLSI), pattern
transfer of 0.5 jim structures is required. X-ray lithography may
be employed to achieve this and the results of adopting this
approach are reported here. The other important step of pattern
transfer is dry etching via reactive ion etching (RIE). High
anisotropy, etchrate, selectivity, stability and reliability of
the etch process are all needed. The etch apparatus should
provide high etch yield due to high homogeneity of etching over
the whole wafer area, small, or better no, contamination of
wafer, little radiation damage, high system up-time and clean
room compatibility.

A new multichamber etching system for Al (Si.Cu) etching of
outstanding design and performance is presented, being a
milestone in the ongoing project "High resolution plasma etching
in semiconductor technology: fundamentals, processing, and
equipment". A description of the system is given as well as first
results with Si02 with respect to homogeneity and other
important criteria, such as loss of critical dimension,
selectivity and reliability. Preliminary results on aluminium
etch modelling regarding kinetics and chemistry are presented. In
the course of this work the RIE multistep etching approach is

73

also discussed in terms of its basic role in the realization of
submicrometer pattern delineation. Aluminum etching in a three
chamber apparatus is achieved with high throughput when two
chambers are assigned to etching, while the third chamber is
employed for anticorrosion treatment. Since the etching takes at
least twice as long as the passivation step, a perfect match is
provided.

2. SALIENT FEATURES AND DESCRIPTION OF THE THREE CHAMBER
ETCHING SYSTEM MPE 3003 FOR AL (SI, CU)

The following are features of the three chamber system, with two
for etching and one for anti-corrosion treatment:
- true 200 mm single wafer etcher
- high vacuum aluminum chamber with in-liner shields made of
materials which are compatible with the etching process
chemistry

- vacuum wafer transfer chamber for contamination control
- automatic pick and place vacuum wafer transport system
providing wafer stress-free handling for either serial or
parallel wafer processing

- cassette-to-cassette wafer vacuum handling
- 1.2 kW RF source capacitively coupled to bottom electrode

of etching chamber with autotuning and RF matching
(13.56 MHz source)

- anti-corrosion treatment (13.56 MHz RF source) upper
electrode powered

- electrodes coolable and heatable over a wide range
- temperature controlled (up to 50 "C) 4 channel process gas
control with safety "fool-proof" gas box closed and
nitrogen purged

- gas inlet via showerhead in upper electrode
- apparatus totally computer controlled, process status
monitoring, SECS II protocol features

- smallest footprint (140x135 cm), clean room class 1
compatible installation

Figure 1 is a pictorial view of the three-chamber etching system
MPE 3003. The etching system is modularly constructed and
consists of: vacuum wafer elevator module, vacuum wafer
manipulator module, and plasma etching reactor module.
In Figure 2 the cross-section of the etching system is shown.
The wafer manipulator chamber is situated in the centre. This
allows connection of six different chambers via
perfluoroelastomer sealed vacuum valves. Residual gas pressures
for the elevator, wafer and reactor are 10-2, 10-3, 10-4 mbar
respectively.
The passivation step takes place without any further risk of ion
damage to the etch substrate because plasma mode is employed when
the upper electrode is powered. The development of an etch
process for Al (Si, Cu) which is patterned by temperature
sensitive x-ray photoresist is a delicate task. Therefore,
fluoroptometry [1] has been employed for in-situ temperature
measurement in order to avoid resist degradation. On the other
hand, a certain temperature at the wafer surface will be
required; this is induced by the sputter interaction what is
necessary to promote desorption of involatile copper species.

'4

*-'

FIGURE 1
Schematic of MPE 3003, three-chamber RIE etching system

75

The computer control system of the MPE 3003 has been designed
very compactly in order to minimize the footprint of the system.
The control cabinet can be placed on the left or right hand side
of the machine, elsewhere in the grey room or even in the
basement together with the vacuum pumps. The operator terminal is
integrated in the machine on the clean room side. A second
terminal can be installed in the grey room. The etcher is
controlled by means of an INTEL 8086 based system having a soft
touch dust-sealed keyboard. Extended use of softkeys and text
menus results in easy operation. Parameter input and service mode
are locked by keyswitches. The control of the multi-chamber
etcher can be adjusted for maximum wafer throughput, e.g. serial
or parallel flow of the wafers through the chambers or mixed
serial/parallel flow. A total of fifteen processes can be linked
together in each process chamber including complete changes of
gas chemistry, changes of various parameter settings such as gas
flow, total pressure, electrode temperature, RF power applied and
over-etch processing. During operation of the machine, the
important process variables are displayed and monitored with
respect to presettable limits, to ensure stable operation of the
etcher. Endpoint detection is carried out by means of optical
emission spectroscopy. Several security and alarm features are
installed in order to guarantee high uptime and reliability of
operation during production.

FIGURE 2
MPE 3003, cross section, wafer transfer chamber (middle),
elevator (left hand side) and reactor (right hand side).

76

3. MULTISTEP RIE PROCESSES

Multistep etch processing offers the possibility of tailoring
solutions to different etch criteria, such as etch rate,
selectivity, or ion-damage, by a variation of process parameters.
This variation may be carried out by computer control during a
single wafer etch if there is no dramatic change (like changing
chemistries), otherwise cross-contamination of different
chemistries or delays due to gas exchange have to be taken into
account. In former times, batch processing had a low etch rate,
and it was possible to tolerate time consuming pumping or
adjusting of a completely new gas mixture. In the single wafer
etching approach for VLSI however, new criteria are applied.
Here, total process control and reliability of the etch process
by lowest contamination and therefore highest yield are required.
This has led to the development of multistep etching via a multi-
chamber approach.

Potential applications of this approach are listed here for a
three chamber system. In the first chamber: preparation for
etching, such as descumming, plasma hardening of resist and pre-
etch of undesired oxides. The wafer is then transferred to
chamber II for further etching via a pick-and-place vacuum
manipulator. Here, the main etch process is carried out using
fluorine or chlorine based chemistry. In the third chamber, post-
etch processes, such as anti corrosion treatment or dry resist
stripping may be performed. Particular examples where the use of
multi-step process is required, are as follows [2]:

Etching of Poly-Silicon. First step: anisotropic etch with high
rate, low selectivity to Si0 2. Second step: low anisotropy, but
high selectivity to a thin Si02 layer.

Etching of Polycides. First step: anisotropic silicide etch.
Second step: anisotropic etch of Poly-Silicon with high
selectivity to Si02.

Etching of SiOz-contact holes. First step: high etch rate, but
low selectivity to Si. Second step: low Si02 etch rate, but high
selectivity to Si. Multiple step and repeat with resist burning
to achieve tapering.

Deep trench etch in monocrystalline Silicon. First step: trench
etching. Second step: "clearing" of undesired features, such as
trenching.

PIanari zation■ First step: etch of resist until parts of Si02
layer are exposed. Second step: etch of SiC>2 and resist with
respect to loading.

Tri-level lithography. First step: etch of an organic mask.
Second step: etch of organic bottom layer.

Etching of Al and Al alloys for interconnect layers in IC's.
First step: Etch of the Al/alloy layer. Second step: subsequent
passivation. Third step: stripping of resist without breaking
vacuum.

77

4. RESULTS
The MPE 3003 is specially designed ">w?- ** p*u-fmi ni nm multi-step
processing. We present in the following, principles and
diagnoses of aluminium etching. We then report the performance of
the RIE chamber with respect to bias voltage with respect to
electrode gap and power applied to a nitrogen plasma.
Al and Al alloys are used as interconnect layers in integrated
circuits. Fine-line aluminium pattern delineation requires a dry
etching process with the following characteristics: high etch
rate, good selectivity with respect to Si02, anisotropic etching
to maximize the cross-sectional area of the metal leads, minimum
resist erosion to ensure good pattern transfer fidelity, high
uniformity and the ability to overetch in order to remove
residues on the underlying substrate.

4.1. Diagnostics and Modelling
Optical emission spectroscopy (OES) is now an established method
of monitoring plasma composition directly [3, 4], with the
advantages of data acquisition occurring non-invasively and in
real time. Collected spectra can be used to "fingerprint"
particular etch processes under normal operating conditions and
deviations from the fingerprint may be used to identify problems
such as air leaks, high moisture content, impure process gases,
or chamber contamination. OES can also monitor the concentrations
of individual species in the plasma and their time dependence.
This approach has been adopted under a variety of etching
conditions to yield mechanistic insights into the aluminium etch
process [5, 6], as well as acting as an end-point detector [7,
8].

OES with argon actinometry [9] was used to examine the complex
interactions between plasma chemistry and machine parameters
(flow, pressure and power) for a BCI3, 5 % Ar discharge in the
presence and absence of aluminium. Insight gained by work of this
nature has allowed us to proceed to more complex gas mixtures as
well as to optimize the design of the MPE 3003.

The BC1] plasma produced emission bands from B, BC1, and CI. It
was found that corrected emission intensities from B, BC1 and CI
were all independent of flow rate over the experimental range,
indicating that the equilibrium between production and removal is
established rapidly relative to gas residence time in the chamber
(typically 0,5 s). Emissions from B and CI did not vary markedly
with pressure. Over the range 25 - 150 mTorr CI was approximately
constant, while B decreased by some 40 %. The relative
concentration of BC1 showed a linear increase with pressure. At
the same time, the corrected BC1 signal intensity was independent
of power, but the B and CI signals increased approximately
linearly with increasing power.

To account for these dependencies qualitatively, simple steady
state models can be constructed in which production and removal
rates are equated for the various free radicals and atoms
present, with no account taken of the spatial variation of
species concentrations. (The plasma emission is viewed in the
central part of the discharge and not measured spatially.) BC13
is dissociated by electron impact to form radicals, which
themselves can also undergo further electron impact

78

fragmentation. The rates of these processes are assumed to
increase with absorbed RF power. For example:
BC13 > BC12 + CI (1)
BCI2 > BC1 + CI (2)
BC1 > B + CI (3)
B, CI > loss processes (4)
Steady state treatment of the radical and atomic intermediates
(BC12, BC1, B, and CI) predicts that
(i) B and CI should increase with increasing power, whilst

BC1 is constant (as experimentally seen)
(ii) that BC1 should increase with increasing pressure,

whilst B and CI are constant only if the rates of atom
loss (process 4) are pressure (i.e. BCla) dependent.

Two sources of atom loss can be identified - gas phase or
surface. For the former a pressure dependent (third body) atom
recombination process is unable to explain the results because
the rates for such processes are likely to be several orders of
magnitude too slow. B atom loss by gas phase bimolecular reaction
with BCI3 could account partly for the observations but CI atom
loss by a similar route would be a highly endothermic and hence
improbable process. For a surface removal rate of atoms to be
pressure dependent, a possible mechanism would involve reaction
with adsorbed species, the fraction of adsorbed sites being
dependent on BCla pressure.

Considering now the influence of aluminium on the variations in
corrected B, BC1 and CI signals, it is found that the same
general dependence on machine parameters exists as in its
absence. However, the relative concentrations of B and CI were
depressed in the presence of an aluminium surface, whereas the
relative concentration of BC1 increased. Emission lines from Al
and A1C1 were also monitored as machine parameters were changed.
These showed similar variations with pressure and power as for B
and BC1 respectively, namely that the Al emission intensity was
relatively insensitive to BCI3 pressure but increased with RF
power and A1C1 emission was approximately constant with RF power
and increased with BCI3 pressure. The behaviour of B, BC1 and CI
in the presence of the Al surface could be envisaged as due to
reaction of B atoms with CI chemisorbed on Al. Without knowing
the identities of the surface decomposition products it is
difficult to provide an unequivocal mechanism to account for the
behaviour of Al and A1C1 with machine parameters, as the etching
mechanism of Al in a pure BCla plasma is unknown. These species
could be produced from A1C1, if this is the desorbed product
(note the similarity in behaviour of the Al/B and A1C1/BC1 ratios
with pressure and power) but direct formation of A1C1 (and hence
Al by electron impact) from surface reactions is also consistent
with our results.

4.2. Results on high resolution RIE [10]
The performance of a RIE process has been demonstrated at a
Si02/Si layer interface. A highly reproducible and uniform
silicon dioxide etch process based on CF4/CHFs chemistry shows a
resolution better than 0.4pm. In figures 3 and 4 the process is
illustrated by a pattern transfer without any measureable

79

linewidth loss into a silicon dioxode layer of 0.6(im thickness.
The sidewalls are vertical and the selectivity to the silicon
substrate and the resist mask is excellent.

0 . 4 u iti J-
l i n e §

848780' 25KV X38.8K 1.80uf

FIGURE 3
Photo of Si02 structure
with resist on the top.
Process parameters:
CF4/CHF3-ratio: 3:5,
pressure 8 Pa, power-
density: 0.35 W/cm2 ,
SiO2-etchrate: 80 nm/min.

FIGURE 4
Photo of 0.3 pm Si02
line after resist stripping.
Process parameters see
Figure 3.

Process control
by optica] in
OMS 2000) or wi
BM 25, RCA Phot
wafer (e.g. co
emission signal
high uniformity
can be influenc
etch rate ratio
amount in the g
polymer forma
selectivity can
very low, thus

for in-situ etch rate measurements was performed
terferometry (endpoint detection, Leybold-Heraeus
th an optical emission spectrometer (Monochromator
omultiplier). Down to an exposed area of 1% of the
ntact hole etching) a significant change of the
(CO line 483.5 nm) could be determined due to the
of the etch process. The Si02/Si etch selectivity

ed by variation of the CF</CHF3 gas mixture. High
s up to 20:1 are achievable by increasing the CHF3
as mixture but at the cost of increasing the
tion. With a 3:5 CF4:CHF3 gas mixture the
be controlled at 15:1. The polymer formation is

guaranteeing high uptime of the system.

We have characterised the MPE 3003 performance regarding bias
voltage as a function of electrode gap and applied power for a
nitrogen plasma as shown in Figure 5. Fitting of the measured DC
bias voltages to a second order polynomial gave an excellent
adjusted correlation of 0.99 due to a fairly constant plasma
volume.

80

/
/

/ -L^--?-—7— I 1 I I i

fV^U f-L-t-i~L
f !

Pint nt r .
Pressure°7C Bias v, C-

— ^ _
 LL

''V M^ = J i g
1

— — « — _ _ _ _ 1 d M r .

/ /

T IJu -J-^F^T-l
~r~r~i; i i i

"7 ? 7 7 7^7
! I I J_ I i

~r——i— .'

■ ■ I i / / ' ' f /

■ T—?fr ~—*__ (

±—>
1W h / _

, 7 / r ■■■!■■■■!..: ,
! //■/■■■/.../■■ 1-_j_

i'j
40

/ /

i*T

fe
50

__7
_,»■

n.

■ — _ ~

*~7 £'
'IS")

1

' ~ V

r
" 250

J:

p"

.*..'

*
,4.

lv
■J

• n mrr 60

FIGURE 5
Performance of reactor MPE 3003. Plot of DC bias vs. gap and
power at constant nitrogen pressure of 0.3 mbar and flow 125
seem.

5. CONCLUSIONS
The three chamber reactive ion etching syste
submicrometre pattern transfer in Al (
described. Preliminary results on RIE etch
important etch criteria such as bias voltage
electrode gap, pressure and applied powwer
shown an excellent correlation between pre
values. Results on aluminium etch modelli
and chemistry have also been given. Pattern
feature sizes by Xray lithography with SiOj
This has illustrated an etch homogeneity of

m MPE 3003 for 200 mm
Si, Cu) has been
homogeneity and other
as a function of

are given. These have
dieted and observed
ng regarding kinetics
delineation for 0.4pm

is also reported,
better than 98%.

81

As part of the continuing ESPRIT programme 574, this machine
will be used for further process development of the Al(Cu, Si)
system, [11]. Extensive diagnostics and modelling of this multi-
step etch process will also be performed.

ACKNOWLEDGEMENTS
We would like to acknowledge that this work was funded by CEC in
part via ESPRIT 574 contract. Thanks to Peter Banks, Min Pang and
Gerhard Lorenz for critical reading of the manuscript.

REFERENCES
[1] I. Hussla, K. Enke, H. Grunwald, H. Stoll; J. Phys. D.

Appl. Phys. 20 (1987).
[2] H. Mader, private communication.
[3] R. W. Dreyfus, J. M. Jasinski, R. E. Walkup,

G. S. Selwyn,Pure and Appl. Chem., 57, 1265 (1985).
[4] R. A. Gottscho and T. A. Miller, Pure and Appl. Chem.,

56,189 (1984).
[5] K. 0. Park, Proc. 4th symp. on Plasma Processing, The

Electrochemical Society Inc., Pennington, USA, Proc.
Vol. 83 (10), 300 (1983).

[6] R. d'Agostino, F. Cramarossa, S. De Benedictis and
F. Fracassi, Plasma Chem. Plasma Proc, 4, 163 (1984).

[7] K. 0. Park and F. C. Rock, J. Electrochem. Soc, 131.
214 (1984).

[8] B. J. Curtis, Solid State Technol., 23 (4), 129 (1980).
[9] J. W. Coburn and M. Chen, J. Appl. Phys., 51., 3134

(1980).
[10] I. Hussla, H. Birck, W. Katzschner, A. Pawlakowitsch, P.

Sommerkamp, R. Schleiff, W. Pilz, T. Sponholz and H.C.
Scheer, Proceedings CIPG 87, 4»h International Symposium on
Dry Etching and Plasma Deposition in Microelectronics,
Antibes, France, p.90, (1987).

[It] In preparation for Microcircuit Engineering 87,
International Conference on microlithography, 1987 Paris,
France.

82

Project No. 958

HIGH PERFORMANCE VLSI INTERCONNECTION SYSTEMS

Project Partners : BULL SA
BRITISH TELECOMMUNICATIONS PLC
GEC RESEARCH LTD., MARCONI RESEARCH CENTRE

Project Leader : Karel KURZWEEL, BULL

Authors : P. ARRCWSMITH (BT), N. CHANDLER (MARCONI),
G. DEHAINE (BULL)

1. ABSTRACT

Project 958 is concerned with the development of two major interconnect
technologies : High Density TAB and a compatible High Density Multi-level
Substrate Technology. These technologies together with the mechanical,
thermal and electrical design and test tools and connector technology,
developed to apply them, will be demonstrated in the course of the project
in a multi-chip, high power module (about 360W) containing Gbit/s logic
functions.

The project goals for TAB are to demonstrate both bumped chip and bumped tape
TAB at 100 microns pitch and with more than 200 leads. For the substrate, to
demonstrate four layers of logic track with 125 microns pitch track capability,
over a conventional board system for power distribution and capable of Gbit/s
rates in strip line.

The progress of the project towards these objectives will be presented and
this paper also gives the structure of the project and some background to the
technologies being developed.

2. INTRODUCTION

Silicon integrated circuit technology continues to evolve ICs of higher
complexity and higher speed and the pin out requirements per IC continues to
rise as also does the power density. Currently available packaging and
interconnect technologies noticeably lags the performance required to fully
exploit these new IC technologies [1] and will limit their potential use in
new systems.

New and innovative approaches to packaging and interconnection are needed to
narrow the gap between the performance of the basic IC and the performance of
the IC available in an assembled system. Towards this objective, project 958
is developing high performance chip wiring and substrate technologies together
with the essential mechanical, thermal and electrical design and test tools
to apply these technologies in an integrated manner to the assembly of new
systems. An important work is also carried out in the area of modelling of
the electrical, thermal and mechanical aspects of packaging. Though the
individual technologies and design and test tools developed in the project
will be applicable separately, an important part of this project is to
demonstrate a fully integrated approach to interconnection and in Urine course
of the project, a multichip high performance module will be constructed to
evaluate the integrated use of these new technologies.

83

There are two major technology thrusts in the project :

a. the development of TAB (Tape Automated Bonding), both in bumped chip and
bumped tape versions from the current minimum geometry of about 200 microns,
in progressive steps to 100 microns pitch and to more than 200 leads.

b. the development of a compatible multi-layer substrate technology with
four signal layers in addition to the component mounting layer and power
distribution layers. The signal layers to be capable of useful operation
with Gbit/s logic and capable of about 125 microns pitch tracks.

The design and testing tools to use each technology are being developed
in parallel with the technology and in addition chip protection, thermal
management and module connectors are being explored to provide an integrated
interconnection technology for advanced modules.

In this paper, the organization and programming of the project as a whole is
outlined first and then the current progress of the technologies is detailed.
An appendix compares the technologies being developed in this project with
'conventional' and alternative approaches and explains why they were chosen
as the preferred approach to high performance interconnect.

3. PROJECT 958 ORGANIZATION, TARGETS AND TIMESCALE

The common objective of the partners in project 958 is to develop the
necessary interconnect technologies and demonstrate their application in a
high performance multi-chip module. This module will be based on a multilayer
substrate about 10 cm x 10 cm containing four signal carrying layers. It will
contain about fourty TAB bonded ICs up to 1.2 cmx 1.2 cm with a total
dissipation around 360W and it will have active ICs operating at Gbit/s rates.

Very few companies in the world have the capability to produce such high
performance modules and the engineering to make these modules necessitates
the development of very high density TAB to 125 microns pitch and with more
than 200 lead capacity and a compatible high density multi-layer substrate
technology also capable of 125 microns pitch and the design and test tools
to integrate the use of these technologies.

3.1. Organization

BULL S.A. is the prime contractor and in addition to the overall management,
is responsible for :

1. The definition and evaluation of the demonstration module.

2. Bumped chip TAB development and evaluation.

BRITISH TELECOM is responsible for :

1. Bumped tape TAB development and evaluation.

2. Provision of ICs for test structures and the demonstration module.

GEC RESEARCH is responsible for :

1. The high density substrate development.
2. Thermal management,
3. Mechanical IC protection.
4. Repair and modification considerations for modules.

84

3.2. Targets

The advances in interconnect technology, which are the aims of the project,
are outlined below compared with leading available technology at the start
of the project.

Available
TAB
(Bumped chip and
bumped tape)

Substrate
Minimum line width
Minimum via size (pth)

Module
Power density

Silicon : substrate
area ratio

Chip size

Target

40 - 100 leads
200 microns pitch

150 - 200 microns
300 - 400 microns

> 200 leads
< 125 microns pitch

50 - 80 microns
50 - 100 microns

1 W/cm2

about 0.13

10 - 50 mm2

5 - 1 0 W/cm2

about 0.3 - 0.5

> 100 mm2

These targets are very aggressive and several phases in the project have been
defined to establish intermediate targets for the technologies.

Phase 1 : To establish initial parameter targets, i.e. the substrate
configuration (structure, materials, complexity), the chips to be used, the
targets for lead pitch and assembly equipment.

Phase 2 : An engineering definition of the test module and definition of target
specification and testing, also definition of intermediate test pieces.

Phase 3 : Fabrication of components (tapes, substrates and ICs), development
of thermal modelling.

Phase 4 : Assembly of test structures.

Phase 5 : Assembly of the final demonstrator module and evaluation of its
performance.

The project is currently in phases 3 and 4 and as reported in the next section,
good progress is being maintained towards the final target specifications.

3.3. Timescale

The project is planned to be completed in three years and is currently at the
half way point. However, because of the demanding technology necessary for
the final demonstrator module, all of the technology elements are already
scheduled for demonstration and this has been achieved.

4. TECHNOLOGY STATUS

4.1. TAB

Two TAB technologies are being developed in the project, bumped chip TAB by
BULL and bumped tape TAB (BTAB) by BRITISH TELECOM.

85

Both technologies are under development because they are seen as complementary
and hence it was necessary that the project was able to address both TAB
technologies. Bumped chip requires additional wafer processing to add the
bumps to the IC wafer and then achieves lead out bonding by a gold-tin
alloy bond. Bumped tape requires no wafer processing but does need two
photolithography steps for the tape. Lead out bonding is achieved by
conventional gold-aluminium thermocompression bonding. The TAB technology
best suited to a particular IC technology is being developed from the current
geometry in steps to the target of 100 microns pitch.

The first step was to demonstrate 162 microns pitch and establish the equipment
for ILB (Inner Lead Bonding i.e. the chip pads to the TAB frame) and OLB
(Outer Lead Bonding i.e. the TAB frame to the substrate).

Photo 1 shows a test chip with 162 microns ILB pitch and Photo 2 the same chip
mounted and OLB bonded again at 162 microns pitch. As a result of evaluation
work on TAB design, it has been decided to keep the same pitch for ILB and
OLB which gives the optimum strength and reliability for the TAB lead outs.
However, this has placed severe demands on the targets for the substrate
technology. Chip to substrate lengths are set at about 1 mm throughout this
project.

The next milestone was to demonstrate 125 microns pitch TAB and this represents
a major advance compared with existing technology and needed a re-evaluation
of all of the TAB and bonding parameters.

125 microns Bumped Chip TAB

a. Chip Bumping

Straight wall gold bumping on the aluminium pads has been selected for the
following reasons :

- This technology is well understood in BULL and is compatible with the Ti/W
adhesion/barrier layer available and provides good pad sealing.

- A straight wall process is compatible with the bump sizes for 100 microns
pitch TAB bonding.

b. Tape

Standard 35 mm tape formate has been chosen, because it will maintain
compatibility with the tape handling equipment. However, this choice will
reduce the spacing of the test pads to 320 - 400 microns and will require
a new approach to attach the test card to the frame. 35 microns thick tin
plated copper has been adopted for the lead frame. Tapes at 125 microns
pitch were successfully realized as the part of this project.

c. TAB Bonding

ILB will use gold tin alloy bonding, but additional control of the ILB
equipment has been introduced for the high lead out frames to avoid any
possibility of silicon damage. This is achieved by controlling the parallelism
of the bonding tool, implementing a low strength guage control and stroke
control at the bonding head. OLB is to be by lead tin soft solder.

86

125 microns Results

Photo 3 shows a 125 microns pitch ILB TAB chip on the frame and photo 4 shows
a detail of the OLB bonded chip at the same pitch.

A test substrate (10 x 10 cm with 36 chip bonding sites) has been assembled
at BULL, using G30 material (polyimide on pcb). These substrates are being
currently used to exercise the OLB tooling prior to delivery of the project
test boards. Photo 5 shows part of this board populated with the TAB bonded
chip each having 284 lead outs at 125 microns pitch ILB and OLB. Photo 6
shows one assembled chip.

Status

125 microns pitch TAB has been demonstrated and the programme is on schedule
to produce 100 microns pitch TAB by the middle of year 3 of the project ready
for use in the test module.

4.2. BTAB

Bumped tape TAB is a more recent development in TAB technology which was
developed at BRITISH TELECOM and is expected to be available in production in
early 1988 at 200 microns pitch. In project 958, it is being advanced to
100 microns pitch in parallel with the bumped chip programme. The equipment
for BTAB use is very similar to that used for bumped chip TAB, indeed OLB
is identical. The primary differences are in the manufacture of the tape and
in the ILB bonding which is thermocompression gold to aluminium.

Progress

In the research unit at BRITISH TELECOM, a pilot line for BTAB has been
established to produce 100 microns pitch tape and carry out ILB and OLB
bonding. In addition, a design suite has been developed to facilitate TAB
designs and this is now available and was used to design the first project
test frame (photo 7). The key element in bumped tape TAB is the formation
of a compliant gold bump on the lead frame of a controlled height and hardness

80 x 80 microns bumps are currently being produced (photo 8) and have been
produced with the necessary control for surface morphology (photo 9), height
and hardness. Photo 10 shows a 200 microns minimum geometry tape frame with
80 microns bumps and photo 11 this frame bonded to a IC which has required
no additional processing to prepare it for TAB bonding.

50 x 50 microns bumps can now be imaged and it is expected that the project
125 microns tape design with these bumps will be available before the end of
this year and that BTAB at 100 microns pitch will be available during year 3
of the project as scheduled.

4 . 3 . TOO LAYER TAPE TECHNOLOGY

All of the above work at BULL and BRITISH TELECOM uses three layer tape, so
called because it consists of the backing plastic (usually Kapton), an
adhesive layer and the 35 microns copper layer. As the pitch of the tape
leads is reduced, it is increasingly difficult to control the etching of the
copper layer which for 100 microns pitch is approaching 1:1 aspect ratio.

87

BRITISH TELECOM as part of the TAB programme is to evaluate two layer tape
processing. This will only be available to the project in year 3 and the
current status is that processing equipment is on order to obtain copper
plated beams instead of the etched beams used in the current processes. Two
layer tape has a thin (about two microns) layer of copper sputtered onto the
backing tape and the plating up process is considered to be the preferred
method of generating fine pitch TAB in the future.

5. SUBSTRATE DEVELOPMENTS

5.1. Materials

A large number of copper clad low dielectric constant laminates are
commercially available, but two organic materials are most commonly used :

- Polyimide and Poly tetra fluoro ethylene (PTFE).

Of these two, PTFE is most attractive, due to its low moisture absorption,
very low dielectric constant and ability to be supplied with reinforcement
to achieve good dimensional stability. Unfortunately, it is only recently
becoming available in the very thin form necessary for this project. Polyimide
laminate was adopted at the beginning of the work, but PTFE dielectric is now
also being assessed.

5.2. Structure

The process adopted for the multi-level substrate is to use these copper clad
low dielectric constant organic laminates to produce a semi rigid high speed
multi-layer circuit, which will be subsequently bonded onto a reinforcing
module containing power distribution wiring (Fig. A). The alternative approach
of sequential lamination onto a rigid mandrel or subcarrier did not lend itself
to blind hole laser drilling or to subsequent blind hold plating of such small
vias. However, this form of structure inevitably places great dependence on
maintaining dimensional stability of the organic laminates during manufacture.
A "ring of pins" tooling system (photo 12) has been developed to achieve the
necessary registration in the photolithography and lamination processes and
initial tests have produced side to side registration better than two microns.

5.3. Vias

In the signal layers of the substrate, the target for the vias was that they
would be contained within the minimum pitch tracking of 125 microns to avoid
wasting space with via pads. Hence, their diameter would have to be less than
50 microns. Tests were carried out with both Laser drilled holes and reactive
ion etched (RIE) holes. RIE drilling was considered because it should produce
better hole profiles and would produce all vias simultaneously. However,
initial tests with RIE, using sputtered aluminium as the mask, failed to define
the holes due to metal residues impeding the etch process. Extended Laser
tests solved an earlier delamination problem and produced tolerable yields of
50 microns diameter holes on a 200 microns pitch as shown in photo 13 with a
close up view in photo 14.

5.4. Test Substrates

Both as an intermediate step to the demonstration module and to assist the TAB
development, five test substrates were defined in the project to be made by
GEC RESEARCH. Three of these test boards are single layer substrates intended
to assess TAB bonding and chip encapsulants and they have also been used to
refine photolithography, plating and etching processes for the narrow tracks.

Fran this work, compensations have been incorporated into the CAD artwork
generator for the narrow tracks and it has now been shown that the target
dimensions can be achieved with both 12 and 25 microns thick resists. Two of
the substrates require the multi-layer process using the registration tooling
described earlier. One is a passive board for electrical tests and the second
(Artwork 3) is a major intermediate step towards the final module.

Artwork 3

10 cm x 10 cm multi-layer technology.
Wiring pitch 125 microns.
Bonding layout for :

36 x 1 cm square test chips, each chip with 284 leads
at 125 microns pitch, capable of 10 W dissipation.

TOWARDS THE FINAL DEMONSTRATION MODULE

To produce the final demonstration module, a multiplicity of hardware and
design techniques must be brought together by the project, in addition to the
TAB and the multi-layer substrate technology described previously. In this
section, these activities are summarized and how they impact the definition of
the demonstrator module.

6. THERMAL MANAGEMENT

The 100 cm2 final module is intended to operate at 360 W and hence represents
a considerable challenge to the thermal engineers.

6.1. Air Cooling

Thermal modelling exercises have shown that thermal resistances of 3°C could
be achieved with these power densities and air velocities and 5 m/s for a
single device. However, for closely spaced arrays of such high power devices,
even the provision of pre-cooled air to each chip individually is unlikely to
constrain junction temperatures adequately [2].

6.2. Liquid Cooling

Further thermal modelling was carried out to establish the thermal resistance
of published advanced water cooled solutions to this problem. The analysis
indicated that a 36 chip array with each chip dissipating 10 W could sustain
a chip temperature of 100°C. However, the performance of such modules is very
dependent on mechanical tolerances and assembly quality. Each of these heat
exchanger modules is very complex and has to be specifically designed for each
board assembly.

6.3. Direct Immersion Cooling

Additional studies were carried out on direct immersion in fluorocarbon fluids
chosen for their chemical inertness and stability [3]. This means that naked
chips can function satisfactorily whilst totally immersed in the fluid. The
study revealed that the heat from a complete array could be removed by the
immersion of a module in a tank of static fluid whilst nucleate boiling takes
place on the back surfaces of the chips. If the energy from each chip were
to rise, then it is anticipated that the transition from nucleate to film
boiling would occur in the region of 15 to 20 watts/sqcm. This would cause
an insulating layer of vapour to cover the chip, resulting in a rapid rise of
junction temperature [3]. The module operating temperature may be further

reduced by forced circulation of the fluid, and by cooling the liquid below
its saturation temperature. Roughening the back surface of the chip to provide
nucleation sites will also reduce temperature overshoot prior to onset of
nucleate boiling.

6.4. Summary

For experimental purposes during the project, direct immersion cooling will
be used. As shown in Figure B, it is far more efficient than even forced
flow gas systems. Although this form of cooling has been used on commercial
equipment, efforts will continue to be made to find a more orthodox solution
which will avoid some of the fluid leakage and other difficulties associated
with this form of cooling.

7. DIE ATTACHMENT AND PROTECTION

The choice of encapsulant for the flip TAB bonded chips is influenced by a
number of factors :

a. There is a maximum allowable spacing of 60 microns between the face down
chip and the substrate surface.

b. Because of the face down attitude of the chip, the encapsulation should act
as die attach to provide mechanical constraint to the chip.

c. As the whole assembly is likely to be immersion cooled in fluorocarbon
liquid, the encapsulant must be effective in this medium.

It is known that the immersion of some materials in fluorocarbons [2] can cause
swelling and displacement of plasticizers. Also, the low surface tension of
the fluids makes module sealing difficult [4]. For these reasons, a series of
tests is being conducted to investigate the compatibility of the chosen
encapsulants with the fluorocarbon fluids.

7.1. Failure Mode

No data is available on the long term reliability of TAB bonded integrated
circuits in storage or immersed in a fluorocarbon fluid. The indications are
that in the fluid, it should be greatly enhanced, due to the considerably
reduced likelihood of the presence of water which forms the corrosion cell
necessary to promote the most common chip failure mechanism. If the
fluorocarbon excludes moisture from the chip surface, then no matter how many
free chlorine ions are made available, no corrosion cell can form.

7.2. Environmental Testing

It would seem that Temperature/Humidity/Bias testing would not be appropriate
in this case, as the purpose of the accelerated life testing is to cause rapid
failure of a system by the failure mechanism which would eventually occur in
the normal operating life of the system. Thus the failure mechanism must be
known before an accelerated test can be specified.

7.3. Current Activity

Several potential encapsulant/die attach materials are being tested for
chemical compatibility with the fluorocarbon fluids at elevated temperatures.
Further investigations are under way to identify appropriate environmental
tests.

90

8. CONNECTORS

Due to the high signal speeds required, impedance discontinuities in the lines
must be minimized. This means that special impedance matching connectors are
almost essential. A number of possible systems have been identified, but the
close spaced module I/O of approximately 1 mm is difficult to achieve. One
possibility is to use special impedance matched proprietary flexible circuits
with soft contact to mother boards.

9. ELECTRICAL ASPECTS

9.1. Test Chips

The module will be populated with both passive chips, to enable controlled
heat dissipation patterns to be produced, and with a set of silicon ECL ICs
to demonstrate that the substrate is fully functional to Gbit/s signals. The
passive chips have been made at BRITISH TELECOM (photo 15) and the proposed
ECL circuit (Fig. C) has been bench tested and BTAB frames have been designed
for the ECL ICs and are currently in processing.

9.2. Strip Line in the Multi-Layer Substrate

The project target is the ability to accommodate 200 pico-second pulse edges.
This requires that the signal wiring should have broadband capability into the
GHz range. To accommodate this requirement, the wiring must be designed using
"Transmission Line" theories, which involve the use of signal ground planes
and close control of signal line impedances. To accommodate the wiring pitch
requirement of 125 microns with printed circuit manufacturing technology, a
line width of 65 microns was selected, together with gap width of 60 microns,
to provide the target line impedance of 75 ohms, in covered microstrip format,
for a dielectric constant of 3.5. The total laminate thickness is 190 microns
from the top layer, which carries the device attachment pads, to the ground
plane, and the two signal planes carry orthogonal tracks, to reduce crosstalk.

The required thicknesses for 75 ohms of the copper conductor and the
surrounding insulator are within the range of the multi-layer technology.
Additional signal wiring can be accommodated in the two lower signal planes
which are made with the same multi-layer technology. It is known that when
transmission lines are placed as close together as is proposed above, crosstalk
may become unacceptable. This will be assessed with one of the phase 1 test
substrates and limits will need to be defined.

The test circuit in the module will allow "bit error rate" testing to assess
the substrate performance with a fully operating digital circuit.

10. SUM1ARY

All the hardware techniques and design aspects necessary to specify and
make the demonstration module have now been addressed and the project is on
target to produce this advanced demonstration. Substantial progress at the
demonstrator dimensions has already been practically demonstrated in the two
key technologies, TAB and multi-layer substrates. The test structures will
show the integration of the mechanical, electrical and thermal technologies
which will be used to produce the final demonstrator and which will clear the
way toward applications planned in real world high performance electronic
systems.

91

11. REFERENCES

[1] Sage, M., Packaging and Interconnection for High Performance Electronic
Systems, BPA, London, 1986.

[2] Timko, N.J., Air-Jet Impingement Keeps Computer Cool, Electronic Packaging
and Production, May, 1987.

[3] Danielson, R.D., Thermal Management of Electronics by Liquid Immersion,
Industrial Chemical Products Division, 3M Company.

[4] Danielson, R.D., Cooling a Superfast Computer, Electronic Packaging and
Production, June 1986.

12. KEY WORDS

TAB, BTAB, CHIP BONDING, TAPE, BUMPED TAPE, COOLING, THERMAL MANAGEMENT,
CHIP PROTECTION, PACKAGING, INTERCONNECTION, ILB, OLB, MULTI-LAYER SUBSTRATE,

13. TABLE Al

CHIP WIRING

. Current pad

. pitch/pad size

. Potential for

. reduction

. Re-Assemby Test

. Robustness

. Maturity

. Availability

. Thermal Shock

. Area Bonding

WIRE BONDING .

200 um/100 urn sq

poor

fair

fair

excellent

excellent

good

poor

FLIP BUMPED
CHIP

200 um/100 urn sq

good

fair

excellent

good

fair
7

very good

TAB

200 um/100 um sq.

good

very good

good

fair

poor

good

fair

92

APPENDIX

The objective of project 958 is to assemble the technologies to be able to make
high performance multi-chip modules, which can fully exploit the performance
of advanced VLSI ICs. Many aspects of the technologies chosen for the project
differ from current conventional practices, but it may be of value to explain
some of the reasons why three of these were adopted.

TAB for chip wiring, ommitting chip packaging and a very fine geometry multi
level substrate.

Why TAB for Chip Wiring ?

The table Al summarises some aspects of the available chip wiring technologies.
Wire bonding is rejected because of its poorer development prospects. Flip
bumped chip has good potential for scaling, but there remain doubts of
developing a sufficiently reliable system against thermal shock, particularly
if the bump size is reduced. TAB, while currently poor in availability,
appeared the best development prospect and since this decision, several
projections have also suggested that TAB is likely to become a major wiring
technology.

Why No Packages for Individual ICs ?

On the TAB tape, the chip is handleable and testable, hence these reasons for
putting each IC in a package are eliminated. The module package will provide
mechanical protection. The absence of all the individual packages enables
considerable improvements in size and performance, particularly speed.

Why Such a Fine Geometry Substrate ?

The target for the substrate technology was set to be compatible with the
TAB technology and to try to narrow the gap between on chip interconnect and
current board interconnect capability. On the IC, the minimum track pitch
is six microns (three microns)*, vias are two square (one micron square) and
there are two layers (four); equivalent to a density of 34 m/cm2 (123 m/cm2).
On a typical current pcb, the minimum track pitch is 300 microns, vias are
0.2-0.3 mm and equivalent density excluding the degradation of vias is 50 x
smaller (200 x smaller). The substrate technology targeted by the project,
while not closing this gap, reduces the difference in density from 50 x per
layer to 20 x per layer and does not lose any density in via placement, which
is less than the track width. This has set a severe target for the project,
but offers substantial improvements in system integration.

() figures are projected for one micron processes.

93

ILLUSTRATIONS

PHOTO 1
Inner Lead Bonding (ILB) at 162 Microns Pitch

PHOTO 2
Detail of Outer Lead Bonding (OLB)

94

PHOTO 3
Test Chip (125 Microns) Pitch Mounted on 35 Microns Tape

PHOTO 4
Detail of ILB Bonds at 125 Microns Pitch

95

stimmmtm!h>rmMm?friwmw WWIWMfW-iWt

in
PHOTO 5

Partial View of Populated Test Substrate (125 Microns Pitch)

PHOTO 6
Close-up View of Chip Bonded on Test Substrate

96

PHOTO 7
125 Microns Test Mask

PHOTO 8
80 x 80 BTAB

97

PHOTO 9
BTAB Close-Up

PHOTO 10
Strip BTAB

98

PHOTO 11
Bonded IC BTAB

mm.JJIU. •• • I

PHOTO 12
'Ring of Pins'

99

PHOTO 13
50 Microns Vias

PHOTO 14
Close-Up of Via

100

PHOTO 15
Passive Chip

101

T.A.B. FRAME

CHP PLANE
'Jf WIRING PLANE
'>" WIRING PLANE

EARTH PLANE
"«' WRING PLANE
' V WBBG PLANE I

EARTH PLANT:

} CU. CLAO POLYIMIDE
LAMINATE

|CU. CLAD POLYMDE
J LAMINATE

EPOXY SUBBOARD

FIGURE A
SCHEMATIC CONSTRUCTION OF PROPOSED

PHASE 2 SUBSTRATE

Btu/(hr) (ft*) (T)
B £ B S 8 §

3

i
s

I
f
5
g

£

1

I
c
•g.
B-

£5
I I

RT
" j luorinert "Vapor

1 lllll i i t i i i
SitonaOil |

Trudorar Oil |

"FluorinerT Liquid

Wattr

| (. | | | | ||| | «, 1
"Fluohoert- Vapor

1 J t i l l ll-l 1
SiSmrnOU

Trusloror Oil

-Fluoriierr Uquld

Wltv

1 1 1 I I M i l 1 1 1 1 II II 1 | } \ 1 1 l l |]
'rTuorinerT Liquid 1

Watv

1 1 1 M l I I I 1 1 1 M I N I 1 1 1 1 Mi l l 1 1 I I I ' .

FIGURE B
EFFICIENCY OF VARIOUS COOLING METHODS

r
TEST POINT CLK/2

DE 8

CLOCK DRIVER

CLK/2

I — ; — i i * - = ?
D J

-I—r* CLK/2 TEST POINT
I I.IK/rr-

|CLK

D D

G-B 8/2

1 — 2

L DD15

1 — 8

ttt
DB4 (A)

8 — 1
Jl

"1

D D

DD15

IT--
DB4(B

8

G-B8/1

2 — 1 E l

TEST POINT

1- -
1 CLK/16

CLK/2

D = DIFFERENTIAL LINE
S = SINGLE LINE

I I
- -f-44-t_r"
PULSE J TEST POINT

CLK/16
I CLK/2

DE 8

CLOCK DRIVER

i >

CLOCK
INPUT

(UP TO 650 MHz)
CLK/2

DATA IN FIGURE C : SUGGESTED CIRCUIT FOR PHASE 2 TEST SUBSTRATE

103

Project No. 971

TECHNOLOGY FOR GaAs-GaAlAs HETEROJUNCTION BIPOLAR INTEGRATED CIRCUITS

THE ESPRIT 971 PROJECT TEAM : M. Bon and al. (CNET, Bagneux, Fr.), A.
Rezazadeh and al. (GEC, Wembley, U.K.), R. Goodfellow and al.
(PLESSEY, Caswell, UK), W.M. Kelly and al.(FARRAN TECH., Cork, IRL),
D. Carr and al. (PLASMA TECH., Bristol, UK.)

ABSTRACT :
The objective of ESPRIT Projet 971 is to develop high performance
GaAs/GaAlAs process for u l t ra- fast HBT ECL logic. The three main
european companies involved in HBT ICs, GEC, Plessey and CNET, are
cooperating in that context with the additionnal support of Farran
Technology and Plasma Technology as subcontractors. During the f i r s t
year of the project, major results have already been obtained in
epitaxial growth (both MBE and MOCVD), basic and advanced s e l f - a l i
gned technology and modelling. The basic process, although using
s t i l l conservative design rules of 2-3 ^m, has already allowed fabr i
cation of divider-by-four operating above 5 GHz using HBTs with cut
off frequencies above 15 GHz, in close agreement with simulations and
giving thus high confidence in the expected performances of the self-
aligned micron and submicron processes to be assembled in the
future.

1. INTRODUCTION
The aim of Project 971, which started in February 1986, is to develop

a high performance GaAs process using GaAs-GaAlAs HBTs for ul trafast emitter
coupled logic. With the help of Farran Technology for e-beam lithography and
Plasma Technology for plasma deposition and etching, the three main partners
CNET, GEC and PLESSEY are investigating al l aspects of the IC process including
material epitaxy (both MBE and MOCVD), ion implantation, rapid thermal annea
l i ng , lithography, dry etching, ohmic contacts including refractory alloys, and
die lectr ics. This work is accompanied by a strong ef for t on modelling, concer
ning both 1-D and 2-D device numerical modelling and analytical C.A.D block
models. Process validation is established by fabrication of SSI/MSI (ECL) c i r
cuits such as dividers, multiplexer or arithmetic ICs.

The f i r s t two years of the program are dedicated to the development
of a basic process validated on SSI divider circui ts and to the investigation
of an advanced self-aligned process. The second two years phase wi l l be concer
ned with MSI and SSI demonstrators using those respective processes and with
subsequent refinement of those processes.

This paper w i l l highlight the most signif icant achievements obtained
during f i r s t year of the project and at the beginning of year two. These in
clude a high degree of quality and uniformity of both MBE and MOCVD layers,
world record values for p-type base doping, assembling, validation and compari
son of three basic technological processes using ion-implantation, rapid
thermal annealing (RTA), dry etching and high performance n-type and p-type
ohmic contacts (including new original AuMn al loy) . Also several approaches
leading to self-alignment and micron and submicron rules have been investigated
with already a very exciting successful fabrication of exploratory self-aligned
HBTs. On the other hand al l basic processes have been characterized on HBTs

104

with about 15 GHz cutoff frequencies, and dividersbytwo have been demonstra
ted with input rates as high as 5,7 Gbits/sec.

In the following, the 971 Project achievements are reviewed in the
successive areas of epitaxial growth, basic and advanced technology, test and
modelling, and f ina l ly HBTs and ECL ICs demonstrators.

2. EPITAXIAL GROWTH

Epitaxial growth quality control is a crucial point for HBT manufac
turing and major improvements have been obtained in that area by Plessey [1]
and CNET with MOCVD, and by CNET and GEC with MBE, by optimizing growth proce
dures and sometimes the growth equipment i t se l f . In these four cases, al l three
partners are routinely working with 2" wafers and have developped strong
characterization actions to support this growth quality objective. This
involves regular use of SIMS and CV prof i l ing , RX, PL, AES, Hall, TEM, SEM,
optical inspection and some other occasionnal techniques for detailed wafer and
layer assessment and optimization. A specific collaborative action for detailed
crossevaluation of SIMS, Hall and CV prof i l ing techniques used by the
different partners is being done with epilayers circulat ing between partners
for this matter. Thickness uniformities have been improved in al l four cases
to values better than +/ 5 % on 2", best values being obtained by Plessey for
MOCVD (+/3 %) and by CNET for MBE (+/ 1 %). Best results for n and p doping
and emitter aluminium content are also now a few percent with adequate
abruptness control in al l cases. Morphology is also a major concern and both
MBE teams now routinely get oval defect densities of a few 100 cm"

2
.

_ 10" ■
E

■

1

r

■

r

i

^ \ InAs(Si)

\ D

/^
/

1

V 5 0 0 ' C

GaAs(5i) Ts

* \ GaAs(Si)

\\ \\
\\
v.

i

'
■

=500'C

TS=600*C
■

1 \ \
0.7 075 0.8 0.85

INVERSE OF Si TEMPERATURE CELL 1000/[T(K)]

Go^.jBeJiijAs

-*- 1,07 . 10°

Fig. 1 : Maximum ntype doping of MBE
InAs compared to GaAs.

Fig. 2 : Xray spectra of highly doped
MBE GaAs:Be, GaAs:In and GaAs:Beln.

105

All partners use similar standard structures for regular processing.
These structures are already rather complex since they include five basic la
yers (E(n), E(N), B(p), C(n), C(n)), generally separated by graded layers.
Nevertheless much effort is still done to push forward the HBT performances by
introducing more sophisticated layer structures. For instance GEC has made an
optimization study of the E-B interface layer and demonstrated higher DC cur
rent gain by using a specific chirped superlattice.

Many other techniques of the "bandgap engineering" type are also
currently looked at, especially by partners using MBE growth (CNET and GEC).
They involved E-B spacer, superlattices or quantum wells for different layers
(E, E-B, B, C-B, C -S), and bandgap grading for the base as well as for the
contact emitter layer. In this last case CNET has demonstrated the possibility
to get extremely low specific contact resistance (10"7 Ohm.cm"2), without allo
ying anneal, using a graded highly doped (3.1019 cm"3) GalnAs contact layer
(fig. 1) and comparison with a parallel work by Plessey using MOCVD should be
made in the near future.

But one of the major point of concern, with respect to these non
standard structures, is the search for high and ultra-high p-type doping for
the base in order to minimize the base resistance under the constraint of not
degrading the transit time unacceptably. In that area, CNET has obtained world-
record doping levels up to 4.1020 cm-3 using Be dopant in a MBE Riber 2300
machine. The small lattice mismatch (10"3) generated by this ultra-high doping
level has been compensated by isoelectronic In incorporation (fig. 2). Comple
mentary work is under progress to establish the best compromise between base
doping level and thickness and wafer processing, but already HBTs with gain
value of 35 and low base sheet resistance of 150 Ohm.square have been demon
strated.

3. TECHNOLOGY
During the f i r s t year of the 971 project, the partners developped a

basic process, compatible with 2-3 urn design rules, validated by HBTs and d i v i
ders ICs (see 5), and explored new technological steps for a self-aligned
advanced process.

3 .1 . Basic technology

All three partners have developped a basic process using emitter-up
configurations grown on 2" S. I . substrates (f i g . 3). However different techno
logical options for the different process steps are developped by the different
partners and systematically compared between themselves.

For the p-type implantation to contact the base layer, CNET has com
pared Zn and Mg implant. Plessey has focussed on Mg and GEC on Be. Both rapid
thermal annealing (RTA) in optical furnace and classical furnace annealing
(CTA) were i n i t i a l l y compared. As a result, a l l partners agreed to select RTA
as best choice with respect to various cr i te r ia such as l imited unwanted d i f fu
sion (i n - , out- and la te ra l) , surface concentration, prof i le control and ac t i
vation. As for the dopant, both Mg and Be were selected using these same c r i t e
r i a . In the case of Mg, a detailed cross-analysis of RTA temperature diagram,
activation level and doping profi les was thus possible and effectively done,
with samples circulat ing between partners. I t is to be noted that potential
advantages of Be over Mg in term of d i f fus iv i ty and perhaps solubi l i ty remain
to be confirmed and wi l l have to be signif icant enough to compensate the hazard
problem which makes many laboratories reluctant to i t s use.

This process step is closely linked to the p-type contact metalliza
t ion for which are compared classical AuZn (Plessey, GEC) and newly developped

106

AuMn (CNET). Although the comparative characterization is not finished, current
results show a much lower p. for AuMn with record values as low as 2.10"7

Ohm.cm2 on epitaxial layers, but with still some reproducibility problem on
implanted layers which are currently being adressed.

N-type ohmic contact was also the subject of a comparative collabora
tion. InGeAu was selected by Plessey as giving better morphology and nearly
equivalent pc (2.5 10"6 Ohm.cm2) as NiGeAu when annealed by RTA. On the other
hand, by pushing the optimization of both RTA and CTA for AuGeNi/Ag/Au, CNET
has demonstrated in both cases record values of 2.10"7 Ohm.cm2, with a small
edge in favour of RTA because of better morphology but not so good as with
InGeAu.

More process steps are currently the purpose of collaborative compa
rison and/or information exchange. They includes : H and B implantation for
isolation, SiN and SiO by PECVD, polyimide, resistors fabrication, dry etching
(RIE and IBE) and substrate evaluation.

Fig. 3 : HBT structures processed by
CNET (left)
GEC (left below)
PLESSEY (right below)

I D Mg* implantation

WM B* implantation

E a B*,H* implantation

E 2 E,C contact
AuGeNi/Ag/Au

^ B contact AuMn

li-'.'-j 0 ' implantation SI

OOOAI

lum

Base p-implant

Sami-insulating Substrata
10um-

^S

107

3.2. Advanced self-aligned technology

In that area, the purpose of the Project is to develop a self-aligned
implanted process with micron, and subsequently submicron, design rules for
d ig i ta l ECL ICs working at speeds greater than 10 Gbits/sec. Two main actions
are undertaken. The f i r s t one concerns e-beam lithography and associates CNET,
GEC and FTL. The second one concerns the emitter contact cap layer and refrac
tory metallisation compatible with the base implant annealing. Comparative
work is done on these two subjects. CNET is looking at graded epitaxial InGaAs
layers whereas Plessey and Plasma Technology (P.T.) are collaborating on PECVD
Ge layers. GeMo/W refractory n-type metallisation were investigated during this
f i r s t year by CNET and GEC and wi l l be compared in the near future with W and
WSix with collaboration of Plessey and P.T. which has already in i t ia l i zed re
search work on this subject.

3.2.a. E-beam lithography

The main objective here is to develop resist processes adapted to the
various technological steps of HBT ICs manufacturing. This includes different
kinds of l i f t of f , chemical etching, dry etching, and implantation steps. Spe
cial attention is devoted to the throughput, which is a well known l imi tat ion
of e-beam lithography, and also to the compatibility with the classical UV
photolithography in order to obtain a f lexible mixed e-beam/UV lithographic
process.

The participation of GEC was to establish a reference start ing point
by applying current knowledge, using classical PMMA resist, to a simplif ied
f ive levels HBT process on conducting substrate. This was done with the same
EBMF 6.5 e-beam machine as the CNET one and with procedures similar to those
common at CNET.

FTL role was to evaluate potentially useful commercial resists as
well as newly sampled resists looking at the best compromises between resolu
t i on , sensit iv i ty and process compatibil i ty. A very complete survey has thus
been done in close interaction with CNET for c r i te r ia specification and results
validation. Using the guidelines resulting from this work and i ts own know-how
on mono-and multilayered resist processes, CNET is currently developping a
mixed e-beam/UV lithographic process for small design rules HBT ICs. The aim is
to exploit e-beam both for i ts high-resolution and re-design f l e x i b i l i t y , with
a throughput much improved with respect to standard PMMA processes.

The above-mentionned compromises were found to be d i f f i cu l t due to
insuff ic ient capabil it ies of commercially available fast resists. CNET and FTL
has thus evaluated multilayer resist systems which, among other avantages allow
independent and complementary choice of base and defini t ion layer, thus maximi
zing the effectiveness of the process in spite of some added complexity. This
is especially the case for ion implantation and ion beam mil l ing masking where
a thick mask is necessary. For that matter CNET has investigated a t r i leve l
system with an AZ UV-compatible and medium e-beam sensit iv i ty def ini t ion re
s is t , while FTL obtained good results using the fast e-beam resist FBM-120
(f i g . 4) thus preparing an alternate higher throughput system to be transferred
at CNET.

3.2.b. Emitter cap layers and refractory ohmic contacts for self-aligned HBTs

A strongly collaborative action has been undertaken by Plessey and
subcontractor P.T. concerning P and As highly doped PECVD Ge layers using GeH
with PH3 or AsH3 gases. Good morphology and purity have been obtained by P.T on*
both phosphine doped and undoped Ge layers which have then been characterized

108

F i g . 4 : Three-level r es i s t mask AZ1375/A1/FBM120

F ig . 5 : Se l f -a l igned HBT tes t s t ruc tu re .

e x t e n s i v e l y by P lessey. This p ionee r i ng work has led to a low p of 2 10-6
Ohm.cm2. The idea is here to use a low gap very highly doped layer for improve
ment of the emit ter contact in a way compatible with a se l f -a l i gned process.

The same object ive is fol lowed by pa ra l l e l CNET work on MBE grown
graded InGaAs layers for which growth condit ions have been establ ished already
l ead ing to 3 101 9 cm"3 S i - dop ing l eve l (f i g . 1) and to a record Pc value of
10~7 Ohm.cm2, which is close to the minimum measurable value by TLM method.

Concerning re f rac tory ohmic contacts, d i f f e r e n t var iants of the GeMoW
approach have been invest igated using sput ter ing (GEC) and mixed spu t te r ing /e -
beam gun (CNET). CNET has compared RTA and CTA under As overpressure and o b t a i
ned very good Pc values of 3.10~6 Ohm.cm2 in the l as t case. GEC has looked at a
more convenient technique, using a Si N cap layer during CTA, wi th rather good

109

pc values of less than 10"5 Ohm.cm2. More work is s t i l l needed to select an
optimum procedure in this area. On the other hand, P.T. has in i t ia ted work on
PECVD tungsten and tungsten Si l ic ides.

CNET has developped a RIE process to selectively etch the GeMoW con
tact using a Pt mask and a multistep RIE sequence to obtain a T shape structure
where the undercut determines the distance between the ohmic emitter contact
and the p-type implantation (f i g . 5). Here again more work is s t i l l needed,
especially to eliminate the formation of residues and also to assess this tech
nique against the use of spacers.

Nevertheless a f i r s t self aligned large dimension test transistor
(SA-HBT) has been successfully realized by CNET and work is currently running
on small dimension SA-HBTs using this GeMoW approach [2] .

4. TEST AND MODELLING

In that area, this f i r s t year of act iv i ty has been largely devoted to
development and validation of both hardware and software tools. DC and RF
testing are now well established at a l l three partners locations with specific
e f for t done by CNET concerning fu l ly automated DC testing as well as deembed-
ding and equivalent scheme extraction procedure from Si j parameters measure
ments, by GEC an Plessey concerning packaging and associated RF testing. Al l
partners are also now using direct microwave measurement on wafers for HBTs,
with the avai labi l i ty at Plessey for testing logic c i rcui ts up to 5 Gbits/sec
on-wafer.

One-dimensional dr i f t -d i f fus ion models were already operating and
have been refined by GEC (BIPOLE) and CNET (ETHER) while 2-D f i n i t e element
simulation is nearly ready, including a friendly process-oriented input prepro
cessor developed by CNET (TITAN III—V). Both partners have confronted their
approach and results in the area of physical simulation. These 1-D device
physics-oriented simulators have been used extensively by CNET and GEC for
detailed analysis and optimization of the HBT structure, concerning especially
Aluminium composition and emitter-base grading, base width and doping,
collector doping, various superlattices behaviour (cf. 2) and so on. In the
case of GEC model for instance, both vertical an lateral analysis are carried
out successively yielding the base and collector current as a function of
base/emitter voltage and f t as a function of collector current.

On the other hand al l partners have also developped small and large
signal models coupled with commercial ICs simulators (SPICE and ASTEC). For
instance a distributed CAD-oriented transistor dynamic model has been develop
ped by Plessey and validated by real devices measurement. From this small
signal model, a simplif ied lumped element model has been derived which is used
in SPICE simulator for complete ICs simulations with good coherence with measu
rement on ECL divider-by-four (see 5).

Although somewhat similar, the various structures and design rules used by
the three partners present many differences and variations. In order to go
further in the comparison between the different approaches using a l l models
cited above, the partners have commonly agreed to exchange al l necessary infor
mations including a detailed quantitative description of epilayer structures,
geometrical data and experimental electr ical parameters data. This common
disclosure of very sensitive data is a good measure of the level of cooperation
and open information exchange that has been developped in the consortium.

110

5. DEMONSTRATORS

At t h i s point of the p ro jec t , demonstrators have been fabr ica ted wi th the
basic processes and both uni tary HBTs and SSI ECL ICs are concerned. Note ho
wever than resu l ts on SAHBTs have also already been obtained (c f . 3 .2 .b) .

A l l partners have fab r i ca ted , tested and compared HBT devices iden t i ca l to
the t rans i s to rs used in t h e i r present ECL ICs design. In tha t case, design
ru les are s t i l l rather conservative wi th both emi t ter width and base implanta
t i on -em i t t e r spacing between 2 and 4 p.m. Nevertheless, the resu l ts obtained are
a good ind i ca t i on of the very high performance potent ia l of HBT technology.
Indeed, wi th those conservative design rules using basic non se l f -a l i gned pro
cess, wi th many parameters s t i l l not opt imized, f j . and fmax have been regu lar ly
GHz f o r fm a x i n the case of a 2 ^m rules HBT of Plessey, a higher fmaxOf 17.8
GHz having been obtained wi th somewhat reduced geometries).

One of the short term object ives of the pro jec t was also to apply the
basic HBT process to SSI ECL ICs in the 4 to 8 GHz range. Dividers by-two
(f i g . 6) and d iv ide r -by - four ICs were thus designed [3] and fab r i ca t i on s tar ted
by a l l three partners (f i g . 7) . This again allowed conf rontat ion of approaches
and simulat ion resu l ts during the design phase and i s promoting s t i l l stronger
exchange in the area of t es t and packaging.

Important resu l ts have already been obtained by Plessey who successful ly
fabr i ca ted d iv ide r -by - four (f i g . 8 and 9) in two versions using respect ive ly 4
lim and 2.5 ^ emi t ter width and operat ing reproducibly wel l over 2 GHz and 3.5
GHz under d i rec t on-wafer measurements. By ind iv idua l adjustment of bias condi
t i o n s , input rate values up to 5.7 GHz were obtained [4] . The c i r c u i t includes
44 t r a n s i s t o r s . I t consists of two master-slave D-type latches in series and
diss ipates 700 nw t y p i c a l l y . E f fec t of packaging has also been tested showing a
15 % decrease of speed for a conventionnal leadless c a r r i e r and a 10 % improve
ment fo r a 50 ohms microwave j i g on a typ ica l d iv ider tested on-wafer at
3 GHz.

An i n t e res t i ng point which resul ted from th i s conf rontat ion of resu l ts
between partners was tha t , when comparing CNET and Plessey resu l ts on HBTs,
same order of magnitude of fmax and f^were obtained although the design rules
of Plessey were somewhat smaller that CNET ones. This showed the importance of
opt imiz ing passive pa ras i t i c parameters and especia l ly the contact resistances
on which CNET has focussed recent ly obtain ing the resu l ts already mentionned in
3. In the case of Plessey design fo r example, s imulat ion shows that the
d iv ider -by- two frequency could thus be pushed up to 11 GHz wi th the same
layout .

6. CONCLUSION

At the present t ime, the 971 ESPRIT pro jec t has resul ted in the develop
ment of a basic process fo r GaAlAs/GaAs HBT ECL ICs (2-3 MIJ rules ion-implanted
non se l f -a l i gned process). The three partners involved, GEC, Plessey and CNET,
have regu lar ly compared t he i r approaches in a l l areas and col laborated on
spec i f i c actions which allowed to speed up t h e i r development pace and c l a r i f i e d
the c r i t e r i a and choices. A good level of performance and associated reproduci
b i l i t y has been obtained both in ep i tax ia l growth (MBE an MOCVD) and process
technology although of course much e f f o r t is s t i l l needed, especia l ly on u n i
f o r m i t y , r ep roduc ib i l i t y and y i e l d aspects as well as on power d iss ipa t ion in
order to quick ly push the ICs complexity toward the MSI l e v e l . This w i l l be a
major part of the work in the near f u tu re .

OVGCJt Br TWO CHCUT DIAGRAM

Fig . 6 : MasterSlave div idebytwo diagram F ig . 7 : Micrograph of a div idebytwo IC

^:- icr: - en

|Mfel
en . . tzi ca ..ici^, J^

SBHI1, p i » a s jMHSJ ' - jBSB' i^ .
...MSB i S B

 S 0 «3 y «TH» .■ 9 '

Input Power
i dBm

~To/P. Swing
JLO9 Volts

F ig . 8 : Micrograph of a d iv ideby four IC F ig . 9 : Div ideby four IC tested at 5.4GHz onwafer

112

On the other hand, one of the main teaching of t h i s f i r s t year was the
concrete va l i da t ion of the fundamental advantages of HBT for u l t r a high speed
log ic app l i ca t ions . The demonstrators operate at already very high frequencies
using the basic non se l f -a l i gned process in sp i te of the s t i l l conservative
design rules which were chosen (2-3 p.m) : maximum obtained performances being
f t = 16.6 GHz , f = 17.8 GHz and D/4 working at 5.7 GHz. This shows tha t
such an unoptimized non se l f -a l i gned GaAs HBT process is nevertheless already
on the same level of speed performance as an advanced super se l f -a l i gned
S i l i con Bipolar process [5] . Moreover the very good f i t obtained between tes t
and simulat ion data give confidence in the predic t ions establ ished fo r the
c a p a b i l i t i e s of the fu ture advanced se l f -a l i gned process fo r which input b i t
r a t es above 10 GHz should be obtained using HBTs wi th f t and fmaxabove 30 GHz.
With such a se l f -a l i gned process Rockwell and NTT [6 , 7] have recent ly obtained
impress ive f j . and f i n the 50-70 GHz range (wi th 104 GHz announced) and
d iv iders working at 13.7 GHz (with more than 20 GHz announced). This is a major
challenge for our consortium fo r the near f u t u re .

The 971 ESPRIT pro jec t funded by EEC has allowed to promote deta i led i n
formation exchanges, inc lud ing very sens i t ive data, and cooperation focused on
many points concerning growth, process, model l ing, design and tes t of HBT ECL
ICs. By s t imu la t ing t h i s work and in t roduc ing cooperation under various forms
between the three main involved European research laborator ies and two add i -
t ionna l subcontrators, EEC ESPRIT funding promotes the development of an Euro
pean adequate response to the now buzzing a c t i v i t y in tha t domain in USA and
Japan.

7. ACKNOWLEDGMENTS

A large number of people are p a r t i c i p a t i n g in the 971 ESPRIT Pro ject .
Besides the teams' managers l i s t e d above as authors, the fo l low ing people are
to mention, due to t h e i r essent ia l ro le in d r i v ing the a c t i v i t y of the d i f f e
rent tasks of the d i f f e ren ts par tners, and in the coordinat ion of co l labora t i ve
work between partners : P.J. TOPHAM, I .H. GOODRIDGE, D.V.A. BENN and A .J .
HOLDEN (Plessey), T. KERR and P. REES (GEC), F. ALEXANDRE, E. CAQUOT and C.
CHEVALLIER (CNET), B.N. LYONS and J . O'BRIEN (F . T . L .) , P.N. KEMBER (P . T .) .

8 . REFERENCES

[1] P.J. Topham et a l . "Heterojunct ion b ipo lar d i g i t a l IC's using MOCVD mate
r i a l " , GaAs IC's Symposium, 1986.

[2] Daoud-Ketata, Bresse, Dubon-Chevall ier, "A se l f -a l i gned technology using
re f rac to ry metals fo r GaAs-GaAlAs hetero jonct ion b ipo lar t r a n s i s t o r " , GaAs
and Rel. Comp. Conf., Las Vegas, 86.

[3] P. Desrousseaux, J . Dangla, M. Laporte, E. Caquot, D. Etiemble and A.
Kazeminejad, "GaAlAs/GaAs Heterojunct ion b ipo lar t r a n s i s t o r : Models and
HECL c i r c u i t s des ign" , IEEE Bipolar Conference, 1987.

[4] C.G. Eddison, E.J. Greenwood, R.C. Hayes, P.T. Topham, D.V.A. Benn, GaAs
Heterojunct ion Bipolar Transis tor ECL Divide by 4 C i r c u i t Operating at
frequency greater than 5.6 GHz", ESSIRC, 1987.

[5] P. Ashbum A. Brunn-Schweller, A. Rezazadeh and E. Chor, "Comparison of
s i l i c o n and GaAs/GaAlAs Heterojunct ion Bipolar Technologies for High-Speed
ECL C i r c u i t s " , IEEE Bipolar Conference, 1987.

[6] M. Madihian et a l . : "Fabr icat ion and modell ing of a novel se l f -a l i gned
AlGaAs/GaAs hetero junct ion b ipo lar t r ans i s to r wi th a cu to f f frequency of 45
GHz", IEDM 86 Proceedings, 1986.

[7] Ishibashi et a l . , "Se l f -a l igned AlGaAs-GaAs hetero jonct ion b ipo lar t r a n s i s
t o r fo r high-speed d i g i t a l c i r c u i t s " , IEDM 86, Proceedings 1986, pp. 809-
810.

113

P r o j e c t No. 1128

IMPROVEMENTS IN GaAs MATERIAL FOR IC'S APPLICATIONS

Martin G.M., Deconinck P., Duseaux M. and Maluenda J.,
Nagel G.+ and Lohnert K.+,
Crochet M.J.*, Dupret F. and Nicodeme P.

Laboratoire d'Electronique et de Physique Appliquee
3 Avenue Descartes, PB 15, 94451 Limeil-Brevannes, France

+ Wacker-Chemitronic, P.O. Box 8263 Burghausen, F.R.G.

* Unite de Mecanique Appliquee, Universite Catholique de Louvain
2 Place du Levant, 1348 Louvain-la-Neuve, Belgium

1. INTRODUCTION

In recent years, ultra high speed LSI GaAs Integrated Circuits have been achieved in several
laboratories all over the world. Getting high fabrication yield for such LSI devices requires
extremely homogeneous wafers. The goal of the 1128 program is to obtain large crystals
(diameter >3 inches) of GaAs material suitable for LSI application. More specifically, this
program is aimed at developing an industrial approach for the preparation of large diameter
(>3 inches) semi-insulating GaAs substrates which can allow one to prepare very
homogeneous active layers by ion implantation and thus to control the properties of each
individual micro-FET made on it[l].

Our joint work, which has started in January 1985, may be divided into two main parts:

i. Liquid Encapsulated Czochralski (LEC) growth of GaAs ingots and detailed
characterization which includes assessment of as-grown materials (Etch Pit Density, EL2
concentration, resistivity, mobility, ion implantation efficiency) and evaluation of
homogeneity of active layers made on them by means of ion implantation (micro-FET Dense
Row Pattern procedure described below);

ii. Computer simulation of LEC growth taking into account the different types of global heat
transfer in actual pullers, and calculation of induced thermal stress field in the growing
ingot.

In this paper, we will first review the progress which has been made over the last eighteen
months on the growth of LEC crystals together with the specific techniques which have been
developed for attaining homogeneous properties of the wafers. We will then elaborate on the
specific measurement techniques which have been used for evaluating the quality of the
material. Finally, we will present the basic principles of the numerical techniques which have
been developed towards an accurate simulation of the growth progress and a deep
understanding of the thermal exchanges taking place in the puller.

114

2. GROWTH AND CHARACTERIZATION OF SEMI-INSULATING GaAs
SUBSTRATES

2.1 Growth of large diameter semi-insulating GaAs substrates

The manufacturing of LSI GaAs circuits requires high quality of the semi-insulating GaAs
substrate material with respect to uniformity of the electrical properties. At present the
quality of undoped dislocated and non-annealed GaAs substrate grown by conventional LEC
technology has proven to be insufficient for meeting these requirements. Fluctuations of the
threshold voltage in such material have been directly correlated to the structure of the built-in
dislocation network and associated non-uniformities in the concentration of the deep level
EL2. Recent results indicate that various techniques such as post-growth annealing [2-7],
magnetic field crystal growth [8,9], accurate stoichiometry control [10,11] and In-alloying
[12-14] lead to high uniformity of the electrical properties.

In order to achieve the best approach for growing high uniformity GaAs substrates, we have
investigated two main routes:
i. growth of low dislocation density material by flattening the thermal gradients in
accordance with the results of LEC modeling and/or by In-alloying;
ii. improvement of uniformity of the electrical properties through the application of a
magnetic field and post-growth annealing techniques.

2.1.1 Experimental

Two inch diameter undoped and In-alloyed and three inch diameter undoped GaAs crystals
investigated in this paper were grown by the low pressure LEC technology without and with
the application of a vertical magnetic field (3" diameter only with a range of magnetic field
from 0 to 2500 Gauss). The ingots were partially post-growth annealed in evacuated and
sealed quartz ampoules at temperatures above 1000°C with additional arsenic. The ingots
have been characterized by EPD etching, x-ray topography for evaluating the dislocation
density, resistivity mapping by the point contact method (spot size 200 Jim, spacing of spots
400 |im) and by IR absorption measurements (linescan profiles, spot size 300 |im) at a
wavelength of 1 (im for evaluating the EL2 concentration.

2.1.2 Reduction of the dislocation density

The reduction of the dislocation density may be obtained either by flattening the thermal
gradients (e.g. improvement of the growth parameters and/or the thermal environment) or
by isoelectronic doping with Indium. Consequently the thermal stresses in the crystal are
lowered or the critical shear stress is increased while the formation of dislocations is reduced.
In figure 1 we show the radial EPD distribution of a 2" diameter Cr -doped semi-insulating
GaAs wafer. The average dislocation density (EPD according to ASTM standard F47) in this
wafer is 14500 cm~2; this is significantly lower than in standard grown ingots. This
improvement was obtained by a well defined cone angle of the crystal which reduces the heat
exchange between cone surface and the thermal environment and results in low thermal
gradients in the crystal. On the other hand, In-alloying is very efficient in eliminating
dislocations as one can clearly see on the x-ray topography in figure 2. The wafer is
completly dislocation-free except at the edge where one finds residual slip lines.

2 " Cr- doped GaAs

10 20 30
d i a m e t e r (r

Figure 1. Radial Etch Pit distribution of a 2"
diameter Cr-doped semi-insulating GaAs ingot
grown with improved LEC.

2.1.3 Post growth annealing

Figure 2. X-ray topograph of a 2" diameter
In-alloyed semi-insulating GaAs wafer.

Post growth ingot annealing has proven to be a very effective tool for obtaining excellent
uniformity of the electrical properties. Figure 3 shows typical linescan profiles of the IR
absorption coefficient across wafers from the same ingot before and after ingot annealing.
The as-grown state (a) clearly exhibits the familiar W-shaped profile with strong
microscopic fluctuations, which is directly related to the distribution of dislocations and their
microscopic arrangement in a cellular network. After ingot annealing (b) the W-shaped
profile is largely flattened and fluctuations are reduced to below ±9% of the mean value,
which corresponds to a relative standard variation of less than 3%. In addition it can be seen
from figure 3a and 3b that the average value of the absorption coefficient and thus the EL2
concentration increases after ingot annealing.

-20 -10 0 10
position on sample [mm]

20

Figure 3. IR absorption profiles of 2" diameter
undoped GaAs wafers in the as-grown state (a)
and after ingot annealing (b).

Figure 4. Resistivity mapping by the point
contact method on a 3" diameter undoped
GaAs wafer (ingot annealed).
The difference between the dark and white
spots corresponds to a deviation of ±30 % of
the mean value of resistivity .

116

In figure 4 we show the resistivity mapping of a 3" diameter undoped GaAs wafer after ingot
annealing. The difference between the white and dark spots is in the range of about ±30% of
the mean value (standard deviation: 10%).

For comparison we show in figure 5 the radial profiles of the EL2 concentration of 2"
diameter Inalloyed semiinsulating GaAs wafers. As expected already from figure 2 (xray
topograph) the elimination of the dislocation cell structure achieved in this material results in
very good uniformity of the EL2 distribution already in the asgrown state. Consequently
additional ingot annealing does not provide further improvement of the uniformity but as in
the case of dislocated material the average EL2 concentration is also increased.

5 1H
c 10
o
a
i 05

b) ingot annealed

a)
■■iqn^B i^"^i^^^y^

20 10 0 10 20
position on sample lmm|

Figure 5. Radial EL2 concentration profiles (seed and wafers) in asgrown (a) and ingot
annealed (b) 2" Inalloyed nearly dislocationfree GaAs crystals (resolution 300|im).

2.1.4 Investigation of uniformity by applying Vertical Magnetic field LEC technique

EL2 concentration profiles of wafers from the middle part of a 3" diameter GaAs crystal in
the asgrown state are shown in figure 6. During growth of this part the magnetic field was
switched on and then maintained at 2500 Gauss. One can clearly see that the EL2
concentration profiles of the wafers from the LEC and adjacent VMLEC grown part are
nearly comparable with respect to long range and short range variations (sEL2 = sigma
EL2/<EL2> = 5%, <EL2> = average concentration). This means that for these growth
conditions the magnetic field does not provide an improvement over the standard LEC
growth. It should be pointed out, however, that for the asgrown state the EL2 uniformity of
this ingot is exceptionally good and already comparable to typical ingot annealed 3" diameter
material.

25r _ 2.5
VMLEC <EL2> = 1.47E16cm3 g
asgrown sEL2 = 5% 2Q

2.0 ^ 2.0

£ 15

1.0

^^'^■MJ,p^
!
^''ii» 1

edge

30 1.0
Position (mm)

t 1.5

2J i.o

LEC
as-grown

- edge
■

<EL2> = 1.44E16cm-3
SEL2 = 5%

1

-
v
^yrV^

v
'M
canter

20 30 40
Position (mm)

Figure 6. Radial EL2 concentration profiles of wafers from a nonannealed 3" diameter
undoped ingot temporarily grown with (a) and without (b) a vertical magnetic field
(resolution 300 p.m).

117

2.5

2.0

•S 15

1.0

0.5

VM

■

•A ■

[edge

0

LEC

•*'"" '"*

10

<EL2> =
SEL2 =

. » , . , ' * ■ " " ^ ' *

20

1.47E16cm
1.75%

 ..*...,

center

30
Position

40
mm)

3

' ■ * —

' E

" o
c
o
a «_
c

c
o

CM
. J
UJ

2.5

2.0

15

1.0

0.5

VMLEC

' . ' ' I,"'
 | '[

 edge

9 10

iiV
U

<EL2>
SEL2

",v■,'•■■"

20

= 1.37E16cm3
= 7 . 1 %

. yii ••• P (i

center

30 40
Position (mm)

Figure 7. Radial EL2 concentration profiles of seed end (a) and tail end (b) wafers from one
VMLEC grown (600 Gauss) 3" diameter ingot annealed crystal (resolution 300 |im).

2.5r

2.0

'n «

1.0:

<EL2>
SEL2

1.56E16cm3
2%

: edge

improved LEC

cenler

0.5
20 30

Position Immi

Figure 8. Radial EL2 concentration profile of an ingot annealed 3" diameter undoped crystal
(seed end wafer) grown with improved LEC technology (resolution 300 \im).

The results of the EL2 concentration profiles in seed and tail end of an ingot annealed VM
LEC grown crystal are shown in figure 7a and 7b. The seed end wafer (see figure 7a)
reveals an excellent uniformity (sEL2=1.75%) which is clearly better than typical results in
standard LEC grown ingots. Similar results can be obtained by optimized LEC growth
without magnetic field (see figure 8, sEL2=2%). The EL2 concentration profile of the tail
end wafer (figure 7b) exhibits a moderate uniformity with remaining fluctuations. In order
to obtain the same excellent uniformity both in seed and tail end, a precise control of the
initial melt stoichiometry near the congruent melting point is required; this can be achieved
by Arsenic Injection into the melt. This will be investigated in the future.

2.2 Characterization by micro fet analysis (dense row pattern process)

The spread of electrical properties of IC's active layer on a wafer may strongly decrease the
yield of fabrication of LSI devices. More specificaly we must consider the spread of
properties of two neighbouring FET's which can be only a few microns spaced from each
other in this type of circuit.

This is the case in static memories where the unit cell presents two drivers FETs only 10p. m
apart from each other (figure 9). A difference in their threshold voltage leads to an
instability of the cell and hence the misworking of the entire memory. The uniformity of
wafers is thus of prime importance.

118

Figure 9. Schematic of a memory cell.

To test the material we have used the so-called DRP (Dense Row Pattern) procedure
established together by LEP and SIEMENS within the frame of ESPRIT 843. It consists in
measuring the fluctuation of the threshold voltage of thirty micro FETs, 5 micrometers far
from each other displayed all over the wafer (figure 10). Of course such a highly dense
packing of FETs simulates actual situations in LSI circuits. This pattern is repeated more
than 260 times all over a 2" wafer and more than 640 times over a 3" wafer in two
perpendicular directions. The process has been reduced to its minimum (set of five levels of
masks) so as to get rid of any technological effect.

Many 2" and 3" wafers from different parts (seed and tail) of different ingots grown by
WACKER have been tested (Cr-doped, undoped, In-alloyed, low thermal gradient growth or
standard thermal gradient growth). For each type of wafer one measures all the FETs and
their threshold voltage Vth. From these data, we calculate:
- the standard deviation of the thirty FET's in the same row (aVth) and the corresponding
mean value of all the rows on the wafer;
- the spread around the mean value (o(oVth));
- and, more important, the percentage P15 of dense rows with a standard deviation below
15mV.
Figure 11 shows the distribution curve of aVth for an In-alloyed, a Cr-doped material and an
undoped material. Table 1 reports the results for the different materials. According to a
LEP evaluation done outside this contract the value of P15 must be at least equal to 75% so as
to get a material related yield of LSI circuits (a 1K-SRAM taken as a pratical example) close
to 100%. Thus today at least one type of 2" material meets this requirement.

Figure 10. Schematic of a part of the dense row of 30 micro-FETs.

119

a
•a
u
a
■a
c
a
■p

3
O

u

o
00
as

4>
c

1001

90

KJ

70

GO

»
W

SO

»
10

0

" ■

"
-

-
"
-

-
■

-

In

-. '—.
_/~~ *-~

J
'~

alloyed r^^ t*
f fundoped _ I_J1"

r r~* J *~

/ / , J ' Crdoped
/ "' '
/ -' ^
I ' f
1 ' ' 1 ' ' 1 r t
i ^ i

' I

/ /

/ / I \t !
• '
1 .r

L I
/ 1
J t ii . ^ * ■ • 1——i 1

10 15 20 25 30 35

Threshold voltage standard deviation (mv)

Figure 11. Distribution curve of CTVth for Inalloyed undoped and Crdoped materials.

Table I. Characterization results obtained with various materials.

DIAMETER

MATERIAL

INGOT n°
Seed or tail

EPD(cnr2)

CR-DOPED

C/61831
S T

35000

ELECTRICAL
CHARACTERISATION
Mobility (cm2/V.s) 3533
Resistivity(Ohm.cm) 3.5E8

HOMOGENEITY
FROM DRP:
o(Vth) (mV)
a(aVih) (mV)
%of a<15(mV)

31
18
6

yestigations by high

29000

2283
5.6E8

44
30

0

2"

UNDOPED

U/01931
S T

18000

6977
4.1E7

23
20
35

20000

6431
4.2E7

27
43
38

IN-ALLOYED

1/8923
S

<500

2700
8.0E7

resolution tomography

T

<500

3010
1.2E8

15
8

75

3"

UNDOPED

U/6883I
S T

29000 37000

6441 5824
5.1E7 7.7E7

30
46
28

2.3

Recently a tomography system whose principle is described in figures 12a and 12b has been
designed for high resolution imaging: light produced by a YAG laser and entering the cleaved
edge of a wafer is diffused by the defects present in the material. Agregates or precipitates
have been evidenced by this new technique (figure 13) gathering along lines (dislocation
lines probably) or in clouds. It becomes possible, with this new technique, to locate defects in
the three dimensional space by monitoring the position of the laser beam. This new technique
is expected to become important to qualify ingots and/or wafers, since it is the first to provide
an easy evaluation of the presence of precipitates.

120

Sample " ^

£
Lens

LASER YAG
1.06 (i m

Lens Polariz
TOMOGRAPHY
OBSERVATION

MSIOCATION

(Angenicux)

HAMAMATSU
C 1000

Digital
Video Ge
Camera

Camera
Control

Monitor

Figure 12a. Tomography apparatus. Figure 12b. Principle of high resolution
tomography.

Figure 13. Infrared tomography picture taken with a high magnification and a YAG-laser
beam about 100 |im in diameter. The total length of the scanned material is here 1 Lim.

3. LEC MODELING

3.1 Global finite element analysis

Any improvement of the processing conditions for growing GaAs material suitable for LSI
application requires an accurate knowledge of the thermal stress distribution in the growing
crystal and of the liquid/solid interface. Such knowledge requires the development of a
detailed model describing the heat transfer within the furnace. The problem is highly
complex since it involves radiation, heat conduction, heating elements and convection-
diffusion within the melt. As a basis for our work in the present project, we have used a
global finite element analysis of the Czochralski furnace [15] which we now briefly review
before commenting on the new specific features which have been added for calculating the
growth of GaAs crystals.

121

Let us consider in Fig 14a the draught of a Czochralski puller in which one can easily identify
the resistor R, the insulator I, the crucible C, the melt M, the crystal G, the structure S and the
dome D. The numerical method consists of a separate analysis of each individual component
of the crucible by means of the finite element method [16] followed by an assembly of these
components which takes radiative and convective exchanges into account. The aim of the
algorithm is to obtain a sequence of linearized systems in terms of the temperatures at the
nodes of the finite element mesh. Eachsolid body within the furnace, such as R, I, C, G and S
in Fig 14a, together with the melt M as long as forced and natural convection is not being
calculated, is covered by a finite element mesh in which one takes conduction and possibly
heat generation into account. The right-hand side of Fig 14a shows a finite element mesh
used in a typical calculation. We note that the shape of the crystal G and of the melt M are
unknown a priori because the shape of the liquid/solid interface is unknown at the outset.

Figure 14. (a) Typical Czochralski puller with the resistor R, the insulator I, the crucible C,
the melt M, the crystal G.the structure S and the dome D and the finite element mesh; ; (b)
isotherms in the puller.

122

Throughout the iterative process, the finite element mesh is deformed in order to adapt to the
latest interface shape. Some parts of the furnace such as the dome D in Fig 14a are thin
bodies which are best represented by one-dimensional elements on which one imposes a
relationship between the outgoing heat flux and the local temperature.
Finally, the furnace contains several radiative enclosures which are three-dimensional
axisymmetric domains connecting the solid and the thin bodies described above. The most
complex part of the thermal problem is the calculation of the radiative exchanges taking place
in the enclosures. The calculation is of course highly non-linear in view of the fourth power
terms in temperature appearing in Stefan's law; moreover, for calculating the radiative flux
at a given point of an enclosure, one must take into account the hidden and viewed parts of the
furnace from that point [17] [18].

Each of these constituent parts, i.e. the solid bodies, the thin bodies and the radiative
enclosures, are called macro-elements . The boundaries of these macro-elements form the
skeleton of the furnace. After an assembly of the macro-elements, one imposes the thermal
equilibrium and the uniqueness of the temperature on the skeleton of the furnace. The
resulting non-linear system is solved by means of Newton's method. The finite element mesh
is then updated in such a way that the liquid/solid interface coincides with the melting point
isotherm.

3.2 Specific features of GaAs crystal growth

The method described in the previous section requires a precise knowledge of the geometry
of the Czochralski puller and of the physical properties of its constituents. The geometrical
data also include the radius of the crystal, the level of the melt in the crucible, the relative
altitude of the latter with respect to the heater, etc... Once the parameters of the furnace have
been introduced as an input for the calculation, one is able to obtain a relationship between the
heating power and the pulling rate, with the additional constraint that the triple point at the
intersection between the liquid, solid and gaseous phases be assigned the melting temperature.
In practice, one imposes a pulling rate based on experimental data; the resulting calculated
input power and the shape of the isotherms throughout the furnace allow one to verify the
validity of the mathematical model.

The features described in the previous section are insufficient for an accurate description of
LEC growth. Indeed, the melt is covered by a layer of boric oxide to avoid the arsenic
evaporation. Moreover, the high pressure argon atmosphere above the boric oxide layer
generates further convective heat exchange in the furnace. The global finite element model
has thus been refined for including such features. The constituents of the furnace indicated in
Fig 14a were all either fully transparent either fully opaque. The boric oxide layer, indicated
by the symbol B in Fig 14a, is neither transparent nor opaque. It is a semi-transparent
material; absorption does not solely take place at the surface of the body but energy is also
absorbed and emitted within the body itself. For taking such properties into account, we have
assumed that the boric oxide is opaque for some ranges of wavelength and transparent for
some others. One may then obtain, on the basis of experimental data, an opacity coefficient
which is assumed to be temperature independent. Despite the presence of the boric oxide
layer, the surface of the melt is then exchanging energy by radiation with the upper
constituents of the furnace.

The convective motion of the ambiant gas in the enclosures of the furnace depends upon the
value of the Grashof number, which compares tbuoyancy to tviscous forcesc. For actual
values of the Grashof number in the GaAs furnaces, one finds thin boundary layers along the
walls of the cavity while gas temperature outside these layers is essentially uniform. We have
developed a mathematical model based upon that observation.

123

Let q denote the heat flux at the surface of an enclosure, T its temperature, and let T* be the
(assumed) uniform temperature away from the boundary layers. We impose a relationship

q = m(T-T*).

where m is a coefficient depending upon the Grashof and the Prandtl numbers which can be
calibrated from specific calculations on the motion of the ambiant gas in the enclosure . For
further details on the evaluation of m, the reader is referred to [19] [20].

As a result of the calculation, one can then obtain a full description of the temperature field
throughout the furnace constituents.

An example of such a temperature field is shown in Fig 14b, which shows the isotherms in the
solid parts of the furnace under standard conditions when the cristal has a diameter of 2.5
inches.

3.3 Calculation of thermal stresses

The presence of dislocations in the grown crystal is attributed in part to excessive thermal
stresses being generated during growth. The usefulness of the calculations described above is
therefore enhanced by a method for monitoring the thermal stresses while the crystal is being
pulled. A major problem which needs further research is of course the selection of an
appropriate continuum model for calculating the thermal stresses and the generation of
dislocations, which is made difficult by the lack of data about the mechanical behavior of
GaAs near the melting point.

It is currently assumed that the crystal behaves as an axisymmetric thermoelastic solid. The
precise knowledge of the temperature field based on the global calculation allows one to use
once more the finite element technique for calculating the thermal stresses. The calculation,
which is fairly standard, assumes that surface forces vanish on the external surface of the
crystal. It is then possible to calculate the principal stresses S\, S2 and S3 at every point of the
crystal and to evaluate Mises invariant which has the following form,

SM = [(Si - S2)2 + (% - S3)2 + (S3 - Si)2] 1/2;

S M is currently adopted as an indicator for the generation of dislocations. An optimization of
the furnace should lead to lower values of the Mises invariant, for a fixed value of the pulling
rate and of the diameter of the crystal.

3.4 Application

As a typical application of the method described in earlier sections, we present below results
which have been obtained in simulating the pulling of 2.5" GaAs crystals at three different
pulling rates, i.e. 0,1.0 and 2.0 cm/h. All the specific features of the method have been taken
into account; we have also included the modified shapes of the menisci due to surface tension.
Fig 15 shows the temperature field within the melt, the crystal and the boric oxide layer
together with the thermal stresses in the crystal (in MPa). One observes that a higher pulling
rate induces a higher concavity of the crystal near the liquid/solid interface, a weaker
temperature gradient in the melt below the interface but stronger above and an increase of the
thermal stresses within the crystal, as one may expect. One also calculates that a higher
pulling rates requires a lower power dissipation in the resistor.

124

Figure 15. Temperature field within the melt, the crystal and the boric oxide layer together
with the thermal stresses in the crystal (in MPA) for three different pulling rates: 0, 1.0 and
2.0 cm/h.

V,i ■'
 a

"
/h

MPl

-

/

m

V i ■
 2

"'"
HPj

'

1

■

Figure 16. Radial distribution of thermal stresses in the crystal at three different altitudes for
the pulling rates of figure 15.

In Fig 16, we show the radial distribution of thermal stresses in the crystal at three different
altitudes and for the cases of Fig 15. We observe that the stresses are higher near the wall of
the crystal, where the thermal gradients are not uniform. When the pulling rate increases,
one observes that the stresses increase on the axis of symmetry. In fact, when the pulling rate
is 2cm/h, the minimum value of Sy[is not found on the axis of symmetry.'

125

4. CONCLUSIONS

Manufacturing of high quality GaAs substrate material has been realized by different routes
such as lowering of the dislocation density (improved thermal gradients or In-alloying) and
improving of the uniformity by the application of magnetic field technique and post growth
annealing. The present results indicate that within the probing resolution used, excellent
uniformity of the EL2 concentration, comparable to In-alloyed GaAs can be achieved in
undoped material by magnetic field or improved LEC technique and additional ingot
annealing.

For improving the thermal conditions during crystal growth, a powerful numerical method
for calculating the global heat transfer in a Czochralski furnace was developed. At present it
is already possible to determine optimal operating conditions and optimal geometry with a
view to lower thermal stresses in the crystals. In future the effect of forced and natural
convection within the melt will also be included.

Wafers have been evaluated by the Dense Row Pattern procedure with respect to their
suitability for manufacturing of LSI circuits (e.g. lk-SRAM). This technique allows one to
determine the micro uniformity of FET properties and to evaluate the material-related yield
of functional IC's on the wafer. These requirements of LSI circuits are met today by 2" In-
alloyed material. Furthermore high resolution tomography has been described as a
promising technique, which may become important to qualify ingots and wafers with respect
to defects such as agregates and/or precipitates.

REFERENCES

[I] Maluenda J., Martin G.M., Schink H. and Packeiser G. (1986). Appl. Phys. Lett.48, 715
[2] Rumsby R., Ware R.M., Smith B., Tyjberg M., Brozel M.R. and Foulkes E.J. (1983)
Tech. Digest. GaAs IC Symp., Phoenix Az., 34
[3] Miyazawa S., Honda T., Ishii Y. and Ishida S. (1984) Appl. Phys. Lett. 44,410
[4] Martin S., Duseaux M. and Erman M. (1984). Inst. Phys. Conf. Sen 74, 53
[5] Yokogawa M., Nishine S., Matsumoyo., Morishita H., Fujita K. and Akai S. (1984). Inst.
Phys. Conf. Ser. 74, 29
[6] Chin A.K., Camlibel I., Caruso R., Young M.S.S. and Van Neida A.R. (1985). Appl. Phys.,
57, 2203
[7] Lohnert K., Wettling K. and Koschek G. (1986). Semi-insulating III-V-Materials (1986)
(Ohmsha Ltd., Tokyo), 267
[8] Terashima K., Yahata A. and FukudaT. (1986). J. Appl. Phys. 59, 982
[9] Kimura T., Katsumata T, Nakajima M. and Fukuda T. (1986). J.C rystal Growth 79, 264
[10] Katsumata T., Okada H., Obokata T. and Fukuda T. (1987). J. Appl. Phys. 61, 1469
[II] Inada T., Sato T., Ishida K., and Fukuda T. (1986). J. Electron. Mater. 15, 169
[12] Ohmori M. (1984). Inst. Phys. Conf. Ser. 74, 647
[13] Hyuga F., Kohda H., Nakanishi H., Kobayashi T. and Hoshikawa K. (1985). Appl. Phys.
Lett. 47, 620
[14] Lohnert K., Nagel G. and Wettling W. (1986), P roc. Advanced materials for telecomunication,
Strasbourg (Les editions de Physique, Les Ulis), 65
[15] Dupret F., Ryckmans Y., Wouters P. and Crochet M.J., (1986), J. Cryst. Growth 79, 84
[16] Zienkiewicz O.C., The Finite Element Method, (1977), Mc Graw-Hill, New-York
[17] Wouters P., Simulation Numerique des ^changes thermiques et application a la croissance des
cristaux semi-conducteurs, (1985), These de doctorat, University Catholique de Louvain, Louvain-
la-Neuve.
[18] Siegel R., Howell J.R., Thermal radiation heat transfer, (1981) Mc Graw-Hill, New-York
[19] Jordan A.S., (1980), J. Cryst. Growth 49, 631
[20] Mc Adams W.H., Heat Transmission, (1954), Mc Graw-Hill, New-york

127

Project No. 833

LARGE AREA COMPLEX LIQUID CRYSTAL DISPLAYS ADDRESSED BY
THIN-FILM TRANSISTORS

M.G. CLARK, P. MIGLIORATO, N.J. BRYER, P.A. COXON
GEC Research Limited, East Lane, Wembley, Middx. HA9 7PP

J. MAGARINO, J.P. LE PESANT
Thomson-CSF, Laboratoire Central de Recherches,
Domaine de Corbeville, BP10, Orsay, France.

W. SENSKE, K.H. GREEB, K.FAHRENSCHON
AEG Forschungsinstitut, Fl 33-F, Goldsteinstrasse 235,
Frankfurt, W. Germany.

F. MORIN,
ROC, CNET, Route de Tregastel, BP40, 22302 Lannion Cedex, France

M.B. ANDERSEN,
A/S Modulex, Kooeverveg 101, DK-7190 Billund, Denmark.

The next generation of office systems and portable computers will
require a flat electronic display of A4 size. Thin-film transistor
addressing of liquid crystal displays would allow an increase in
display size and complexity to those required for word processor
and graphic displays. The aim of this project is to assess the
feasibility of making such a display and producing it competitively.
We report here the excellent results which have been obtained with
both amorphous and polycrystalline silicon thin-film transistors
and present the incorporation of both colour and user-interaction
into active-matrix addressed displays. Exploitation of these
achievements will put Europe in a strong position to compete with
established Japanese and American firms in this rapidly expanding
market.

1. INTRODUCTION

In this paper we report on the results of an 18 month feasibility study for
the production of large area high information content liquid crystal displays
using silicon TFT active matrix addressing. The ultimate target is the
definition of a production process for A4 sized display with an information
capacity equivalent to that of the printed page (about 5500 alpha-numeric

128

characters) after a further 3 years. Equipment for handling A4 sized
displays is not readily available for all processing steps at present, but,
driven by the large world wide interest in this type of display, equipment
manufacturers have suitable equipment at an advanced stage of development,
and two manufacturers have been sub-contracted to produce prototype machines
as part of this project. For this reason work at this stage has concentrated
on making smaller size demonstration displays to develop the fabricaton
process whilst studying the problems of processing A4 sized substrates in
parallel.
A more general background to the project was presented in last year's paper
[1] in which we reported important progress in TFT performance and the fabri
cation of small test displays. We are investigating the use of both amorphous
and polycrystalline silicon TFTs for the active matrix and good results have
been achieved for both. An inverted staggered structure for amorphous silicon
TFTs was identified as the preferred one, and ON/OFF current ratios of ~ 108,
carrier mobilities of 0.7cm2/s and threshold voltages of "2V were achieved. We
were also able to report a new low pressure CVD (LPCVD) polysilicon deposition
process which produced films of superior material properties to conventional
LPCVD films and this breakthrough enabled the fabrication of polysilicon TFTs
with an ON/OFF current ratio of 5 orders of magnitude, carrier mobility of
8-10cm2/Vs and threshold voltage of 8V. The relative merits of the two types
of transistor were discussed. A new display circuit configuration which
simplifies the fabrication process and eliminates drive line cross-overs on
the active matrix back-plane (and hence the possibility of associated short-
circuit defects) was also described.

This year we are able to report a further modification to the display circuit
configuration which eliminates the possibility of defective lines in the
display due to transistor faults. Results on TFTs fabricated in polysilicon
deposited at ultra-low pressures showing greatly improved performance will
also be presented. Displays with 224 x 208 pixels and a viewing area of
89x81mm2 using polysilicon TFTs and the new fault- tolerant circuit config
uration have been fabricated.

Work has progressed on the a-Si technology and displays with 256x320 pixels
over 65x80mm2 have been produced. Improvements in all assembly techniques and
interconnections for TFT-matrix LCDs are also reported.
The results of work on two important added features for the display are pre
sented. Firstly the implementation of colour; a 320x320 pixel demonstration
display using a technology compatible with the TFT matrix-addressed liquid
crystal display is presented. Secondly, an interactive display over 10x13cm2
with a resolution of 0.4mm has been produced. This is an important step
forwards towards the development of the so-called electronic paper which is
one of the specific objectives of the ESPRIT programme.

2. ARRAY TECHNOLOGY

2.1 Amorphous Silicon

Amorphous silicon deposition and thin film transistor fabrication is now a
well-established technique which was described at length in the 1986 ESPRIT
Technical Week paper. We recall here the process steps which have been
developed during this phase of the project: Figure la shows a section
through an individual inverted staggered TFT and Fig.lb illustrates the design
of a pixel in a liquid crystal.

129

The fab r i ca t i on steps we used are the f o l l ow ing :

doped a-Si:H in the same
by plasma-enhanced CVD

1) Deposit ion and etching of the ITO pixel e lectrode on an ordinary
glass substrate (soda-lime g lass) .

2) Deposit ion and rea l i za t i on of the l i n e and gate electrodes using
Cr.Al or both.

3) Deposit ion of Si'3N4 undoped a-Si:H and n+-
run and at the same temperature (Tp=250°C)
using pure Sifty and NH3 fo r the i nsu la to r .

4) Amorphous s i l i c o n or both a-Si:H and Si°3N4 are etched to form the
t r a n s i s t o r .

5) Contact holes are etched through the n i t r i d e down to the ITO for
connection to the dra in contact i f necessary.

6) Top me ta l l i za t i on to form the source, dra in and column electrodes
using Al.Cr or both and etching of r r doped a-S i :H.

7) A passivat ion layer using Sl3r** is deposited before adding the
polyimide alignment l aye rs .

A s im i la r TFT technology has been establ ished by AEG using Si02 deposited by
PECVD fo r both gate insu la to r and f i n a l passivat ion laye r . No s i g n i f i c a n t
d i f ferences in TFT cha rac te r i s t i cs have been found.

Source Al

Cr Gate

n+
Undoped «L-Si H

fc^ 2000:3000 A
• 1000A

Al column Liquid crystal
Al contact / Glass

ITO pixel
/electrode

Glass

TFT
active
matrix

Alignment and
passivation layers

Figure 1 : a)Cross-section of an inverted staggered a-Si TFT.
b)Cross-sect ion of an a-Si TFT in an LCD p i x e l .

Four or f i v e photo l i thographic steps are necessary t o rea l i ze the TFT mat r i x .
The devices have a 10ym channel length and a 20ym channel width for a pixel
p i t ch of 250pm. Uniform deposi t ion can be rea l ized on 6 substrates of 15x15cm
in the same run on the plasma enhanced CVD reactor .

130

2.2 Polycrystalline silicon

In last year's paper GEC reported a new deposition process for polysilicon
films using lower pressures (40mTorr as compared to 200mTorr typically used)
This new process provided a breakthrough in controlling the film morphology
resulting in larger grains of far greater crystal perfection. This is important
as grain boundaries and crystal defects can give rise to trap levels in the
semiconductor energy gap which in turn have a detrimental effect on the
electrical effect on the electrical characteristics of polysilicon TFTs
fabricated in the films. Figure 2 shows transfer characteristics for poly
silicon TFTs fabricated in conventional polysilicon, hereafter referred to as
type 1, and low pressure (40mTorr) deposited films, hereafter referred to as
type 2. We had also achieved further improvement in device performance by
using plasma hydrogenation as also shown in figure 2.

 10
6

Q .
E

■I*
X

« 10"
8

o>
u
(_ 3
o
e

o 1010

Type 2 Hydrogenated
/ ^—~z^—-—--~

y ^'^^'^^Type 2

/ /
/ / Type t

'/ V
1 / /
' / /
/ / /
/ / /

\ / / /
\ / / /

\ 1/ /
K \ y / /

 V
D=5v

\ ^ ^ y /

I 1 1

10 0 10 20
Gate voltage (volts)

Figure 2: Po lys i l i con TFT t rans fe r c h a r a c t e r i s t i c s , tox=1000A.

Gate
Valve

, ThrotHe valve

LN2
Trap

I IQMS

&
-&-

Turbo Baratron
Pump

tf
Rotary
Pump

Linde 13X sieve

Furnace

miiib ■

Gas

Figure 3:
Schematic of inhouse
b u i l t LPCVD system.

131

TYPE I

TYPE II

TYPE III

Fig. 4. Transmission electron micrographs and electron
diffraction patterns for the three types of material

132

We also reported that a new in-house built LPCVD system, shown schematically
in figure 3, which permits operation at pressures down to O.lmTorr has been
commissioned, and that films grown at " 2mTorr have much larger grains (0.3-
0.5iim) showing no microtwinning or lattice distortion. In this paper we
present initial results of TFTs fabricated in this type of material, hence
forth referred to as type III.
Figure 4 shows transmission electron micrographs of the three types of
material together with their associated electron diffraction patterns,
large grains and high crystal perfection in type III films is evident.

The

Figure 5 shows the transfer characteristic for a TFT fabricated in type III
material. Typically an OFF-current less than 2xlO_11A is achieved for a unity
aspect ratio device with Vp$ = 5V. The threshold voltage is "8 V and the
carrier mobility "30 cmVVs, The fabrication process was as outlined in last
years paper.

-4

-6

Q. E a
Dl"8
o

Ol
o -10

-12
10

V 6 S (volts)
30

Fig.5 Transfer characteristic for a TFT fabricated in
type III material.

The devices have a 0.1pm thick Si02 gate dielectric deposited by atmospheric
pressure CVD, and have been plasma hydrogenated. We have started the work
necessary to design a large area (A5-A4) polysilicon reactor. To this end we
have employed our in-house built reactor to study the kinetics of polysilicon
at these very low pressures, with parallel work on the morphology of the films
to achieve the best compromise between film quality, likelihood of contamin
ation, growth rate, and ease of achieving uniformity.
These results will be reported elsewhere (2).

133

NEW CIRCUIT CONFIGURATIONS

In last year's paper GEC reported a new circuit congfiguration, shown in
figure 6 which elimiates drive line cross-overs in the active matrix backplane
This eliminates the possibility of short circuit at cross-overs on the back
plane and simplifies the fabrication process as only one level of metallisation
is required -hence we refer to this as the SLM (single-level-metallisation)
circuit. In this paper we report on a further circuit reconfiguration we refer
to as the capacitively-coupled-transistor (CCT) active matrix. In this con
figuration shown in figure 7, the pixels are now divided into two liquid
crystal capacitors connected in series by the TFT. The pixel TFT is then
capacitively coupled to a data and a reference line on the cell top plate, and
only gate lines remain on the back plane. This simplifies the fabrication of
the active substrate and eases the problem of edge connections. Such a
simplification is achieved at the expense of the second plate which is now
marginally more complex since it contains twice the number of tracks. However
since the construction of the second plate is by far simpler, such a redistri
bution of complexity can only be beneficial in view of the final yield and
costs.

^ V
r^H r ^

-\- ^v

-\— ^v

Fig. 6. SLM circuit configuration. Fig. 7 CCT circuit configuration

The prinicipal advantage of this circuit is, however, that because the TFT is
capacitively, rather than directly, coupled to the data and reference lines a
short circuit with the gate line due to a defective TFT only affects the
associated pixel rather than the entire row as is the case with the more con
ventional circuits. In a highly complex display some defective pixels may be
unavoidable and for some applications may be quite acceptable but line defects
are very undesirable and so their elimination in the CCT circuit is very
significant.

The drive waveforms for displays based on the SLM
Figure 8. The frame time is equal to 2T. In the
ence voltage (VREF) is zero and the data voltage
off-pixels and to VQN for on-pixels. In the even
are reversed, ie VQ A T A = 0 corresponds to on-pixel
pixels. In this way the voltage polarity on the li
changed every half-frame (T). For the CCT circuit
waveforms is necessary. First we observe that, si
charged in series, V D A T A needs to be equal to 2VLC
without further modification is used, the voltage

circuit are shown in
odd half-frames the refer-
(VDATA) is equal to zero for
half-frames the logic levels
s and V Q A T A = V0N t 0 off-
quid crystal pixel (V|_c) is
a modification of the drive

nee two half-pixels must be
If the scheme of Figure 8,

excursion between source and

134

drain would be as high as 4V|_c (ie about 20V for twisted nematic display).
This would result in high offcurrents and, eventually, breakdown of the device,
of the device. For this reason we have used the drive wafeforms of Figure 9.
In this case the halfframe time T is a multiple of the refresh time Tr. In
the last refresh time before the end of each halfframe all pixels are switched
off. In the rest of the frame time the display is addressed in the normal way.
By using this scheme the source drain voltage excursion is limited to 2VLQ,
which is perfectly acceptable.

VDATA JQ n~

o

VGATE

~]vw

_Q

l_

T » « T »

H K ■Tr

V n i T i
'DATA

Vnrr

U
V
GATE'

VLC^
. . . J L ̂ 0N \

t
|2V0N

J L

|2V0N

JVON

\ !VON 7

Fig.8 Drive waveforms for SLM
c i rcu i t

Fig. 9. Drive waveforms for CCT
circuit

We wish, finally to point out that this scheme used here to achieve polarity
reversal on the liquid crystal has a considerable advantage in terms of drive
circuitry requirements over the standard method. In the latter the data voltage
voltage is changed from positive to negative values on alternate halfframes
while the reference electrode is always at V = 0. This would require drivers
with a maximum rating VMAX equal to 2V|_r, for the SLM circuit and 4V|_c for the
CCT circuit, whereas for our drive waveforms VM/\X = V[_c in the SLM case and
V
MAX

 = 2 V
LC

 for tne CCT case

The successful implementation of the CCT circuit depends on low parasitic
capacitances between TFT gate and the source and drain terminals. The self
aligned structure used for polysilicon TFTs make them very suitable as it
minimises these capacitances, and the relatively high carrier mobility of poly
silicon means that the required oncurrents can be achieved in TFTs with minimum
width which further reduces the parasitic capacitances of the source and drain
of the device. Amorphous silicon TFTs are not usually fabricated with a self
aligned process and so suffer from larger parasitic capacitances which will
impair the effectiveness of the circuit. They do, however, have one advantage
when considered for this circuit configuration. Each pixel is now split into
two capactives connected in series so the pixel capacitance is reduced by a
factor of four. This effect reduces the required TFT ON and OFF currents in
proportion. This favours amorphous silicon TFTs which cannot supply such

135

large currents due to the low carrier mobility of the material whilst the
difficulties in achieving the lower OFF current requirements with polysilicon
will limit display complexity with present devices. Nevertheless demonstration
displays using polysilicon TFTs in the CCT circuit have been successfully
fabricated and are reported in section 5. Further improvements in polysilicon
TFT performance are also anticipated as mentioned in Section 1.

In the CCT circuit each pixel is split into two half pixels to which the same
voltage is applied. The gap between pixels , typically 20um wide, is waste
ful in terms of real estate and limits the achievable aperture ratio (AR), i.e.
the ratio between active area and total display area. The problems become
increasingly serious for high resolution displays. We have now invented a new
circuit which allows us to apply a different voltage to each half-pixel,
thereby overcoming the above problem. This is obtained without any
complication in the processing or the addressing of the display. The circuit
is shown in Fig.10.

A) ACTIVE MATRIX BACKPLANE

mm
^ ^y

: Q - Gate lines

L̂ m
B) TOP PLATE ELECTRODE ARRANGEMENT

R D D R D D
R - Reference

lines

D - Data lines

Figure 10: New polysilicon TFT circuit design
It employs the novel concept that if the source and drain of the transistor
are fabricated on opposite sides of the gate bus line they can then be connected
to pixels belonging to adjacent columns. When the nth row of gates is addressed,
the same voltage V/\ is applied to pixels A and B. When the (n + 1) th row is
addressed the voltage V[j is applied to pixels B and C and so on. In this way
a different voltage can be applied to pixels connected to the same transistors.

136

The scheme has an additional advantage in that it has a built in redundancy.
If one TFT is faulty and is removed, e.g. by laser trimming, the pixels will
present the information of the next connected pixel which will partially hide
the visual effect of the fault. Alternatively, one could arrange for the
display to be scanned from top to bottom and bottom to top in successive
frames which would additionally average the effect of the faulty pixel.
A further circuit has been devised (Fig.11) which makes it easier to drive
colour displays having a triangular RGB arrangement. A triangular RGB arrange
ment is supposed to give the best visual rendition for TV display. It is evi
dent from Fig.11 that each colour is associated with one specific data bus
irrespective of the field, which simplifies the driving of the display when
each frame results from interlacing two fields as in the NTSC TV system.

A) ACTIVE MATRIX BACKPLANE r^~| H H H H n~l

GLB Blue

R Red

G Green

GL Gate Line
GL

WinFa
B) TOP PLATE ELECTRODE

ARRANGEMENT

DB~ Blue data

Dg Green data

D° Red data

R Reference

DB DGDR □B

C) ALTERNATIVE TOP PLATE
ELECTRODE ARRANGEMENT

Dr, R Do DB R

Figure 11: Pixel arrangement for colour display.

137

4. PANEL FABRICATION

4.1 Cell Technology

Plastic beads from Nippon Skokubay have been used as spacers in the liquid
crystal cells.
To deposit the beads on the glass plate two different methods have been
developed at Thomson CSF:

- dry spray : the beads are blown by N2 jet
- wet spray : the beads are dispersed in freon and the solution is

sprayed on glass plates.
The second method gives very good results in terms of dispersion
homogeneity. 50 to 100 beads per mm2 must be deposited on the plates to
obtain the require LC cell thickness, (or 10-50 glass fibres). The
homogeneity and accuracy of the thickness are better with plastic beads than
with glass fibres. The influence of the type of spacers (fibres or beads) on
the number of row-column short-circuits has not been clearly determined to
favour one type of spacer or another.
At AEG the processes of the existing LCD production were carefully analyzed
to meet the special requirements for TFT displays. Several new LC materials
with and without dichroic dyes were tested to assess contrast ratio and angular
distribution. An efficient diffusion blocking layer made of CVD Si02:P has
been developed in view of using cheap soda-lime glass substrates By using a
computer programme, the reflection of light on the multilayer system was minim
ised for high quality displays.

At GEC during the first six months of this project the general problems
associated with achieving uniform spacing and good surface alignment were
overcome. However, the novel cell geometries advised as a result of Task 1,
such as the capacitively coupled transistor (CCT) structure have led to
greater demands on the processes uses to assemble the final liquid crystal
display.
In particular, it is essential that the electrode patterns on the two sub
strates are registered to within ±10ym. While it is fairly straightforward
to align the electrode patterns to the required tolerance, it was found that
mis-registration occurred as a result of the subsequent sealing process. The
latter takes place in two stages:-
(i) Tacking; to fix the location of the substrates. This achieved by

placing the aligned substrates held together by 4 clips in an oven at
100°C for 1 minute.

(ii) Assembly of the display in a heat press operated at 180°C, 50 p.s.i.
for 5 minutes.

It was found that the majority of the movement and hence misregistration
occurred at the tacking stage. This is probably due to the difference in
coefficients of the thermal expansion of the two substrates. This problem
was alleviated to some extent by using a UV curable adhesive instead of the
thermal tacking process.
The Capacitively Coupled Transistor (CCT) design, unlike the conventional
circuit, requires patterning of the indium-tin-oxide (IT0) on the top plate
of the cell. Carefully controlled photolithography is required. Although the

138

finished top plates are rectangular, the processing has been carried out on
square substrates in order to achieve better uniformity of photoresist. (An
alternative is to use a spinner chuck recessed to hold the substrate.)
Adhesion of the photoresist to the ITO is obviously crucial and can be a
problem; however, we have found that with appropriate baking, satisfactory
results may be obtained both with negative (Countdown MRBO) and positive
(Shipley 111/S) resists. An alternative solution is to use an additive
process; we have successfully used an image reversal resist which lifts off
easily in acetone, although it is less sensitive than the Countdown resist,
necessitating longer exposure times. With development this problem may be
overcome and the scope for increased resolution offered by this technique
will be a distinct advantage.

4.2 Interconnections

The interconnections between the driving electronics and the active matrix
display are a common problem as the display size and its complexity increase.
An A4 flat panel display will require about 1500-2000 connections on a pitch
of 0,75 -0,5mm to be made to the drive circuit. There are three basic tech
niques available:

1) Use of conductive elastomer/glue
2) Chip-on-glass.
3) Fully integrated drivers.

For several reasons the work has concentrated on technique (1); first of all
it gives the possibility of combining a tested display with a tested drive
circuit, and thereby achieve a relatively high overall yield; and secondly the
technique requires no further processing (e.g. metallization) of the glass
substrate.
For applications that allow extra glass space (e.g. a margin round the active
area of the display) technique (2) is a solution with nearly the same character
istics, especially when the TAB-technique that gives the possibility of de-
soldering of IC's is used.
The study included oriented conducting film connectors between an LCD and a
driving circuit on a flexible printed circuit board and the use of tape
automated bonded IC's (TAB). These methods give the following advantages:

° Simple and light mechanical construction.
0 Easy backlighting option
° Minimum space requirements
° Relatively high yield and reliability

To study the connection technique described above, two samples of ordinary LCDs
were used, which give the same basic connection problem as for active matrix
displays.
In the first example, a static LCD was connected to a flexible PCB with 4
TAB-drivers. There are two connection sections (two edges) of 47mm each and
the pitch is 0,75mm. The oriented conductor film connector was shown to be
reliable after the processing parameters were correctly defined
(temperature, pressure and time).
The second prototype was a multiplexed LCD (31cm x 5cm), which was connected
to 12 LCD-drivers. There were 8 connection sections each of 62mm with a pitch
of 1mm. Although the pitch is higher, this prototype was quite close to the
required solution for an A4-display with connectors on the 4 edges. Also, in

139

this case it was proved that the process was usable and showed appropriate
reliability.
The conductive film used for the connections was a product from a company in
Japan. It is a polymer film, which exhibits orientation in its conductivity
and has three functions. Adhesion between flexible PC and glass, conduction
from FPC electrodes to glass-electrodes and isolation horizontally between the
electrode pairs.
The oriented conductor film connector consists of carbon fibres of 5-100mm
length dispersed in a film with an adhesive (30mm thick) as a binder. The film
is delivered in strips and during the bonding is sandwiched between the two
electrode patterns to be connected.
The sandwich is heated and pressed for the prescribed time. The binder ad
hesive then performs both bonding and insulating roles, while the carbon fibres
within the binder are brought close to the electrodes and provide conductivity.
The connector construction is mechanically strong in itself, but for demanding
applications it might be necessary to add an extra layer of glue or a metal
feather to strengthen the assembly. A semiautomatic bonding machine was
constructed to perform the heat-press process. In the following the verified
optimum conditions are specified. The FPC connectors are gold-plated.

Temperature (at film)
Temperature (at tool)
Pressure
Bonding time

COLOUR DISPLAYS

146°C
169°C
78 bar
12 seconds

A colour display is achieved by adding to a B/W panel, in front of each pixel
a colour filter and,on the back-side, a white light source. Since the pixel
pitch is not much larger than the cell glass thickness, the filters must lie
inside the cell to avoid parallax. A colour active matrix liquid crystal
display will then consist of two plates, a first with the TFT matrix and a
second one with colour filters and ITO electrode.
Two filter processes have been developed in the present ESPRIT programme. The
Thomson process was derived from the one previously used for solid state sensors
It was based on dyes locally diffused in gelatin then passivated and coated
with ITO. Special care has been taken to yield the process compatible with the
LC cell fabrication. Black matrix fabrication has been studied to increase
colour saturation and shield the TFT from light.
CNET used pigmented photoresist for RGB filters and metallic film for Black
Matrix. Filters were patterned as normal photoresists but a short curing took
place after each colour. Black matrix was first realised on the glass substrate.
It was deposited at room temperature on the base filters and passivated by the
orienting polyimide layer. The total thickness of colour filters is about one
micrometer.

A checking of the AMLCD compatability has been performed, particularly the
non-pollution of the LC material by the filters. On CNET samples, for example
the electrical time constant "RC" (the voltage decay across the pixel on the
OFF state is the relevance of this parameter) was not affected by the presence
of the filters and in any case was found to be lower than 80 ms.

140

The colorimetric measurements were also performed and results are shown on
Fig. 12.

0.8

0.7

0.6

0.5

0.4

0.3

0.2 -

0.1 -

I 520

/
£510

- i

j
i
i
i
^500

i
i
t

1
1 \ \

1

" O490
\ \ \ \ \ \ \

t*480 \

470 <\
460

i i

J30 • C R T

^ • CNET
v o^0 + Thompson

^ 5 0

\560

* \ s 7 0

^ / ^ ^580

/ / " Nv \>610

/ . -^ ^ - - " 630%40

1 ^ - ^ ^

» ^ ^

I V * I i i i i J 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 12: Colorimetric measurements on the filters.

The colour cell fabrication was not so different from the B/W panels. Care
has been taken to avoid over-heating of the filters. CNET filters can be
heated up to 200°C. The structure of a colour AMLCD is shown in Fig.13.

AH
CF

ff=£=

Q/VQ/VQ/VQ/

3 AM : Act ive matr ix (TFT - aSi:H)
CF : Colour f i l ters

(with black matrix)
P : Polarizers

qDD : Weak diffuser
F : Fluorescent tubes
R : Metallic reflector.

Figure 13: Colour AMLCD structure

141

A typical result achieved by CNET is shown in Fig 14, which displays a broad
casted CTV picture. The panel characteristics were as follows:

Dots: 320 x 320 - TFT aSiH - CNET process
Filters RGB vertical stripes (3 x 107)
Pitch : 250 urn
Active area : 80 x 80 mm
Filter process : Pigments in photoresist
IT0 on filters : R = 700n/sq.
LC thickness ~ 8 ym

Fig.14: A typical displayed CTV picture on the CNET panel

A contrast ratio of more than 30:1 was measured at normal incidence for
achromatic pictures (R=G=B). No streaking was observed. Flickering appears
at the limit of the angle of view. It can be suppressed by alternating the
video signal onto the odd and even columns. A comfortable'viewability is
possible over a wide angle (at least ± 40° in the horizontal plane).

DISPLAY CHARACTERISTICS

The characteristics of the Thomson CSF colour display presented at the Esprit
Technical Week and developed under the 833 programme are as follows:

inverted staggered amorphous silicon TFTs with silicon nitride (S13N4)
as gate dielectric and channel defined by W/L = 20/10 ym.

- pixel size 210 x 210 urn

142

- pixel pitch 250 x 250 urn
- width of the access lines (rows and columns), 20ym.
- number of lines : 256 rows : 320 columns
- active area : 64 x80mm2

- connection pitch (interlaced connections): 500ym
overall size : 98 x 114 mm2

- liquid crystal cell thickness : 8pm
- spacers : calibrated glass fibres

polarizers : 99.9% polarizing efficiency
- colour filters : red, green, blue, along one diagonal deposited over the

counter electrode, covered with a passivation layer and
a conductive ITO electrode coating.

The 256 x 320 display developed by Thomson CSF is shown in figure 15:

Figure 15: 256 x 320 pixel display.

The drivers are connected at the periphery of the display for rows: 4
drivers with 64 connections (maximum voltage output 26 volts); for columns
(video): 4 drivers with 80 connections (maximum voltage 26 volts);
The image supplied to the display comes from a Thomson 107/70 microcomputer
and is fed to a memory which allows addressing at a frequency of 100Hz
(twice the video frequency). Backlighting is provided by spectrally matched
fluorescent tubes (15 watts). The luminance achieved in the white is 180
col/m2 and the contrast is 20:1.
The influence of TFT driving conditions on contrast ratio was measured on a
panel with 28x28 pixels and standard TN LC material. Pixel area was 1mm2.
TFTs were produced with Si0x and a-Si. Both deposited by PECVD-techniques.

143

Contrast ratio was measured by illuminating only one pixel with monochromatic
light.
In figure 16 the influence of gate-pulse voltage VQ on contrast ratio is
illustrated for optical wavelength X - 550nm. At conditions:

frame time
gate-pul se t ime
duty cycle r a t i o
gate voltage for TFT o f f - s t a t e
source vol tage

10 ms
50 us
1:200
-10V
10V

satura t ion contrast r a t i o was obtained for gate-pulse voltage VQ > 15 V.

o in

frome time : l| s 10 ms

gate-pulse : tp - 50 us

'source- voltage -• V s = 10V

TFT : WIL » 600/20

pixel area : 1mm2

o

5 10 15 20

gate-pulse voltage Ve /V
F ig .16: Inf luence of gate pulse voltage

on contrast r a t i o

30

20

10

1-

j ^

J frame time : t| = 10 ms

/ gate-pulse: V0 = -10M5V

/ source voltage : V s = 10V

/ TFT : WIL • 600/20

/ pixel area : 1mm2

i i i

10 50 100

gate-pulse length tp/us
Fig.17: Influence of gate pulse

length on contrast ratio
In Figure 17 the influence of gate-pulse length tp on contrast ratio is
shown for X = 550nm. at conditions:

frame time 10 ms
gate voltage for TFT off-state -10V
gate-pulse voltage 15V
source voltage 10V

saturation contrast ratio was reached for tp > 40ps. •
The same behaviour was obtained at two other optical wavelengths, for which,
however, different saturation contrast ratios of 22 at X = 450 nm and of 11 at
X = 650 nm were measured.
An estimation of the theoritically-required gate-pulse length tp was carried
out. The basic premises according to former measurements were as follows:

- TFT on current, Ion = 2 x 10'6 A at VG = 15 V and V D S = 10 V
- rise time, tr < 3 urn for Ion at channel length L = 20 ym
- for saturation contrast the LC pixel capacitance has to be charged

up to ± 4V
With these premises the estimation yields tp = 30 ps, which is in good accord
ance with the experimental result reported above. However, for smaller pixel
areas at higher resolution shorter gate-pulse lengths tp are sufficient to
charge the reduced LC pixel capacitance.

144

Polysilicon TFT matrix addressed LCDs of up to 224x208 pixels based on the
CCT circuit configuration described in section 2 have been fabricated.
Figure 18. is a photograph of the 224x208 pixel display driver using the
waveforms described in section 2.

8 1 2 3 4 5 6 7 8 9 = , ><e + *< • > £ ! * * *
A&CGEFGH I JKLH«OPGRST>VHX
a b c ' d s H h i J k l m n o p o i r s t JWMX'.
ABCDEFGHIJKLMN0P6RSTJUWK
a focde^gh i JR l t f i noPo i r s t J.V«*=
0 1 2 3 4 5 6 7 8 9 = , > < @ + * < } E 3 ? X t
ABCDEF^HI J K U I N O P J Q R S T J V H X
CI b c d e f St h i J k 1 «t n o 1° °t r s < J v u x
0123456739 = , ><(? + * { If&XV.I,
ABCOEFGHijKLMHOPQRSTjy.WXs
abode f 3 h i . j k l a n o K " (r s t JVWSSFI
8123 4567 89 •■ , > < 8 + * < >C3*X*
A6C0EFGHIJKLMNOP0RSTJM«f
abcele* g h i JK lmnOPo i rs t i « i i
0123456789.= ,><e+$< > C 3 * « *
ABCDEFGHI JKLltHOP&RST J>
abcde f 9h i J k 1 » n o f > < l r s t ^
mmkmwmmmm
Fig.18: 224 x 208 polysilicon display

Typical display parameters are as follows:

Circuit Configuration

TFT

Pixel count
Pixel pitch
LC

VGATE
V
DATA
Tr
T
Contrast

CCT Circuit

W = 14um
L = 14g
224x208
400ym both ways
Twisted nematic
5V +18V
10V
5 ms
15 ms
20:1

6. USER INTERACTION

The development of office machines and interactive services on the Telecom net
work will incorporate the design of new terminals able to send and receive
handwritten messages. An attractive terminal will consists of a VisualDisplay
Unit for any pictures lashed to a datainput device for handdrawing messages,

145

and connected to the telephone network by means of a signal processing unit.
From the point of view of the man-machine dialogue the best set up would be a
flat board to display and write on, as similar to a sheet of paper as possible.
CNET have fabricated a prototype of an interactive terminal, associating an
horizontal Active-Matrix Liquid-Crystal-Display with a transparent tablet on
the top. The user can write on it by means of an electronic pencil. This proto
type operated only in the local mode, and was used for performance valuation.
The first results of viewability, writing speed and linearity are reported here
Figure 19 shows a schematic arrangement of the hand-writing terminal.

CAPACITIVE PEN-DETECTOR

TRANSPARENT
TABLET

TFT-LCD

Fig. 19: Interactive terminal
The different pieces of the hand-writing board are stacked as follows: the
light guide with fluorescent tube, the LCD with polarizer and the transparent
tablet on the top. The total thickness is less than 15mm.
The principle of this data-input device is an electrostatic coupling between an
x-y array of linear conductors powered by drivers, and a capacitive pencil-
receptor. The x-y electrodes were successively driven by phase-shift-registers
(100 KHz clock frequency), the pen circuit transformed the analog to digital
signal and converted the spatial into time delay detected by digital counters.
This circuit has been designed to get a spatial accuracy of 0.4mm with an
electrode pitch of 3,2mm.

The flat panel display has been already described elsewhere.(3) This
TFT-addressed LCD had an active area of 100 x 128 mm2 and a pitch of 0.4mm.

It was manufactured according to the "CNET 2 step process" (1). Columns and
pixels were in IT0 and lines in Al/SiN/aSi:H. The panel operated between
parallel polarizers.
Figure 20 shows an example of written message. The writing size must be
adapted to the panel resolution to avoid rough letters.
Writing speed seems satisfactory for normal use with no visible delay between
pen motion and display. Linearity was satisfactory for writing and drawing.

146

effacer

qommerl

ecrire

Fig. 20: Example of written message.

CONCLUSION

In this paper we have reported technical progress in a number of important areas
related to the fabrication of large-area high-information-content liquid crystal
displays using silicon TFT active matrix addressing.
Following the excellent results obtained in the opening phase of the
programme on both a-Si and poly-Si TFTs, the size and the complexity of the
matrix-addressed displays produced have been increased considerably, and
attractive demonstrators with a low level of defects have been fabricated.
A new circuit has been demonstrated which removes the possibility of line
defects occuring due to transistor faults by isolating the transistor from
the rest of the circuit using the liquid crystal. This also has the effect
of increasing yield by reducing the complexity of the backplane by removing
the data lines to the top plate.

The work has progressed far beyond fabrication of the active matrix alone
with the incorporation of both colour and user-interaction, features which
are in great demand in the display market.
The potential worldwide market for such displays is enormous since applications
for these displays include domestic TV sets and computer and telecommunication
terminals.
The size of the world market for LCDs in 1986 was 780 million units with a
value of 870 million dollars and it is predicted to rise to 1,200 million units
with a value of 1,600 million dollars in 1990. The large area high resolution
market is represented by CRTs for which the figures are 96 million units and
4900 million dollars in 1986 rising to 120 million units and 6000 million
dollars in 1990.
Flat panel displays will compete with CRTs for this market, but also, because
of their low voltage operation and low power consumption and due to the rel
ative ease of implementing user-interaction there are openings for many new

147

applications which were not possible with CRTs. It is therefore hardly sur
prising that there is a large worldwide R & D effort directed towards the
fabrication of such a display and competition in this field is very keen. At
least four Japanese companies have already demonstrated small laboratory
versions of full colour TVs, and two products are already on the market (Seiko-
Epson and Matsushita-Panesonic). At least eight Japanese companies are involved
in AM-LCDs in one way or another. The effort in the US has been neither so
strong nor so successful but is now increasing with both IBM and GE having put
together powerful teams.

The feasibility of producing such displays up to A4 size has been demonstrated
by Seiko Instruments using amorphous silicon technology, and a number of Japan
ese companies have production equipment capable of handling this size of sub
strate. In Europe, however, no such equipment was available, and the large area
projection aligner and large area amorphous silicon deposition equipment which
were developed under this contract have gone some way to redress the balance in
this respect but in order to compete with the Japanese companies in production
the development of processing techniques and large area equipment must be a
priority in any future work plan. Over the next few months, the prototypes
which have been developed will be evaluated and the possibilities for other
key processes will be investigated.

Future work will also include further evaluation of the present displays and
assessment of defects, improvements of display features and preliminary
investigations of the use of polysilicon TFTs for integrated drivers.
At present no decision is to be made between the amorphous and polycrystalline
silicon approaches. For a-Si the effort will be concentrated on implementing
grey-scale and increasing the size of the displays. For polysilicon, deposition
equipment for A4 needs to be developed, and alongside this effort the present
displays will be improved by increasing the resolution, incorporating colour
and implementing grey-scale. An evaluation of the dyed phase change effect
for use in this application will be undertaken and a demonstrator fabricated
for comparison with standard twisted nematic displays.

The results obtained during this 18-month feasibility study have placed the
consortium in a very strong position as far as device understanding and novel
ideas are concerned. The effort now needs to be concentrated into exploiting
these advantages to develop a competitive product which will provide an
attractive addition to the European initiative towards the next generation of
office systems and portable computers.

REFERENCES:
1. C. Hilsum et al, ESPRIT '86: Results and achievements.

Elsevier Science Publishers B.V. (North Holland) 1986
2. D.B. Meakin et al, to be published
3. F. Morin et al, Japan Display 86, p332

148

Project No. 491

POLY-SI THIN FILM TRANSISTOR TECHNOLOGIES FOR LIQUID-CRYSTAL DISPLAY
DRIVERS

W. Senske, W. Schmolla, J. Diefenbach, G. Blang
AEG-Forschungsinstitut, Goldsteinstrasse 235, D-6000 Frankfurt 71,
FRG
B. Loisel, P. Joubert, Y. Chouan
ROC, CNET, Route de Tregastel, 22302 Lannion, France
M. Krammer
CETIA, 150 rue Marcelin-Berthelot, 83088 Toulon, France

The fully integrated TFT based matrix LCD is the ultimate goal for
flat panel displays. This paper discusses material and technologies
to fabricate poly Si TFTs that have to meet the requirements for
driving LCD matrices. With LPCVD, PECVD and e-gun evaporation poly
Si TFTs have been fabricated at deposition temperatures as low as
550°C and mobilities between 2 and 35 cmz/Vs. The potential is
indicated to further decrease the deposition temperature even to
values where very cheap soda lime glasses can be used. The techno
logies developed for poly Si will have impetus on other areas of
large area electronics.

1. INTRODUCTION
Flat panel displays for text and graphic information are of great importance
for products in the information technology industry. During the last years the
liquid-crystal (LC) display has evolved to a highly reliable display techno
logy since it is visible in bright light, consumes little power, has a good
visibility and a broad angle of view. For replacing the bulky CRT screen the
active matrix LC display (AMLCD) is best suited when a large information
content is to be displayed. These AMLCDs with TFT addressing of the pixels
have attracted considerable industrial interest and are at the threshold of
being commercially available. By that, text and graphic displays in colour
with high resolution, high contrast and viewing angle become possible by a
rather cheap thin film technology on glass substrates. Up to now the majority
of AMLCD concepts involves external driver circuits consisting of silicon IC's
assembled on PCB's that are connected to the pixel TFT matrix.

For the full advantage of thin film technology for text- and graphic AMLC
displays the external electronic drivers must be incorporated on the glass
substrate, too. Contrary to pixel TFTs the driver TFTs require a material with
high mobility. In general this kind of material needs a high deposition
temperature. Up to now this has hampered the fabrication of fully integrated
matrices. Few attempts have been devoted to fabricate integrated pixel and
driver TFT matrices on a single substrate (1). However, the fabrication
process necessitates the use of quartz substrates which are too expensive for
large area displays and high volume production.
The objective of this investigation is therefore mainly to develop a low
temperature deposition process of a semiconductor material so that cheap glass
substrates can be used. For reasons of higher switching speed, as compared to
pixel TFT's, these semiconductor films must have markably higher field effect
mobility than amorphous silicon which is most frequently used for pixel TFTs.

149

In this paper we report achievements that have been made concerning the low
temperature deposition of polycrystalline Si films. The deposition methods
investigated are e-gun evaporation, LPCVD and PECVD. After a brief discussion
of the material requirements for integrated bus drivers some results concern
ing the material fabrication and the poly Si TFT deposited on glass are
presented. Finally some studies concerning simulation of TFTs and TFT cir
cuits are discussed.

2. REQUIREMENTS FOR SEMICONDUCTOR MATERIAL
The choice of the deposition method has to consider that in principle sub
strates up to A4 size can be treated. Although the integrated driver circuits
only need a stripe of a few mm width at the edge of the display larger areas
of substrates have to be taken into account for reasons of full integration.
A considerable factor of cost for the large area displays will be ion implan
tation if necessary for n contacts. Therefore one objective of the investi
gations is to avoid this costly process including demand of high annealing
temperatures.

The deposition temperature aimed at is closely related to the substrate
material that is avalaible. There are two types of low priced glasses

(i) borosilicate glass (e.g. Corning 7059, Hoya NA 40, Schott AF 45)
with maximum deposition temperature of about 630°C

(ii) soda lime glass (e.g. window glass) with maximum deposition
temperature of about 500°C

The borosilicate glass is considerably more expensive than soda lime glass due
to different fabrication processes. For a full integration of LC matrix and
drivers it is of great industrial interest to use the cheapest type of glass
that is possible.
The realization of seperate large area driver circuits on borosilicate glass
may be an intermediate step. However, this solution has to compete with the
chip- on-glass technology where the IC is directly soldered onto the edge of
the matrix substrate. In both cases the interconnections between driver and
pixel matrix are a critical point in view of reliability. This disadvantage is
avoided with full integration.

The most important parameters for the driver circuit material are the swit
ching speed and the mobility. Assuming a TFT matrix with 300 columns and 300
lines the clock rate for the column shift register amounts to about 100 nsec
provided the AMLCD is driven with 32 Hz frame rate. The switching time of a
single TFT has to be lower than this clock rate. The inverter is the simplest
stage of a shift register (2). An inverter can be constructed with two tran
sistors. One transistor acts as load resistor. The other is the switching TFT.
A rough estimate for the minimum field mobility can be obtained by calculating
the current that is necessary to charge the switching transistor of the next
inverter stage for given geometries and voltages. The calculation results in a
minimum mobility of about 10 cm2/Vs. This result shows that for integrated TFT
drivers the a-Si and the so called micro-crystalline Si (uc-Si) as a mixture
of a-Si and small grain Si are not suitable due to their too low mobilities.
Thus the polycrystalline Si (poly Si) has evolved as the most favorable
candidate.

The values mentioned for clock rate and field effect mobility are only rough
estimates. To get more accurate figures and to investigate possible shift
register structures the technological work is accompanied by simulation. Thus
it is expected that critical material parameters as well as requirements for
TFTs concerning switching time and geometry can be identified.

150

3. P0LYSILIC0N DEPOSITION
For pixel TFTs in AMLCDs the a-Si has presently become the most favorable
material. The main reasons are the low deposition temperature which allows the
use of cheap soda lime glass and the ease to obtain large on/off ratios as
well as low off currents which are prerequisites for large area full colour
displays. The recent results concerning poly Si deposition on non-quartz
substrates have stimulated the investigations towards a fully integrated
matrix (3)-(6). In this paper some results of three different deposition
methods will be presented namely of LPCVD, PECVD and e-gun evaporation of poly
Si film.
3.1. LPCVD
Recently the LPCVD (low pressure chemical vapour deposition) has attracted
considerable interest for poly Si deposition on borosilicate glass
(3),(6),(7). However, this deposition is a thermally activated process.
Therefore the deposition temperature cannot be lowered beyond a certain limit
of substrate temperature which is about 580°C. Below this limiting temperature
the deposition rate is no longer acceptable.
In the present investigation, the LPCVD technique has been chosen to establish
the TFT technology on borosilicate glass substrate. In the course of this work
some improvements of the deposition method have been found.
In previous papers on LPCVD deposition of undoped poly silicon films (8),(9),
the transition temperature between amorphous and crystalline silicon as well
as the effects of temperature on the size and the preferred orientation of the
crystallites have been reported. However, the effects of si lane pressure have
not been published extensively especially at very low silane pressure. We
report results on the structure of the LPCVD poly Si films deposited, over a
temperature range of 580°C to 700°C and a pressure range between 2x10 and 10
Torr (6).

The films were deposited on fused quartz substrates for the high temperature
range and on borosilicate glasses (Corning 7059, Hoya NA-40, Schott AF-45) for
the lower temperature range (580°C - 600°C) by thermal decomposition of silane
(SiH4) diluted in hydrogen (10% SiH4 - 90% H2) in a hot-wall reactor.
The main results are:

All films deposited in the temperature range 580°C - 700°C are crystal
line, except the one grown at the lowest temperature (580°C) and the
highest pressure (10 Torr). As shown on the Table 1, the crystallite
size (measured by x-ray analysis) decreases when the pressure increases
especially at low temperature
The texture of the films is strongly dependant on the silane pressure
inside the chamber (Fig. 1).
The surface roughness of the films increases with increasing pressure of
the silane (Fig. 2) at 700°C.

151

Table 1
Crystallite size determined from (220) xray diffraction line on A umthick
poly Si film deposited with a 40 seem gas flow (10 seem at 2.10 Torr) at
five different values of gas pressures of gas (10 % SiH. 90 % H ?) .

XRD Crystallite size (nm)
Temperature
(°C)

580
625
700

0.002 Torr

120
102

0.02 Torr

82
110
138

0.1 Torr

60
116
136

1 Torr

39
92
105

10 Torr

amorphous
62
_

10"
1 10"

2 w
3

TOTAL PRESSURE (Torr)

Orientation factors (A: 0
FIGURE 1

1^> ■ : 022o and •: 0400) measured by
Xray diffraction on polySi films deposited at various tempera

tures and gas (10 % SiH4 / 90 % H2) pressures.

152

FIGURE 2
Scanning electron micrographs of the surface roughness of LPCVD
polysilicon film deposited at 700°C with three different gas 3 pressures: (a) 2.5 x 10 Torr (randomly oriented grains),
(b) 5 x 10~2 Torr (weakly oriented < 100 >), (c) 0.1 Torr
(strongly oriented <100 >).

gate insulator

drain

undoped poly-Si
FIGURE 3

Schematic structure of poly Si TFT with normal staggered structure

153

TFTs have been fabricated with the normal staggered structure (Fig. 3) by
using Al Si alloy contacts and a Si,N. gate insulator. Typical output charac
teristics of these transistors are given in Fig. 4 and 5. The transistors
behave like an n-channel enhancement TFT. For W/L = 1,5 the drain current for
VDS = 20 V and VGS = 20 V is higher than 20 uA. At low V the drain current,
snows some crowding. A field effect mobility of 1.2 cmvVs and a threshold
voltage of 3 V have been deduced. The subthreshold behaviour of the TFTftshows
some hysteresis (Fig. 5). The off-current of V-s = -10V is less than 10 A.

< 1B
.3.
o

t—I 12

0

-6

V Q S = 2 0 V _

10 15
VDS/V

FIGURE 4
Output characteristics of a TFT
fabricated with LPCVD poly Si at
580°C. Vrc. varies from -10V up to 20V
in stepsb8f 2 V.

FIGURE 5
Typical transfer characteristic, Vn(-
is set at 2 V, LPCVD poly Si at
580°C.

3.2. PECVD
By using PECVD the decomposition of silane is plasma assisted. Therefore lower
deposition temperatures than those obtained with LPCVD have been expected.
The undoped polysilicon films were deposited at 580°C on borosilicate glass by
glow-discharge decomposition of silane diluted in hydrogen (10 % SiH./90 %
H-). The PECVD system has a triode structure. The third electrode, a mesh, is
located above the substrate and is grounded. Further details have been pub
lished recently (10). The TFTs have been fabricated with the technology
established with LPCVD poly Si films. The output characteristics of the
transistors are given in Figs. 6 and 7. For VD<- = 20 V and V G S = 22 V the
current I D S is higher than 100 uA, but at low V Q S again some crowding is
observed indicating some contact resistance. A freid effect mobility of 35
cm2/Vs and a threshold voltage of 5.7 V were deduced in the usual way (11).
I /I ,f ratios up to 10 were obtained. For negative VGS nearly no increase
in drain current is observed.

The PECVD involves a variety of process parameters. Especially the deposition
temperature needs a tight control to obtain poly silicon films with good
reproducibility.

154

a

■ *

•6

>»

10

1

==^ \ Jj
I • t

9V,

V ^ > ^ — "~2V~

■ i

V G (V)

FIGURE 6
Square root of drain current vs.
gate voltage measured in saturation
region with VDq = 20V for PECVD poly
Si TFT at 580W

C.

FIGURE 7
Typical transfer characteristics,
Vnc. varies from 2 to 9 V in steps of
1
U
V for PECVD poly Si TFT at 580°C.

3.3. Egun evaporation
Recently the electrongun (egun) evaporation technique has been demonstrated
to be a very attractive method to fabricate polySi high mobility TFTs (4,5).
The poly Si has been deposited at 550°C (4) on borosilicate glass. TFTs have
been fabricated by using ion implanted sourcedrain contacts. For nchannel
types field effect mobilities between 13 and 31 cm2/Vs have been obtained. For
pchannel types the mobilities were between 9 and 17 cm2/Vs without hydrogen
passivation and for borosilicate glass covered with CVD SiO. For poly Si
evaporated on borosilicate glass at 500°C mobilities up to 40 cm

2
/Vs at

maximum are reported (5) using implanted contacts.

We fabricated thin undoped poly Si films by egun evaporation on different
substrates and at different substrate temperatures and characterized them by
Hallmobility measurements to get information about the film quality before a
complete TFT fabrication process is performed. The results of four selected
samples are given in Table 2 below.
Table 2
Hallmobility for holes in poly Si evaporated from slightly ptype doped high
resistivity Si slugs.
substrate
material

layer on
the substrate

deposition Hallmobility
temperature T/°C uH/(cm

2
/Vs)

Borosilicate
quartz
borosilicate
sodalime

no
no
sputtered Si02

sputtered SiO

510
500
500
400

155

The Hallmobility of Table 2 is given for holes in polySi bulk material. With
sputtered Si02 covering the highest mobility amounts to about 9 cm2

/Vs. In
conclusion, because of the high mobility in poly Si films on a substrate with
SiO covering, we are free of having to use a special substrate material for
establishing high mobility values. The covering of the substrate with sput
tered SiOp is a low cost process and therefore it represents an important
factor to increase the mobility.
The Hallmobility for sodalime glass with SiO and a substrate temperature of
400°C is 1.8 cmVVs. We have indications that this value can be increased.
This would enable us to apply this poly Si technology to high mobility TFTs on
low cost sodalime glass.
Good injection contacts are necessary for the source and drain contacts of a
TFT. The ion implantation technique used by other groups (3,4) is not a low
cost process for large areas. In addition this technique requires an annealing
step at temperatures above 500°C. For these reasons we investigated the doping
of poly Si by simultaneous evaporation of Si and Sb from a separate source. Sb
doped poly Si films deposited at 500°C substrate temperature have a resistivi
ty of 0.1 cm and an electron Hall mobility of 2 cmVVs. Doping by evapora
tion is a low cost process for large areas. This method has a high deposition
rate of 1 nm/s for doped films. This method allows to fabricate sourcedrain
contacts for TFTs at process temperatures below 500°C without using the ion
implantation technique. Fig. 8 shows the deposition rate of Sb versus the Sb
source temperature. Fig. 9 shows the electron concentration of n doped poly
Si versus the Sb evaporation rate used for our experiments.

600 550
T/°C

500 450

1.2 1.3 1.4
(1/T)/(K'10

3
)

"1 3 10"
E
o
c

c
g
o

■t 2 10'»
c
<U
o
c
o
L>
t_
Ol
b .
b .

S 110"

+'
/

/
/

/

/
/

'

+

, . , 1
5 10

evaporation rote r/lpm/s)

FIGURE 8
Deposition rate of a Sb source for
the deposition of Sb onto a cold
substrate.

FIGURE 9
Electron concentration in Sb doped
poly Si versus Sb evaporation rate
for a constant Si deposition rate of
1nm/2, substrate temperature 500°C.

156

In order to test the application of Sb doped evaporated poly Si and undoped
poly Si we fabricated a complete TFT. The structure for the TFT is the same as
indicated in Fig. 3. The gate insulator is SiCL deposited by APCVD (atmos
pheric pressure CVD) on borosilicate glass. Th^ highest process temperature
was 550°C for the poly Si. The TFT with a gate length of 10 urn has a field-
effect mobility of 2.3 cm2/vs for electrons (Fig. 10). This value has been
obtained without any process optimization like substrate or interface treat
ment. Therefore considerably higher values are to be expected. The key tech
nique is the gate-insulator formation which has been also indicated in previ
ous papers (4), (5).

VOLTHGE ^ /-V

FIGURE 10
Square root of drain current vs. gate voltage with V D S
for e-gun evaporated poly Si TFT.

= 30 V

4. SIMULATION STUDIES
The objective of this task is to identify critical parameters for the fabri
cation of TFT circuits like e.g. tolerable overlap capacitances or limits for
mobility. Further the suitable structures of the TFT gate and source drivers
have to be found.
The program used in these studies is the SPICE model which is a standard
program for CMOS simulation with monocrystalline Si ICs. The equivalent
circuit for the transistor implanted in the SPICE model had to be replaced by
a special circuit which takes into a account the pecularities of a TFT e.g.
the insulting substrate. A further difference of TFTs is the increase of drain
current with negative V,,̂ . This represents a considerable difficulty for the
simulation of dynamic Behaviour when using previously published data (4).
However, the results presented in this paper indicate that TFTs with conside
rably less pronounced current increase for negative V,,<- can be fabricated.
Thus the simulation is simplified.

With the SPICE model adapted to the TFT needs different types of shift regis
ters have been investigated. It was found that the ratioed, Fischer type (12)
register has the highest frequency response and is less dependant on leakage
current of each transistor.

157

5. DISCUSSION AND CONCLUSION
The requirements for driver TFTs as discussed in section 2 are different from
those for pixel TFTs the ESPRIT project 833 has delt with. For pixel TFTs the
mobility and the on current are of minor importance whereas the off-current
and a low deposition temperature (i.e. a cheap substrate for a large area
display) are of great importance. The influence of the threshold voltage Vtu has to be clarified for driver TFTs. However, for fast and low voltage level
circuits this value will certainly be of some importance contrary to pixel
TFTs where some variation of \Lh can be tolerated. For driver circuits the lay out is of major concern e.g. the reduction of stray capacitance or the general
structure of the circuit. These considerations are not necessary for pixel
TFTs. Thus the project 491 is an important complement to the ESPRIT project
833. More over these investigations lead to technologies that can be used in
driving other large area electronics e.g. photoconductive scanners or arrays.
The values mentioned in section 2 are based on rough calculations and do not
consider parameters like Vth hysteresis or velocity of charging the TFT
channel. More accurate simulations are certainly necessary. However, even with
smaller values for the mobility a certain degree of integration is possible by
using the multiplexing scheme.
In the literature first attempts for fully integrated LCD matrix have been
published (1) for small 1,5" displays by using expensive quartz substrates.
The transition to large area e.g. A5 or even A4 displays seriously increases
the need for high mobility TFTs. Recently values for poly Si TFTs have been
published (13) (14) with u F E 100 cm2/Vs. Thus a multistage oscillator could be
built with 1,9 ns delay time per stage. However, these TFTs have been fabrica
ted with temperatures up to 1000°C by using ion implantation for the source-
drain contacts.
An interesting method for low deposition temperatures seems to be the HRCVD
(hydrogen radical CVD) (15). By separating the location of the plasma assisted
silane decompostion and the film deposition doped poly Si films could be
deposited at temperatures as low as 300°C with good Hall mobilities. This
method may indicate the potential for the PECVD which is in the present form
difficult to reproduce.
In conclusion all three methods investigated in this first phase of the
project could be used to fabricate poly Si films on borosilicate substrates.
Field effect mobilities between 2 and 35 cm2/Vs have been obtained. One
method, the e-gun evaporation, shows some potential to even decrease the
deposition temperature to values where the very cheap soda lime glass can be
used. Further work is necessary to improve the reproducibility as well as the
TFT characteristics. The simulation has to be intensified regarding the lay
out of TFT circuits.

158

REFERENCES
(1) S.Morozumi, K. Oguchi, T. Misawa, R. Araki, H. Okshima, SID 84 Digest,

316 (1984).
(2) e.g. R. Paul: "Mikroelektronik", A. Huthig Verlag Heidelberg (1981).
(3) C. Hilsum et. al., ESPRIT '86: Results and achievements. Elsevier

Science Publishes B.V. (North Holland) 1986.
(4) Y. Oana, H. Kotake, N. Mukai and K. Ide, Jpn.J.Appl.Phys., 22 Suppl.

22-1, 493 (1983). —

(5) M. Matsui, Y. Shiraki and E. Maruyama, J.Appl.Phys. 55, 1590 (1984).
(6) B. Loisel, P. Joubert, L. Haji and Y. Chouan, Proceedings of the Inter

national Symposium on Trends and New Applications in Thin Films (Societe
Francaise du Vide, Strasbourg, 1987) pp. 249-253.

(7) D. Meakin, J. Stoemenos, P. Migliorato and N.A. Economou (to be pub
lished in J.Appl.Phys.).

(8) G. Harbeke, L. Krausbauer, E.F. Steigmer, A.E. Widmer, H.F. Kappert and
E. Neugebauer, J. Electrochem.Soc. 131, J575 (1984).

(9) R. Bisaro, J. Magarino, N. Proust and K.Zellama, J.Appl.Phys. 59, 1167
(1986). —

(10) B. Loisel, Y.'Chouan, N. Pedrono, Electr.Letters 23, 288 (1987).
(11) S.M.Sze: "Physics of Semiconductor Devices, wiley-Intercience New York

(1969).
(12) J. Vanfleteren, A. Van Calster and H.J. Pauwels, Intern.Display Research

Conf. (San Diego, 1985), 72.
(13) T. Noguchi et al. Jpn.J.Appl.Phys. 25, 2121 (1986).
(14) T. Oshima et.al.Jpn.J.Appl.Phys. 25, 2291 (1986).
(15) N. Shibata, K. Fukuda, H. Ohtoshi, J.Hanna, S.Oda and T. Shimizu,

Jpn.J.Appl.Phys. 26, 210 (1987).

159

Project No. 1270

ADVANCED PROCESSING TECHNOLOGY FOR GaAs FIELD EFFECT
TRANSISTORS AND LASERS

A. Christou, N. Papanicolaou and Z. Hatzopoulos

Research Center of Crete, P.O. Box 1527, 711 10
Iraklion, Crete, Greece

ABSTRACT

We present results of the ESPRIT Program 1270. Advanced
processing technology has been developed using molecular beam
epitaxial growth of GaAs and GaAlAs In conjuctlon with laser
processing using exclmer (UV) laser. These MBE and exclmer laser
processing techniques are developed for modulation doped
transistors and superlattices.

MBE growth parameters have been determined with and without laser
Interaction. MBE layers have been characterized through mobility
measurements, photoluminescence, SEM and TEM. HEMTs have been
fabricated and tested at high frequencies and have shown 50%
power efficiency.

Studies have also been carried out on refractory slllcldes and
amorphous metallizations. Amorphous films of W-Sl and T1W-S1
have been achieved on GaAs and InP using thin sputtered layers.
Schottky barriers of W-Sl and T1W-S1 have been developed for
GaAs. Metal slllcldes have been annealed with exclmer laser and
have been studied with SEM and EDS X-ray analysis.

I. MBE GROWTH

MBE growth optimization for modulation doped field effect
transistors has been determined. These conditions using
initially a laser desorptlon of 1 pps, 15 pulses at 248 nm and
90 mj/cm2 were analyzed to be consistent with maintaining a flux
ratio of As,,/Ga of 5 and a substrate temperature of 610°C. These
Initial desorptlon conditions resulted In a very thin 10-20 A GaO
on the surface which was readily desorbed at 580 °C to obtain a
reconstructed 2x4 surface. After MBE growth oval defect density
was less than 100 cm - 2, and dislocation density was maintained
less than 103 cm"2 .

In terms of laser processing optimization, the laser desorptlon
experiments have been carried out at 248 nm, with the laser beam
energy density varied from 75-165 mj/cm2. The optimum energy
density for laser desorptlon was determined to be between

160

75-90 mj/cm2. Mass spectroscopy analysis Indicated that the
desorbed species to be GaO. At energy densities above 90 mj/cm2,
As1(desorptlon from the substrate was observed indicating the
occurrence of surface damage.

The growth of GaAs on silicon has been carried out by MBE and
MOCVD. The MBE technique involved an Initial laser induced
desorptlon at 105 mj/cm2 and 135 mj/cm2 at a wavelength of
248 nm. The grown GaAs surfaces were very smooth with an oval
defect density of approximately 2000 cm"2. Field effect
transistors processed on these layers also included an GaAlAs
undoped buffer layer between the first 2000 A GaAs layer and the
top active GaAs layer. The transistors are shown in Figure 2 for
various GaAlAs thickness and indicates that the gate threshold
voltage to be between 0 volts and -1.5 volts. The transistor
characteristics are well behaved with no indication of a
backgating phenomenon.

The GaAs growth process consisted of initially depositing an
amorphous GaAs layer at 250°C and then increasing the substrate
temperature to 650CC. Thus the initial amorphous layer was
recrystallized during the final deposition state. The growth of
GaAs was successfully accomplished without the presence of
anti-phase domains. The laser annealing they may have produced a
two step surface which prevented antiphase domain growth.

II. PROCESSING AND ANALYSIS

MBE GaAs field effect transistors and high electron transistors
were processed on layers provided by the Research Center of
Crete. In addition FETs were also processed on MBE GaAs/Si and
laser recrystalllzed GaAs on silicon layers. The results
reported by CNET for RCC MODFETs shows a 1.4 dB noise figure at
10 GHz and 11.5 dB associated gain. The mult 1-channel MODFETs
show a 50Z efficiency at 12 GHz and 26.5 dBm of output power.
These results are better than presently available commercial
transist ors.

161

Field effect transistors were also processed on recrystallized
(100)GaAs on (100)si II con. Transistor IV characteristics shows a
transconductance of 40-45 mS/mm and does show that
transistor-like behavior is possible on recrystallized GaAs
layers with low background doping concentration. These
transistors fabricated are in addition to the MBE GaAs/Si layers
reported as part section I.

The failure physics investigations are presently underway at CNET
and Plessey. Test jigs are in place at both locations and
reliability investigations will start during the next quarter.

II.1. Optimised FETs and
Metallizations

DFB lasers with Laser Processed

Laser
been

process
carried

lng of
out

silicon structure
stability of
case o
shows
slight
1050.
found
densit
up to

both
f tantalum s
that the
evidence of
The

to be
:y. It
1050 °C.

reliability S

stabi
hig'

is sh
Thes

chott

f WSi2 and TaSi2 metallizations on GaAs has
. The results show that the inclusion of the
(WSix and TaSix) dramatically improves the
the elemental W and Ta metallizations. In the

iliclde, the Rutherford backseattering evidence
interface remains in fact up to 950 °C but shows
outward diffusion of substrate components at
lity of the amorphous silicides have also been
hly dependent on the substrate dislocation
own that low dislocation density GaAs is stable
se results indicate the potential for very high
ky contacts to future GaAs devices.

II.2. Reliability investigations

Test jigs for DC and microwave measurements of MODFETs for up to
40 devices have been fabricated and tested. The aging set up for
RF life tests is still under fabrication and is based on a 12
port power divider-combiner. The test-jigs for laser
characterization have been fabricated and tested. The aging
set-up for lasers is under final assembly.

II.3. Heterojunction Models

A heterojunction model for GaAs/GaAlAs and GaAs/Si structures has
been set-up in the RCC VAX computer. It is based on a static
model taking into account measured band-gap discontinuities and
built-in potential differences between GaAs and GaAlAs or between
GaAs and silicon. From this model GaAs/Si diode IV
characteristics have been estimated. The development of the
necessary transport equations will be accomplished in the
subsequent phase.

III. CONCLUSIONS

The effort for the first eight months of the ESPRIT project 1270
has focused on molecular beam epitaxial growth, the development
of laser processing techniques and laser processing of amorphous
metallizations. Also developed were single and multiple channel
MODFETs which exhibited significant improvements in power added
efficiency in comparison with state of the art MODFETs.

162

Significant progress is also reported on GaAs/Sl FETs with laser
processed GaAs on silicon FETs Initially processed with an
exclraer laser at 248 nm. Available for further investigation of
device structures are both MBE and MOCVD structures of GaAs on
silicon.

ACKNOWLEDGEMENTS

The results of this project is due to the enthusiastic work of
all of the project partners: RCC, Plessey, CNET (Lannlon), UWIST
and ELLTEC.

163

100A° GaAs n+

{ 250A° Af0 22Ga0 7BAs
250A° Af033Ga0seAs
200A° AI041Gao sgAs
50A" Af xGa,.xAs X = 0.41

SL 0.1nm GaAsAlyGa^xAs X = 0.24
100A° AlxGa,.xAs X = 0.41

E
o

2
g
r
<
DC

in
O

o
o
■z.
o
cc
r
o
UJ

1 x 10
13

1 x 10
12

1 x 10
11

1 x 10
10

tym undoped GaAs

A A HALL MOBILITY
MEASUREMENTS

• o ELECTRON
CONCENTRATION

o
o

o o
 o •

A
A

A
A A

 A

i i i i

A A
A

A

i i

▲

▲

A
>
Oo

0«
A

A

* A

i

.2 x 10
5

1 x 10
5

0 x 10
5

.9 x 10
5

.8 x 10
5

.7 x 10
5

.6 x 10
5

CO
I

>
CM
E
o

o

m
o

<
X

0.05 0.15 0.25 0.35 0.45

MOLE FRACTION ALUMINUM

FIGURE 1 The relationship between mobility and electron
concentration for various Al concentrations.

3
1.0X10

CO
Q

* *

1.0X10

MBE 112

IA"
/ 2 5

/

DA

GaAs

250

/

/
/

-~/-—

> / GaAIAs /GaAs/Si

9^
1

/
' 4 0 0 i

/
/

J

' 3 5 0

/ !

;
; /

y
/ ,

(450

/
IC
/3i

/

V

OA"

/■

ID

OA

2000 1000
V G (volts)

.500

FIGURE 2 Currentvoltage characteristics for GaAs on silicon.

164

Project No. 334

PLASMA DEPOSITION TECHNOLOGY FOR MAGNETIC RECORDING THIN
FILM MEDIA

B. Cord, P. Wirz
Leybold-Heraeus GmbH, Wilhelm-Rohn-Str. 25, 6450 Hanau,
FRG

1. OBJECT OF THE WORK
A significant increase in magnetic recording density can be
achieved if the particulate magnetic coatings are replaced by
continuous magnetic thin film media.
In numerous experiments thin film media have been prepared and
tested. Most often the thin films were produced in laboratory
scale or with low deposition rates for example by rf-diode
sputtering with 0.5 nm/s. The present project aimed to the
development of vacuum deposition technologies with high
deposition rates for industrial production of thin film media.

- Magnetron sputtering with a rate of 10 nm/s.
- Electron beam evaporation with rates up to 100 nm/s.
- Development of inline deposition systems with a high throughput

for large scale production.
- Development of layer systems on floppy and rigid disks with the

appropriate qualities for high density recording.

In the ESPRIT project three industrial partners work together to
establish this technology for the European market. Leybold-
Heraeus (FRG) as the prime contractor is in charge of the
development of various deposition technologies - sputtering,
evaporation and plasma-CVD. BASF (FRG) is responsible for aspects
of media fabrication and evaluation of differently prepared
media. BULL (France) has large experience with respect to media
available on the market and the implementation of them into a
disk drive system.
The work is supported by academic institutions in regard to
scientific investigations. In addition the University of Twente,
Enschede (J.C. Lodder), (The Netherlands) developes an
evaporation technology in laboratory scale for CoCr-vertical
recording.

165

2. PREPARATION AND EVALUATION
RECORDING

OF RIGID DISKS FOR LONGITUDINAL

(Leybold-Heraeus, BASF, Bull)
Rigid disks with thin magnetic films are already in the market.
The samples are prepared by either plating or sputtering or a
combination of both. Often the magnetic layer is plated and the
protective layer is sputtered from a carbon target. Within the
current project a process technology for full sputtered disks is
developed, since it is expected that the full sputtered media are
coming more and more into the market.
The layer stack consists of a Cr-underlayer, a CoNi(Cr) magnetic
layer and a protective carbon overcoat. An in-line sputtering
system for rigid disks, capable for the production of 200
disks/hour was put into operation and the process technology was
developed.
Fig. 1 gives a schematic drawing of the used system. The
substrates are set onto a palette and moved through separately
working process chambers without breaking vacuum.
The different chambers allow pretreatment (e.g. cleaning,
heating) or sputtering of material. The complete layer stack is
brought onto the disks in one run.

tJ"'tf
1 Microprocessor control
2 Heating unit
3 Cathode
4 Automatic pallet-return system
5 Unloading module

..#-> M

7 6 5
6 Lock module
7 Coating module
8 Lock module
9 Turbomolecular pumps

10 Loading module

FIGURE 1
In-line sputtering system for the production of rigid disks

As an example for the developed process technology fig. 2 shows
the dependence of coercivity of the magnetic CoNi(Cr)-layer on
the thickness of a previously sputtered Cr-underlayer. Cr-,
CoNi(Cr)-targets with a size of 125 x 750 mm2 were used with
deposition rates of 8 nm/s.

166

8
&

a
8
o

0,8

0,6

0,4

0,2

Cr + CoNi (Cr)

jo

1 *

r,.-o o—

n_ 0 A

□ □
□ glass

A Al

O AI+NiP

CoNiCr

A
CoNi

D

i

El

100 200 300 400 500
Crthickness [nm]

FIGURE 2
Dependence of the coercivity of the magnetic CoNi(Cr) alloy on
the thickness of a Crunderlayer. Several substrates were used.
The magnetic layer thickness is kept constant and amounts to
70 nm for CoNi and 90 nm for CoNiCr.

Samples prepared within this machine were given to the partners
(BASF, Bull) for testing the electromagnetic data and fig. 3
gives the dependence of data on the thickness of the magnetic
layer.
An unwanted modulation of the readback signal is obtained in in
line sputtering systems. The linear movement of the substrate
relative to the cathodes induces a magnetic anisotropy with an
easy magnetic axis parallel or perpendicular to the movement of
the substrates leading to a 180° periodic modulation of the
readback signal as shown in fig. 4. A special process technology
was developed, which allows the production of nearly modulation
free disks (fig. 4).
The process technology and the testing of the electromagnetic
data has developed so far that the desired magnetic values as
coercivity, squareness, signal amplitude etc. can be selected
within the physical interdependencies by appropriate choice of
the process parameters.

BASF
ELMAG DATA - f (RECORDING LAYER THICKNESS

3+4 LH-SAMPLE

Ji 4.LH SAMPLE

500 600 700 800 900 (A)

167

O T.

3.LH-SAMPLE
\ ^ j * * _ * _ J 1 4.LH-SAMPLE

500 600 700 800 900 (A)

__J 4.LH-SAMPLE

500 600 700 800 900 (A)

_ i 4.LH-SAMPLE

80-1 r-
500 600 700 800 900 (A)

FIGURE 3
Electromagnetic data (lF-output, overwrite,
resolution) as function of magnetic layer thickness
3. LH-sample: CoNi (80/20)
4. LH-sample: CoNiCr

2F-output,

M

High modulation case
FIGURE 4

No modulation due to special
process technology

Modulation of the read-back signal amplitude from sputtered disks
produced in in-line system.

168

Fig. 5 gives a comparative study of heads performed by BULL.
Different heads are compared on the same disk in respect to
signal amplitude, Doo value of recording density and track width.

Density Amplitude
a 50%

20000-, 800-
jjVp-p (FCI)

18000-

16000-

14000

12000

600-

400-

200-

MnZn MnZn CaTl Thin film
(mini) (mini) (mini) (mini)

Track width

a 50% 20%

pm
-30

-25

-20

-15

-40

-35

-30

- 25

" 20

EM^H

• Amplitude
+ Density a 50%
o Track width a 20%
A Track width a 50%

FIGURE 5
Comparison of heads

Looking for the dispersion of one kind of heads the mini-
monolithic heads are more homogeneous (amplitude, S/N,
resolution) than mini-composite heads. Thin film heads show a low
amplitude value but a good resolution of Dso-values greater than
23 kfci.
Comparing disks the plated ones exhibit a low modulation and S/N
ratio with a good dispersion, the plated + carbon overcoat show
good homogeneity of amplitude but dispersion of resolution and
S/N ratio. The full sputtered media have generally a higher
dispersion of samples from one lot but can achieve good results.
For plated, plated and carbon and full sputtered disks there
exists not much difference between the average electromagnetic
values. Compared to the oxyde media the new thin film media are
superior in the electromagnetic data (higher signal amplitude,
10 % higher resolution, better overwrite etc.)

The disks produced in the project are compared to disks available
on the market to give an actual picture of the state of art. At
the moment a standard of the disks from the project is reached,
which corresponds the common standard. A further progress is
expected from some modifications of the deposition process,
optimized substrates and heads.

169

3. EVAPORATION OF CoNiCr FOR LONGITUDINAL RECORDING THIN FILMS ON
FLEXIBLE DISKS

(BASF)
The performance of a thin film flexible disk for longitudinal
recording has been studied. An alternative route to high density
longitudinal recording on rigid disks or CoCrvertical recording
on flexible disks was considered [1].
The disks of a CoNiCr magnetic layer on a Cr sublayer were
prepared by ebeam evaporation from two independent crucibles
with Cr and CoNi (80/20). The Crsublayer was prepared by
evaporation from the Crsource and the CoNiCr by parallel
evaporation of both crucibles.
Different types of polyimide films with thicknesses of between 30
and 75 pm were used as base material and outgased by additional
heat treatment at 150 °C in the vacuum chamber.
At a constant thickness d = 50 nm of the CoNiCrlayer the
thickness of the Crunderlayer was varied and the results are
given in fig. 6. With increasing Crthickness the magnetic data
improve, but the flexibility of the complete disk is reduced
leading to problems in maintaining good headdisk contact. The
thinnest Crlayer (200 nm) compatible with the magnetic
requirements was chosen. The dependence of He and remanent flux
on the CoNiCrthickness is given in fig. 6, too.

A-
A —»
0R/0S

: 0.9
- 0.8

ot

d
CoNiCr~*

50nm

SFD

80

60

40
0.3
0.2 20
0.1

100 200 300 400nm
dCr

\
x

\ x
«— i s

 Hc
kA/m

y
/

1

1 1

\ x %

1 /*-
/ (

%/
0R

nWb/m

X xx^

dCr

X

■200nm

1 ■

20 40 . 60 80
dCoNiCr

80

60

40

20

100nm

FIGURE 6
Coercive force, squareness and Coercive force and remanent
SFD as functions of the Crsub flux for different thick
layer thickness. The magnetic CoNiCrlayers on a 200 nm
layer thickness is kept constant. thick Crsublayer.

170

The flexible disks were coated with a sputtered protective carbon
overcoat, mounted in a conventional cartridge and tested in a
standard drive system fitted with a special magnetic head. The
extremely short head gap of 250 nm was chosen to take full
advantage of the high density potential of the disk. With the
optimized disk a Dao = 62 kfci was achieved.
One of the strongest factors effecting Dao is the head to medium
spacing, which is demonstrated in fig. 7 by the experimental
dependence of Dao on the thickness of the carbon top coat.
Therefore thin top coats are favourized for high density
recording performance.

10 20 30 40 nm
Olayer thickness

FIGURE 7
Dao-values versus the C-layer thickness. The film substrate, the
CoNiCr-thickness (40 nm) and Cr-sublayer (200 nm) were constant.

The lifetime of the disks was tested with different head
configurations and sputtered carbon as protective overcoat (fig.
8). With a double head assembly (Head I) and an unprotected
CoNiCr-disk the lifetime (defined as the time the output level
decreases to 90 % of its original value) amounts to about 40 s. A
spherical single sided head (Head III) and a sputtered carbon
overcoat led to the longest lifetime.

171

HD Floppy Disk, head I

without protecting layer, head I
D

with C layer, head I

n with C layer, head II

with C layer, head III

with C layer, head III

Substrate:
polyimide film I

1 min 1h
~l polyimide film II

i——I r
3 4 5
life time (sec, log)

1d 1week

BASF
HEAD I

r " T t HD1

96TPJ-BASF
Double head assembly
GL - O.Spm
T W - 156|im

HEAD II

I HDO I

HEAD I

Single Head
(spherical)
GL -0.5um
T W - 156pm

Logarithmic lifetime for
different CoNiCr-disks compared
with a standard particulate
medium. C-layer is always 40 nm
The polyimide films differ in
the roughness.

FIGURE 8
Schematic view of the head
configurations used in the
lifetime test.

The experiments have demonstrated that high density recording on
flexible disks prepared by CoNiCr-evaporation is promising. The
electromagnetic results are excellent, the lifetime is acceptable
but has to be optimized further using other top coats, head
configurations and base films.

172

4. CoCr-SPUTTERING IN LARGE SCALE ROLL COATING SYSTEMS
(Leybold-Heraeus, BASF)
A double side sputter roll coater for 1.2 m web width has been
used to sputter CoCr onto polyimide web. The production of
sputtered CoCr films in production scale was demonstrated. The
magnetic as well as crystallographic properties have been
investigated as function of the deposition parameters, layer
thickness, coating drum temperature, background pressure and
angle of incidence [2, 3, 4].
Fig. 9 shows a sketch of the roll coating system.

M
IfYBOUMdUEUS

FIGURE 9
Schematic drawing of a 1,2 m two side sputter roll coater for
perpendicular recording media manufacturing
(1: glow discharge, 2: cooling drum, 3: cathode)

It can be equipped with 8 DC-magnetrons of 1.5 m length. The two
coating drums allow double side coating with a complete layer
stack for vertical recording on both sides of the foil. A special
magnetron cathode for sputtering thick magnetic material was
designed and tested in this machine (fig. 10). The target design
overcomes the problems own to sputtering of magnetic material.
For ferromagnetic targets the magnetic fields are short-circuited
and therefore magnetron sputtering is prevented. The new cathode
guides the magnetic field in such a way that magnetron sputtering
with rates of 19 nm/s for CoCr is possible. Thick target material
can be used with a high target utilization of 53 % compared to
20 - 30 % for the standard version.

173

pole piece outer inner
mounting pole piece pole piece

m m ifi 1 i i

FIGURE 10
Magnetron configuration (top) and erosion
cathods for sputtering magnetic material
(1, 2, 3: typical magnetic field lines)

profile (bottom) of

CoCr (81/19) was sputtered onto polyimide web, the anisotropy
field HK and the coercive forces Hex (perpendicular) and He//
(inplane) were taken from VSM measurements. The main parameter
which influences the layer quality is the substrate temperature.

8

900

700

<
500

DRUM TEMPERATURE (°C)

r /

/

- /

1 1 1 1 i 1

■D

2
BASF

<
8-

6-

4-

250 | 2 -

150 l " o
■h 1 1

ds (nm)
y 0 - 230-270

^480-500

- i 1 1 1—
130 150 170 140 160

TS(°C)

FIGURE 11
Perpendicular (Heĵ) and parallel Dependence of the A93o-value
(Hc||) coercivities of a sputtered of the Co (002) peak on sub-
260 nm CoCr-layer as function of strate temperature during
substrate temperature sputtering

174

Fig. 11 gives the coercive forces as a function of the coating
drum temperature for 260 nm thick CoCr layers. A high anisotropic
film is obtained at elevated substrate temperatures.
The good crystal orientation could be confirmed by X-ray rocking
curves of the (002) Co peak. The right part of fig. 11 gives the
A03o values for the left samples. Values as low as 2.6° were
obtained.
For recording experiments 5,25" disks were punched out from
polyimide web with the following magnetic layer parameters:

the

HK = 3550 Oe, He, = 600 Oe, A9io 3.4C

A special video ring head with a gap length of 0.25 ^m was used.
The frequency response for the disk with a liquid lubricant of 2
nm is shown in fig. 12. For this small head medium spacing Dso as
high as 90 kfci could be measured. In increase of the spacing for
example by a carbon coating reduces the Dso value considerably.

BASF

5"
fc
<D
3

a
e
CO "Si
c
a>

55
50
45
40
35
30
25
20
1b
10
5
0

m

8.9 17.8 26.8 35.7 44.6 53.5 62.5 71.4 80.3 89.2 98.1 107.0 (kfci)

Recording density

FIGURE 12
Frequency response of a CoCr flexible disk. The insert shows the
signal at 2 MHz

The current work has demonstrated that CoCr-layers can be
sputtered in a large scale production system. The achieved
magnetic and crystalline properties are suitable for production
of perpendicular recording media.

175

5. EVAPORATION OF CoCr
(University of Twente, Enschede, The Netherlands)
In this task Coevaporation experiments for preparation of CoCr
layers for vertical recording are performed. The main goals are:
 The perpendicular magnetic anisotropy
 The setup of CoCr evaporation technology.
The deposition is done in a LeyboldHeraeus L 560 vacuum system,
equipped with two ebeam evaporation sources. The angle of
incidence on the substrate is 20 30° but from opposing
directions for Co and Cr.
The experiments are projected as an alternative to sputtering of
CoCr.
The work is performed at laboratory scale and the fundamental
effects such as deposition rates, areal composition homogeneity,
angle of incidence effect, influence of substrate temperature,
growing characteristics are under investigation.
The experiments started in January 1987. CoCrlayers with the
desired perpendicular orientation could be prepared [5]. At base
pressures < 2 x 10"7 mbar with deposition rates of 0.8 nm CoCr
layers of about 200 nm were deposited by simultaneous evaporation
of Cr and Co.
Fig. 13 shows the dependence of the saturation magnetization Ms
as function of Crcontent. At higher process temperatures TP Ms
increases which is explained by a pronounced inhomogeneity of the
local Crconcentration [6].

1400
Ms

kA/m

1000

500

0

' 1 r

\
\

\
\ »

\

i

1 1 1

■

* 50°C
o 125°C
+ 175°C
D 200=C

^ • • 30CC

bulk \ \ \
CoCr \ V 5

\
N

S3

10 20 30
at%Cr

Straight line:
Data points:

FIGURE 13
Ms as function of Crcontent
Value for bulk material
From evaporation experiments at different
substrate temperatures

176

In addition the evaporated CoCr-layers show a considerably
increased Ms as compared to bulk CoCr. This indicates that Cr-
inhomogeneity may not only be reached by elevated substrate
temperatures. An additional process induced Cr segregation
happens at intermediate oblique incidence of the incoming Cr- and
Co-atoms. The inhomogeneity in the layer is expected to be due to
shadowing during the growth process. The further experiments
should give more detailed pictures of CoCr-growing.

It is planned to modify the experimental set-up in this L 560
laboratory system in order to allow the fabrication of a flexible
disk. This CoCr-disk could then be tested for read/write
characteristics.

6. SUMMARY
Starting from laboratory results industrial vacuum deposition
technologies both for longitudinal and vertical thin film
recording media were developed within the ESPRIT-project.
The magnetron sputtering has reached the highest standard. Pilot
production machines were built up and samples were produced.
The e-beam evaporation is run in laboratory scale.
- Large scale magnetrons up to a size of 150 x 28 cm2 with
deposition rates up to 19 nm/s have been constructed and
were tested in production plants.

- A production like in-line sputtering system for hard disks was
built up. The machine coats 200 5 l/4"-disks/hour with a
complete layer stack - underlayer, magnetic layer, overcoat.
By the selection of optimized target material and the good
control of layer composition the sputtering machine is very
flexible and has therefore a clear advantage compared to thin
film plating technology.

- Rigid disks for longitudinal recording from the pilot
production system were tested and compared to disks available
on the market. A standard is reached which corresponds to
other thin film media and is therefore higher than for oxyde
particulate media.

- Flexible disks for longitudinal recording were coated by
evaporation. Using special heads high recording densities and
acceptable lifetimes were achieved demonstrating the great
potential of this medium.

- The practical limits of high density longitudinal recording
were tested from the viewpoint of a diskdrive manufacturer.

- The deposition technology of CoCr for vertical recording was
developed in a large scale sputtering roll coater for
industrial production of CoCr-layers on foil. Read/write
procedures were run on flexible disk samples.

177

- The preparation of vertical CoCr-layers by e-beam evaporation
was performed in laboratory scale and the results are compared
to sputtered CoCr.

The future activities will concentrate on further improvements of
the sputtering technology and the comparison of the deposition
techniques. In addition the process technology of protective
layers by plasmapolymerization will be developed. Advantages
compared to sputtered carbon overcoats are expected.

REFERENCES
[1] CoNiCr Thin Film Flexible Disk for Longitudinal

Recording
M. Hitzfeld, B.K. Dalmann, H. Jakusch
Paper at the Intermag Conference 1987, Tokyo

[2] High Rate Sputtering of CoCr with Large Magnetrons -
Dependence of Magnetic Properties on Sputtering
Parameters
R. Ludwig, K. Kastner, R. Kukla, M. Mayr
IEEE Tran. Mag., Vol. MAG-23, no. 1, 94 (1987)

[3] High-Vacuum-Sputter Roll Coating for Production of
Magnetic Recording Media with Perpendicular
Magnetisation
M. Mayr, K. Kastner, R. Kukla, R. Ludwig
IEEE Tran. Mag., Vol. MAG-23, no. 1, 131 (1987)

[4] CoCr-Sputtering in Large Scale Roll Coating Systems
M. Mayr, R. Ludwig, K. Kastner, R. Kukla, B. Dalmann,
H. Haberkorn, M. Hitzfeld
Paper at the Intermag Conference 1987, Tokyo

[5] Co-evaporation of Co-Cr at intermediate oblique
incidence
F.A. Pronk, J.C. Lodder
Paper at the EMMA 87 Conference, Salford, Sept. 1987

[6] Y. Fujii, K. Tsutsumi, T. Mumata, Y. Sakurai
J. Appl. Phys. 55 (6), 15 March 1984, p. 2266

178

Project No. 443

NEW HORIZONS FOR THE CHEMICAL INDUSTRY IN INFORMATION
TECHNOLOGY

J. ZYSS (*)
CNET (*) prime contractor (France), ICI (U.K.), Thomson-CSF (France), FUNDP
(Belgium)

ABSTRACT
Optics and microelectronics will increasingly interact in the form of active or passive
optical interconnects between microelectronics chips, mixed opto-electronics devices,
and purely optical devices as part of mixed opto-electronics systems. Highly nonlinear
optical materials to operate, in proper environment, as optical logic elements, large band
modulators, tunable parametric amplifiers or emitters in digital or analogous information
processing and transmission systems are therefore required. Optical nonlinearities may
originate from quasi-resonnant interaction of light with highly confined states in low-
dimensional semiconductor structures such as multiple-quantum-well of III-V compound
composition or, alternately from non-resonnant tunable parametric interactions with
highly delocalized and polarizable electronic systems. The latter approach has been
chosen in this Project where lower non linearities are traded for ultrafast (i.e. quasi
instantaneous) response and recovery times, transparency and wide-band tunability.
Long conjugated chains can be synthetized at will and their properties finely tuned by
molecular engineering such as allowed by the unlimited possibilities of organic
synthesis. In the four Tasks assigned to this Project, significant milestones have been
reached, based on a truly collaborative effort between fundamental and industry oriented
partners. A computer aided crystal engineering workstation has been defined and
implemented : its role is central in the optimization of the structural and electronic
properties at either microscopic or macroscopic levels. Significant advances have been
reached in the synthesis and poling of new molecular materials, such as guest-host liquid
crystalline polymers with measured nonlinearities one order of magnitude above that of
LiNb03. Langmuir-Blodgett technology as an alternate for organics to epitaxial

deposition has been extensively explored and extremely high susceptibilities (up to 10"27

esu) measured in waveguiding structures. It is hoped that future work, within the Phase
II framework, will be allowed to build on this know-how basis towards the development
of a molecular based Information Technology devices.

I. Purpose and environment : an industrial perspective

The heavy chemical industry specializing in the mass-production of low value added rough
commodities is currently meeting a worldwide crisis, especially acute in Europe. This traditionnally
important sector of activity is irreversibly shifting both structurally and geographically, to the
petroleum and gas industries outside of the EEC sphere. This situation leaves no other option in the
long range to the chemical industry but to seek new products and markets openings where its
traditionnal skills may be further fruitfully exploited on a sound economic basis. Besides
biotechnology and pharmaceutics which fall outside our scope, the development of new highly
value-added materials, well targeted towards specific applications, such as in demand in the field of
Information Technologies (IT) is a highly competitive challenge. In view of its initial assets this
challenge may be favourably met by the european chemical industry. On the other hand, the

179

electronics industry has to prepare for the future, where ever increasing flows of information
processed at ever increasing rates will require devices based on materials other than currently used
inorganics semiconductors. It is the aim of this Project to combine these two demands into a
common exploration by chemists and electronicians of the potential of new tailor-made organic
materials for information processing. It is by now a commonly accepted view [1] that optics and
electronics will increasingly cooperate in future information processing devices and systems, the
trade-off being performed according to the compared relevance of either photons or electrons with
respect to specific functions. The barrier is by no means clear-cut and is bound to remain highly
sensitive to unpredictable technological advances : for example one may argue wether a Fourier
transform, a typical example of a widely used linear processing operation, is more efficiently
achieved by means of a computer implemented or wired FFT algorithm or at the focal plane of a
converging optical lense. There of course system architectures considerations and cost-
effectiveness, in addition to the very nature of the materials and devices involved, will play a pivotal
role. In any case, nonlinear optical materials will be part of future optoelectronic information
processing or computing devices very much like nonlinearities, resulting from doping and junctions
in semiconductors underly present and future purely electronic applications. Such typical nonlinear
applications as amplification, logical gating, thresholding modulation, etc... are presently more
readily achieved in electronic systems; however, when sufficiently efficient optically nonlinear
materials are developped, the well-known additional benefits of optics, as compared to electronics,
such as speed, parallelism or bandwidth will drastically modify the scene.

Nonlinear organic materials, based on preliminary investigations as reviewed in Ref. [2-5],
prove both a sound and highly promising meeting point answering the previously mentionned
driving forces pulling together the chemical and electronic industries. Figure 1 illustrates the
intermediary position of an organic material based device industry to be backed at one end by the
chemical industries and by the electronics and I.T. industries at the other end.

MARKET

CHEMICAL INDUSTRIES

Materials

V
ELECTRONIC AND
IT. INDUSTRIES

Sys terns

COMPONENT INDUSTRIES
Organic Materials based devices

Fig. 1 Industrial environment or Project 443

180

The expertise, synthetic capability and innovation potential of the chemical industry is highly
needed as large numbers of materials will have to be conceived, synthetized and shaped to fulfil the
requirements of optimized nonlinear devices following a very similar approach to that used in
pharmaceutics. However the approach followed here is based on more precise physical groundrules
deserving well the term of "molecular engineering" [3]. The market requirements will be transmitted
via the electronic and I.T. industries which are needed for their know-how in components and
systems so as to help bridge the gap between materials and systems. The international environment
is fast evolving-both in and out of the Community and the effort gathered in this Project ought to be
pursued and reinforced to keep-up with the competition and help industrially exploit the predominant
initial asset of the european scientific and technical communities as represented within the
Consortium. Three kinds of commitments, not necesssarily independant from each other, may be
distinguished.

Firstly purely proprietary industrial programmes developped within individual major
companies of international stature, tending to keep away for strategic reasons of their own, from
external collaborations : Dupont (Central Research Station at Wilmington, Kodak (Kodak Research
Laboratories, Rochester) or ATT (Bell Laboratories at Murray-Hill and ATT Engineering Centre at
Princeton) exemplify this approach. These companies may occasionnally collaborate with
individuals or academic research groups but will not join industrial ventures, their size, own
expertise and production branches allowing for self-supported programms integrating research,
manufacturing and marketing. Such is also the situation at IBM, within the Almaden Research
Centre (San Jose) where a significant but still prospective effort is pursued. Such a strategy remains
restricted to truly major companies as can be deduced from the recent withdrawal from that scene of
previously active companies of significant size, however of comparatively smaller sizes, such as
GTE (Waltham) and Xerox (Rochester). However, limitations resulting from such an approach may
be deduced from the recent joint-venture between Dupont and British Telecom which puts Dupont
aside in the list Little can be deduced beyond a rough estimate of the amount of involvement from
publications or other types of disseminations as these companies, in consistency with their approach,
will not let out much of their achievements. The present tendency is to set-up cooperative
organization schemes as will be further alluded to.

Secondly, national programs, gathering at the domestic scale industrial, government-owned
and academic laboratories are being set-up. Typical of such an approach are the "Frontier Project" in
Japan [6], extending from 1986 to 2001, where one of the seven themes is devoted to "organic
nonlinear optics and HTC superconductors", the British Joint Optoelectronic Research Scheme
(JOERS) where programms on organic nonlinear materials and Langmuir-Blodgett (L-B) technology
are being assembled, the US Optical Circuit Cooperative (OCC) based at the University of Arizona
where Celanese is the main chemical industrial participant and which is substantially funded by
government agencies. A major development has been the acquisition in 1986 of Celanese by
Hoechst which represent an important concentration of skills in organic nonlinear optics. In west
Germany, a government sponsored project is gathering a number of major university and Max-
Planck research teams around the three major chemical companies Hoechst AG, BASF and Bayer on
the theme of functionalized L-B films.

Thirdly, international cooperation, of which little is being known, is connecting american with
Japanese companies or Dupont with British Telecom. This ESPRIT Project falls within this category
in as much as an EEC funded programm may be termed international.

The amount of books, feature issues of international scientific or technical journals, major
international meetings concentrating on the subject is increasing fast with a significant presence of
participants from this ESPRIT Project Foremost events in 1987 are the Symposium on electroactive
polymers held within the framework of the American Chemical Society national meeting at Denver
(april 1987) [7], the Symposium on nonlinear optical properties of polymers held within the Material
Research Society meeting at Boston in December [8]. A number of more specialized meetings on
L-B films, solid-state chemistry and nonlinear optics are currently being held. No significant
advances over the results obtained within our partnership as will be further described, are noted and
there is an overall agreement at the present supposedly precompetitive stage, on the avenues to be

181

explored i.e. : thin films, single crystals, poled liquid crystalline polymers, Langmuir Blodgett
technology, nonlinear fibers, as well as on the need for sophisticated and adapted design, growth
and characterization tools. It may be noted that a lot of theoretical synthetic and physical expertise
built around the theme of conducting polymers, a domain which, although very promising, seems to
have reached a plateau, is highly relevant towards cubic optical nonlinearities and is being succefully
applied in this newer domain. The university of Bologna, the Santa-Barbara Polymer Institute and
our belgian partner (FUNDP) exemplify, among other groups, this exploitation in NLO of these
background know-how. The future of this domain now strongly depends on the definition and
availibility of organic materials adapted technologies which is a prerequisite towards the development
of a fruitful scientific domain on to an industrial market, this being the major issue years to come.

In section II, we will detail the major technical and scientific milestones reached so far in our
Project, while section m will be devoted to perspectives.

II. Main achievements over the five first semesters in Phase I (January 1985-june
1987)

These can be classified in three categories namely molecular design and characterization tools,
molecules and materials. The breakdown of tasks and major milestones in the Project can be found
in Ref.[9].

II.A Molecular design and characterization tools

A condition for further progress in this field, is the availability of various sophisticated tools
either existent but requiring higly specialized manpower and lacking the reliability demand in an
industrial project (typical of that situation is the Electric-Field Induced Second Harmonic EFISH
experiment) or non-existent at the onset of the Project (Electro-Optic assessment of monolayer
assemblies). These tools will include molecular material computer aided design systems, on to laser
wave mixing facilities and L-B through. Their purpose is to provide the necessary predictive
conceptual approaches or experimental feed-back to avoid costly and tedious synthesis dead-ends.
Furthermore, the development of such tools into industrial prototypes to participate into future
production or testing units is a goal per se. Their availability is viewed in this Project as a
"deliverable", endowing the Consortium with the relevent technological environment for further
industrial developments.

One of our goals is the devopment, essentially at ICI, of a molecular material computer aided
design workstation [10] as permitted by recent advances in the field of molecular graphics over the
past decade. These have led to the development of tailored molecular modelling packages which are
used on a routine basis in industry to design chemicals for applications in many areas of chemistry,
physics, and biology. Typical hardware packages consist of high resolution calligraphic or raster
displays such as the Evans and Sutherland PS300 series or the IBM 5000 series coupled to an
appropriate host or microcomputer such as a Digital Equipment Corporation Microvax. In the design
and engineering of chemicals by computer for applications in electronics the essential software
requirements for an effective modelling display (see Figure 2) are the ability to interactively generate
a molecule, modify its structure at will, calculate whichever property is of interest, display molecular
skeleton or space filling models viewed from various angles, generate the crystal structure from
crystallographic data.

For example, the evaluation of the hyperpolarizability of over a thousand different molecules
has been achieved by molecular modelling in a minute fraction of the time required for their synthesis
and characterization. Candidate molecules have been selected on this basis, synthesized and tested.
However, while molecules designed in this way possess large intrinsic hyperpolarizabilities, their
behavior in the solid state may be quite different because many active molecules crystallize in a

182

centrosymmetric fashion and the prized molecular effect is much reduced or even lost A crystal
modelling program has been partially implemented in the course of this project, a major bottleneck
being successfully assessed : that is the ability to calculate and predict the crystal structure from
hypothetical molecules, a crucial prerequisite to the effective design and engineering of organic
devices. Prior to the onset of this Project, it was generally deemed irrealistic, in view of the
complexity of the problem, to precisely predict crystalline structures beyond simple trends such as
originating from the "closest packing" approach by Kitaigorodsky [11].

THEORETICAL
PROGRAMS

CONTROL
PROGRAM

\ / \ ^

/ \
(Computer y

STRUCTURE,
FRAGMENT LIBRARY

CRYSTALLOGRAPHIC
DATABASE

Fig. 2 Molecular engineering workstation for the computer aided conception of new optically
nonlinear molecules and materials as from Ref. [10].

Excellent agreement has recently been obtained between the experimental and calculated crystal
structures of n,n-dimethyl-p-nitroaniline, with minimal differences in the eleven variables of the

183

calculated structure and the corresponding experimentally observed values (see figure 3). This
agreement supports the use of the calculation procedure in deriving hypothetical crystal structures of
n,n-dimethyl-p-nitroaniline by the imposition of alternative symmetries on the arrangement of the
molecules in the crystal. The postulated structures are as expected less stable but one is sufficiently
close that it may be experimentally accessible.

Preliminary structural calculations on n,n-dimethyl-p-nitro-ethenamine based on similar
principles confirm the relevance of this approach and extension to molecules of greater complexity is
being undertaken. Previous results on the influence of the nature and length of conjugated systems
have been reported [12] and point-out the relevance of polyenes as compared to polyphenyls. The
nitroso NO group was also found to have greater electro-attracting potential than the more commonly
used nitro NO2 group. The modelization routines for the computation of P rely on a sum-over-states
(SOS) perturbational expression where the molecular quantum eigenstates and eigenvalues
diagonalize a semi-empirical Hartree-Fock hamiltonian [13].

The effect of atoms other than carbon on
the conjugation path in terms of electron
transfer has been investigated for stilbenes,
benzylidenes and azobenzenes where the
calculations indicate that the azo group is the
most efficient conjugated linkage in terms of
charge transfer. Interesting structural effects
were observed in 1,3-diphenylpyrazolines
where the calculated hyperpolarizability is
highly dependent on the position of ring
substitutents.

Finally as will be seen in Section II-B,
the parametrization of the CNDO-VSB method
for sulphur has proved consistent with
nonlinear measurements at CNET of ICI
supplied species.

-The modelization and molecular
engineering of molecules, oligomers or
polymers with enhanced cubic (7)
nonlinearities, essentially assigned to the
FUNDP group consists of two main areas of
investigations.

• Firstly, methodological developments,
algorithmic design and implementations which
were much less advanced for ythan for p at the
onset of this Project

• Secondly, the test of programs and
application for searching new compounds, Fig. 3. A comparison of the experimentally
ultimately polymers, characterized by high observed form of n,n-dimethyl-p-nitroaniline
optical responses and identification of the most (top view) and the calculated crystalline structure
important parameters that can be modified to with the same symmetry imposed (Neil Higgins
further enhance these responses. and J.O. Morley, ICI, private communication)

Within the framework of the Hartree-Fock theory,two choices have been considered to
calculate the electric polarizability and hyperpolarizabilites of molecules, oligomers and polymers: a)

184

the sum-over (one-electron) states (SOS) and b) the Finite-Field approach (FF). For each of these
choices, specific numerical and programming problems had to be solved [10,14].

More recently, the Genkis and Mednis pertubative approach has been fully mastered [15] and
developped from a purely theoretical model on to a practical numerical testing method. It may be
viewed as the counterpart for infinite chains of the SOS methods for finite-length systems.

Using the FF method at the ab initio level, the identification of the most promising bonding
patterns consistent with a high electric polarizability and the various parameters that can be tuned to
further enhance this property has been conducted. From a comparative study on different conjugated
subunits, it turns out that the sole number of 7t-elctron involved is not the only parameter, making
obsolete previous "electron in a potential well" type of models. The length is an important parameter
to consider since the polarizability increases in a super-linear way with respect to the number of sub-
units. From various calculations, the best candidate building bricks for highly polarizable chains are
the cumulenic units : -CH=[C=C]=CH-.

The actual geometry of the final system is of great importance. Any effort that can improve on
the homogeneity of the 7t-electron distribution is expected to enhance the resulting electric response.
Conversely, any constraint (steric or else) reducing the conjugation between interconnected units has
to be avoided. This stresses the importance of being able to control the organization of the molecules
and macromolecules in the bulk when considering the synthesis of actual systems. Several case
have been successively considered and, FUNDP theoreticians in agreement with ICI organic
chemists have agreed upon the concept of "conjugated backbones organized by hydrogen bonds"
which is being developped into an organic synthesis program. Further modelization are now in
progress on polyaromatic systems, polypyrrole, polythiophene, polyparaphenylene etc,... doped
and undoped which can be followed-up in practice by the expertise gathered at CNET (Lannion)
initially in view of their conducting or semi-conducting properties.

The setting-up of performant experimental characterization tools as previously mentionned is
one of the major objectives of the Phase I of this Project and is being satisfactorily met A number
of specific experiments have been implemented or developped, tested and proved helpful in the task
of identifying interesting molecular, thin film or bulk structures, while efficient throughput such as
expected in this industry oriented Project will be fully at the end of Phase I. CNET is developping a
prototype combined third-harmonic generation (THG) and electric field induced second-harmonic
generation (EFISH) set-up for solution testing with tunable fundamental wavelength to allow for the
study of systems of various length. Coupling these two experiments is essential, as the sole EFISH
yields a combination of y and p. Disentangling the electronic (y) and orientational (P) contribution is
becoming essential as molecular systems of extended conjugation length, where y is non-negligible,
come into our synthesis programm. Figure 4 shows a simplified view of this experiment which
incorporates a SM90, CNET patented [16] mini-computer for driving the equipment and interpreting
the data and a Q-switched mode-locked 1.32 Jim YAG:Nd3+ laser of original CNET conception.
This experiment is meant to be transfered to the industry with one technician to man it (instead of
two trained chemical-physicists as is the case presently), and a throughput in terms of molecules per
day instead of molecules per week as at present

The electroptic properties of thin layers are being tested by a modified surface plasmon
resonnant coupling technique [17,18] (Institut d'Optique and Thomson-CSF). Variations of
reflectance, following the modulation by an externally applied voltage on the film deposited on a
silver coated prism surface, are being synchronously detected. This allows for the detection of
variations on the fifth digit of the index difference between films and substrates.

A pyroelectric measurement set-up has been implemented at Thomson-CSF to help characterize
the degree of orientation of polar structures.

Various tools linked to the L-B deposition techniques have been implemented such as dipping
troughs at ICI and Thomson-CSF. An original surface-potential measurement has been successfully

185

setup at ICI to help define the optimized dipping conditions. It has been proved, in particular,
highly sensitive to the crucial phenomenom of bilayer formation at the waterair surface [19].

Industrial prototype of NLO solution testing

Nd:YAG

100ns

ill
X=1.32|im
Q Switch
Modelock
Duration: 100ps
Repetition rate :1kHz

• Standard equipment
.Theory :TTr]T

/ .
7

:n,e.n

SHG.THG

»
Cell

Ref.

SM 90

Detector

^ f t 2 < "
■*■ r > TP

3
,

2 or 3 quantum
levels CJ dispersion

Fig. 4. Project of fully automated prototype of nonlinear assessment in solution of molecular or
polymeric species to be transferred to the industry and manned by one technician (CNET)

Testing facilities of the quality and nonlinear efficiency of LB fims following a method
proposed in Ref.[20] and allowing to work close to resonnances has been transferred from CNET to
ThomsonCSF. Waveguiding in LB layers tapped sputtered glass over glass guides as described in
Ref.[21], has been undertaken at CNET, using a prism coupling techniques. Adapted
complementary ellipsometric measurements were successfully performed in the infrared and visible
ranges.

The femtosecond colliding pulse modelocked (CPM) laser facility of ENSTA (CNET
subcontractor) has proved extremely instrumental in demonstrating the previously conjectured quasi
instantaneous response of nonlinear crystals when probed offresonnance. In particular, extremely
high gains can be generated in crystals of initially relatively poor quality, owing to the amount of
power density resulting from pulseduration compression at 620 nm of the order of GW's per cm2.
One of the main achievements of this Project has been the demonstration of a new spectroscopic
technique termed PASS (after Parametric Amplification and Sampling Spectroscopy) and which may
be viewed as anticipating over future high sensitivity, high speed infrared optical signal processing
systems [22,23,7]. It makes use of the unique properties of organic in crystals of the para
nitroaniline family namely : enhanced nonlinearity, adapted transparency in the infrared and
spectrallynon critical phasematching. The idler frequency at 1.01 nm is prefered as it allows for
more sensitive detection and higher signaltonoise ratio. The advantage of this technique rests on
the gain involved as opposed to upconversion or Kerr spectroscopy with very low yields and on the
femtosecond timeresolution (pump duration limited) as opposed to Streak Cameras which are also
limited in the infrared domain.

n.B Molecular systems

Three directions in organic synthesis have been explored : firstly original molecules which had
not been previously considered such as sulphur, metal or other "exotic" atoms containing ones (ICI);
secondly, molecules allowing for LB deposition that are endowed with the proper

186

hydrophilic/hydrophobic balance to form monolayers at the air-water interface, and with nonlinear
properties; thirdly, liquid crystalline polymers capable of hosting nonlinear species either as dopants
or grafts in large concentrations and with a T„ significantly above room temperature (Thomson-
CSF).

A number of original sulphur containig molecules were synthetized, modelized and measured
[24], showing good agreement between theory and experiment, and evidence the dependence of the
nonlinearity on the position of the sulphur atom in the conjugated pathway.

Various polyenes have been synthetized for solution testing and L-B deposition. Electron
donor and acceptor end groups have been attached to the opposite ends of the molecule and the
conjugated chain length has been varied. The nonlinearities of these molecules were measured and
shown to reach values as high as 10-27 esu. However, these are not yet optimized values owing to
the nature of the terminal groups.

A considerable amount of work has been devoted to the preparation of azo compound, for
Langmuir-Blodgett deposition. Materials with various chain lengths and donor groups have been
prepared to allow for the study of their effect on film forming and packing properties. Most
importantly inverse azo compounds have also been made to enable the construction of alternating
layers with a significant nonlinear optical response.

N02

NR'R"

Mesomorphous polymers to be used as orientational guest-host matrices were synthesized by
Thomson-CSF with para-dimethylaminonitrostilbene (DANS) as the host Two such families were
synthetized: firsdy, polyacrylates (I) bearing a cyano-biphenyl side-chain :

— CH2-CH

Polymer (I)

With X = COO and n = 5
X = -O- and n = 2 to 6

and copolymers with weakly interacting side groups as (II) and (III).

Four polymers with Tg above room temperature and sufficient, however still weak, DANS
solubility were obtained.

A second approach consisted in the synthesis of copolymers (IV) containing a nonlinear dye as
a grafted side group. Efficiencies will be discussed in the next section.

187

CH 2 CH

k
o o

I
[CH2]y

i

o o

L CN

CH2CH

A
i

[CH2]y
i

o

o o

L OCH3

Polymer (II)

-CH 2CH—

O OCH 2)n-X—e V C O O - ^ J—
Polymer (ill)

_.. » . . ""~

0' 0
1

[CH2JS

O
I

f*S V
0 O

1 rS V
CN

CH2-CH
I

o o
I

[CH2]6
I

Polymer (IV)

with Z = CN, N02

Y = -CH=CH-; -N=N-

X = -0-; ~°~(~y

188

n. C Materials and early devices

A single monolayer of a nonlinear optical dye deposited onto a glass substrate is the simplest
reliable method of producing a noncentrosymmetric structure. Hence initial work focused on the
examination of a number of compounds deposited as monolayers in order to confirm theoretical
predictions of the most active molecules. These molecules included a variety of single ring
compounds and azo dyes such as DPNA, and more recently polyenic molecules. In all 18 molecules
have been examined.

H 2 s C 1 2 ^

N —

Me

/""V
\ > N -

N0 2

— COOH

(D P N A)

A variety of methods exist for the formation of non centrosymmetric L-B multilayers. These are Z
and X type films (ie head-to-tail arrangement of the same molecule) and alternating Y type in which
alternate layers are either an inactive molecule or an active one in which the polarity is reversed with
respect to the structural features of the first active molecule ("active-active" configuration as
proposed in Ref. [21]). The architecture of such films is shown in Fig. 5 together with an exemple
of molecules specifically synthetized at ICI for that purpose.

Films of all these types have been deposited in multilayer structures up to 20 layers thick, and
a comparison of the nonlinear efficiency has been made. It was found that the Y structure containing
two active components was the most active and more active than expected from the efficiency of the
individual components. Structural effects relating to the substrate film interface have also been
examined.

A "first layer" effect was consistently evidenced by various techniques such as pyroelectricity,
plasmon coupling and second-harmonic generation [25,26] from an active layer separated from the
glass substrate by a variable number of inactive arachidic fatty acid layers. The only structure to
display the expected quadratic behaviour with respect to the number of layers is the previously
mentionned "active-active" inverted dye Y bilayer structure. Measured yp-) values as high as 10-6

esu were reached for 11 bilayers at 1.06 |im fundamental wavelength. Waveguiding in sputtered
glass-over-glass guides topped by L-B layers was undertaken at CNET. TE and TM mode
discretization was observed both at Co and 2 co. Further experiments of that type using high quality
single layers are being undertaken. Light scattering problems on microcrystallites remain to be
solved and will obviously depend on identification of structural defects and subsequent adaptation of
the deposition conditions.

Oriented nonlinear liquid crystalline films were obtained as reported in Ref.[27]. Using a
continuous poling electric field, an oriented guest-host system with 4 % DANS concentration in a
type II Polymer (see Section II-B) displays an homeotropic structure (y = 6, Tg = 18.5 °C, Tc = 108
°C). However, the nematic copolymer of type IV (Section II-B) with X : -O-, Y : -N=N-, Z : -C=N,
x= 0.24, Tg = 33° C and Tc = 127 °C was poled by a field of the order of 2 V urn"1 and an harmonic
generation coefficient six fold higher than that of LiNbC>3 was measured at 1.06 urn. Further
synthetic efforts to raise T„ are under way. Finally, following a technology initiated by Singer et al.
[28], dye-doped polymethylmetacrylate (PMMA) glasses were poled and similar SHG efficiencies
obtained, i.e. of the order of LiNbC>3. An original pathway to overcome orientational relaxation met
by the ATT group is being pursued.

The most significant results on bulk single crystals were obtained on N-(4)-nitrophenyl-(L)-
prolinol (NPP) [29] shined by femtosecond high power visible laser pulses. Single pass
amplification in a sequence of two NPP crystals of respective thicknesses 2 and 1.5 mm and of

189

unoptimized optical quality showed a gain higher than 107 allowing for the detection at 1.1 (J.m of
1000 photons per 100 femtoseconds.

T2U)

(arb. u.)

U)
c

O
C
o
E
i_

.c
C
o
(J
<b

I/)
0

Alternated YJype layers of
A and B (3A and 4B)

i i

~i r

J L

-40 -20 0 20 40
Incidence angle 6(°)

B
0 H—0

/vw\ /̂ \
N-©-N = N-p—C

Me 02N \ Q _ H /
C-(CH2)2-N^-N=N-p-COO /V^/vA

Me 02N
Fig. 5 SHG fringing pattern from a high quality L-B multilayer film resulting from the

interference between front and back layers. Varialble dephasing is obtained by rotation of the sample
as in Ref. [20]. The film is an "active-active" inverted dye stable Y L-B structure as proposed in
Ref. [21].

190

Figure 6 exemplifies an application to the time-resolution of the luminescence at 1.44 |im of a
InGaAs/ InAlAs multiple quantum well (MQW) structure in the previously discussed PASS
configuration (Section II-A). Time t=0 corresponds to the arrival of the pump on the sample. A
delay of 10 ps, corresponding to the creation and propagation of electron-hole pairs in the p+-doped
1 |im thick AlInAs buffer layer is noted, the decay corresponding to the trapping and recombination
in the GalnAs wells (0.75 eV gap)

3
<

CO

z
LU
r -
Z
LU
O

z
LU
O
CO
LU

InGaAs/InAlAs
Multiple quantum

MQWS T=15K
A = 1.44Ljm

; * ;
\s=1.44nrn

T=15K

tcpsec)

Fig. 6. Subpicosecond resolution of the infra-red luminescence of a InGaAs/InAlAs multiple
quantum well structure as from Ref. [23] after excitation at 620 nm by a femtosecond
colliding pulse-mode-locked laser.

I l l Conclusions

The most significant achievements so far in Phase I of this ESPRIT Project are summarized
hereafter:

1. the assembly of a reliable programms for the prediciton of molecular P from atomic
coordinates;

2. an efficient routine for searching the crystallographic data bases for active molecules of
suitable symmetry for x@h

3. an understanding of the effects of hydrogen bonding on hyperpolarizability;

191

4. methodology to calculate the static polarizability and hyperpolarizabilities of molecules
within the Routine Hartree Fock (RHF-Sum Over States and RHF-Finite Field
frameworks);

5. methodology to calculate the static polarizability of infinite regular polymers within the
RHF-Sum Over States framework;

6. identification of various bonding patterns capable of high electronics responses;

7. synthesis and demonstration of excellent properties in pyrazoline and polyene molecules
predicted under 1;

8. setting up of relevant facilities for the characterisation of P and yp^ at CNET;

9. the synthesis and dipping of a range of tailor made molecules from which high second
harmonic generation has been observed;

10. active molecules have been attached to a polyester backbone to give liquid crystal phases.
By aligning under an electric field applied above T„ and cooling to the immobile phase
vectorial addition of p has been obtained;

11. the very difficult task of quantifying the factors which govern the lattice symmetry for the
polar molecules of interest is now well underway and a number of effective routines have
been written to model crystallization;

12. the successes in L-B and liquid crystal techniques are motivated by the desire to construct
planar waveguide arrays for integrated optics. L-B technology has highly benefited from
Phase I and the knowledge on deposition conditions, structural properties and nonlinear
properties has started from almost nil at the onset of the Project to reach a level where
technological follow-ups are in view;

13. ultrafast ultrasensitive spectroscopic or I-R signal processing tools (PASS) have been
developped.

Building on these significant advances, an ESPRIT Phase II Project could focus on the
development of devices towards signal processing or computing whilst maintening the effort on the
fundamental substrate on which technology is based. This implies, in the long range, adressing
specific, problems such as packaging, electrode deposition, development of device design and
fabrication tools, integration of devices onto arrays, piling-up arrays in stacks etc...

In view of the highly challenging goals at stake, one should neither conceal the difficulties nor
underestimate the amount of work and time still ahead before devices are being on the market.
However significant breakthroughs such as organic bulk Pockels cells, high yield frequency mixers,
parametric emitters are possible within the next five years.

The amount of backing which the US and Japanese chemical industry is willing to devote to the
development of organic nonlinear materials and related devices for IT appears non negligible[30] as
compared to that which the electronic industry is investing in III-V compound based nonlinear
devices. This situation can be accounted-for by considering that III-V coumpounds may seem
relatively more"exotic" as seen from the Silicon foundery than nonlinear organics from a dyestuff
manufacturer standpoint

Therefore, relevant investments in chemistry are marginal while the electronic industry is
facing more drastic decisions in order to move into the field of compound semiconductor for NLO.

However, as exemplified by the very composition of the present partnership, it is believed that
neither the chemical industry nor the electronic industry alone will be in a position to independently

192

nurture this new field from infancy onto industrial manufacturing. A cooperative action of the type
reported here is in a position to prove its ability to meet the basic problems of this new field.

Further industrial presence of Europe in this highly competitive domain is strongly dependent
on the continuation of this effort.

Acknowledgements : Results reported here have result from a cooperation of skills involving
over twenty scientists and technicians from three european countries. Working with them has both
proved technically and humanely rewarding. Special thanks are due to Dr. R. Murray and Mr.
Tainturier with whom enlightening discussions are gratefully acknowledged. Support and
encouragement from Dr. O'Shea and Papageorgiou are acknowledged by all.

References

[I] Midwinter, J.E., Light electronics, mith or reality ?, IEE Procedings 132 (1985) 371.
[2] Williams, D.J., Nonlinear Optical Properties of Organic and Polymeric Materials (ACS

Symposium Series 233, Washington, 1983).
[3] Chemla, D.S.and Zyss, J., Nonlinear Optical Properties Organic Molecules and Crystals

(Academic Press, Orlando, 1987).
[4] Khanarian, G., Molecular and Polymeric Optoelectronics Materials : Fundamental and

Applications, Proceeding of SPIE 682 (1986).
[5] Carter, G.and Zyss, J., Nonlinear Optical Processes in Organic Materials, JOSA B 4 (1987).
[6] Professor Kobayashi (University of Tyoko), private communication, in addition to organic

nonlinear optics and supraconductors, four Projects are devoted to biotechnology one to III-V
compound quantum electronic device and one to biomimetic materials with obvious
connections with L-B technology.

[7] Zyss, J., New Nonlinear Organic Crystals for Ultrafast Infra-Red Optical Processing, to be
published in: Prasad, P., (ed.), Nonlinear Optical and Electroactive Polymers (Plenum, 1987).

[8] ESPRIT 443 participation to this meeting :
Ledoux, I., Josse, D., Zyss, J., McLean, T., Gordon, P.F. and Allen, S., Second Harmonic
Generation in Alternated LB fims; Ledoux, I., Zyss, J., Migus, A., Hulin, D. and Antonetti,
A., Processing of Femtosecond Near Infrared Pulses using Nonlinear Crystals; Barzoukas,
M., Fremanx, P., Josse, D., Kajzar, F., Ledoux, I., Messier, J., and Zyss, J., Quadratic and
Cubic Nonlinearities of Organic Molecules in Solution : New Advances.

[9] Zyss, J., Molecular Engineering for Optoelectronics in: Proceedings of the ESPRIT Technical
week '85 (North Holland, Elsevier, 1986).

[10] Andr6, J.M., Morley, J.O., Zyss, J., From Quantum Chemistry to Organic Optical Signal
Processing : A computer Aided Molecular Engineering Approach, to appear in: Maruani, A.,
(ed.), Molecules in Physics, Chemistry and Biology (Reidel, 1987).

[II] Kitaigorodsky, A.I., Molecular Crystals and Molecules (Academic Pres, Orlando, 1973).
[12] Allen, S., ESPRIT Project 443 : Molecular Engineering for Optoelectronic, to appear in:

Proceedings of the ESPRIT Technical week '86 (North Holland, 1987).
[13] Morley, J.O., Dougherty, V.J., and Pugh, D., to appear in J. Chem. Soc, Perkin Trans. II

and references therein.
[14] Fripiat, J.G., Barbier, C , Bodart, V.P., Andrd, J.M., J. Comp. Chem. 7 (1986) 756.
[15] Barbier, C , to appear in Chem. Phys. Lett.
[16] CNET patents.
[17] Pockrand, I., Sualen, J., Gordon, J., and Philipott, M„ Surf. Sci. 74 (1978) 237.
[18] Cross, G.H., Girling, I.R., Peterson, I.R., and Cade, N.A., Electron. Lett. 21 (1986) 1111.
[19] Robin, P. and McLean, T., submitted
[20] Kajzar, F., Messier, J., Zyss, J. and Ledoux, I., Opt. Commun. 45 (1983) 133.
[21] Zyss, J., J. Mol. Electr. 1 (1985) 25, see Fig.2(c) therein.
[22] Ledoux, I., Zyss, J., Migus, A., Etchepare, J., Grillon, G., and Antonetti, A., Appl. Phys.

Lett. 48 (1986) 1564/
]23] Hulin, D., Migus, A., Antonetti, A., Ledoux, I., Badan, J., Oudar, J.L., and Zyss, J., Appl.

Phys. Lett. 49(1986)761.
[24] Gordon, P., (ICI) and Barzoukas, M., et al. (CNET), unpublished.

193

[25] Ledoux, I., Josses, J., Vidakovic, P., Zyss, J., Hann, R., Gordon, P.F., Bothwell, B.D.,
Gupta, S.K., Allen, S., Robin, P., Chastaing, E., and Dubois, J.C., Europhys. Lett. 3
(1987) 803.

[26] Ledoux, I., et al. to be published in Thin Film Solids.
[27] Le Barny, P., Ravaux, G., Dubois, J.C., Parneix, J.P., Njeuno, R., Legrand C , and

Levelut, A.H., p56 in Ref. [4].
[28] Singer, K.D., Lalama, S.L., Sohn, J.E., and Small, R.D., in Ref. [3] and Small, R.D.,

Singer, K.D., Sohn, J.E., Kuzyk, M.G., and Lalama, S.J., in Ref. [4].
[29] Zyss, J., Nicoud, J.F., and Coquillay, M., J. Chem. Phys., 81 (1984) 4160.
[30] Professor Peyghanbaryan, Optical Science Center, University of Arizona, private

communication.

195

P r o j e c t No. 991

OPTIMISATION STEPS IN SILICON COMPILATION
J.A.G. Jess, J.F.M Theeuwen, R. v.d. Born, L. Stok, M. Berkelaar*

Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven, The Netherlands
Tel. 040-473353

Telex: 51163
UNIX mail: MCVAX!eutesl!lia

ABSTRACT
This paper presents a system capable of automatically generating circuits from
algorithmic level descriptions. The algorithm is converted to a data flow
graph, which reflects the behaviour of the algorithm and the constraints put in
the design. This flow graph serves as a basis for the structural synthesis. A
structural synthesis method by means of dynamic programming is presented.
The resulting data path and controller are mapped onto transistor networks.
The system is able to serve various layout styles.

1. INTRODUCTION
The research reported here has been conducted within project number 991 ("Multiview Design
System ICD") together with the partners "British Telecom", (BT) "Perifere Computer Systeme"
(PCS), ICS and Delft University of Technology. The primary objective of this project is to support
microelectronics technology by providing a modern interactive, modular, open design system for
the design of VLSI circuits. The system is to reside in a network of modern desk top workstations
possibly supported by computational servers with parallel architectures. The partners have agreed
on UNIX and C as primary components of the programming environment enhanced by LISP and
possibly PROLOG wherever appropriate. British Telecom, Delft and Eindhoven University are
contributing the essential software modules of the system. ICS has started to penetrate the market
with a commercial product called SPIRIT based on software modules gathered from BT, Delft and
Eindhoven. PCS works on a workstation which is supposed to host all the partners' prototypes as
well as the commercial product. The available software however has been ported to many other
commercially available workstations.
BT's contribution to the design system is the ASTRA-system, a layout design system with a large
amount of automatic routines as parts of it. The contribution of Eindhoven University (which is the
specific subject of this paper) comprises a complete set of program modules for the design of
system architectures in terms of finite state machines, the design of Boolean logic networks and the
design of cells in various layout design styles including soft macros based on gate matrix style and
sea of gate-type gate arrays. It is the intention to combine both systems. First actions have been
taken to include the modules for Boolean logic into ASTRA as well as to port ASTRA to the
partners and include it into SPIRIT.

Various modules of the system have been applied to a number of designs in the range up to 100
thousand components. This goes in particular for ASTRA which served as a workhorse for a
number of commercial designs. However numerous university projects have been supported by
modules developed in this project ranging from a fourty thousand transistor chip developed at
Delft University for pixel processing down to small training projects aiming at cell designs from a
few hundred up to a few thousand transistors.

This research U apcrtKred by the ELropeon Grmuity uider contract ESFrUT991.

196

Design activity will be enhanced during the last eighteen months of EC-support and thereafter.
Eindhoven University will be engaged into two design projects that will yield designs in the range
above 100 thousand transistors. One of these projects (which both have a benchmark character
rather than being commercial products) concerns the design of a processor with a new type of
floating point arithmetic. The other design concerns memories with algorithmic error correction.
BT and Delft University are engaged in the design of large chips in the signal processing area.

2. SYSTEM OVERVIEW.
The Eindhoven design system concentrates on the development of a set of program modules crucial
for certain optimisation tasks in VLSI-design. These modules are integrated in a complete
interactive design system comprising components from all partners. Database manager and design
entries are mostly from Delft and Eindhoven. More and more the university prototypes are replaced
by commercial ICS modules.
Figure 1 attempts to give an overview over the architecture of the complete design system
(verification tools omitted!). According to the principle of top down design we assume a
specification of a chip to be documented in a machine readable form. The specification consists of
parts dealing with algorithms and performance requirements. We assume that the specification
concentrates on describing the function that the chip is supposed to perform rather than the
structure. In fact we want to be free to optimise the final chip structure and to ignore the
information concerning the structure as far as it is part of the original specification.
From the specification the design proceeds through a number of levels of documentation. The final
result is a layout description of the complete chip in a standardised machine readable form.
Depending on the design philosophy there may be various intermediate levels of documentation.
Completed documents on any of these levels characterise the state of the design. Our convention is
to consider two intermediate levels as main levels :
— a description of the chip in terms of communicating (or according to Kurshan [Kurshan87J co

ordinating) finite state machines (close to the so-called register transfer level);
— a description as a network consisting of modules or components and connections between these

components such as wires, buses and the like.
The description in terms of finite state machines can often be decomposed into data path and
control path. If appropriate the designer may stick to such a decomposition. It is often enforced by
module libraries supplied by vendors or other third parties. Our own idea, however, is to rather not
decompose but consider data and control operations simultaneously during various optimisation
steps. We conjecture that, as custom design urges designers to go to the limits of performance of
some technology any premature decomposition induced by library modules may preclude optimum
performance. Therefore we keep in mind that advanced designers would like to use programs for
architecture or Boolean optimisation for the design of the arithmetic parts of the data operations.
Our current high level design entry is an abstract syntax tree format based on LISP-syntax. As
standards for function description languages emerge our idea is to provide parsers (by f.i. using
LEX and YACC) to map the respective documentations onto our standard format. The advantage of
this approach is that within the project we are able to concentrate on the semantic items that are
essential for the design and don't lose time with extensive discussions on syntax issues. Moreover
this way we keep the system open with respect to later conventions concerning the documentation.
The syntax tree format is converted into a data flow graph called the demand graph. The demand
graph is scanned for extensive data flow analysis such as for instance the "lifespan" analysis of any
value. Also optimisation is performed with techniques borrowed from compilers.
The optimised demand graph is input of a program called hardware generator, which establishes the
system structure in terms of co-ordinating finite state machines. This step- requires the
decomposition into library items like adders, multiplexers, bus connections and the like. The
decomposition is already visible in the demand graph as the vertices of the demand graph are
associated with functions or operations as semantic items. The hardware generator cannot but
manipulate those semantic items. However, at this level of design we don't associate fixed layouts
with those items. Rather in order to evaluate a design we refer to attributes like area, power
dissipation, delay and complexity. An item called ALU or MUX assumes very different forms in the
final layout depending on the function it actually performs. The optimisation will go through
various assignments of functions to library items as it proceeds. Essential layout features like
aspect ratio and pin connections are left open at this stage. They will be filled in by the layout

197

Coord. Finite
State machines

Encoding
Bool, optimisation

Macro
Library(l)

Macro
Library(2)

EULER

Figure 1. The hardware synthesis system.
generation tools at the bottom of the scheme in Fig. 1.
From the finite state machine description we enter encoding and Boolean optimisation in order to
generate a network description of the chip to be designed. Usually the finite state machine
description will still be decomposed into parts which are linked to semantic items of the designer's
world. Straightforward Boolean optimisation may proceed by optimising any part separately.
However other methods can be thought of. For instance the whole combinational Boolean system
between two state latches could be considered as one chunk for the Boolean optimiser. If diligently
done this enhances the scope for optimisation considerably. As exemplified by the benchmarks
given in Chapter S, our Boolean optimisation tools are designed to cope with Boolean functions of
the appropriate size. We continue down to the bottom of Fig. 1 by entering various layout
construction modules. Our main goal is to support flexible layout styles like gate matrix or sea of
gate images. It is well known that floorplanning works best with cells that are flexible with respect
to pin connections and aspect ratio. Recently it has been suggested that the limits of performance

198

mandatory for custom design can only be achieved by soft macro design methods [Koetzle87]. Our
system is developed to support the soft macro approach in all phases of design.

3. DEMAND GRAPH GENERATION.
The demand graph generator currently accepts the following constructs:
— assignments;
— operations like *, - , +,. . ;
— branch constructs (if .. then ... else, case ... of);
— loop constructs (while ... do, for ... do);
— port read and write operations (put, get);
— operations to access bit fields in variables;
— array access and update operations;
— procedures and functions in order to deal with hierarchy and recursion;
— structures for describing asynchronous communication (message.., wait);

To demonstrate the demand graph construction we use a design example reported by Tseng
[Tseng83]. Tseng's design example is an algorithm to be mapped onto silicon. The description of the
algorithm in a LISP like syntax tree notation (our current input medium) is given in Fig. 2 . The
demand graph constructor scans the syntax tree and attaches nodes according to the demand graph.
The resulting demand graph is shown in Fig. 2 .

(program Tseng ()
(vl v2 v3 v4 v5 v6 v7 v8 v9
vlO vll vl2 vlS vl4 vl5)
; (get vlO v6 v4 v2 vl)
[:= v3 (+ vl v2))
: v5 (- vS v4))
: v7 (* vS v6))
: v8 (+ vS v5))

[:= v9 (+ vl v7))
: vll (/ vlO v5))
: Vl2 100)
: Vl3 VS)
: Vl2 Vl)

[:= vl4 (and vll v8))
(:= Vl5 (or vl2 v9))
: vl vl4)
: V2 Vl5)

(put vl v2)
)

Figure 2. Algorithm and demand graph for Tseng-example.
In the figure we distinguish various types of nodes:
— round nodes indicating operations +, * -, / ;
— the get- and pur-nodes take care of the data transfer from and to the outside world.
— lines with arrows (arcs) indicate the data flow through the algorithm.

The demand graph is acyclic which follows from the absence of loop constructs in this simple
example.

199

The demand graph optimiser scans the demand graph in order to perform the following
optimisations:
— Redundant subexpression elimination: if two operators that both compute the expression A * B

are separated by code that contains no store into either A or B, then the second operator can be
eliminated, if the result of the first is saved.

— Constant folding: if all inputs to an operator are constants which values are known, the result of
the operator can be computed at compile time and stored instead of the operator.

— Code motion: Operators that depend upon variables which values do not change in a loop may be
moved out of the loop.

— Strength reduction: operators that depend on the loop induction variable cannot be moved out of
the loop, but sometimes they can be replaced by less expensive operators.

— Variable folding: statements of the form A : = B will become useless if B can be substituted for
subsequent uses of A.

— Dead code elimination: if transformations like variable folding are successful, there will be many
operators whose results are never used. Dead code elimination detects and deletes such
operators.

— Procedure integration: under certain circumstances a procedure call will be replaced by the body
of the procedure being called.

In the simple example of figure 2, the only optimisation carried out is the elimination of node 13,
because it does not contribute in any way to the output.

4. SYNTHESIS OF AN OPTIMAL STRUCTURE.
Generating an efficient implementation of a demand graph requires the following interdependent
tasks to be performed:
— A network of registers, operators, multiplexers, and controllers has to be constructed.
— Instructions (nodes) are to be mapped to operators and machine cycles.
— Edges are to be mapped to busses and if the adjacent instructions are assigned to different

machine cycles, to registers
The demand graph could be mapped onto silicon node by node. Simultaneously the appropriate
controlling finite state machine could be developed easily. This way, however area intensive
solutions would be obtained. Consider for instance the case of a demand graph with ten nodes
performing addition. A straight forward mapping of the demand graph in silicon would include the
area for ten different adding devices. Of course a more area economic solution would contain only
one or two adders. This implies the following actions:
— extra wire connections and multiplexers must be provided to rout the arguments to the adding

device in question and to rout the output to where it belongs.
— a schedule must be developed that enforces correct use of the adder by preventing the

interference between different additions on the adding device. This may imply delays but also
extra registers to buffer arguments and results.

Many different options are possible and the best feasible is to be found.
The method proposed here, unlike other methods with similar objectives, considers all optimisation
problems simultaneously and is therefore able to take their dependency into account.
4.1 Partial nodesets
To explain how the demand graph is traversed the following notions are used:
— a partial nodesel is a set of nodes of the demand graph, such that if a node is member then all its

predecessors are.
— a node is said to be free with respect to partial nodeset 5 if the node is not in S but all its

predecessors are.
— the set of free nodes of a partial nodeset S is the set of all nodes that are free w.r.t. S.

200

Set inclusion establishes a partial order over the set of partial nodesets. Since the empty set and the
set of all nodes are members of the set of partial nodesets, the partial nodesets form a lattice: the
nodeset-lattice. As an example the nodeset-lattice associated with the demand graph in Fig. 2 is
given in Fig. 3 . In the figure the numbers in the lattice vertices correspond to the demand graph
node numbers of Fig. 1 and represent the set of free nodes of that lattice vertex.

Figure 3. Nodeset-lattice for the Tseng algorithm.
The lattice is strictly leveled. That is the level of a partial nodeset is determined by the number of
nodes in that partial nodeset. Furthermore the lattice can be easily generated using induction:
— the empty set is a partial nodeset.
— if N is free w.r.t. the partial nodeset S then S u {N} is a partial nodeset.

4.2 Structure synthesis
In its most primitive form the generation of implementations is done by going over the nodeset-
lattice level by level. For each partial nodeset a partial implementation is maintained. While
generating a new level a free node is "implemented" on top of the partial implementations of the old
level. If more partial implementations for a single nodeset are obtained the least expensive (with
respect to some cost-function) is chosen.

201

This approach proves to be too simple and discards valuable solutions prematurely. Therefore the
method is extended as follows:
More partial implementations for the same nodeset are allowed to coexist. In order to decide which
implementations are kept we introduce the notion of comparability. Two implementations are
comparable if they satisfy a relation defined by a boolean predicate. The user is basically free to
define this predicate according to his own insights. Usually a necessary condition for two
implementations to be comparable is that they implement the same nodeset. For our design example
we considered two implementations comparable if and only if they implement the same nodeset and
their respective numbers of so called large modules (like adders or ALU's) are equal. Among the
pairwise comparable implementations we maintain the cheapest in terms of the cost function.
The algorithm performing the optimisation is shown in Fig. 4 .

next_level := initial_level();
repeat

level := next_level;
next_level := empty;
for old_impI in level do

for node in free_nodes(old_impl) do
generate implementations for node given old_impl;
for i in these implementations do

if i is comparable to one from next_level
then

select cheapest for next_level;
else

add to next_level;
done;

done;
done;

until empty(next_level);

Figure 4. Algorithm for synthesis
As can be seen a breadthfirst search for implementations is effectuated discarding overexpensive
solutions on its way. This is essentially a dynamic programming method, a well known optimisation
method [Bell62].
As a cost function we use:

Cosiimpiementation = area • (delay * #cycles) .
The product of delay and the number of cycles (= number of states of the state machine) gives an
indication of the time used by the implementation. The product of this with the area occupied by
the implementation gives us a volume in the design space. This volume can be used to choose the
best of this implementation and other comparable implementations.
Assuming we choose for an cost function the function given above we obtain the structure of Fig.
S, controlled by the finite state machine given in Table 1, as a result of aplying the algorithm in
Fig. 4 to Tseng's design example.

TABLE 1. Controlling finite state machine generated for Implementat ion^.

State

0
1
2

Inputs

none
none
none

Next-state

1
2
2

Outputs
Muxes

0 0 0 0 0 0
1 1 1 1 1 1
X X X X X X

Res enables
1 1 1 1 1
0 0 0 0 - 0
0 0 0 0 0

Table 2 shows the flexibility of the method. Several different implementations of Tseng's design
example are generated by merely changing bounds or initial conditions. The constraints contain
maximum area, maximum delay and maximum number of cycles that may be used by an
implementation. With delay we mean the duration of one cycle of the state machine. Row three of
Table 2 describes an implemenation (Impl-3) with no bounds on the area and the delay {large) and
a maximum of one cycle. The system will deliver a fully combinational circuit with no registers and
multiplexers and just as many operator modules (Add, ALU etc.) as operations are in the demand
graph. Impl-4 may use maximal 8 cycles and the delay allowed is the duration of a multiplication (=

202

y^-r
Figure 5. Implementation_l for the Tseng-algorithm

mult). This results in an implementation with 4 cycles, one multiplier and several registers,
multiplexers and small operator modules.
TABLE 2. Implementation for the Tseng algorithm with different bounds.

Tseng example

Impl-1
Impl-2
Impl-3
Impl-4
Impl-5

constraints
area
large
small
large
large
large

delay
< 2 mult

lanre
large

= mult
< 2 alu

#cyc
6
8
1
8
6

results
#cyc

2
3
1
4
4

#ALU

_
_
_
S

#Mult
1
1
2
1
-

#Add
2
1
4
2
-

#And/Or
2
2
2
2
-

#Reg
5
6
_
5
5

#Mux
6
7
_
10

7

remarks

ALU's only

5. SYNTHESIS OF COMBINATIONAL CIRCUITS.
We now want to convert the descriptions, obtained by the structural synthesis, into actual networks.
These may be Boolean which is to say they are in terms of elementary Boolean functions or gates. In
the technology of integrated circuits, however, we often have to go down to the level of transistors,
for instance if pass transistor logic is involved. Moreover delay and area predictions are more
dependable on the level of transistors.
State variables, input and output variables have to be latched. Latches may be considered to be
standard circuits. According to the structure of the machine there are combinational logic
functions between those latches. The essential problem of logic synthesis is to map the
combinational logic functions onto transistor structures in an optimal way.
It has been observed long ago that the form of the combinational logic functions depends largely on
the binary encoding of the states, inputs and outputs [Hart66]. Some approaches have been
published trying to tackle the problem of finding optimum encodings [Hart66], [Mich85]. Our own
experiments suggest, however, that more research on this problem has to be done.
Let us thus assume that state, input and output encodings have been fixed. In that case the Boolean
functions of a system are defined by their so-called ON-set, DC-(don't care)set and OFF-set.
These are sets of minterms in the Boolean input space. Their meaning is self-explanatory. For any
function the union of the three sets is the complete Boolean input space.
Practically all combinational logic functions are defined by sums of cubes or implicants, which are
products of Boolean variables. Those products denote Boolean subspaces of the input space. Such a
representation is usually more compact as compared to representations by minterms (so-called truth
tables). In our current setting the synthesis of combinational logic functions develops along four
steps:

203

1. Two level minimisation;
2. Multilevel logic minimisation;
3. Technology mapping;
4. Delay optimisation.

Two level minimisation attempts to minimise the number of implicants and in addition the overall
number of literals (one term factors) in the implicants. Programs as ESPRESSO in its various
versions [Bray84], McBoole [Dage86] and some others are the most recent offsprings of a long
history of research in this area.
5.1 The multilevel logic oplimiser
Multilevel logic minimisation takes the output of a two level minimiser as input. The goal is to find
common subexpressions in various different Boolean functions. If such a subexpression is made to
define a new variable and this variable is substituted for the subexpression, then the number of
transistors is reduced at the expense of introducing additional delay.
Our approach follows the approach of Brayton a.o. [Bray84]. First we systematically search for
kernels. Kernels are subexpressions satisfying the following conditions:
— they are a sum of at least two implicants;
— none of these implicants has a cube (subimplicant) in common with another implicant in the

sum.
We make the acceptance of a kernel for substitution dependent on two attributes:
— the number of implicants in the kernel, the kernel size;
— the number of times the kernel appears, the kernel count.

We specify minimum-kernel-size and minimum-kernel-count and substitute the kernel every time
both its attributes meet at least the minimum specifications.
After substituting kernels we look for common cubes (as the complements of cubes are kernels as
well). We substitute them in much the same way depending on the attributes minimum-cube-size
(number of literals in a cube) and minimum-cube-count (self explanatory!).
Our program allows for the formal definition of a delay model per Boolean expression. For any
individual Boolean expression the delay model can be an almost arbitrary function of parameters
like fan-in, fan-out, active gate area, complexity of the Boolean expression and the like. The
program monitors the critical paths through the multilevel network by evaluating those delay
models. Kernels and cubes can also be rejected if a predefined critical path length would be
exceeded by the substitution.
5.2 Technology mapping.
We simplify this generally very complicated problem by defining a standard function namely the
n-cube n-lileral and-or-invert (n-AOI) function:

n
/n-AOI = NOT (£ Jfi, j ■ Xi>7 ■ .. ■ Xi<n)

; = 1
Note that this function has the form of a kernel or the complement of a cube. The number of
implicants and of literals per implicant must be no greater than n in /n-AOl- The function is readily
available in very stable static NMOS and CMOS circuits. The value of n is considered to be given as
a technology constraint.
All functions emerging from the multilevel logic minimiser are checked on fitting onto a H-AOI
function. If not they are split until they fit. Critical path length is monitored, but as n is fixed
nothing can be done if the delay limit is exceeded.
5.3 Delay optimisation.
Our splitting process in technology mapping usually introduces excess inverters, which, however,
can only be recognised to be unnecessary as the whole network is screened. Thus a heurisitic
procedure has been developed that manipulates inverters in such a way that the delay along the
critical path is minimised. During this minimisation the delay along the critical path is evaluated
according to the delay formulas as defined by the user. If in accordance with those delay models the
elimination of inverters yields a speed-up then such elimination is effectuated. This process is
supported by the fact that the restrictions to the n-AOI-functions inversion only requires

204

application of De Morgan's law rather than formal Boolean inversion. Within our system
experiments show the delay optimisation to provide significant improvements for little
computational effort as usually many inverters are removed.
5.4 Results
The system described above has been used in a number of designs which, however, did not exploit
the full power of the algorithms. Therefore we have tested the system with two sets of benchmarks,
that circulate internationally among the research institutions and reflect a mix of requirements that
were derived from actual design situations. Some of these are of considerable complexity. Others
are designed to exhibit certain typical weaknesses of programs of this kind. As a number of
subproblems of Boolean optimisation are nondeterministic polynomial complete no finite set of
polynomial heuristics can cover the optimisation problem. That is for any polynomial heuristic
algorithm there must be a benchmark demonstrating either exponential time or exponential memory
claims. Our system has been engineered to the extent that all benchmarks mentioned here have
been successfully completed on a desktop workstation.

Table 3 shows the results of a set of benchmarks taken from [Bray84]. We consider the inputs such
as they emerge from ESPRESSO, that is after two-level minimisation. For any circuit we give three
results.
In the first result we bypass the multilevel logic minimiser and run the ESPRESSO output directly
through the technology mapper and the delay optimiser. For the second result we fix the possible
parameters (minimum-kernel-size, minimum-kernel-count, minimum-cube-size, minimum-
cube-count) all to the value 3. For the third set of results all these values are set to 2. Note that the
smaller we fix those parameters the more freedom the multilevel minimiser obtains. The results
show the following general tendency:
— transistor counts are drastically reduced by the action of the multilevel logic minimiser;
— delay does not develop uniformly. With no multilevel minimisation delay still is small due to a

substantial amount of parallelism in the circuit. Although choice 3 for the parameters reduces
the average transistor count considerably, we see that choice 2 not only reduces the transistor
count even further but in addition improves the delay (on the average).

The last observation is probably related to the fact that we use 3-AOI circuits throughout. If we fix
the size parameters to 3 too many large subcircuits stay intact. It is obviously less effective to let
them be split by the technology mapper instead of letting the multilevel logic minimiser do the job.
Setting the parameters according to the pattern 2-4-2-4 gives a slightly better average delay result
(7.17) at the expense of a slightly higher average transistor count (172).
Table 4 shows an alternate set of benchmarks that have been run with several synthesis systems,
among others the MIS-system of the University of California in Berkeley. All results have been
presented at the International Workshop on Logic Synthesis held at Research Triangle Park, North
Carolina, USA from May 12 to May 15, 1987. Our system was able to complete almost all
benchmarks successfully within reasonable time. A comparison of our results with those of other
systems is difficult as the systems distinguish in various details. For instance technology mapping
is tuned to different libraries of Boolean function cells. However in a global sense our results were
competitive. With the benchmarks unit delays per Boolean expression have been used because no
information about more elaborate delay models came with them.

6. CONCLUSIONS.
We have presented algorithms and results concerning the high level phases of the design of digital
systems. The first part of the paper concerns the synthesis of structures consisting of large modules.
This part (called hardware synthesis) attempts to sketch a systematic approach to synthesis showing
that various substantially different approaches fit into one algorithmic scheme.
It also shows results from a prototype implementation that has been applied with some simpler
designs. This implementation is currently in the process of further development and will be used to
optimise the architecture of various large demonstrator chips.
The second part considers the subject of optimising combinational Boolean functions. It shows
results of a system which is still in the process of improvement. The essential objective is to
broaden the scope of optimisation towards more different technologies.
Also this system has been applied in various design situations. The verification of viability is
attempted by using benchmarks circulating internationally.

205

TABLE 3. Results of logic synthesis; technology NMOS; standard circuit 3-AOI; any load counted
as one transistor.

circuit
alul
alu2
aluS
apla
col4
del
dc2
dkl7
dk27
in6
in7
miflg
mish
radd
rd53
rise
sqn
wim
average

no
trans

49
638
298
797
197

78
267
400
189
767
662
203
122
345
159
233
237

74
306

multilevel minimisation
cells delay

8 2
8 11
8 7

12 6
1 8
7 4
7 5

11 6
9 6

23 9
10 9
23 8
21 4

5 6
3 6

31 4
3 5
7 4

11 6.06

all parameters se
trans. # cells

49 8
399 48
252 24
321 46
197 1
68 12

209 27
185 27
142 21
441 63
235 29
189 SO
122 21
233 19
139 15
170 45
207 22

68 9
201 26

t to 3
delay

2
10
8

12
8
4

10
10
6

12
10
12
4

11
8
6
9
4
8.11

all parameters set to 2
trans. # cells delay

49 8 2
211 41 8
160 33 7
288 61 12
113 11 12
68 17 6

177 38 10
179 40 8
116 28 7
424 87 9
202 44 9
152 36 10
114 28 4
125 29 8
79 15 6

178 55 6
184 31 11
68 18 6

160 34 7.83

TABLE 4. Results of the Research Triangle Park workshop Benchmarks.

LIBRARY: 4-AOI

circuit
5xpl
9sym
bw
conl
duke2

re
misexl
misex2
rd53
rd73
rd84
sao2
VR2

average:

no multilevel minimisation
trans # cells delay

228 57 4
303 54 6
521 102 4

26 9 3
1166 309 6

28 8 2
82 23 5

580 182 6
87 21 4

301 61 6
642 104 7
290 71 6
336 85 5
345 83 4.9

all decomp. parame
trans # cells

191 62
330 120
268 83

23 8
593 243

20 8
67 14

317 130
54 17

153 53
263 95
269 102
151 64
206 76

era 2
delay

5
8
5
2
9
2
2
9
4
6
6
9
6
6.6

As of now the systems support each other. Furthermore the logic optimisation is linked to NMOS
and CMOS layout generators that map the logical nAOI-network into silicon in standard cell style.
The system also links to a gate array place and route-system which can handle sea of gates-type
array images. Various cell generating schemes based on the gate matrix approach are operational.

REFERENCES
S.E., Applied dynamic programming, Princeton: Princeton |Bell62] Bellman, R.E., and Dreyfus,

University Press, 1962.
|Bray84] Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni Vincentelli, A.,

ESPRESSO-II: Logic minimisation algorithms for VLSI Synthesis, The Hague: Kluwer
Academ.Publ., 1984.

|Dage86| Dagenais, M.R., Agarwal, V.K., Rumin, N.C., "McBoole: a new approach for exact logic
minimisation", IEEE Trans. Comp. Aided Design of Circuits and Systems, vol.CAD-5,
pp. 229-238, January 1986.

206

|Denyer86] Denyer, P.D., "Silicon Compilation.", in: Proceedings of the ESSCIRC86, Delft, 1986,
pp .34-37.

IGee8Sl Gee-Gwo, M., Wentai, L., "Data path synthesis with/without constraints." Proceedings
of the ICCAD85: 3rd conference on computer aided design, Santa Clara, 18-21 Nov.1985.

|Hart66] Hartmanis, J. and Stearns, R.E., Algebraic structure theory of sequential machines,
Englewood Cliffs: Prentice Hall, 1966.

[Jess86] Jess, J.A.G., Slenter, A.G.J., "The prototype of an open design system for gate arrays.",
Esprit'86: Results and achievements. Elsevier science publishers b.v., 1986, pp.541-550.

(Jess87| Jess, J.A.G., "Synthesis of structures and logic under VLSI conditions.", Proceedings of
Compeuro87, Hamburg, May 1987, pp. 293-298.

|Kenn81| Kennedy, K.., "A survey of data flow analysis techniques", in: S.S. Muchnick, N.D. Jones
"Program flow analysis: theory and applications", Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, pp. 5-54, 1981.

|Koetzle87] Koetzle, G., "System implementation on a highly structured VLSI master image".
Proceedings of the Compeuro 87, Hamburg, pp.604-609, 1987.

|Kurshan87| Kurshan, R.P., Gertner, I., "Logical analysis of digital circuits", Proceedings of the
CHDL 87, Amsterdam, 1987, pp.47-67.

[Mich85] De Micheli, G., Brayton, R.K., Sangiovanni Vincentelli, A., "Optimal state assignment
for finite state machines", IEEE Trans. Comp. Aided Design of Circuits and Systems,
vol. CAD-4, no. 3, pp. 269-285, July 1985.

|Stok86| Stok, L., "Higher levels of a silicon compiler.", EUT Report 86-E-163, Eindhoven
University of Technology, November 1956.

[Theeuw85| Theeuwen, J.F.M., van Paassen, P.T.H.M., "Automatic generation of Boolean
expressions in NMOS technology", Proc. Int.Conf. Comp. Aided Design (ICCAD85),
Santa Clara, 1985, pp.332-334.

|Theeuw87] Theeuwen, J.F.M., Berkelaar, M.R.C.M., "Logic optimisation with technology and
delay in mind", Notes of the International workshop on logic synthesis. Research Triangle
Park, North Carolina, May 12-15, 1987.

[Tseng83| Tseng, C.J., Siewiorek, D.P., "FACET: A procedure for automated synthesis of digital
systems.", Proceedings of the 20th Design Automation Conference, 1983, pp. 490-496.

|Veen85] Veen, A.H., "The misconstrued semicolon", Dissertation, Eindhoven University of
Technology, CWI, Amsterdam, 1985.

207

Project No. 97

SILICON COMPILATION OF DSP
SYSTEMS WITH CATHEDRAL II

*H. Do Man. J. Rabaey.*5. van Meerbergeu. J. Huiskon

*IMEC ** Philip* B.r.iearch Lab*

1 Abstract

This paper describes the methodology of the CATHEDRAL- I I system, an environment for the
efficient synthesis of complex digital signal processing (DSP) circuits. The synthesis process
translates a behavioral, f lowgraph-type algor i thm description, expressed in the SILAGE language
[HM85] in to a dedicated multi-processor architecture. CATHEDRAL- I I allows the system designer
to investigate and compare in an interactive way a number of silicon implementat ions of a certain
DSP a lgor i thm. The application range of CATHEDRAL II is situated in the fields of audio,
speech, telecom, lower end video, control and linear matr ix operations.

2 Introduction

The rising complexity of the algorithms which can be integrated on a single chip, and the shorter
l i fet ime of the developed products have prompted a large effort towards the development of
automated synthesis tools. These systems (also called silicon compilers) t ry to translate a high
level behavioral description of an algori thm into a silicon implementat ion.

A large number of synthesis techniques and systems have been published recently (e.g.
[Kow85], [Mar86]) . The majori ty of these systems however lack the efficiency or the f lexi
bil ity, needed to span the above mentioned application area. In this paper, we present the
CATHEDRAL- I I system, which is based on fol lowing general principles in order to cope w i th the
mentioned deficiencies.

The major strength of the CATHEDRAL- I I system is its clear definit ion of a taTijri. archi-
Irriurr. In fact, it is our belief that effective design synthesis is only feasible if the underlying
architecture w i th its operator types, interconnection strategy and memory mechanisms has been
defined. This is especially important in DSP applications, where efficiency is of prime importance.
The synthesis tools and the opt imizat ion criteria are heavily influenced by the choice of the ar
chitecture. E.g. the synthesis of bit-serial, hardwired bit-parallel or programmable bit-parallel
architectures requires different techniques and procedures. We believe that in the fu ture, a l i
brary of Appl icat ion Specific Silicon Compilers wil l emerge in order to span the complete ASIC
field.

208

In order to support a large variety of applications, the selected architecture has to be flexible,
parameterizable and extendable. The synthesis system has to allow for the user in t roduct ion of
newly defined hardware units and implementat ion (or translat ion) protocols. Therefore, a rule
base system has been selected to describe the architecture and its protocols and procedures.
Changes to the architecture can be introduced through a knowledge acquisit ion system. For
each architecture, also a number of procedural opt imizat ion tasks can be defined as crit ical path
computa t ion , scheduling, memory minimizat ion, etc.

An impor tant feature of CATHEDRAL- I I is its openness to user interact ion. We believe that a
'push- the-but ton ' compilat ion strategy cannot result in efficient solutions for all cases. Therefore,
the designer is allowed to iteratively refine the init ial design, proposed by the system. This user
interference happens wi th the aid of a number of high level structural constructs (fur ther called
pragma's), which can be considered as constraints on the compilat ion process. Interact ivi ty also
assumes the feedback of enough relevant information (data path structure, area, cycle count,
bott lenecks) to the user.

The above mentioned topics wil l now be discussed in more detai l . After a discussion of
the selected target architecture, the different system tools wil l be discussed. The paper wi l l be
concluded w i th a number of examples.

3 Target Architecture ([Catt86], [DeM86])

Extensive studies of a large number of industrial applications have shown that a dedicated pro
cessor architecture is best suited for the intended application range. High throughput rates can
be obtained by placing mult iple processors on the same chip, each of them being opt imized to
perform one particular part of the algor i thm. An example of such a configurat ion is shown in
Fig.la.

Each of the processors consists of a dedicated data path and controller. The datapath
is tai lored to the application and consists of a set of Execution Units (EXU's) , connected by
a number of customized busses (F ig. l b) . The set of the available EXU's is restricted to
six as determined by the application studies. They can be divided in two classes : general
purpose units as an ALU/Sh i f t and an Address Computat ion Unit (ACU) , and accelerators as a
mul t ip l ier /accumulator , a divider, a comparator and a normalizer. Al l these modules have been
stored in a parameterizable fashion in a module generator environment [DeM86] : examples of
possible parameters are the wordlength, the depth of the shifter or the register files, the opt ional
removal of a unit , the type of the adder used, etc. Al l these modules have been ful ly characterized
and a variety of views (as funct ional , area, black box, power, t im ing and test) are available for
use by the synthesis or f loorplanning tools.

A powerful microcode-rom based mult i -branch controller architecture has been selected though
other architectures as e.g. a simple FSM can also be incorporated. A ful l range of synchronous
interprocessor communicat ion protocols have been provided as switched RAM's (F ig. l c) , single
and double buffered FIFO's or ready/acknowledge based protocols. A central control ler directs
the traff ic between the processors and to the I/O circuitry.

209

• PROC3>-

•H CTRL h

•1 CTRL |- | 1 CTHL r*
^ t t

4>.
r*

ff

0-
rfli

^PT?

1
[n*ni I [tonal

Figure 1: Multiprocessor architecture (a) including inteinal processor s t ructure (1>) ami
interprocessor coiiumiiiication (c)

4 Synthesis Tools

The synthesis task can now be defined as the translat ion of the behavioral description of an algo
r i thm into the above defined architecture. Following subtasks can be identif ied : specification and
s imulat ion, processor part i t ioning, data path synthesis and operator assignment, controller syn
thesis (inc luding microcode scheduling), selection of the interprocessor communicat ion protocols
and generation of the central controller. Tools have been developed (or are under development)
for most of the above defined tasks wi th exception of the processor par t i t ion ing, which is per
formed manually at present. An overview of the total system is given in Figure 2. A number of
the mentioned tools and representations wil l be discussed in more detai l .

Simulation
Monk

SILAGE Description of DSP Algorithm!

lion

System
Designer

Datapath /I
Area I

[Translation / Compilation]
Jack-The-Mapper I

IRTT)

[Interprocessor .
I Communication I

^ ' Scheduling/Assianmentl
" " I AltfMLCSL I i

.——— "" "̂"
Register"Binding| fControifor /1 | R a m'

Bus Merging lCycle,CountJ Fifo'i

Finnic 2: CATHEDRAL-IT Svnthesis Tooll.ox

210

4.1 System Specification and Simulation

We have selected SILAGE [Hil85], a language optimized for the high level description of signal
processing algori thms, as the design language for CATHE DRAL I I . The main idea of SILAGE is
to capture the signal f lowgraph nature of a signal processing algor i thm. It does not contain any
structural or control information and does not enforce any degree of concurrency.

The SILAGE description of a PCM Filter can be found in Fig. 3. This example i l lustrates tha t
SILAGE only contains behavior and does not impose any structure. The structural representation
wil l be generated by the compiler. In the interactive concept of CATHEDRAL I I however, the
system designer should be able to enforce structural decisions and this at as high level as possible.
This can be done by adding 'pragma' statements to the behavioral description. Pragma's are
incomplete structural hints to the compiler.

The SILAGE description of the algori thm can be considered as a system specification and
should therefore be debugged and verified in a rigorous way. For the system designer, SILAGE
also serves as the algor i thm development medium. Hence, efficient simulat ion tools are of prime
importance. A demand driven SILAGE simulator, called M O N K E Y , has been developed. At
present, we are also studying real t ime SILAGE emulat ion.

#define WORD num<8,0>

#define all 0.625
#define al2 1
#define bll 0.5
/* #define M20.375
#define bl2 0.375
#define a21 7
#define a 22 1
#define b21 0.3125
#define b22 0.78125
/* #define b22 0.78125
#define a31 0.5
#define b31 0.375

func main (In:WORD) Out
begin

/* 0.101'
/* 1.0'
/* 0.1'
// 001'
♦/0.01'
*/100'
*/1.0'
*/0.0101'
*/.0100'

// .0100'
/*0.1'
/* 0.10'

: num =

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Sectionl = biquad (In, all,al2,bll,bl2);
Section2 = biquad (Sectionl,a21,A22,b21,b22);
Out : FirstOrder (Section 2,a31, b31);

end

func biquad (input,al,al,a2,bl,b2 : num): num =
begin

State = input + WORD (bl * stateGl) WORD (b2 * State 02);
return = State + WORD (al * State HI) + WORD (a2 * State 02);

211

end;

func First Order (input,a,b: num) : num
begin

State = input + WORD (b *STATE (Dl);
Return = State + WORD (a * State 01);

end;

Figure 3: Silage description of a pern filter

4.2 Data Path Synthesis

The synthesizer, J A C K - T H E - M A P P E R , deduces a datapath structure, consisting of a set of
EXU's, f rom the SILAGE description. The methodology, adopted in JACK, is to use a mixture
of automated tools and user interaction to solve this extremely complex opt imizat ion and search
problem. In fact , our experience has shown that a system designer often has a good insight in
the complexity and the computat ional bottlenecks of an algor i thm. Therefore, he is well capable
to estimate the required amount of parallelism and the acceleration units needed. The most
t ime consuming and error prone job is not located in the allocation task, but in the operator
assignment, the controller generation and the minimizat ion of the execution t ime, the register
usage and the bus count. This is where the synthesis task has to come in and has to be extremely
good in order t o be acceptable.

Based on these considerations, we have deduced fol lowing synthesis strategy (F ig. 2) :

- The SILAGE description of the algori thm is first passed to a preprncr.i.ior. The tasks of the
preprocessor are to parse the SILAGE description, to perform syntax and semantic checks,
to determine the datatypes of all signals and to perform a number of local t ransformat ions,
common to most general purpose software compilers (as e.g. the el iminat ion of common
subexpressions). In addit ion to the behavioral part of the SILAGE descript ion, the prepro
cessor also inputs a set of user defined allocation and assignment pragma's (which wil l steer
the compi lat ion process).

- Trav.tlatiov/Compilaliov : In order to transform the preprocessed applicative high level
language description of the A L G O R I T H M into a customized processor S T R U C T U R E , the
mapping tool has to assign primit ive SILAGE operation to Execution Units, define the bus
structure and assign the SILAGE and intermediate variables to register files and background
memories. This task can be divided into a translation and a number of opt imizat ion sub-
tasks. The translat ion step transforms behavioral primitives into architectural primit ives.
This step is of extreme importance, since it wil l determine how efficient the architectural
properties can be exploited. In order to cope wi th architectural changes and expansions,
this tool has to be flexible and expandable by an unexperienced user. Therefore it has
been implemented in a rule based fashion. This rule base captures the knowledge of the
architecture designer and addresses the real creative step in the synthesis process. The
translat ion might be straightforwarded for a simple addi t ion, but is far more compl icated

212

for constructs such as mult ip l icat ion (parallel, parallel-serial, constant mul t ip l icat ion) , al
gor i thmic delays, matr ix operations, repetit ions, f loat ing point operations, double precision
ar i thmet ic, etc. A second set of rules implements the interconnection strategy. It generates
the necessary busses, input multiplexers and tr i-state output buffers. The current rule base
for the multi-processor architecture consists of more than 100 rules, but new ones are being
added regularly (as our experience grows). A user friendly knowledge acquisition system is
being developed to ease the introduct ion of new rules.

Scli.rdn.Untj/Ax.iiiinmmt [Goo87] : As a result of translation step, the SILAGE description
has been transformed into a data path structure and a register-transfer (R T) description of
the a lgor i thm. In the RT-descript ion, no t im ing is imposed on the operations. A number
of assignments (e.g. the binding of an operation to a particular EXU-instance) are also left
open. The tasks of the scheduling operation thus are :

+ the ordering of the RT-operations on the time-axis in such a way that the execution
of the algor i thm takes a minimal number of cycles.

* the binding of the undefined assignments so that the allocated hardware is used in an
opt imal way.

A graph based scheduling too l , called ATOMICS, has been developed. Special features of
ATOMICS are its capabil i ty to schedule repetit ive programs and to handle I /O constraints.
ATOMICS has been used to schedule extensive programs and has proven to achieve the
opt imal schedule in most cases.

Rrijistt r bivdivij/hii.* mrrijivtj : Once the exact t im ing schedule of the RT's has been de
termined, some extra opt imizat ion steps can be performed : the dimensioning of the register
files as well as the assignment of the variables to precise register fields (based on a l i fet ime
analysis of the variables) and the minimizat ion of the bus count (bus merging). Procedural
opt imizat ion functions have been developed for both tasks and have been integrated in the
JACK-environment.

4.3 Communication Hardware Synthesis

After the derivation of the processor hardware and the controller t im ing , it is possible to synthesize
the interprocessor communicat ion hardware and to derive the structure and contents of the central
controller. The tasks of this synthesis too l , which is currently beng developed, are t o select the
cheapest communicat ion protocol (FIFO or RAM based/single or double buffering), to dimension
the buffer arrays and to determine the exact t im ing of the control signals needed. It must be
mentioned that the selection of a certain protocol can result in a number of extra constraints on
the processor t im ing or hardware, so that a reiteration on the processor synthesis process might
be needed.

5 Examples

In this section we wil l report on the status of the project by showing some examples. Therefore
a link has been made wi th a module generation environment (MGE) and a f loorplanning envi-

213

ronment (FPE) . (Fig.4) The Module generation environment can be called in a procedural way
to generate views of the execution units.

srnucru/te

LArour

Figurr 4: Link of Synthesis Tools with MGE and FPE

In an early phase of the design, the synthesis tools will ask for an area view, in order to guide
the decisions made at the higher levels of the design. Also a timing view will be called. Together
with the output of the scheduler (the number of clock cycles), this gives an indication of the
performance of the implementation.

Once the synthesis process has reached a solution, a fully detailed layout can be produced.
Therefore the complete structure is send to a floorplanning environment. From this environment,
the MGE is called again to produce bounding boxes, that are used by the global router, and
detailed layout can be produced very fast.

5.1 Example 1 : pcm filter

As an illustration of the CATHEDRAL-I I methodology, we will synthesize the pcm filter, described
by the Silage code of figure 3. In a first attempt, a single alu implementation is generated. JACK
synthesizes the datapath of Fig. 5.

It consists of a ram for input and output, one alu to perform the aritmetic operations and
one rom (rom ctrl) that forms the link to the controller over which immediate addresses can be
fetched. (Note that the multiplications with constants have been expanded automatically in a
minimal number of Add/Shift operations on the ALU.) In a first solution, the total number of
machine cycles equals 33. This means that a sample rate of 300 Khz can be handled (if we
assume that one cycle takes about 100ns). The bus merging algorithm is able to reduce the
number of busses to 3. The generated floorplan is shown in fig. 7. The area is equal to 6.7
square mm. in a 2.5 micron CMOS process with two metal layers.

When we are looking for faster implementations, the pragma statement "pragma (* ,mul t , l) "
can be added. This forces all multiplications to be performed on multiplier 1. After bus merging,
this results in the datapath of figure 6.

This implementation runs twice as fast as the first solution (only 15 machine cycles are
needed). This corresponds to an input sampling frequency of almost 670 Khz. It is interesting to
note that the generation of each of these solutions (data path definition, scheduling, bus merging,

214

ha.l.rai 1

tesJ.rw.ctH

—£Gl
4S&

HO.

WlMwUt iM »I Untit le 1

I * IMS»4 f«" DCC/MRM M D W I W

•12/lt/ 21 12 n
MOUTCCnH N C D I
NLOtlTM PMBDK
MTAftECElOtt
KSMKCnitunn
saaa.nc
LUErm NN.Y$B
HIOtKflC GOCHTUi

YM CM nM t w i M t l I k I M M I I
Dt VM « t U M Um? (*/«> *
— W M g y i b U i»*cincatiM it Mt Mt.

D» UM mU U I M T « UM raU MKtflcatiM frm MM M (»/■)?

Figure o: Synthesized datapa th structure for PCM filter : single ALU hased solution (in

cliiflinjc; controller connection and buffer)

bvs.l.r*».l

bws.t.rwi.ctrl

CHJ
HO'

MOl
ws ?.alw t

iMlMMtUtlM »HfnutlV« 2

Finnic G: Synthesized datapa th structure for PCM filter as in fig. o. hut with multiplierALU
solution

215

area est imat ion) takes only a couple of minutes This illustrates that it is possible to explore a
wide design space in a short t ime.

Figure 7: Generated Floorplan of PCM Filter

5.2 Example 2 : Adaptive Interpolator for Digital Audio

To demonstrate the complexity of the algorithms, which can be tackled wi th CATHEDRAL- I I ,
the example of an adaptive interpolator for the correction of burst errors in digital audio [Vel83]
wi l l be discussed. The algori thm includes the computat ion of a 512 x 512 correlation matr ix, the
inversion of a 51 x 51 Toeplitz matr ix using the Levinson-Durbin a lgor i thm, the computat ion of
the interpolat ion coefficients and the inversion of a full 16 x 16 matr ix Initially, a four processor

216

solution was proposed. A study of the complexity of the different processors and the amount of
required buffer memory showed however that a one processor solution wi th a complex datapath
was preferable (Fig. 8). The ATOMICS scheduling of the register transfer description proved
tha t the complete algori thm can be executed in 77.000 cycles on this datapath, which easily f i ts
wi th in the alloted t ime f rame of 11.6 msec.

Bul l
Bus2
Bus3
Bui4
Bu«5

. A
C
U

V
R
A

 . H

, r
R
A

. M

I •
R
A

4iL

 A
C
U
2

. N J
0
R

H
U
L
T

*TA
L
U

♦ D
1
V

t
R
A
H

Fig;uiv S: Datapa th for Adaptive Interpolator for Digital Audit:

6 Conclusion

The concepts and the methodology of an applicationspecific silicon compiler for complex, medium
speed digital signal processing algorithms have been discussed.

CATHEDRAL I I is targeted towards a well defined customized mult i pro cessor architecture.
The operators and the mechanisms of this architecture have been captured in a t ranslat ion rule
base. A number of procedural opt imizat ion tasks have also been incorporated. A basic feature of
CATHEDRAL I I is the openness to user interact ion, where the designer can steer the synthesis
process wi th the aid of a number of high level structural constraints. CATHEDRAL I I is being
used for the generation of applications in the field of digital audio, telecommunicat ions, speech
and linear algebra (Singular Value Decomposit ion).

7 Acknowledgement

The authors wish to thank F. Catthoor, J. De Caluwe, G. Goossens, P. Pype and J. Vanhoof of
IMEC, Heverlee, Belgium and 0 . Mc. Ardle of Philips Research Labs, Eindhoven, The Nether

lands.

References

[Cat86] F. Catthoor et all, "General Datapath Controller and Interprocessorcommuriication Ar

chitectures for the Creation of a Dedicated Multiprocessor Environment" , IEEE ISCAS
conf.. May 1986, pp. 730731.

217

[DeM86] H. De Man, J . Rabaey, P. Six, L. Claesen, " CATHEDRAL- I I : A Silicon Compiler for
Digital Signal Processing", IEEE Design and Test, Dec. 1986, pp. 13-25.

[Goo87] G. Goossens et all, " A n Efficient micro-code-compiler for custom multi-processor DSP-
systems", Int. ESPRIT 97 Report, 3 /87 .

[Hil85] P. Hilf inger, " A High Level Language and Silicon Compiler for Digital Signal Processing",
Proc. IEEE CICC-conf., Port land, pp. 213-216, May 1985.

[Kow85] T . Kowalski et al , " T h e VLSI Design Automat ion Assistant : what 's in a Knowledge
base ?" , 22nd DA Conf., pp. 252-258.

[Mar86] P. Marwedel, " A New Synthesis Algor i thm for the M I M O L A Software Sys tem" , 23rd
design Automat ion Conference, pp. 271-277.

[Vel83] R. Veldhuis et al , "Adapt ive Interpolation For Digital Audio Signals : An integer imple
men ta t i on " , Int. Rep. Philips, 1983.

218

Project No.97

DESIGN OF CONCURRENT SORTER NETWORKS FOR REAL
TIME IMAGE PROCESSING

U. Kleine*. R. Hofer*, K. Knauer* and I. Vandeweerd*"

Siemens AG, ZFE ME 22, Otto-Hahn-Ring 6, D-8000
Munich 83 Federal Republic of Germany

"* IMEC, Kapeldreef 75, B-3030 Leuven, Belgium

In this contribution the design of dedicated concur
rent sorter networks for real-time robot vision and
bio-medical applications is described. Due to the high
sampling rates (5 MHz - 40 MHz) and the large data
streams, the implementation of image processing algo
rithms demands for dedicated chips. In order to reduce
the design costs for an individual application, one of
the objectives within the ESPRIT 97 project is to de
velop a set of flexible parameterizable modules which
makes the implementation of different image processing
algorithms possible. This design strategy will be il
lustrated with a sorter module for rank order fil
tering. A bit-parallel 'odd-even transposition sort'
and a bit-serial 'odd-even merge' algorithm have been
selected for an implementation. A module generator
environment which has been developed within this
project was used to create various sorter networks with
different number of input words. A 16 and a 25 input
word sorter network using Batcher's 'odd-even merge'
algorithm and a 25 input word 'odd-even-transposition'
sorter network will be described.

INTRODUCTION

Although the high cost of today's image processing systems
limits the number of possible applications substantially, the
field of digital image processing is rapidly growing. It is one
of the objectives within the ESPRIT 97 project to find
architectures for certain special image processing operations,
that can be implemented on one or perhaps several chips so that
a low cost digital image processing system can be realized. In
order to reduce design time and design cost, a set of flexible
modules has been defined. These modules can be generated auto
matically using the module generator environment which has also
been developed within this project [1,2].

In picture processing, especially at the front end of a system,
many operations are performed repeatedly over a large number of

219

pixels of an image. Thus in most cases parallel processing can
be applied. This can be done with systolic arrays with a regular
and a modular organisation. With systolic arrays high computa
tion throughput can be achieved by pipelining and multi
processing. Since only nearest neighbourhood communication is
allowed, the throughput rate is not degraded. The data stream
and the control flow of the arrays should be kept as simple as
possible. However, for many digital signal processing algo
rithms, especially for efficient sorting algorithms, the
requirement of nearest neighbourhood communication only is too
restrictive. Therefore a more general type of arrays has been
used called local systolic arrays. For local systolic arrays
also non-neighbourhood communication is allowed, if in contrast
to a standard cell design the wiring is predefined by the
algorithm to be implemented.
In the following, the proposed design style will be demonstrated
with an example of a sorter module for rank order filtering.
Rank order filtering is a nonlinear signal processing technique
used in many image processing systems. Rank order filters are
used for noise reduction and image enhancement, for example in
robot vision systems.
They were first suggested by Tukey [3] for pitch extraction in
speech analysis and were later adapted for image processing. The
most popular rank order filters are the median filters [4]. Also
combinations of linear and rank order filters have been reported
[5-7]. Rank order filters consists of a sliding window encom
passing a number of pixels. The pixel in the center of the win
dow is replaced by the pixel of rank k. In each clock cycle the
pixel of rank k is determined by the pixels within the window.
For instance the median pixel has the rank k = (N+l)/2, where N
is the odd number of pixels within the window. Thus, rank order
filters consists basically of a sorter. In the next paragraph
some properties of two-dimensional rank order filters are
described in more detail.
In Paragraph 3 a rank order filter architecture is presented
which includes its own memory. This is a real-time stand-alone
processing system needing no additional hardware. Sometimes,
even for a certain application environment, different window
sizes and forms can be required. Therefore an architecture with
a programmable window is used. Several sorting algorithms have
been inspected with respect to a hardware implementation. The
selected sorting algorithms are based on Batcher's 'odd even
merge' algorithm and on the 'odd even transposition' algorithm.
The chip area of the first is proportional to N(log2 N) 2 while
the second is proportional to N2. These sorters will be de
scribed in more detail in Paragraph 4. A module generator en
vironment [1,2] and symbolic layout techniques [8] have been ap
plied. The creation of different sorters using these techniques
will be described in Paragraph 5.

2. PROPERTIES OF TWO-DIMENSIONAL RANK ORDER FILTERS

In the last years, much effort has been invested in the analysis
of rank order filters [4-7,9-16]. Because the median filter is
the most important rank order filter, its properties are briefly
described. Due to their nonlinear nature median filters cannot

220

be characterized in the frequency domain. The only way to Quan
tify their performance is to use different noise sources like
uncorrelated white noise, Gaussian noise or impulsive noise. As
an example an average filter with a n x n window size reduces
the variance of white noise by a factor na, regardless of the
actual noise distribution. Median filters, on the other hand,
yield different variances depending on the parent noise distri
bution. For a median filter with a window size of n x n, an ap
proximate relation for the variance a of the median of n 2 inde
pendent points from a density function px(x) is [17]

1 1
a2(n x n) = * . (1)

4(n*+2) [P~(x)]2

The variance strongly depends on the original noise distribution
p>c(x), as can be seen from Eq. 1. In the following, the fil
tering capability of median filters will be illustrated by some
examples.
Fig. la shows an original image, which consists of 512 * 512
pixels with a resolution of eight bits. In Fig. lb Gaussian
noise has been added (N(u = 0, a = 67) and in Fig. lc impulsive
noise (salt and pepper noise) has been added using the model of
[18] with p = 0.3 for an interval of [0,255]. On these noisy
pictures median filtering has been applied using rectangular,
xshape and cross-shape windows of size 5 x 5 (see Figs. 2 and
3). As can be seen, the filtering capability of median filters
depends very much on the shape of the noise distribution p,c(x).
Therefore the filtering effect for impulsive noise is good while
for white or Gaussian noise it is rather poor.
Another property of median filters is that if an image is repea
tedly filtered, it will converge to an image invariant to fur
ther filtering, called root signal. The statistics of the roots
are taken as a performance criterion for the system specifi
cation.
To summarize the performance, median filters behave as low-pass
filters and at the same time preserve important image struc
tures , such as edges.
Some closely related filter structures have also been reported
in literature [4-6]. For instance combinations of linear and
median filters, weighted-median filters in which the center
pixel is given more weight.
Another median filter type is the recursive filter in which the
median pixels are used for further filtering. In general, rank
order filters could also be used for shrinking or expanding ob
jects in a picture. Consider the gradient picture of Fig. la in
Fig. 4a. Fig. 4b illustrates rank order filtering with a 5 x 5
window and taking the pixel with rank 5 as output. As can be
seen the gradients are expanded. Edge detection can also be
performed with rank order filters by simply taking the
difference of pixels with minimum and maximum rank. Another
interesting application is edge gradient enhancement, described
in [7]. In the next Paragraph the general chip architecture of a
rank order filter will be described.

221

Fig. la: Original image

Fig. lb: Original image with Gaussian noise (N(0,63))

Fig. lc: Original image with impulsive noise [18] (p=0J3 and
intervall of [0, 255]

222

Fig. 2a: Result of median filtering of Fig. lb with a square
window of size 5x5

Fig. 2b: Result of median filtering of Fig. lb with a xshape
window of size 5x5

Fig. 2c: Result of median filtering of Fig. lb with a cross-
shape window of size 5x5

223

Fig. 3a: Result of median filtering of Fig. lc with a square
window of size 5x5

Fig. 3b: Result of median filtering of Fig. lc with a xshape
window of size 5x5

Fig. 3c: Result of median filtering of Fig. lc with a cross-
shape window of size 5x5

224

Fig. 4a: Gradient image of Fig. la

Fig. 4b: Result of rank order filtering with a square window of
size 5x5 and rank = 5

3. ARCHITECTURE AND DATA FORMAT OF A RANK ORDER FILTER

A modular target architecture has been chosen in order to permit
a flexible design. It consists of 4 modules, a line buffer, a
RAM, a sorter and a clock and control unit. Each of these blocks
will be optimized separately. Since the sorter is the core piece
of the chip, it is described in more detail.
The data are supplied in a raster scan format (line by line
scanning). Each sample or pixel is coded in a digital 8 bit
word. The line length can vary from 512 to 1024 pixels, the
system clock is assumed to be between 5 MHz and 16 MHz and the
window size can range to 7 x 7 pixels.
Fig. 5 shows the block diagram of the rank order filter. In the
following the different modules will be described.
The line buffer is a memory in which n-1 adjacent lines of the
picture can be stored. In the case of a 7 x 7 window the line
buffer size is 24576 or 49152 bits for 512 or 1024 pixels per

225

i t

<D
C

-max. 1024 coll

/ ̂ ct ua Mr put
^ i

mns ' i

Frame memory

(max. 50.000 bits)

V
Window coeffi
cient memory

i L i . J i

I/O, clocks
and control
unit

= >

7 pixels
7

Window memory

Sorter

Decoder

' ' ' r 1

i '

CD

CO
CD
Q

I
Minimum Median Maximum Original

pixel

Fig. 5: Block diagram of the rank order filter chip

line, respectively. The n-1 output pixels of the line buffer
together with the updating pixel, build an n pixel column of the
input picture. This column updates the window memory each cycle.
The buffer could be built with an 8 bit shift register [19] or
with a dynamic memory and a pointer [20,21]. The last solution
uses a 3-transistor cell and is preferable to the first one
considering power consumption and chip area.
The RAM is used as an instruction register. It contains the
actual window form and the ranks of the two selected outputs.
Various window forms can be used. Such forms are horizontal,
vertical or diagonal line segments, squares and square rings,
crosses, rectangles, circles and circular rings (see Fig. 6).
Due to the definition of median filters, the actual window form
must be symmetrical around the center pixel. Therefore, only 25
bits are required for a 7 x 7 window. Half of the pixels, which
lie outside the actual window, are set to the maximum value and

226

o o o o o

Horizontal

o
o
o
o
o

Vertical

o

o

Diagonal Line segments

ooooo
ooooo
ooooo
ooooo
ooooo

ooooo
ooooo
oo oo
ooooo
ooooo

o
o

ooooo
o
o

ooooo
ooooo
ooooo

Squares Square rings Crosses Rectangles

ooo ooo
ooooo ooooo
ooooo oo oo
ooooo oo oo

ooo ooo
Circles Circular rings Fig. 6: Common window forms
the other half outside the actual window, are set to the minimum
value.
The clock and control unit provides the necessary clock signals
and control data for the rank order filter chip. To synchronize
the clock signals a PLL-based clock generator [22] has been
selected for the bit-serial sorter.
The sorter module consists of four parts: the window memory, the
synchronization line, the decoder and the sorting network.
The window memory strongly depends on the sorter network. Its
function is to build the window from the updating column and to
provide the output of the 7 x 7 pixels of the window. In other
words, it has to adapt the frame memory to the sorting network.
It consists of a number of resettable shift registers. These
resettable registers are controlled by the window form bits and
additional control bits. The control bits are used for calcu
lating the border pixels.
The synchronization line consists of an 8 bit shift register
with a length equal to the delay of the sorting network. It
provides the input image synchronous with the filtered image to
perform further calculation.
With the rank decoder block several outputs with arbitrary rank
can be selected.
The sorter must be able to compute one median each cycle.
Thus only very regular algorithms can be taken into consider
ation. Two different sorting networks are described in the next
paragraph.

227

SORTER ARCHITECTURES

Effective sorting algorithms have been studied for a longer time
[23]. Because most of these algorithms have been developed for a
general purpose computer, only few of them are suitable for a
wordparallel VLSI implementation. Suitable for a VLSI implemen
tation means that the data flow of these algorithms should be
regular and the control of this flow should not be too compli
cated.
In the following, a lower bound on the number of operations will
be derived. Assume that the basic operation of a sorting algo
rithm is a comparison of two numbers followed by a conditional
exchange, it can be shown that a lower bound for the maximum
number of steps in a sort of N numbers is (log2 Nl) [23]. Using
Stirling's approximation for N! [23], the lower bound for the
maximum number of operations grows as

nc » N log2 N, (2)
where n= is the number of comparisons. If N numbers or pixels
have to be sorted, up to N/2 comparisons can be done simul
taneously assuming a two input compare and exchange (swap)
operation. Fig. 7 shows the block diagram of a compare and swap

B

Max

Min

Ae

Be

PHI

Comparator A > B

♦•Max

*■ Min

Fig. 7: Block diagram of a compare and swap unit

228

unit. This unit is the basic processor element for the implemen
tation of sorting networks. It consists of a comparator followed
by two 2:1 multiplexers, which pass the larger of the two inputs
to output MAX and the smaller to output MIN.
Because different window forms are allowed, e. g. crosses, no
presorting of the incoming pixels has been assumed. The pixels
of the actual window are first reorganized in a vector and then
sorted in parallel. In the following two different sorting
algorithms are described.

4.1 ODD-EVEN-TRANSPOSITION SORT

A simple sorting algorithm is the well-known bubble-sort algo
rithm [23], also known as 'odd even transposition' sort (if the
sorting is carried out in parallel). The implementation of this
algorithm only requires a compare and swap unit and a simple
delay unit with the same latency time as the compare and swap
unit. Fig. 8 shows a floorplan of the 'odd even transposition'
sorter for a rectangular window of 3 x 3. The pixels are simul
taneously loaded into the front end of the sorting network. The
sorting is carried out by successive permutations. Each row of
the sorting network reduces the number of possible initial
permutations il to (i-l)I. Thus N stages are required to sort N
pixels. The number of basic compare and swap operations is then
determined by

nB = f(N-l)/2l^* N, (3)
where [x~| stands for integer of x.
The sorter of Fig. 8 is fully pipelined. One median value is
computed every clock cycle. The cells can be connected by abut
ment and the required chip area of the odd-even-transposition
sorter is proportional to N2.

4.2 ODD-EVEN MERGER ARCHITECTURE

The next parallel sorting network to be described is based on
Batcher's 'odd-even merge' algorithm [24,25]. The sorting net
work consists of a cascade of mergers. A merger is an element
that produces one sorted sequence from two sorted input se
quences of pixels. Starting with N/2 two-input mergers, the
sorted results are fed into N/4 four-input mergers, and so on
until finally all pixels are sorted. The individual mergers can
be constructed inductively.
Assume two sorted sequences <aif, a„> and <bi, ...,,bm>, where n is a power of 2 and m < n. The odd elements and the even
elements of the two sequences are sorted separately, resulting
in two new sorted sequences <Ci,, cm/2*„/j> and <di,, d„,/2*-„/2>. This step is performed recursively. Then, applying 'compare and swap' operations on the sequences C and D, the
output pixels will be sorted. The algorithm delivers best
results if the number of pixels to be sorted is a power of 2.
But the algorithm can also be adapted for an arbitrary number of
inputs [23,25]. Fig. 9 shows a floorplan of such a sorter with N
= 25. As can be seen a very regular network emerges. The wiring
between two consecutive comparator stages could be routed either

R1
S/R S/R S/R

R2 R3
S/R S/R S/R S/R S/R S/R

229

SWAP unit

□
Delay

Median
Fig. 8: Floorplan of a 'odd even transposition' sorter for a

3x3 window

with a perfect shuffle [26] or with two layer river routing.
The number of the required sorting stages for the oddeven mer
ger is

nm = (floga Nl) (|~log2 N| + l)/2, (4)
thus the required chip area is proportional to
N(log2N)[(log2N)+l] if the area for routing is ignored.

CIRCUIT DESIGN

The basic computation unit is the compare and swap unit. If bit
serial computation is possible with a given technology, it is

230

X, X, X] X4 X» X. X, Xa X, x w x„ x „ x u X „ x n x„

1 1 I 1 1 1 1 1 1 1 1 1 1 1 I 1

'i JTi'PJTi'rS :;i x i
i.ri nn.i;i.ii.i;i.i i.i

x x x x x

Xi/ XM XM X M X71 XJJ XJJ X]«

■ 1 1 1 1 1 1 1
I X [I X I

'lUi'iVy

"X
T u i n i r

1
V' V »■ V« /■ ¥• ¥ V- V- ¥ . If- ¥v V.. V.. ¥•• ¥« V. ¥-» V-. t~ 1/< Vu Y/J ¥/« ¥/>

X, x:

\ \

Fig. 9: Floorplan of a 'odd even merge' sorter with 25 inputs

231

advantagous with respect to the chip area to perform the
computation bit-serially. The required area per bit is about two
times larger in a bit serial approach than in a bit-parallel
one. Thus the total- area of the bit-serial sorting network will
be about four times smaller than the bit-parallel area assuming
8 bit wordlength. On the other hand the operation speed of the
bit-serial computation unit is 8 times higher and the estimated
power consumption will be about two times larger. To test the
performance of bit-serial and bit-parallel sorters a bit-
parallel 'odd-even-transposition' sorter and a bit serial 'odd-
even merge' sorter have been selected for an implementation.
As stated in the introduction a module generator environment
(MGE) has been used in order to reduce the design time.

5.1 MODULE GENERATION

Large parts of the design have been automatically synthesized.
In the case of the sorter design, module generation is espe
cially suited, because of the high complexity of the synthesis
algorithm. This in contrast to most modules (e. g. ALU's, PLA's,
ROM's) that can be generated by fairly simple procedures.
Creation of a module generator requires additional effort com
pared to the design of an instance. This overhead, resulting in
extra costs, should be minimized and spread out over different
designs as much as possible.
To minimize the generator creation effort, MGE has been used,
offering some interesting features.
* It allows for a recursive definition of the generator. This

makes it possible to map the sorting algorithm directly into
the synthesis algorithm. As a result, the creation and
verification efforts are reduced significantly.

* It hides details such as cell size and exact coordinates at
which they should be placed by making use of compaction and
routing algorithms. Not only a reduction in creation effort
is achieved, but it also offers an increased flexibility.

In order to spread out the creation cost of the module generator
over several design instances, it is desirable to obtain an in
creased generator lifetime and a high degree of reusability.
* Increased lifetime requires flexibility to survive technology

updates. By making use of CAMELEON (sticks editor and
compaction [8]) to perform the leaf cell design, nondrastic
changes in technology can be handled automatically. Severe
technology changes (e. g. PWELL to NWELL) might require
manual intervention at the stick diagrams level.

* A high degree of reusability can be accomplished by allowing
for a wide range of parameter values. In case of the sorter
the parameter is the number of words to be sorted. This value
can range from 2 up to 49. The range incorporates most of the
practical values for our applications.

Fig. 10 shows an example of an odd-even merge sorter with 16 in
puts before compaction and routing. The input procedure of the
sorter is a compact recursive definition written in LISP which

232

q .,.-.tr iFji i , i a > , , , , t , , ,,*,
larinry I Lnu^

1 >

tftHO. I i nyc. 1 t i w . [iJiMf, I i.npq I i riMft | mug I inyc

X-1,1 X I,|.X LI X*

IgflHfl I LWi I UHHfi, I UIMfi 1l/lHfi. I IflHfl | ITlHIl I LflH

j , X • X X,1,11X X Xr

l-X X X-X X
J r 1-T I i.nyt; I i.nur, \ i. iw. I i.npq I i.nmi | i.r.Hfi

LTT I i,nrifi h.rinr; I i,nflr; i,rinr» 'i.riHfj J*n&- ijirifj

Fig. 10: Example of a 16 input sorter

describes the relative placement of the cells and their connec
tions . The routing and the compaction is then performed
automatically.

5.2 LEAF CELL DESIGN

One way to build a bit-parallel comparator is to use an adder
and a complementer. But since an adder circuit is more complex
than a comparator circuit, a symmetrical CMOS comparator has
been used for the bit-parallel odd-even-transposition sorter.
Fig. 11 shows the circuit diagram of this comparator leaf cell.
A bit-parallel comparator for the words A and B can be assembled

233

A B A B A B

Ci-i
<

1 {
<

A B

Ci-i (C M)

B(B)

A (A)

H

1 V,

1 H a
> H

X

DD

C; (C.)

6ND
Fig. 11: Circuit diagram of a bit-parallel comparator

using this circuit. Since the 'greater or equal' signal in this
comparator will be alternated, inverted and noninverted, the
single bits of the words A and B have to be processed in a
similar way.
The full compare and swap unit has been designed using CAMELEON
[8]. The area is 280 x 240 urn2 for a 1.5 urn CMOS PWELL process.
In the bit-parallel compare and swap units, the swapping of the
inputs can only be done after the result of the entire 8 bit
comparison has been computed. Note that a bit-parallel
comparator starts the calculation with the LSB's. This requires
a signal propagation through eight stages of the bitwise
comparator. However, it is possible to eliminate this
propagation delay by using a bit-serial architecture. The bit-
serial comparator starts the computation with the MSB's. This
invokes breaking up the compare and swap operation into 8 steps.
Fig. 12 shows a serial compare and swap unit with two levels of
pipelining, which allows operation cycles of 5 nsec in a 2 \im
CMOS technology. The comparator is built with a finite-state
machine in which the greater Gj. and the smaller Li states axe
stored. For the comparator the following Boolean equations can
be given:

234

A o

B o-

2:1 MUX

COMPARATOR

Max

Fig. 12: Logic diagram of a bit-serial compare and swap unit

[(A * B) + (Li.i * R)] * [Gi-i * R] (5 a)

Li = [(A * B) + (Gi-! * R)] * [Li * R] (5 b)
for i = 1,, 8. R is the reset signal, with R = 0 for i = 1
and R = 1 otherwise. This cell has been layed out in a 2 |ii CMOS
process and the area is 178 x 236 (im. The cell is currently
being redesigned using single clock registers as shown in Fig.
13 in a 1.5 urn CMOS technology.

0 o f-

= n-Transistor

oOut

5 p-Transistor

Fig. 13: Circuit diagram of a single clock register

235

5.3 TESTING

A self test strategy has been developed to verify the
functionality of the sorter networks. No additional test aids
are included inside the sorter networks in order not to lower
the performance and not to increase the required area. Therefore
the sorter networks are tested as a whole.
Although there exist Nl possible initial condition, only 2N test
patterns are required when the 0 - 1 principle [23] is applied.
The 0 - 1 principle says that for a circuit consisting solely of
comparators, it suffices to verify its correct operation if the
value of each input is restricted to be either zero or one. But
actually [27] for the bit-serial 25 input word sorter only 225
deterministing test patterns must be applied to detect all
stuck-at faults and 72,8 % of the stuck-open faults. To simplify
the generation of the test patterns, a pseudo-random test
pattern approach was also considered. The results are listed in
Tab. I [27]. To generate the pseudo-random pattern two indepen
dent feed back shift registers are added at the front end of the
sorter networks and a signature register at the output of the
sorting networks for the evaluation. This test strategy requires
a minimum hardware overhead. For the redesign of the bit-serial
sorter in a 1.5 CMOS technology a special layout strategy will
be used [27] which may either avoid or make stuck open faults
easier detectable. The testability results are also included in
Tab. I (third column).

Sorter network with
25 inputs

faults
4520 pseudo FC
ramdom pattern #udf
225 determ. FC
pattern #udf
#udf: number of undetec

stuck-at

5918
100%
0

100%
0

:ted faults

stuck-open
(original)
4865
83.6%
801

72.8%
1323

stuck-open
(redesign)
3892 (80%)
99.6%

17
94.3%
223

Tab. I: Simulation results of the bit-serial sorter with 25
inputs [27]

5.4 LAYOUT

Several sorters have been automatically generated. Fig. 14 shows
the layout of the bit-parallel 'odd even transposition' sorter
for 25 inputs. As can be seen a very regular layout occurs. The
stick-diagram approach which eases the topologic and global
optimizations yields a fairly good density of about 4500 tran
sistors/mm2. The whole sorter occupies an area of 3.45 * 6.1 mma
in a 1.5 um CMOS technology. Two layout examples of the bit-ser
ial 'odd even merge' sorter including the reset line for 16 and

236

Fig. 14: Layout of the bit-parallel 'odd even transposition'
sorter with 25 inputs

25 inputs are shown in Fig. 15. The required areas are 2.45 *
1.85 mm2 and 4.25 * 2.9 mm2 respectively in a 2 urn CMOS tech
nology. The transistor density is higher than 2000 transis
tors/nun2 and as can be seen from the Figs. 15 the routing area
can be neglected. The whole rank order filter of Fig. 5 is cur
rently being designed. The chip will contain about 200 000 tran
sistors .

CONCLUSIONS

The design of complex, high performance dedicated chips for
real-time image processing using flexible modules has been des
cribed. As an example of the proposed methodology the design of
parameterizable modules for two-dimensional rank order filters
using a module generator environment and symbolic layout tech
niques has been demonstrated. Parallel processing and pipelining
have been applied. Very regular architectures for a bit-parallel
'odd even transposition' sorter and a bit-serial 'odd even
merge' sorter have been presented. A self test strategy has been
developed for the modules. With the presented design methodolo
gy, dense layouts are achieved in relatively short design times.

ACKNOWLEDGEMENTS

This work was supported by the EC ESPRIT'97 project. The authors
wishes to thank E. De Man, S. Koppe, and T. Noll for valuable
discussions.

23'

8 i _ iw...-saa_MB * « _ j » . . .KB_._3S_.JSS, ,«5._iai»...uiM_u»„.i»s.ai!SL I » « . . . U ! K _ U » ..isoa-jami »m...iuaua:i» .«8fL_»»..2MS..Joo

BJITITIW - H.OT 1 - PLQTMW

Fig. 15a: Layout of the bit-serial 'odd even merge' sorter with
16 inputs

REFERENCES

[1] P. Six, L. Claesen, J. Rabaey, and H. De Man, "An intelli
gent Module Generator Environment", DAC v86, pp. 730 - 735,
1986.

[2] I. Vandeweerd, "Module Generator Environment Reference
Manual", ESPRIT v97, interim report, IMEC, Feb. 1986.

[3] J. W. Tukey, "Exploratory Data Analysis", Addison-Wesley,
Reading, Mass., 1977, preliminary ed. 1971.

[4] T. S. Huang, ed., "Two-Dimensional Digital Signal Proces
sing II", Springer-Verlag, Berlin, Heidelberg, New York,
1981.

[5] Y. H. Lee and S. A. Kassam, "Generalized Median Filtering
and Related Nonlinear Filtering Techniques", IEEE Trans.
Acoustics, Speech, and Signal Processing, Vol. ASSP-33, No.
3, pp. 672 - 683, June 1985.

[6] I. Pitas and A. N. Venetsanopoulos, "Nonlinear Order
Statistic Filters for Image Filtering and Edge Detection",
Signal Processing, No. 10, pp. 395 - 416, 1986.

238

Fig. 15b: Layout of the bit-serial 'odd even merge' sorter with
25 inputs

[7] Y. H. Lee and A. T. Fam, "An Edge Gradient Enhancing Ad
aptive Order Statistic Filter", IEEE Trans. Acoustics,
Speech, and Signal Processing, Vol. ASSP-35, No. 5, pp. 680
- 695, May 1987.

[8] K. Croes, H. De Man, and P. Six, "CAMELEON, a Process
Tolerant Symbolic Layout System", ESSCIRC "87, Bad Soden,
1987.

[9] N. C. Gallangher and G. L. Wise, " A Theoretical Analysis
of the Properties of Median Filters", IEEE Trans. Acous
tics, Speech, and Signal Processing, Vol. ASSP-29, No. 6,
pp. 1136 - 1141, Dec. 1981.

[10] J.P. Fitch, E.J. Coyle, ana N.C. Gallangher, "Root Poper-
ties and Convergence Rates of Median Filters," IEEE Trans.
Acoustic, Speech, and Signal Processing, Vol. ASSP-33, No.
1, pp. 230-240, Feb. 1985.

[11] P. M. Narendra, "A Separable Median Filter for Image'Noise
Smoothing," Proc. 1978 Conf. Pattern Recognition and Image
Processing, Chicago, IL, pp. 137-141, May 1978.

239

[12] G.R. Arce, and R.J. Crinon, "Median Filters: Analysis for
2-Dimensional Recursively Filtered Signals," Proc. IEEE
Int. Conf. on Acoustic,Speech, and Signal Processing, San
Diego, pp. 23.11.1-23.11.4, March 1984.

[13] T.A. Nodes, G.Y. Liao, and N.C. Gallangher, Jr.,
"Statistical Analysis of Two-Dimensional Median Filtered
Images," Proc. IEEE Int. Conf. on Acoustic, Speech, and
Signal Processing, San Diego, pp. 23.2.1-23.2.4, March
1984.

[14] R.L. Kirlin, B. Cudzilo, and S. Wilson, "Two-Dimensional
Orthogonal Median Filters and Applications," Proc IEEE
Int. Conf. on Acoustic, Speech, and Signal Processing,
Tampa, FLD, pp. 1325-1328, March 1985.

[15] A.R. Butz, "A Class of Rank Order Smoothers," IEEE Trans.
Acoustic, Speech, and Signal Processing, Vol. ASSP-33, No.
3, pp. 672-683, June 1985.

[16] M.I. Shamos, "Robust Picture Processing Operators and their
Implementation as Circuits," Proc. Image Understanding

. Workshop, Pittsburgh, PA, pp. 127-129, Nov. 1978.
[17] P.M. Narendra, "A Separable Median Filter for Image Noise

Smoothing," IEEE Trans. Pattern Analysis and Machine Intel
ligence, Vol. PAMI-3, No. 1, pp. 20-29, Jan. 1981.

[18] B.I. Justusson, "Median Filtering: Statistical Properties,"
in T.S. Huang, Ed., "Two-Dimensional Digital Signal Pro
cessing II," Springer Verlag, Berlin, Heidelberg, New York,
pp. 169-173, 1981.

[19] N. Demassieux, E. Jutland, M. Saint-Paul, and M. Dana,
"VLSI Architecture for a ONE-Chip Video Median Filter,"
Proc. ICASSP'85, Tampa, FLD, pp. 1001-1004, March 1984.

[20] B. Zehner, H.J. Mattausch, R. Tielert, and H.J. Grallert,
"A Two-Dimensional Digital Filter for TV-Pictures,"
ISSCC'86, Anaheim, CA, pp. 146-147, 330, Feb. 1986.

[21] P.A. Ruetz and R.W. Brodersen, "Architectures and Design
Techniques for Real-Time Image-Processing IC's," IEEE J.
of Solid-State Circuits, Vol. SC-22, No. 2, pp. 233-250,
April 1987.

[22] D.-K. Jeong, G. Borriello, D.A. Hodges, and R.H. Katz, "De
sign of PLL-Based Clock Generation Circuits," IEEE Solid-
State Circuits, Vol. SC-22, No. 2, pp. 255-261, April 1987.

[23] D.E. Knuth, "The Art of Computer Programming," Vol. 3,
"Sorting and Searching", Reading, MA, Addison-Wesley, 1983.

[24] K.E. Batcher, "Sorting Networks and Their Applications,"
Proc. AFIPS 1968 SJCC, Vol. 32 CAFIPS Press, Montnale, NJ,
pp. 307-314, 1968.

[25] U. Kleine, "Novel Sorter Architecture for Image Processing
Rank Order Filters," Electronic Letters, Vol. 23, No. 1,
pp. 45-46, Jan. 1987.

240

[26] H.S. Stone, "Parallel Processing with the Perfect Shuffle,'
IEEE Trans. Computers, Vol. C-20, pp. 151-161, 1971.

[27] S. Koeppe, "Optimal Layout to Avoid CMOS Stuck-Open
Faults," DAC'87, Miami Beach, FL, pp. 829-835, June 1987.

241

Project No. 97

ALCATEL-BTM LAYOUT AND FLOORPLAN METHODOLOGY

L. Cloetens, J. Goubert and P.P. Guebels Alcatel-BTM.
Micro-electronics Development Group
Francis Wellesplein 1, Antwerp, Belgium

True Silicon Compilation is a significant achievement of the
Esprit 97 project. One of the key concepts which has success
fully driven the program is the structuring of the synthesis task
in two parts. Architectural synthesis from an algorithmic
description and automatic generation of mask geometry. Both
synthesis activities communicate through an interface, defined as
the meet in the middle plug, (fig.l) The purpose of the paper is
to report the Alcatel-BTM implementation of a layout and floor-
plan compilation into silicon which is a direct result of its
hsprit 97 partnership.

1. INTRODUCTION
Most existing floorplanning methodologies do not allow to take into account
the effect of the toplevel routing on the floorplan, which very often
results in considerable area increase after realisation of the sub-locks.
This increase is not only caused by the routing area but especially by the
fact that the floorplan becomes inoptimal. Redesign of the sub-locks in
this stage of the design to fit better in the floorplan requires a major
effort.
The Alcatel-BTM floorplanning methodology starts with an estimate of the
block sizes and terminal positions of the different sub-blocks. This
information is supplied by the designer or the higher level tools. With
this information an optimal floorplan is obtained by trying out different
placements using a place and route tool. The size of the blocks and the
terminal positions are optimized in function of the floorplan. Finally the
floorplan is gradually refined as the exact layout of the different sub-
blocks becomes available. This results in a design with the toplevel
routing and the placement completed together with the layout of the sub-
blocks.

Layout of the functional building blocks can be provided both by the
designer (full custom) or by blockgenerators (MGE (1)). To ease the design
of blockgenerators a tool was developed that allows a fast and flexible
procedural assembly of basic cells (SILCO).
SILCO consists of a set of PASCAL procedures which allow the relative
placement of basic cells (leafcells). These leafcells can be designed
either using a polygon based layout editor for high density, either cells
made with a symbolic layout editor or procedural leafcells (CAMELEON (1)).
Dedicated channel and riverrouting are supported by this environment.
Finally some example where this proposed methodology is used are presented.

242

System
Designer

-
*

System Specification
Language

(250 k)

< ■

Compilation
System

1
(5 k)

Silicon j ,
Designer

Silco

..

Layout

Silicon Module
Specifications -

► CHIP —

DPLA, DROM, LISPLA
(SRAM, DRAM on SDA)

FIG. 1
MEETINTHEMIDDLE DESIGN STRATEGY

FLOORPLANNING

2 . 1 . Automatic rout ing

The floorplan methodology presented requires the availability of a block
router which is tightly integrated with the rest of the CAD environment.
The most important requirement is this router can be used almost without
increasing the area compared to manual routing. An easy access to the
database is also a very important feature. The requirements which should be
met by a good router are listed in Table 1. Within ESPRIT97 we evaluated
these criteria for the router of SDA (2). The main results of this
evaluation are shown in Table 2. Besides quite good routing results com
pared to manual routing, the easy access to the database via the SKILL
language made this router an appropriate tool to explore floorplanning
methodologies.

2.2. Floorplanning Methodology (fig. 2)
Floorplanning today is usua
which is part of a feasibil
subblocks is finished one s
then it is often too late a
Making a good floorplan is
estimate the effect of the
the toplevel routing, often
realisation of the subbloc
routing area but especially
timal. Redesign of the sub
in the floorplan requires a

lly restricted to making an inaccurate drawing
ity report. After the layout of most of the
tarts to think again about the floorplan. But
nd redesign of some blocks might be necessary,
not an easy job especially if one wants to
routing. Not taking into account the effect of
results in considerable area increase after

ks. This increase is not only caused by the
by the fact that the floorplan becomes inop
blocks in this stage of the design to fit better
major effort.

243

Higher
level tools

■ block generators

Block generators

"Standard cells

Full custom

FIG. 2
FLOORPLAN METHODOLOGY

In our methodology the first step is to get an estimate of the block sizes
and terminal positions of the different subblocks. This information is
supplied by the designer or the higher level tools. The designer can enter
this information either using the graphical editor either using the floor
plan input file. This file allows the user to give the dimensions of each
block, the pin positions and the nets these pins are connected with. The
floorplan input file is read by a dedicated SKILL procedure which generates
automatically outlines and terminals. If the designer has no notion were
the input and output pins will come (e.g. for a standard cell block) a
random placement is chosen by the SKILL procedure. If there exists a
blockgenerator, exact dimensions and pinlocations can be entered automati
cally. The netlist is extracted from the toplevel schematic or has to be
supplied in the floorplan input file.

The designer can now start the placement of the different blocks. As
guidelines for the placement he can use his own knowledge of the functional
block partitioning and the airlines which indicate which blocks are strongly
interconnected. After this initial placement a first routing pass can be
executed. An optimal placement is obtained by comparing the results after
routing of the different placements. If the dimensions of the blocks seems
to lead to inoptimal placements and routings one can change the shape of the
blocks (e.g. the standard cell blocks) to fit better into the floorplan.
Once a global placement is found that is thought to be optimal one can start
a local optimization by moving the terminal positions. This is of course
not possible for all blocks. These block dimensions and terminal positions
are supplied as requirements for the layout people. Finally the floorplan
is gradually refined as the exact layout of the different subblocks becomes
available.

244

There are some clear advantages to this methodology. First of all there is
an area saving since placement, routing and layout of the subblocks are part
of the optimization process. By doing the routing with an automatic routing
program considerable time savings are obtained. Even more important is the
reduction of the elapse time since placement and routing are completed
together with the layout of the subblocks.

3. BLOCKLAYOUT
Three different strategies for blocklayout are used. All three of them will
be discussed in the following paragraphs.
3.1. Handcrafted Layout
This way of working is at this moment only used to develop analog blocks.
Most of Alcatels applications are mixed digital and analog. For this
purpose well known polygon pushers are used.
3.2. Cellbased layout
A lot of applications include what is usually called random logic. For
these parts of a design a cell based technique is the most efficient way to
go. Our past experience proved that when people want to layout such blocks
by hand they always use rows of cells with the interconnections done in the
channels between them.
A natural extension of this method is the use of standard cells. Here the
placement in rows and the interconnection is done by a standard cell
placement and routing program (2). This methodology for random logic parts
of a chip is efficient both in area and in design time.
The development of timing models for a simulator - a timeconsuming job if
one wants to do this properly - is a work which has to be done only once.
Documentation is much easier. Experience with this strategy proved that
this delivers designs with to timing errors, whereas this proved to be one
of the most occuring problems with chips in the past.
As far as area is concerned previous designs proved that for a 2-micron 2
metal technology typical densities of 800 to 900 transistors/mm2 can be
achieved. Cell transistor densities are typically 2000 transistors/mm2.
The last advantage of this strategy is the flexibility one gets with the
aspect ratio. This is especially useful for our floorplanning strategy,
where it is possible that the desired aspect ratio changes slightly during
the design phase. This because the size of other blocks may change. For
example the size of an analog block can have been underestimated. Or the
number of instructions in a ROM can haven been overestimated.

4. M0DULEGENERAT0RS
4.1. Quality Criteria
Different criteria are used to determine the quality of a module generator
and of a module generation strategy.

245

One of them is the number of situations you can use your generator in. This
can be done with parameters : e.g. the number of bytes in a RAM, the program
ming of a PLA, the size of a counter. A step further is technology indepen
dence. In this case a generator can be used as such, even when your design
rules change.
Another one is the quality of the generated blocks : transistor density,
speed.
A criterion which has been greatly been overlooked in the past is the ease
of development of a module generator. We feel it is extremely important
that module development can be done very fast. Most strategies of the past
proved that actual development and full debugging of a module was extremely
timeconsuming. Even then, e.g. a PLA could not be used in all situations.
In the case of a PLA the basic design leads to small and slow PLA's or big
and fast PLA's. Developing one type, which can handle all cases is impos
sible.
4.2. Strategies
Most strategies divide the problem into two subproblems : generation of
basic cells; and a cell composition problem. Within the ESPRIT97 project
both problems have been addressed.
4.2.1. Cell Generation
Three approaches are possible for cell generation. First one can work with
fixed libraries. The libraries have to be redesigned for different tech
nologies. The cells can also be designed with a symbolic layout system. At
this time one has to regenerate the libraries when a new technology is used.
This takes typically a few days, where the redesign of the cells takes
typically a few months. This technique has been used within ESPRIT97 with
the CAMELEON symbolic layout environment.
One can also design the cells with a procedural technique. This has been
investigated with the development of a layout generator within the PLASCO
environment. This technique proved to be extremely slow in development and
to take a lot of time to debug. Therefore this had to be abandonned.
4.2.2. Cell Composition (fig.3)
Alcatel-BTM developed an environment for cell-composition. The designer of
a module generator is free to use a cell approach he feels is the most
suited to his needs. At Alcatel-BTM both generators with handcrafted - to
achieve highest layout densities - and with symbolic cells - to achieve easy
transfer of technology - have been developed. The generators are technology
independent.
The composition-environment consists of a set of basic PASCAL routines,
which build or read a data structure. This enables the user to write a
'composer' with high level calls. The advantage of PASCAL is that one has
the full power of a proven programming language to develop generators. This
allows the user to do easy manipulations of input files, the use of
if-then-else while-do constructs. This also makes the environment easily
extendable.

246

Library

User
Parameters.

(Menu)

\z
7s

Pascal
«Assembly>

Program

Puzzle of
Leaf cells

— Technology

Generated
data

. Schematic
Symbol

. Netllst
{Translators)
Layout

*• Abstract
(CALMP, SDA)

_».DRC J. LVS
Cpolnts
Detailed

■* Layout
(QDSIf)

Set of customized
algorithms

FIG. 3
SILCO: SIUCON COMPILER ENVIRONMENT

The cell size information is available in the cell library. The user
module writer has not to bother about this. In a cell the notion of
terminal is also supported. Again the user can work with terminal names
without bothering about the exact location of these terminals.

Below the key functionality is summarized :
Relative placement of cells. For instance one can specify that a cell has
to be placed left to another one, or that the lowerleft and lowerright
corners of two cells have to abut.
Database query functions
terminal on a cell.

ask for location of a cell, of a cell corner of a

Wiring functions : Connect terminal 1 with terminal 2 with a certain type of
wire : for example a hookform wire. Riverrouters, dedicated channel routers.
Technology information is present in a file read during initialisation.
This is necessary to communicate to the environment the necessary parameters
for the routing procedures. The minimal widths of wires etc...

247

ROUTER MAIN FEATURES

Automatic standard cell placement
Rectilinear blocks
Probing to help placement
Automatic macro cell placement
Automatic channel generation
Manual channel generation
Obstructions on layer per layer basis
Prewiring
Manually specifying global routing phase net per net
basis
Probing alter global routing
Priorities on nets
Equlpotential terminals
Class of terminals in standard cells
Power and ground routing with special routing style
Routing nets on non minimal width
Current tapering
Hierarchy
Gridless routing
45 degrees routing
DRC correct
Staggered contacts at channel ends
Backtrack in design

TABLE I:
REQUIRED ROUTING FEATURES

BENCHMARK RESULTS

• Chip 1 (full-custom):

70 blocks, 300 nets, 80 K Tors, 55 mm'.
Automatic P&R - + 7 % Area versus handcrafted.
Overall transistor density 1,400 Tors/mm'
(2 |i • CMOS).
Routing time: 2, 3 weeks.
Number of Iterations: 25.
Power/ground were .Prewired", auto-routed with
variable width.

• Chip 2, chip 3 (pseudo-custom):

Block based designs (module generators, analog
.lull-custom & standard cells).

17 block, 330 nets.
30 % routing area (versus core blocks).
40 mm', 30 K Tors.
4 Iterations.

15 blocks, 300 nets.
SO % routing area.
20 mm', 13 K Tors.
8 Iterations.

248

4.2.3. Integration
The SILCO environment is integrated in a whole design environment. This
means that more than just layout is provided. At the same time a netlist
and a simulation model are provided with the correct delays included. Other
outputs are also generated : for example a symbol to use it in a schematic
entry program. In this way one can easily access the generator in the
complete design cycle and not just during the layout phase.

5. EXAMPLES
5.1. MIP
The new generation of analog telephone sets will include more and more
advanced features (last number redial, 10-number memory, on-hook
dialling,...). The MIP (Maximum Integrated Phone) is a single CMOS chip
which allows to make telephone sets providing such features. The MIP
contains both analog and digital circuits. The RAM which, used for the last
number redial and a storage possibility for 10 additional numbers of 16
digits, is implemented using the SILCO generator. The toplevel routing is
done manually. The MIP die size is 16.9 mm**2 in 2.4 CMOS technology
(fig.4).
5.2. SIC
The SIC offers a transmission system according to the CCITT 1.430 for the 4
wire S-interface (ISDN standard) used in following configurations : Network
Termination, Terminal Equipment, Trunk module and subscriber Line Module.
The chip is designed in a 2 micron (shrinkable to 1.5 micron) CMOS double
metal technology. The chip is about 20 mm**2 and contains 12k transistors.
The chip contains both analog and digital circuits. Some of the blocks were
designed using a standard cell approach. The PLA's were automatically
generated with SILCO. The toplevel routing and floorplanning were done
using the SDA router according to the mentioned methodology (fig.5).
5.3. MSRA
The MSRA is a Multi Standard Rate Adaptor designed for use in the Integrated
Digital Services Digital Network (ISDN). It will enable building multi-
standard terminal adaptors. The chip is 45 mm**2 and contains 35k transis
tors. For the technology we refer to the SIC. We could define this chip as
a hierarchical standard cell chip. The different PLA's and the static RAM
were generated using SILCO. (fig.6).

6. CONCLUSIONS
Alcatel-BTM partnership within ESPRIT97 project has resulted in a workable
approach for a flexible compilation of structured Block design to silicon.
The methodology achieves the right realistic trade-off between the actual
requirements for higher productivity of secure designs and the presently
available CAD technology for automatic translation towards the mask
geometries.

f ig 4 HIP

f 1 9 5 MSRA

250

f1g 6 SIC

The environment communicates with ESPRIT97 architectural synthesis with
tools via the meet in the middle plug. Both architectural and geometrical
synthesis realise true silicon compilation, the real achievement of
ESPRIT97. At the layout side still technology independence remains a
challenging unsolved problem.

7. REFERENCES
(1) L. Rijnders, A. Demaree, H. Deman "CAMELEON version 1.3 userguide"

November 14, 1986 IMEC Kapeldreef 75 3030 Leuven.
(2) SDA Systems "Place and Route reference manual", march 20,1987.

251

F r o j e c t No. 1058

Open System Architecture of an Interactive CAD
Environment for Parameterized VLSI Modules.*

L.Claesen, Ph.Reynaertf G.Schrootenf J.Cockx'
I.Bolsens, H.De Man? R.Severyns, P.Six, E.Vanden Meersch

IMEC, Kapeldreef 75, B-3030 Leuven, Belgium, (phone 32/16/281203)

Abstrac t

This paper describes an open system architecture for interactive and communicating CAD
programs. Within the ESPRIT-1058 project it is the framework for knowledge based and
high performance design tools of modular VLSI designs. The goal of the system architecture
is to provide a direct interaction and feedback between the primary design tools (schematics
editors, symbolic layout editors, module generators etc.) and intelligent verification tools
(electrical debuging, timing verification, simulation etc.). The tools run in parallel and have
bidirectional interactive communication by pointing to objects in primary design inputs and
passing information to verification tools and by allowing verification tools to highlight objects
in primary design editors.

K e y w o r d s : CAD, Open frameworks, CAD architecture, user interfaces, tool integration.

1 Introduction

Current VLSI design is continuously shifting towards more and more complex system design.
In order to be able to cope with the emerging complexities, new design methodologies are
ultimately required. One consequence of this emerging complexity challenge is research to
wards the application of silicon compilation techniques, that start from high level behavioral
specifications. Techniques with general application possibilities are still far away. However,

*Woik performed within the scope of the ESPRIT-1058 project: "Knowledge Based Design Assistant for
Modular VLSI Design". Partners: IMEC Leuven Belgium, INESC Lisbon Portugal, Philips Eindhoven The
Netherlands, Silvar-Lisco Leuven Belgium

'Silvar-Lisco, Abdijstraat 34, B-3030 Leuven, Belgium, (phone 32/16/200016)
'Philips Research Labs. Eindhoven, Prof. Holstlaan, NL-5600 JA Eindhoven, Netherlands, (phone

31/40/743897)
'with Silvar-Lisco
' Professor at Kath. Univ. Leuven Belgium

252

when aiming at dedicated applications and known target architectures, operational systems
demonstrate the feasibility of automatic synthesis from high level specifications [1,2]

The CATHEDRAL-II silicon compiler [2] as developed in the ESPRIT-97 project is aimed
at digital signal processing systems in the broad sense in a multiprocessor target architecture
[4]. The general structure of CATHEDRAL-II is shown in figure 1.

The basic strategy adopted in the CATHEDRAL-II system is the so-called "meet-in-the-
middle" design methodology [3]. This is a methodology that, due to the high complexity
system requirements, is adopted more and more in VLSI system design in order to be able to
manage the design complexity.

The meet-in-the-middle design methodology is schematically indicated in figure 2. This
figure shows the abstraction levels from high level specifications to transistor implementations.
In this methodology, the VLSI design activity is split in two parts: first the system design
activity, which is done by system designers and secondly the silicon design activity which is
done by silicon and software oriented designers. The separation between the two is at the level
of modules. Examples of modules are generic blocks like Multipliers, Dividers, ALU's, ACU's
etc.. In order that these modules can often be reused, the modules must be parameterizable to
allow customization to specific system design needs.

A key point in the success of the meet-in-the-middle strategy is that system designers can
make abstractions of the implementation details (such as circuit level details e tc . .) of the
parameterized modules. Therefore these modules, together with the procedural descriptions
of the required views must be created, verified and characterized very well in advance by
silicon design experts (i.e. before these modules are actually used by system designers). In
the ESPRIT-97 project the (automatic) system synthesis activities for multi-processor signal
processing applications in terms of parameterizable modules is under development.

In the ESPRIT-1058 project, the meet-in-the-middle strategy is supported for the activ
ities of interactive knowledge based verification [7]. In the meet-in-the-middle strategy, this
verification is concentrated very much on the creation, verification and characterization of the
flexible silicon modules, because they must afterwards be usable in a reliable and predictable
way. Modules are described in a parameterizable way using LISP-based module generators
that define how to compose them of leaf cells designed by means of symbolic layout [18,17,15].

For the correctness verification of these modules, knowledge based approaches are used
[8] for verifying design soundness with respect to composition rules, electrical rules, electrical
debuging. Other tools have been developed for the verification of timing correctness [9]. The
major goal of these knowledge based analysis tools is to try to reduce the need for extensive
circuit simulations. Circuit simulation will however always remain important. Therefore cir
cuit simulation techniques for large circuit modules are being developed based on waveform
relaxation techniques [13] and explicit integration techniques [14]. New algorithms are under
development for exploiting parallellism in these circuit simulation techniques for implementa
tion on parallel processing hardware.

One of the major bottlenecks in the efficient application of these verification techniques is
the interactivity between verification and simulation tools and the designer.

The current design practice is that CAD tools are run one at a time and that communi-

SYSTEM
DESIGNER

253

CRTHEDRRL I I

KBehavior,Algor i thm)

S imu la to r -op t im ize r ! * - ^ Exp£RT

i 1 - - RULES
Co m p i Ie r ->s t ruc tu re

St ruc ture :
, Proc/RAM/ucode ,

Floorplanner
Place&Route

• ' 'CSHH omiiiMa {isnDsirsilLy^r'^
jjDPfflflFBBmIlyP»yiPiUirBIlTOj^'

->
function*

Test
Assembly

"SILICON
PEOPLE"

Module generating
program

layout
view

Timing
Verifier

test
view

Module generator
programming
environment

timing
mode)

EXPERT
RULES

Technology
file

Figure 1: Overview of the CATHEDRAL-II silicon compiler.

254

SYS Q

REGQ

— F U N C Q

Q SYS Chip

System
Design

Chip ^ 0 SYS Chip
Assembly

SYSTEM &
SOFTWARE
PEOPLE

Module
Design

GATE Q I M o d u l e , .Qst.CELL
Assembly

QFBB

LSI

* MSI

TRQ T * (j R E C T

SSI

LAYOUT
TECHN. RULES

[TECHNOLOGY]

Figure 2: Meet-in-the-middle design strategy

255

cation of information is via files and cross-reference lists. This is extremely time consuming
in a verification or debuging phase where the feedback between design definition and design
debuging is currently taking most of the designers time. An other disadvantage of the current
CAD tools is that they often require different formats for representing netlist information,
which necessitates the use of cross reference lists and makes it harder for the designer to relate
information from a simulator or a timing verifier to the original information.

In order to allow for a much faster feedback between knowledge based verification tools
and the module designer, an open and interactive system architecture is under development as
part of ESPRIT-1058. This is the main subject of this paper.

In the next section an outline of the research work in ESPRIT-1058 is given. Thereafter the
following sections describe the part in ESPRIT-1058 that deals with the open and interactive
system architecture.

2 Overview of the ESPRIT-1058 project

In this section the major research topics in the ESPRIT-1058 project entitled "Knowledge
Based Design Assistant for Modular VLSI Design" are presented.. The goal of the project is
the realization of an interactive knowledge based system for the verification of the electrical,
behavioral and timing correctness of flexible VLSI modules.

The research topics are:

• Open system architecture and user interface.

• Accurate timing verification.

• Knowledge based electrical verification.

• Acceleration techniques for accurate circuit simulation.

• Symbolic layout and extraction.

In the next subsections these topics are summarized.

2.1 Topic: Open system architecture and user interface.

The topic open system architecture is the subject of this paper. It allows for an easy integration
of knowledge based verification tools. It provides an interactive communication among the
designer and tools running concurrently. It is the basis for an efficient interface between a
designer and knowledge based verification tools.

256

2.2 Topic: Accurate timing verification.

SLOCOP [9] is an accurate timing verifier for synchronous digital MOS circuits. Design style
dependent circuit partitioning can be expressed in the LEXTOC language[8). Accurate delay
modeling of subnetworks is achieved by using circuit simulation with the SIMMY module. In
the critical path analysis, false paths [10] are automatically removed.

A hierarchical delay modeling technique allows for the delay characterization of silicon
modules. This is a requirement for efficient timing verification on floor planning level in
CATHEDRAL-II.

In SLOCOP a new critical path method determines the longest delay path. All existing
timing verifiers for MOS [11,12] have problems with the generation of false paths. In SLOCOP
this problem is solved by taking into account the logical consistency of the subnetworks in
order to avoid the indication of false paths [9,10].

The timing verifier can operate interactively and gives direct feedback by highlighting
critical paths to the schematics editor or to the CAMELEON [15] symbolic layout system,
by using the SPI interface [21].

2.3 Topic: Knowledge based electrical verification.

In order to decrease the need for circuit simulation, the DIALOG [8] electrical and topological
verification system is developed.

DIALOG allows to formulate knowledge about a circuit as production rules, using the
LEXTOC language. The knowledge base contains rules that indicate violations against good
design practice. The system allows to verify : the correctness of topology, the creation of good
logic levels, checking for DC-sneak paths, the obedience to the clocking protocol, logic decom
pilation etc.. Back annotation to the schematics editor is possible via the system architecture
presented in this paper.

Rule-based activation of the SIMMY circuit simulation module, together with appropriate
stimuli on critical parts in the design is possible as well as the automatic evaluation of the
simulator outputs.

The system provides a rule interpreter that allows for an explanation facility when possible
design bugs are discovered. Modules with up to 18K transistors have been verified on a LISP
machine in 30 minutes.

In order to allow for an adequate use of such a knowledge based debuging tool a strong
and frequent interaction between the tool and the designer is required via the primary design
inputs such as schematics or layouts. This allows explanation facilities on possible bugs, such
that the designer can make the appropriate decisions fast. Such an interactivity is not possible
in a general way in existing tools.

The DIALOG environment also supports knowledge based verification of incremental evolv
ing designs. This requires a fast interactive feedback between primary design entry tools and

257

the DIALOG verification tool.

2.4 Topic: Acceleration techniques for circuit simulation.

Classical approaches for circuit simulation as used in SPICE are limited to a few hundred
transistors due to limitations in simulation speed and available computer resources. Even small
VLSI submodules consist of much more transistors. Therefore other simulation approaches,
that are much faster and allow for larger circuits, with the same accuracy as SPICE are under
development.

A first approach is waveform based circuit simulation[13] as implemented in the SWAN
program. This program allows for simulation of 4000 transistor circuits in a few minutes cpu
time with the same accuracy as SPICE. Current effort in the project is devoted to accelerate
circuit simulation by developing new algorithms suited for parallel processing hardware.

A second technique is under development at INESC [14]. This method uses a new inte
gration scheme based on the discretization of the voltage axis instead of the time axis. This
technique leads to a very efficient event driven algorithm that takes full advantage of latency,
that is pervasive in digital integrated circuits, without the overhead associated with static
network decompositions.

Fast interactivity of these circuit simulation tools with designers is possible via the system
architecture presented here.

2.5 Topic: Symbolic layout and extraction.

Symbolic layout [15,16] is used to design leaf cells in a layout rule independent way in the
CATHEDRAL-II system. The CAMELEON [15] system is coupled to the MGE [17] module
generator. Extraction directly from symbolic layout is necessary in the project to allow for the
direct coupling to the knowledge based verification tools. This coupling is achieved through
the system architecture that is described in this paper.

The research concentrates around modeling parasitic effects due to submicron litography
in VLSI.

3 Open system architecture for interactive CAD.

Much attention is currently put on the issue of open system architectures for electronic CAD
programs [5] and prototypes are under development [6]. Irrespective of sound-alike sales-talk
claims, there are currently no open CAD environments commercially available that allow to
imbed strongly interactive CAD tools in an easy way.

This paper explains the outline for an open architecture allowing for bidirectional commu
nication between interactive CAD tools running in parallel [19]. It is conceived in such a way

258

that it is possible to interactively communicate between user-interface tools and simulation
and verification tools by user-pointing and screen highlighting of structural objects. The archi
tecture is set up in such a way that individual tools can be developed rather independently, (or
that independently developed tools can be integrated with minor work). The system architec
ture majorly integrates around the concept of structural data that is communicated between
tools. In order to integrate existing tools easily, they are not very much constrained. Tools
are allowed to have their own "primary data". It is only required that the tools are also able
to generate the structure information in a standard way from this "primary data". The fact
that there are not too much constraints on the tools themselves allows that existing CAD tools
can be integrated without too much difficulty. This fact together with a good definition of
procedural interfaces for communicating to other tools contributes to the aspect of an open
system architecture.

Important in this architecture description is the philosophy of allowing CAD tools to com
municate interactively to the user via the primary input descriptions. In this way a much
faster feedback is achieved to the designer and also a more efficient design cycle is achieved.

In this system the tools are organized around the concepts of:

C o m m o n D a t a b a s e Organizat ion . This does not imply the use of one database or the
use of the same formats. (Nevertheless it is encouraged). This is to access the files as a
whole in a standard way, not the contents.

C o m m u n i c a t i n g appl icat ion programs: In the underlying system it is required that two
or more programs can communicate with one another in a bidirectional way. This is
necessary to allow highlighting of and pointing to structural items. In order to achieve
this a structure communication standard SPI is used [21].

Uni formizat ion of s tructure data: By structural data is assumed data concerning:

cells . These items are also known by the database interface.

c o m p o n e n t s or instances of cells.

t erminals of cells

t erminals of c o m p o n e n t s

ne t s

as well as some general attributes that can be associated with each of the structural
entities described above. Parameters are a special type of attributes that are associated
with cells (formal parameters) and components (actual parameters).

D a t a b a s e s used by appl icat ion programs: In order to be able to put as few constraints
on application programs as possible, the general rule is that each application tool is
allowed to have its own formats for databases or data files. The requirement is only that
the designer, or some design tools have to indicate to the DMS database interface which
view (generated by which tool) contains the primary data for the cell from which the
structural data can be derived. The structural data is standardized. This data should
be extracted from the own data structures of structure generation tools and passed in
a standardized way to tools that act on the structural data. The fact that the other
databases are not that constrained is advantageous in order to incorporate existing CAD
tools in the system. It also puts less constraints on new tools that have to be developed.

259

P r i m a r y D a t a A s s u m p t i o n . In the module design environment it is assumed that the de
signer declares for each cell which tool defines the correct primary data. (This is done
through the DMS.). In the database this is reflected by the fact that for each cell there
must be information which tool has denned the primary data for that cell. The primary
data corresponds in fact to the information that the designer has initially entered as
specification of the design. An example is symbolic layout [15]. Secondary data is then
for example the physical layout generated from the symbolic layout. Other "so called"
primary data may also exist but is not considered as primary in this text. An example
is a cell with the symbolic layout which as declared as primary data by the designer,
and of which also a schematic has been made. In this case the schematic data is "so
called" primary data but not " the" primary data. The meaning is that the schematic
is in this case not the primary definition for the structure of the cell. The structure
as represented by the schematic can be compared to the primary structure by a netlist
comparison program such as for example WOMBAT [22]. The DMS design management
system has to be aware of which view primarily defines the structure for each cell, because
this information will be used by preference for further verification work.

I m p l e m e n t a t i o n detai ls : All operations of CAD programs which are communicating to
gether via SPI are considered to be synchronized. This means that only one tool will be
activated at a specific t ime. Other processes are then in a waiting state.

4 Tool summary and interaction.

Figure 3 gives the major communication. The notational conventions used are indicated in
the figure. The functionality of the system is of prime importance. An implementation of the
system can be done over one or more processes running on one or more machines. The D T M
data & tool manager is the main controller and selects active projects (or cells) and activates
CAD-tools. The DMS design management system selects the database files from the operating
system file system. The SPI structure procedural interface is the structure communication bus
between the CAD tools.

Now follows a further discussion of the functionality of the individual modules depicted in
fig.3.

4.1 DTM : Data & Tool Manager.

The Data and Tool Manager is the main process controlling the global CAD activity. This tool
allows to define the current project(s) on which actions are to be performed. Then the CAD
tools such as editors, verifiers and simulators can be called. DTM is aware of the available tools
and of the available cells and it controls the switch box function around the SPI procedures
such that data is routed from the appropriate structure generation tools to the appropriate
structure receiver tools.

The DTM consists of the main control loop with the user. The designer can:

• either indicate projects to be used by the programs.

3
6

2
>
i l

B:

SPI .
Stricture
Proctduril
Interface

Global System Architecture)
o

lynb
layoit

Scat
rattle

0
B:

k

Flit
to
SPI

vt ri
der

t int
Itlor

a
SPI
to
Flit

Design
Management
System

IOI
Flit

Syilan

PEX
Parameter Eipaider

HEX
Hierarchy Expander

Coaininlcatlon Swlleibox

Notational Conventions
*► comnanlcatloa

> coalrol of executable

— proctdaral Interlace

executable Modila

> eoitrol ol coamnilc.

: optional nodale

261

• or control the execution of application programs and inter process communication be
tween application programs.

The functionality of the DTM could be extended on top of the functionality of existing
"monitor" programs encountered in several CAD systems. The extension required by this ar
chitecture is the ability to manage several communicating CAD-tools, instead of only managing
one tool at a t ime.

4.2 Application programs.

The application programs can be classified in two major groups:

1. Structure generation programs.

2. Structure receiving programs.

The two classes of application programs are further discussed in the next subsections. One
program can also belong to the two classes. An example is a preprocessor program that takes
structure and transforms it into other structure.

4.2 .1 Structure generat ion p r o g r a m s .

The structure generation programs consist of the application programs which have a direct
graphical interaction with the user. These programs are for the most part editor-like and
communicate in a graphic way. These programs are majorly used to provide primary input of
design data to the system.

Examples of these foreground application programs are:

• schematics editor.

• layout editor.

• sticks editor.

• textual editor.

• algorithmic floorplanner, parametric module generator.

4.2 .2 S tructure rece iv ing programs.

The structure receiving programs are the programs that do not have a direct input capability
for primary design data.

Examples are:

262

• simulators [13,14]

• timing verification programs such as SLOCOP [9]

• electrical verification programs such as DIALOG [8].

• floorplanner, block place & route

• place & route programs.

The major reason behind this subdivision of application programs, is that it is intended
that there will be a strong interaction between the application programs and the designer/user
of these programs. Therefore structure generation and structure receiving programs must be
interlinked very closely. This must allow the designer to pass information on his design from
the structure generation programs to the structure receiving application programs and get
feedback in the reverse way by user pointing to structural items and highlighting. In this way
two tools can act as one global integrated tool.

4.3 SPI : Structure procedural interface.

The structure procedural interface [21] is a switch box and a standard way to communicate in
a bidirectional way structure information (cells, components, terminals, nets and attributes on
these) between structure databases, editors (for interactive highlighting) and verification and
simulation programs.

As part of the structure procedural interface there are two expanders available HEX and
PEX. A hierarchy expander (HEX) which removes hierarchy in a hierarchical description and
a parameter expander (PEX) which removes structural parameters in a parameterized struc
ture description. This is necessary if verification or simulation tools, that only understand
flattened information, want to communicate with one of the user-interface editors by pointing
and highlighting.

SPI is a standard procedural interface on structural data, suited for programs. The same
interface can be used to communicate between editor and files, in which all structured infor
mation is stored, and between these files and verification and simulation programs, but only
in one direction (no highlight). Besides SPI, there is also a directly derived textual representa
tion, to be used for archival purposes and for the communication with tools where no coupling
via procedures is possible. Conversion between these direct textual representations in files and
SPI procedures are provided by tools F i l e t o SPI and SPI t o F i l e in figure 3.

Dual to the SPI procedures there is also a designer oriented textual representation HILAR-
ICS. The coupling between the designer oriented textual representation and the application
programs will be provided by a HILARICS to SPI compiler. In this way application tools
should only use the SPI procedural interface. HILARICS is then "the" primary input.

263

4.4 HEX : Hierarchy expander.

The hierarchy expander provides a bidirectional link between structural data on level 1 (hi
erarchical) to structural data on level 0 (flat). To provide the possibility for bidirectional
communication, local storage of datastructures is necessary to keep the links between struc
ture data on level 0 and structure data on level 1. The user determines via the DTM and the
application tools which data has to be expanded.

4.5 P E X : Parameter expander.

The PEX module is similar in functionality to the HEX module. It provides a bidirectional
translation between tools that generate structural data on level 2 (parameterized) and struc
tural data on level 1. The same observations as made for the HEX module also hold here.

4.6 DMS : Design Management System..

The Design Management System performs a mapping of design objects such as designs, cells,
views and versions in the file system. A design object is the basic building block to be used
at the design management level (schematic, layout, behavioral model of a cell, parameterized
description of layout, . . .). It returns a unique identification of a file on which the other tools
can act. The DMS is not aware of the contents of the design objects. The contents of the
design objects is determined by the tools that act on it.

There are many alternative implementations possible. The specific implementation is how
ever hidden behind the DMS-access procedures. Depending on the needs in a specific design
environment, the implementation can have very extended features and facilities (such as pro
tections etc.) or can be very elementary. Within the scope of the system architecture, the
functionality of handling basic design objects is the major requirement.

The DMS also knows for each cell which view defines the primary data that determine the
structural data for the view under consideration. This information with each cell is required
in order that the DTM together with the SPI can decide which tool has to be called for each
level of cell, in order to generate the required structural information for the structure receiving
tool.

In the DMS also an attribute with the usage level o{ each cell should be indicated. The usage
level is for example c i r c u i t l e v e l . This means that the SPI procedures should call starting
from the top cell, structure generating tools until the circuit level (transistors, capacitors etc.).
This information could be entered for example via the DTM.

4.7 UIM User Interface Module

The UIM provides a consistent user interface to be used for all tools. It is not essential for
the system architecture as such. However if two tools are being integrated, a consistent user

264

interface is advantageous: menus, windows, highlighting, selecting, message handling are done
in a consistent way. Therefore a common UIM is encouraged because it contributes to the
openness of the system architecture.

4.8 The Linker.

The linker1 generates the descriptions of cells that system design tools need for instances of the
cells with actual values for parameters. This information is derived from the parameterized
descriptions by either executing programs or accessing the DMS.

The linker [20] is the software concept that supports the "meet in the middle" design
strategy in a standardized way. In this way the linker provides an abstract interface between
parameterized descriptions of cells and system design tools that require the generation of
properties for module instances, with specific actual values for its parameters. The functionality
of the linker is in some sense orthogonal to the functionality of the system architecture as shown
here: The linker provides an interface and the system architecture concentrates on interactively
communicating programs.

The linker is used in application programs as a software module. The linker has a coupling
to the DMS in order to get access to parameterized descriptions. It also is able to start
executable programs.

5 Descript ion of a sample session.

To understand better the operation of the system architecture, an informal description of a
sample session is given. Notice that most of the actions are activated automatically in the
system.

5.1 Sample design situation description.

Assume that a design of a multiplier has been made and that an instance of an 8 by 8 multiplier
is available in the database. Assume that the cells are organized by the DMS as shown in figure
4. The 8 by 8 multiplier is represented in the DMS as the cell m u l t 8 x 8 . Assume that this
cell is constructed using components from cells fulladd, b o o t h and m u x . The cell m u l t 8 x 8
is generated by the MGE module generation program [17]. Assume also that the designer has
defined that the structure is primarily denned by MGE for the top cell m u l t 8 x 8 . The structure
of the leaf cells is primarily defined by the symbolic layout program CAMELEON. Notice that the
DMS is aware of which program primarily defines the structure.

Assume that the designer has indicated to the DMS the usage levels for the cells. In
that sense the circuit level has been assigned to the cells fulladd, b o o t h and m u x . This is
necessary afterwards for the SPI implementation to know untill what level the design has to

xnot to be confused with a linker in software programs.

265

D M S database v i ew
m u l t 8 x 8 (HGE)

ful ladd
(CAHELEON)

b o o t h
(CAHELEON)

m u x
(CAHELEON)

Figure 4: Sample database organization.

be passed to the application program by the SPI procedures. DIALOG [8], a circuit simulator
like SPICE or SWAN [13], a timing verifier like SLOCOP [9] all require circuit level.

Suppose that the designer wants to perform interactively an electrical verification by using
the DIALOG [8] program.

Via the D T M the designer can interact with the DMS. He can see what information is in
the databases.

Interacting with stand-alone tools such as editing-only sessions is done in the normal way.
This means that projects from the DMS are selected by the designer through the D T M and
that the appropriate CAD tools are started in a stand-alone way.

In this way the information in the database for HGE or CAHELEON could for example be
created.

The case where more tools are activated at the same time is described in the following
sessions.

5.2 Initiation of a verification session.

Suppose the designer is at the point of checking the m u l t 8 x 8 design for electrical bugs. There
fore he first has to enter the DTM, (via a special monitor window on the screen). There the
designer can browse trough the available projects managed by the DMS. He will than choose
m u l t 8 x 8 . This in fact defines the top cell in the hierarchy. Together with one D T M the
designer can start one or more CAD tools which will cooperate in a synchronous way under
the direction of the DTM.

266

Now the designer can start one or more CAD tools, (each as separate processes and in
separate windows).

In this design application the designer could start a window (process) with the module
generator MGE and leave MGE in a waiting state controlled by the DTM. In the same way
CAMELEON could be started in a window (process) and be left in a waiting state under
control of DTM. Notice that in this example situation two different programs are started.
These programs can be made active by the DTM to do editing or by the DTM and SPI to
load a specific cell and generate structural data for the SPI interface.

Suppose that MGE and CAMELEON are both active and that the designer starts DIALOG
from the DTM.

After this action DTM gives control to DIALOG for doing its initialization and for loading
the information for the project at hand m u l t 8 x 8 . Therefore DIALOG gives the control back
to the DTM, which will now activate the SPI module.

SPI will now recursively go trough the DMS design tree and activate each of the appropriate
structure generation tools with the appropriate DMS-cell indication. Each of these tools will
then for each of the cells call the appropriate SPI procedures to download the structural
information to the SPI module.

In this case this means that the SPI will start from the top cell m u l t 8 x 8 and ask the DMS
for the primary view. In this case this is MGE. SPI activates MGE with cell m u l t 8 x 8 . M G E
then generates the structure information via the SPI calls. MGE keeps the information of this
cell in its datastructure and goes back in a wait state and gives back the control to SPI. SPI
then knows via the SPI calls of MGE which cells are used as components of m u l t 8 x 8 . Now
SPI can again activate tools to generate the structure information for the cells of which it does
not have the structure information yet. This is the case for the cells fulladd, b o o t h and m u x .
SPI therefore goes through this list one by one and performs the following actions:

It asks the DMS for the primary view of the cell at hand. First this will be
ful ladd with primary view CAMELEON. Then SPI activates CAMELEON with cell
fulladd. CAMELEON will then ask the specific CAMELEON file in the database for
cell ful ladd through the DMS. It loads the information and passes the derived
structural information to SPI. CAMELEON keeps this information and goes to the
wait state again. Control goes back to SPI. SPI will than take the next cell (e.g.
booth and repeat the same actions).

After this CAMELEON has been activated three times by SPI with three different cells.
The information of these cells is each individually kept in CAMELEON datastructures and
has been passed to the SPI module via SPI procedures.

Now all information is available in the SPI module. Because DIALOG only understands
flat circuit descriptions, the HEX module in the SPI block will be used. In the HEX hierarchy
expander all links between the hierarchical network and the expanded circuit are kept, in order
to allow communication afterwards.

After the expansion all information in the SPI module is passed to DIALOG via SPI

267

procedures. After this action by SPI control is given to DTM, which forwards control to
DIALOG which can start its verification work.

5.3 Interactive communication between editors and application
program.

Now the case of a highlight will be described. The case of a user select operation is dual to
the highlight.

Suppose that DIALOG wants to communicate a possible electrical bug to the user via the
editors. Therefore DIALOG will mention in its own window a textual description of the kind
of bug it has found.

DIALOG will now indicate to the SPI module which structural item(s) need to be high
lighted in the editors.

In the case of a highlight or a select operation the SPI will pass control to the user,
so that the user can choose the components in which the highlights or selects have
to be done. For the case of highlight, this means that after DIALOG has passed
control to SPI, SPI will give control to the user and let him/her choose among
the available (and possibly affected) components that he/she wants to see. This is
necessary because highlights and/or selects can affect more cells in a design. It is
most often even different in components of the same cell.

The control that SPI gives to the user is by a (hierarchical) table of the components used
in the design.

During these highlight or select operations the designer can look at the primary data as has
been entered in CAMELEON or MGE. Remember that all cells in this project m u l t 8 x 8 are
available in the data structures of these structure generation tools. Remember also that SPI
keeps al the hierarchical relations between the flattened circuit and the hierarchical circuit.

After the highlight or select operation, the user can indicate to the SPI process that the
highlight or select operation is finished. Now SPI can give control back to DIALOG, which
can do further verifications with possible highlights or selects.

After the DIALOG verification session finishes, the control is given back to the DTM.

6 Interfacing of tools in System Architecture.

The interfacing of the tools in the system architecture is illustrated in fig.5. In order to obtain
a system that is as open as possible, and also in order to allow a gradual integration of tools
in the architecture some interfaces are mandatory and others are optional.

268

UIM

Application

program

DBM

I ' I ' I ' f
linker

SPI database DMS

Figure 5: Integration of application program in the system architecture.

M a n d a t o r y in t e r f aces . These interfaces are required if a bidirectional communication of
the tool with an other tool is envisionned. It requires the interfacing to the following
modules:

S P I structure procedural interface to communicate (either receive or generate structure)
with other tools.

D M S Design Management System, to indicate which design objects are handled by the
application program. This is required in order to know by the DTM what design
objects are being handled by which programs.

Optional interfaces .

U I M User interface module to have a uniform appearance to the user.

D B M Database module to store the proprietary data of an application program on a
design object.

Linker m o d u l e : this is only of importance for system design tools that require infor
mation of parameterized cells.

In order to allow high lighting of structural items in more cells, tools need to be able to be
activated with more cells at once. Otherwise if highlights or pointing has to be done, the tools
need to be started per cell. This would require too much processes.

269

7 Summary.

In this paper, a flexible framework for interactive CAD tools has heen presented. The emphasis
is put on the interactivity of the CAD verification tools. This is required in order to be able to
communicate in an interactive way with the graphical design tools a designer is confronted with.
In this way the design cycle is shortened and verification tools can have closer communication
with the designer. An example of such a tool is DIALOG [8] that can directly, while doing
its analysis, indicate possible design errors in the schematics. Another representative analysis
tool is the SLOCOP [9] timing verifier that can directly indicate critical delay paths in the
schematics or symbolic layout by immediate highlighting, without stopping either the timing
verifier or the schematics- or the symbolic layout editor. As less as possible constraints have
been put on the tools themselves in order to be able to integrate already existing tools and
tools obtained from outside with minor efforts.

References
[1] R.Jain, F.Catthoor e.a., "Custom Design of a VLSI PCM-FDM Transmultiplexer from

System Specifications to Circuit Layout Using a Computer Aided Design System", IEEE
Journal of Solid-State Circuits, February 1986, Volume SC-21, Number 1, pp.73-85.

[2] H.De Man, J.Rabaey, P.Six, L.Claesen, "CATHEDRAL-II: A Silicon Compiler for Digital
Signal Processing", IEEE Design & Test of Computers, December 1986, Vol.3, No.6,
pp.13-25.

[3] H.De Man, "Evolution of CAD tools towards third generation custom VLSI design", Revue
Phys. Appl. 22, Vol. 22, January 1987, pp. 31-45.

[4] F.Catthoor e.a., "General Datapath Controller and Inter-communication Architectures
for the Creation of a Dedicated Multi-Processor Environment", IEEE ISC AS Conf, May
1986, pp. 730-731.

[5] K.H.Keller, "An Electronic Circuit CAD Framework", Memorandum No. UCB/ERL
M84/54, Ph.D Dissertation, University of California, Berkeley, 6 July 1984.

[6] D.S. Harrison, P.Moore, R.L.Spickelmier, A.R.Newton, "Data Management and Graph
ics Editing in the Berkeley Design Environment", IEEE International Conference on
Computer-Aided Design ICCAD-86, November 11-13, 1986 Santa Clara CA., pp.24-27.

[7] L.Claesen, H.De Man, I.Bolsens, W.De Rammelaere, D.Dumlugol, P.Lammens, P.Odent,
R.Severyns, E.Vanden Meersch, "Electrical, Timing and Behavioral Verification in the
Meet-in-the-Middle MOSVLSI Design Environment of CATHEDRAL-II", Proceedings
IEEE International Conference on Computer Design: VLSI in Computers & Processors,
ICCD-87, Port Chester, New York, Oct.5-Oct-8, 1987.

[8] H.De Man, I.Bolsens, E.Vanden Meersch, J.Van Cleynenbreughel, "DIALOG: An Expert
debuging System for MOSVLSI Design", IEEE Transactions on Computer Aided Design,
CAD-4, No.3, June 1985, pp. 303-311.

[9] E.Vanden Meersch, L.Claesen, H.De Man, "SLOCOP: A Timing Verification Tool for
Synchronous CMOS Logic", Proceedings European Solid State Circuits Conference, ESS-
CIRC'86, Delft, September 16-18, 1986.

270

[10] J.Benkoski, E.Vanden Meersch, L.Claesen, H.De Man, "Efficient Algorithms for Solving
the False Pa th Problem in Timing Verification", Digest of technical papers IEEE Inter
national Conference on Computer-Aided Design ICCAD-87, Santa Clara CA, November
9-12, 1987.

I l l J .K.Ousterhout , "A Switch-Level Timing Verifier for Digital MOS VLSI", IEEE Trans
actions on Computer Aided Design, Junly 1985.

12] N.P.Jouppi, "Timing Analysis for nMOS VLSI", Proceedings of the 20th Design Automa
tion Conference, pp.139-147, 1980.

131 D.Dumlugol, P.Odent, J.Cockx, H.De Man, "The Segmented Waveform Relaxation
Method for Mixed-Mode Switch-Electrical Simulation of digital MOS VLSI Circuits and
its Hardware Acceleration on Parallel Computers", Proceedings IEEE Conf. ICCAD'86,
Santa Clara, CA, Nov. 1986, pp. 84-87.

141 L.M.Vidigal, S.R.Nassif, S.W.Director, "CINNAMON: Coupled Integration and Nodal
Analysis of MOs Networks", 23rd Design Automation Conference, June 29-July 2, 1986,
pp.179-185.

151 K.Croes, L.Rijnders, "CAMELEON: A Technology Independent Symbolic Layout Sys
tem", Internal Report IMEC, MR03KUL-7-B3-2, January 1986.

161 K.Croes et al.,: "CAMELEON, a process tolerant symbolic layout system", Digest of
technical papers ESSIRC-87, Bad Soden, Germany.

171 I.Vandeweerd, "Module Generation Environment: reference manual", Internal Report ES
PRIT 1 058/IMEC/6.86/D 8619.

181 P.Six, L.Claesen, J.Rabaey, H.De Man, "An Intelligent Module Generator Environment",
Proceedings of 23rd Design Automation Conference, Las Vegas, June 29-July 2, 1986, pp .
730-735.

191 L.Claesen, Ph.Reynaert , G.Schrooten, "Open system architecture for communicating
CAD tools", Report ESPRIT1058/IMEC/12.86/D8652, IMEC Leuven, Belgium.

201 L.Claesen, Ph.Reynaert , G.Schrooten, "LINKER module", Report
ESPRIT 1058/IMEC/12.86/D8653, IMEC Leuven, Belgium.

211 J.Cockx, Ph.Reynaert , "ESPRIT-1058: SPI Specification", Report
ESPRIT1058/SL/12.86/D8654, IMEC Leuven, Belgium.

221 R.L.Spickelmier, "Verification of Circuit Interconnectivity", Report Electronics Research
Laboratory, Univ. of California Berkeley, June 1983.

271

Project No. 271

ADVICE: Automatic Design Validation of Integrated Circuits Using E-beam

M.Cocito. M.Melgara - CSELT - Torino, Italy
G.Proctor - BTRL - Ipswich. UK

Y.J.Vernay - CNET - Grenoble, France
B.Courtois - IMAG/Tim3 - Grenoble, France

F.Boland - Trinity College Univ. - Dublin, EIRE

The usefulness of E-beam equipment in VLSI validation have been
overstressed. However, only recently the necessity of a full integration
between the CAD (Computer Aided Design) world and E-Beam world has
been felt. The next step further is the complete automation of an E-beam
debugging procedure. This paper presents a description of an integrated
E-beam debugging system, developed under Esprit Project 271 +.

1. Introduction

The Advice project seeks to develop a methodology for automatic design error
diagnosis using an electron beam. The project, partially funded by EEC under ESPRIT,
sees the co-operation of three industrial partners (BTRL - UK, CNET - France, CSELT -
Italy) and two Universities (IMAG - Grenoble, France, Trinity College - Dublin, Ireland).
The project, started in November 1984, will last five years.

The complexity of present VLSI chips demands for powerful tools to detect possible
design errors. This problem is made more difficult by two additional points:

the information available at the external pins is a small percentage of the ones
manipulated in the chip;

the physical dimension of the internal lines makes impossible a mechanical
probing without both modifying the capacitance level and destroy the
interconnections.

The adoption of an E-beam allows to overcome the aforementioned problems,
increasing enormously the internal observability. However, other problems arise,
related to difficulties in using the instrument, the time required to position the beam,
to acquire the measure, to define the debugging strategy to minimize the number of
test patterns to be generated, the number of measures, the techniques to isolate the
design problems.

The Advice project aims to provide the design/test engeneer with an interactive
environment, integrated with the design environment, to carry out all debugging
procedure in a computer assisted /aided way.

A key point of the project is the integration between design and test environment:

+ The research has been carried out within the Esprit Project 271 - Advice, Automatic
Design Validation of Integrated Circuit using E-beam, partially found by the E.E.C,
being contractors CSELT, Italy, BTRL, UK, CNET and IMAG, France, Trinity College, EIRE.

272

design data are used to make the debugging process as automatic as possible
(identification of physical co-ordinates on the chip starting both from layout
information and line names used in high level description, layout pat tern recognition
to perform accurate positioning, comparison of physical measures against simulation
results...).

To achieve this goal the project intend to develop a user friendly working environment
which puts under the designer finger tips all information related to the device under
debug (layout information, netlists, simulation/measure results, fault dictionary and
so on).

The ADVICE project was divided into two distinct but subsequent research periods.

The first one, the first couple of years, was mainly devoted to the assessment of the
equipment together with all basical software tools to achieve a sort of partial
automation of the operating procedures.

The second period, starting from the third year, and lasting tree years, was intended
to develop a more comprehensive automatic ADVICE system, deeply integrated with
the CAD environment, taking advantages of the already obtained results.

2. Description of the ADVICE System

The Advice project aims to provide the design/test engineer with an interactive
environment, integrated with the design environment, to carry out all debugging
procedure in an computer assisted/aided way [1].

The Advice system is organised as a multi-window, multi-menu driven program
(running on DEC VaxStationH/GPX), that will provide the user with an interactive,
graphical environment. The information displayed are:

layout window;

SEM control windows;

waveform display window;

text, command window.

The menus control each window and provide other commands useful for system
operations (test pattern editing, background simulation, fault dictionary
processing,...).

One of the major problems encountered during the debugging session of an integrated
circuit, is to exactly locate the beam on the appropriate tracks: users must look for
the points to be tested on the plot of the IC, then find again them on the SEM screen
by moving the DUT. If we consider that a debugging session can involve a lot of points
to be measured and that several times the obtained SEM images are of rather poor
quality (e.g. in stroboscopic mode) it comes out that this way of working (completely
manual) is hardly feasible.

By using CAD information the positioning can be moved to an assisted three steps
procedure:

1) Identification of the points of interest on the layout representation;

2) Positioning using stepper motors (coarse placement);

273

3) Checking the correctness of the positioning and adjustment, if necessary (fine
placement).

The first two steps can be easily obtained by extraction ol coordinates from a layout
representation (e.g. CIF format) and conversion into proper signals for stepper
motors (figure 1).

The third step is a typical problem of pattern recognition and can be obtained in two
different ways:

manually by the operator, which compares the SEM chip image with the
reference picture on a graphic terminal;

more powerfully, by an automatic pat tern recognition tool [3][7].

In the ADVICE system the coarse placement is achieved by using a module which
allows to explore, starting from the CAD data, a layout, to extract the coordinates of
the measuring points and use them to drive the stepper motors.

The coarse positioning obtained is affected by an average error of about ± 3 fj.m.

Once the point has been located, measurement can be performed by using a signal
averager [4], and the obtained waveform is transferred to the Vaxstation.

To help the debugger to manage the results obtained, the system offers several
features:

Display and manipulation (e.g. time interval measurement) of the waveforms on
a window;

Waveform filtering and thresholding in order to reduce the noise and to obtain
logic levels;

Comparison facilities between acquired signals and logic/analogic simulations.

In order to concentrate all the operations concerning the SEM on a unique
environment (again, the Vaxstation), some modules have been developed [8] which
allow to control parameters like magnification, astigmatism, scan rotation and focus
adjustments.

A text command window is present which can be used as a communication way
between the ADVICE system and the res t of the world, intended as the operating
system of the Vaxstation.

By integrating the previous described modules, the flow of operations during an
ADVICE debug session is reported in figure 2. This flow can be interpreted either as
assisted or automatic procedure by only substituting the "Determine next node" box
with the probing algorithm described below.

n summary, first research period results have been:

Computer control of some EBT parameter;

Automatic placement of the beam, starting from CAD data;

Computer control of waveform acquisition;

Development of hardware and software procedures for image acquisition,
handling and recognition;

274

• Development of hardware prototype and software procedures for fast waveform
acquisition and averaging;

• Practical evaluation of the E-beam capability in controlling chip internal nodes;

• Theoretical researchs on waveform sampling techniques.

All the aforementioned results represent a thick background on which to begin the
growth of the final ADVICE system. The present system has allowed to cut the time
required to acquire 15 waveform from about 2 hours, at the beginning of the project,
to few minutes (figure 3).

3. The final Advice system

The second research period, as mentioned before, aims to integrate all previous
results into a unified debugging system, increasing the part related to error detection
methodologies.

Although many technical problems, still related to the E-beam equipment, need to be
solved during the next research years, the basis of the final system can be sketched.

The leading lines for the system definition will be:

1) The ADVICE system will be a user-friendly environment in which a designer will
perform all operation related to the debug procedures, without leaving it, but
having under his finger-tips all tools needed.

2) The ADVICE system will be linked to the existing world through standard
interfaces (languages and procedures), that will allow the development of a
single nucleus, in co-operation by all the partners.

3) The ADVICE system will run on a common workstation (Vax Station), eventually
integrated with dedicated hardware.

4) The ADVICE system will automatically perform all trivial, repetitive and tedious
operations, leaving the designer free of concentrating on decision tasks,
eventually suggesting him basical strategies.

5) The fully automation of the debug procedures could only be achieved, with the
present technology, for combinational circuits.

To achieve those goals three main tasks have been defined:

Development of image recognition techniques;

CAD development and integration;

Strategies for debugging.

The first one will continue the work started in the previous period, coming to a final
product composed by software, and eventually hardware, tools to perform a fast fine
adjustment of the beam position, after the rough positioning obtained using stepper
motors, driven by layout information.

The second task, CAD integration, will produce the user-friendly environment, by
implementing the connection towards the design and simulation data, and the
physical equipments (E-beam microscope, circuit exercisers...), and developing the
user-friendly working environment.

275

The task on strategies will face essentially four problems [6]:

design for electron beam debugging: it will provide design rules and probing
point selection rules to make a debugging session satisfactory;

simulation strategies: it will provide guidelines to the IC designer about the
techniques to be followed during the circuit simulation and test sequence
generation;

fault dictionary generation and manipulation: some knowledge about the modes
of failure can be pre-computed, stored in a fault dictionary and used as starting
point for the debugging procedure, to cut the number of measures to be
performed;

development of the diagnostic tasks.

The diagnostic tasks, seeing the Advice interactive system as procedures able to
interface them to the physical reality, aim to perform a fully automatic debugging
session.

Starting from the knowledge about the logical model and the layout of the circuit, the
simulation results and the status of the debugging procedures, the diagnostic tasks
select next points to be probed, compare the measured and the simulated results,
trying to locate the failing IC area.

4. Conclusions

The Advice project, which has reached the 2/5th of its duration, has obtained till now
very good results both on the technical and the international co-operation bases.

As a practical result it can be said that the time required to perform a measurement
with the E-beam equipment has been reduced, respect to two years ago, to about one
sixth of previous one.

However, a long way is still to be climbed during the last three year period to achieve
the goal of a fully integrated debugging station, (figure 4).

Acknowledgements

The authors are pleased to acknowledge F. Stentiford, J. Dowe, T. Twell (BTRL), M.
Battu', P. Garino (CSELT), I. Guiguet, D. Micollet, M. Marzouki (IMAG). E. Linch, K.
Hundertpfund for their indispensable contributes to the research development. We
also intend to thank D. Ranasinghe and D. Machin (BTRL), G. Bestente (CSELT) for
their useful work in ameliorating the E-beam system.

Bibliography

[l] M.Cocito, G.Proctor, Y.J.Vernay, B.Courtois, F.Boland: "Advice: A European
effort", 1st Europ. Conf. on Elect and Opt. beam testing of IC, 1987, to be
published.

[2] M.G.Battu', G.A.Bestente, P.G.Cremonese, A.B.Di Janni, P.A.Garino: "Automatic
positioning for electron beam probing", XI Int. Congr. on Electron Microscopy,
1988, pp. 651-652.

[3] F.Stentiford, T.Twell: "Automatic registration of scanning electron microscope
images", 1st Europ. Conf. on Elect, and Opt. Beam Testing of IC, 1987, to be
published.

276

[4] D.Machin, D.Ranasinghe, G.Proctor: "A high speed signal averager for electron
beam test systems", 1st Europ. Conf. on Elect, and Opt. Beam Testing of IC,
19B7, to be published.

[5] E.R.Linch, F.Boland: "Parameter extraction in E-beam testing", 1st Europ.
Conf. on Elect, and Opt. Beam Testing of IC, 1987, to be published.

[6] M.Melgara, M.Battu", P.Garino, J.Dowe, M.Marzouki: "Fully automatic VLSI
diagnosis in CAD-linked E-beam probing system", 1st Europ. Conf. on Elect,
and Opt. Beam Testing of IC, 1987, to be published.

[7] I.Guiguet, D.Micollet, J.Laurent, B.Courtois: "Electron beam observability and
controllability for the debugging of integrated circuits", XII Europ. Solid State
Circuit Conf. 1986, pp. 181-183.

[8] D.W.Ranasinghe, G.Proctor, M.Cocito, G.Bestente: "Computer control of
Electron beam testing for design validation of VLSI circuits", XI Int. Congr. on
Electron Microscopy, 1986, pp. 619-620.

Muniiun - VIDEOTAPE
RECORDER

BLANKING
PI 4TFS T

ncn rr>Tinu

BEAM
BLANKING

ULVIl/t

_

l MAGE
PROCESSOR

EB

/
COILS M—'

DUT

MM

/ —

i

/

/

TRIG

TRIG

PATTERN
GENERATOR

r

RS232

E.T.
DETECTOR

STEPPER
MOTOR
DRIVER

i
3SCILL0SC0PE

DIGITIZE

t
R

WORKSTATIOK
(X.Y

COORDINATES)
I

VAX
(ELECTRICAL

SIMULATIONS)

GPIB BUS

1

PLOTTER

COMPUTER
(EBD SYSTEM
CONTROLLER)

Figure 1: Computer controlled electron beam debugging system.

27

Logic simulation and test generation
X

Translate to test langage

Down load to tester ism b»i< wortsuikxi)
X

Test the device (top level, uses I/O pins)
_C

Initialize the E-beam tester

Get list or possible faults from dictionary

Determine next node

Window CAD data around next node to test

Determine probe polnt(s) on track

I
Move to approximate co-ordinates

X
Obtain an Image of a area around node

JZ
Determine and apply beam correction

X
Bet waveform

X
Compress the waveform

Compare with expected response

YES/7 <[
X

Is fault located ?
wo I

>

' r ^ Track thoroughfully checked ? /
res i

NO

8ack to Start using next hierarchy until fault found

Figure 2: Advice system operation flowchart.

278

A: EBT SYSTEM SETUP

B: SELECTION OF NODES ON
THE LAYOUT

C: EBEAM POSITIONING

D: MEASUREMENT AND ACQUISITION

E: HARD COPY AND COMPARISON
WITH SIMULATIONS

B»C*D*E
EBT

MANUALLY
OPERATED

EBT
PARTIALLY
COMPUTER

CONTROLLED
AND INTERFACED

TO CAD

EBT
FULLY

COMPUTER
CONTROLLED

(APPARATUS)

Figure 3: Electron beam debugging system throughput.

Cumruicn ounmuL
IMAGEWAVEFORM

ACQUISITION

MEASURED
DEVICE

RESPONSE

COMPARE

TRAN^ JLAIL

♦
COORD

DATA

FRAME
STORE

PREDICTED
DEVICE

RESPONSE

DESIGN
DATA

♦
PROBING

ALGORITHM

♦
FAULT

DICTIONARY

LOGIC
SI MUL ATOR

—
LAYOUT

DATA
1 1

PATTERN
RECOGNISER

Figure 4: The final Advice system.

279

Project No.

AIDA
ADVANCED INTEGRATED CIRCUITS DESIGN AIDS

AIMS AND PROGRESS TOWARDS A NEW GENERATION OF VLSI
TOOLS

H.G.THONEMANN, AIDA Project Leader
SIEMENS AG, CORPORATE APPLIED COMPUTER SCIENCE LABORATORY

MUNICH, WEST GERMANY

ABSTRACT

Aims and progress of the AIDA project are presented. AIDA is a Research and
Development project for new VLSI design methods and corresponding CAD
tools to master the growing complexity of VLSI circuits. The three main
partners in the project: ICL, THOMSON and SIEMENS in cooperation with the
subcontractors BULL, IMAG and UMIST are working on a new generation of
tools that will help the designer to apply his creativity for efficient and optimal
design solutions. The program began in late 1985 and has completed the first
year objectives. In particular the focus is on object-oriented data management
of VLSI data, capture mechanisms of system specifications, logic synthesis,
floorplanning and advanced placement and routing, a new generation of test
aids and user interface issues. The team members are presently involved in the
specification phase for concepts and tools following the workplan.

INTRODUCTION

The Aida Project is a Reseach and Development project for new VLSI design methods and
corresponding CAD tools mastering the growing complexity of VLSI circuits.

The three main partners in the project ICL, THOMSON and SIEMENS in cooperation with
the subcontractors BULL, IMAG and UMIST are working on a new generation of tools that
will help the designer apply his creativity for efficient and optimal design solutions.

The quest for appropriate chip architectures, decomposition into the correct blocklevel
and logic design, application of optimizing algorithms for layout and consistent
representations across all levels of design abstraction was the basis to divide the AIDA
program into seven work packages:

1. Data management and design control 5. Testing and testability rules
2. High level specification capture 6. Man-machine interface
3. Logical and electrical synthesis 7. Evaluation
4. Physical Design and Layout

A fundamental objective of the four-year project is to develop concepts, methods and
experimental tools in these working tasks and integrate the tools into the existing CAD
environments of the partners. An important step applies the experimental results for the
development of industrial production tools.

Major axes of the work packages include the application of artificial intelligence
techniques on siutable problem areas such as logic synthesis, testing and floorplaning, the

280

improvement of data management techniques and design contro l , and some
improvement of traditional tool sets.

The objectives of the first year of the program were completed in late 1986 and delivered
to the partners and the EEC during the 1st quarter 1987. During the first half of 1987 a
number of tasks have produced further results. This presentation intends to publicize the
present status of the project..

DATA MANAGEMENT

At the commencement of the AIDA contract it was recognized by the three partners that
an integrated object-oriented database management system is of prime importance for
tool integration and future evolution of the design environments. Thus one of the initial
main goals of the task was to work towards the formulat ion of requirements,
specifications and implementations of some first facilities for advanced data handling,
design control and design release.This work forms a basis to support effectively, designs of
increasing complexity with short design time requirements. The work todate has covered
activities on the following issues:

Specification of the object-centered approach
Formulation of requirements and specification of conceptual data models
The formulation of a common, consistent conceptual data models notation
Language specifications for data definition and data manipulation
Concepts for portable interfaces
Control of design completeness and consistency
Design process control
User interface to design control facilities
Management and control of external objects
Methods for data distribution
Formulation of a technology specification language
Supportfordesign auditsand design release
First implementation of object-centered prototype components

The specification of the object-centered approach describes a set of concepts for
organizing common design data by using abstraction mechanisms drawn from Artificial
Intelligence (Al) techniques. This approach is well suited to the consistency control
required of an integrated CAD environment.

One of the partners is presently completing a first prototype of an object base
management system (OBMS) using a LISP environment. It implements the basic concepts
of the object-centred approach and permits the storage of IC design data plus the control
of object base semantic integrity.

Transparent distribution of data was evaluated and a set of requirements formulated.
Experimentation wil l be performed on SUN-Workstations to formulate opt imal
node/server configurations and determine an optimized store size per node. Evaluation of
communication between workstations and host will be based on ETHERNET

A control environment has been implemented at one of the partner's system which will
support the creation, extraction and manipulation of data in external objects. Further
evaluation of this support infrastructure will show the performance of controlling a set of
data bridges to external environments, the handling of any new external interfaces via
external objects and the conversion of existing interfaces.

A first functional specification defining the syntax and constructs for a technology
specification language has been formulated. A technology compiler and run-time support
infrastructure are being implemented. The use of technology objects to specify base

281

technologies, enhancing technologies and to meet user specific requirements will require
a high level of support

Since there is no declared intention for SIEMENS, THOMSON and ICLto develop or adopt a
single data management system as part of the AIDA project, the collaboration within the
other task groups in AIDA through the exchange of data requires data management
support. As a first attempt for such activities a comparison of the netlist conceptual data
models for the three systems was performed; the presentation format was Bachman
diagrams. This work exposed severe limitations with Bachman diagrams and resulted in
the proposal of an alternative object notation by SIEMENS. This notation had the
capability to accurately represent complex design object structures and relations.Requests
of the partners for extensions to the basic notation for the handling of generic objects and
changes to simplify the handling of relationships were included. As a result, a common
AIDA notation for the presentation of conceptual data models was formulated and
agreed. A full definition of the standard is presented at this conference. The production of
this standard represents a significant achievement and a solid basis for fur ther
collaboration

SYSTEM SPECIFICATION

The work up to the present state has involved the production of a requirements
specification for capture and simulation tools. The investigation into the requirements for
system specification has made it clear that a single Hardware Description Language does
not provide the best means of defining a complex system design. For this reason this
objective of the project has been redefined as "Develop an environment for the capture
and verification of a complex VLSI system'. In addition performance and user interface are
seen as top priorities for the simulation tools. Thus the major activities have been
concentrated on:

• Production of a detailed requirements specification forthe simulation system.
• Production of a formal definition of aggregates and extensions to the capture system

and simulator to fully support aggregate types.
• Investigation into new scheduling algorithms for system level simulation.
• Provision of a mechanism for the capture of state.
• Implementation of a first set of prototype facilities.

The requirements specification for system specification has been completed. The
production of a formal definition of Aggregates is complete and includes a BNF definition
of the aggregate syntax, definition of aggregate access formats and notes on building
aggregates graphically. During the work the importance of state or memory was
recognized. The capture facilities are therefore being extended to provide a means of
specifying a 'unit-of-design's' memory in terms of a simple size (no of words or no of bytes)
or as an aggregate form. This information can be used by the simulator and the 'unit-of-
design's' benaviour.

Work on the simulation toolset has identif ied a number of areas for potential
performance improvements such as critical inputs, multibit events, timeloop sizes, 2-state
behaviour and transparency.

LOGIC SYNTHESIS

Synthesis is the process of translating a description into a lower level equivalent. The
objective of the logic synthesis in AIDA is to cover, step by step, the full range of synthesis
problems - from high level, behavioural descriptions, to detailed logical and electrical
schematics. Currently, the conversion of the final schematics into layout is not an integral
part of the task.

282

The highest description level addressed is associated with a system source language,
BEADLE (BEhAvioural Description Language Environment), which provides for
architecture independent, algorithmic descriptions. Using this, systems consisting of one
or more IC's can be described in terms of communicating sequential processes.

Another aspect of the task concentrates on logic synthesis techniques that begin with
architecture dependent, algorithmic descriptions. These are stated using a Concurrent
Algorithmic Programming language, which is also suitable as a modelling language for
multi-level simulation.

This high level approach is therefore complementary to the BEADLE equivalent. Both
descriptions are translated into a common intermediate form, Flowgraph, in which
systems are described using control and data graphs. Then the synthesis of a chip proceed
from a Flowgraph description. An intermediate abstract structure format that is
independent of cell libraries has been devised from which the expansion into modules of a
particular target library can be performed. It has been agreed to use the Flowgraph
notation as a common high level notation between the tools of the three partners. The
abstract structure format serves as the link to specific low level Technology-near
implementations.

A third package of the work of this task has been essentially devoted to basic synthesis and
extraction mechanisms, using Al techniques. A unique formalism has been defined to deal
with the problem of cell synthesis, down to the switch level. Experimental tools handling
combinatorial CMOS cells, have been realized, and are currently being experimented with.
The philosophy is to embed the design style within sets of rules, allowing a final
realization in terms of either predefined gates or predefined "topological targets". The
latter allow the production of a complete layout, but are independent of existing cell
libraries - although dependent upon the capabilities of particular technological families.
The work has been concentrating up to now on the following topics:
• Mapping of the BEADLE behavioural descriptions onto a target architecture
• Implemention of interprocess communications by customising a generic architecture
• Production of an initial version of the BEADLE language
• Development of a generic architecture for Behaviour-Architecture Synthesis
• Investigation of low level physical architectures (for example busses)
• Prototype implementations of the BEADLE Direct Input System and Database
• Investigation on simulation asa partof tool integration
• Compilation into a Flowgraph representation (combinatorial logic)
• Multi-level synthesis using primitive cells
• Definition of an abstract structure format (independent of cell libraries)
• Abstract structure expansion into modules of a particular target library.
• Synthesis of controllers with state diagram inputs and realization with FSM

PHYSICAL DESIGN AIDS

At the start of this project powerful systems for layout generation were in place at a large
number of organisations dealing with the problem. This was especially true for standard
cell design where special placement and routing algorithms allow for reasonably
automatic layout generation. In some instances the physical design with macro cells had
already been reported. This design style however seemed not yet put widely into practical
use. Furthermore an entirely consistent top-down approach to placement and routing
could not be observed. Therefore new approaches needed to be taken to tackle the
hierarchical generation and verification of layout geometry data. The task concentrates
presently on four major issues:

Floorplanning
The exhibition of the placement problem to hierarchy becomes a floorplanning task
dealing with blocks whose geometric characteristics are not yet fixed and taking routing
spce into account for interconnects, whose terminal positions are not yet known either.

283

A good portion of the recent work has therefore been devoted to study a number of
approaches for the solution of this problem:

• Effects of logically equivalent cell terminals on the reduction of routing space
• Dynamic effects on power & ground routing for the minimization of routing area
• Investigation of simulated annealing techniques for interactive placement
• Empirical evaluation of sizing models
• Evaluation of graphical editing applications to network and layout views.
• Determination of effects from the merge of autoplacement tools with interactive

placement approaches
• Formulation of requirements based on the evaluation of available floorplanning

methods and tools
• Integration of available floorplanning facilities and experimentation to identify

further bottlenecks.
• Placement analysis to define algorithmic strategies versus expert system approches
• Specification of expert system aspects: LISP inference engine, circuit typology and rule

collection.

Layout Algorithms
In connection with the floorplanning work a number of routing algorithms have been
studied by a few members of this task:

• Experimentation on automatic two step layout generation to a given target structure
from an input net list. (The target structure chosen for experimentation is made up or
two rows of cells separated by a channel): arrangement of the cells in the rows and
routing of the channel.

• Automatic compaction or expansion of a layout.
• Experimentation on compaction and routing sequences

Cell Composition Tools
Earlier investigations indicated that symbolic layout tools ("stix" editor and compactors)
provided the simplest path and required least effort to maintain process independence.
However such systems are intrinsically inefficient due to the fixed topology of layouts.
Therefore the work has concentrated on the following:

• Generation of process efficient topologies for cells from circuit diagrams
• Formulation of the requirements for cell shape generation tools using size, shape and

power consumption as parameters.
• Implementation of Prolog prototypes for cell implemetation on a simple double strip

transistor arrangement
• Modification of process rules to determine the effect on the cell layouts

Hierarchical Design Rule Check
Hierarchical layout verification means the recursive check of all cells of a given layout.
Each cell has to be checked completely before its instances on higher level can be checked
against their environment. This implies repeated access to the layout data. Therefore the
geometry database needs to be structured for this purpose something that is not sufficient
in most systems today. The main results today are:

• Requirements for hierarchical design rule check based on applying an existing DRC-
program recursively to the cells of modified layout data

• Evaluation of existing solutions for hierarchical design rule checks with ECAD DRC
DRACULA Hi to be the most interesting approach because of hierarchical error report.

• Redesign specification of existing DRC programs: Unification of Boolean operations
with design rule checks as a basis for hierarchical design rule check

• Specification of interactive capabilities for verification (DRC) and assistance for
parameter estimation of topology, performance and testability

284

TESTING

As the complexity of chip continues to grow the testing problems follow suit. The AIDA
objective is to develop methods, algorithms, languages and tools for Design For
Testability, Self-test and Test Pattern Generation to overcome deficiencies of classical
approaches and assure design quality in the future. Extensive results have been achieved
since the start of the project and are presented in condensed form
Design ForTestability
• Preparation of a survey of DFT guidelines & rules of each partner, distribution and

discussion of commonalities and divergencies for further definit ion of common
approaches.

• Testing of Embedded Regular Structures (e.g. RAM) with determination of area
overhead, fault coverage and test time. Completion of logic structures for RAM BIST.

• Study on design for testability of PLAs, especially of optimized PLAs.
• Study on design for testability of control sections and datapaths
• Feasibility study on expert analysis tools for testing style advice and minimum logic for

test.
• Extension of a DFT rule checker to check for the correct applications
Test Method Language
• Completion of a formal definition of a Test Method Language with examples of its use

for defining test methods.
• Implementation and release of a complete VLSI CMOS cell library of Test Methods.

Development of Enhancements
• Investigation of valuable feedback from designers on potential extensions to both

language and tools.
• Development of a test program integration aid tool with definition and compilation of

test procedures expressed in TGL language and generation of the test program from
device description, test flow, requested procedures and truth tables

• Specifications of a test description language UTILE (Unified Test integrated Language)
for unification of various kinds of simulators and different types of ATE. Syntax
structures for description of test patterns, input stimuli and expected responses as well
as timing data, tester informations, simulation control and documentation.

Built-in-Self-Test
• Extension of a bit- pattern- generator for generation of initializing, controlling and

evaluating patterns of self-test structures.
• Investigation into the requirements of an on-chip self -test diagnostic unit.
• Study on Unified Built-in Self-Test (UBIST) technique for testable PLA's using self-

checking and built-in self-test (BIST) techniques to ensure on-line (or concurrent error
detection) and off-line testing

• Design of Self-Checking and BIST control sections with folded and/or unfolded PLAs
implementing on-line and off-line test features for stack-organized control sections
(slice architecture)
• On-line test by means of Self-Checking schemes (i. e. concurrent detection of errors)

using Strongly Fault Secure functional blocks and Strongly Code Disjoint checkers.
* Off-line test with a BIST scheme for internal test pattern generation and verification

• Study on self-test methods for RAMs with emphasis on parametrizable RAMs.
• Study of direct access test methods for RAMS and ROMS and their support by the test

equipment.
Fault Simulation
• Development of extensions for an existing logic simulator towards analog modeling

and exploitation in order to describe analog functions by their transfer function,
expressed in synchronous linear equations with logic input and output signals

• Performance improvements of the same simulator for fault simulation mode using a
concurrent algorithm

285

Analog Testing
• Development of a general concept for automatic test hardware synthesis based on

standardized elementary test circuitries and configurable device specific test set up.
Initial design and implementat ion of the synthesizer algor i thm. Study on
combinatorial optimization techniques,especially on 0-1 linear programming problems
and related topics, such as LP relaxation and cutting plane methods.

• Definition of an ATE software architecture: determination of target devices to be
served by automatic analog /digital test program generation and specification of a test
parameter set for analog standard cells.

• Specification of the requirement for an automatic test program generator system
library and definition of the description language for the electrical parameter set, test
system configuration and test set up configuration. Determination of the library model

Automatic Test Pattern Generation I Test Quality Verification
• Extension of ASTA for generalised designs with emphasis towards automatic test

pattern generation.
• Study on Fault models and algorithms for test pattern generation for non-structured

combinatorial circuits.
• Study on Optimized Testable Programmable Logic Arrays. Review of Optimization

Methods and Off-Line Test of PLAs with the presentation of problems and solutions for
folded PLA'swith built-in testing

• Optimization and self-checking design of PLAs based on the use of parity codes and the
use of Berger codes

• Improvement of the D-Algorithm: Reduction of Backtracking and Study on D-
Algorithm Alternatives

• Simulation under Consideration of Automatic Test Equipment Constraints (Dynamic
Testing)

• Analog Test Program Generation: Method definition and specification of a parser
• Test pattern generation at the switch level with node analysis of given a switch

network looking at neighbourhood and influenced area of a node in order to
determine path sensitization is chosen as a useful approach.

• Definition of off-line tests through deterministic test pattern generation and
signature analysis using tinear Feedback Shift Registers

MAN-MACHINE INTERFACE

The potential benefits of a new generation of design tools will only be ralized if users are
provided with comfortable facilities that support their needs in an efficient and consistent
way. Therefore the project activities concentrated on the following topics:

• Workstation Management concerned with the definition of a general software
architecture and the specification of the services to be provided by the operating
system in order to optimize the Man/Machine interface. Todate an analysis of X-
Windows (MIT Vers. 10) for protocol implementations has been completed identifying
the need for
* a multiple-wait facility that is known as the "select" system call in UNIX BSD
* mechanisms known in UNIX BSD as "pseudo-tty"
* Integration mechanisms, preferably UNIX BSD "sockets"for protocol calls.

• Display Server concerned with the defini t ion of a display formalism, and the
implementation of a display interface. Results:

* Study of the available specifications of X-Windows version 11 and experimentation
on a few programs with version 10 available on SUN-Workstations

* Definition of necessary targets for porting the X-Server:
□ the operating system dependent routines must beported.
D the protocol routines must be compiled, and this might imply some tuning of

individual C compilers.

286

□ a number of device dependent routines must be implemented (one of them
being the routine for printing characters on the screen). On X-Window tapes, all
device dependent routines are provided for VAX- stations. One might try to
adapt them to specific hardware or implement them differently.

• Study on the portability of fonts and tuning of fonts fordifferent hardware

• Man-Machine Dialogue Tool Kit
• Study of the X-Windows WIDGET (Window Object) concept with object oriented

flavours
n Object reaction on input actions
a Replacement of default widgets by complex applications
a Preparations for AIDA applications

• Experimentation for effects of X-Windows programming style on I/O management
of applications

EVALUATION

Presently the project is going through the specification phase for the tool sets of the
respective partners. Specification results are the main objective for this second year of the
project. The verification of choosen approaches, however, is essential for the completion
of major project milestones. For this reason the evaluation task was created. It started to
involve efforts for the definition and preparation of validation test sets. Discussion among
the partners was initiated in order to assure commonality during update phases.

CONCLUSION

Results of the AIDA project have been presented. After a year and a half of work the AIDA
project has produced a number of solid building blocks for a new generation of VLSI CAD
tools and provided its partners with advanced methods for the integration of these tools
into their cohesive design environments. The pursuit of collaboration during this period
has served as an important cornerstone for discussing and clarifying the respective
objectives of each task and to understand the background on which the actual work at
each company is going on. This will be essential when the AIDA project is moving into the
prototype implementation phase within 12-monthstime.

ACKNOWLEDGEMENTS

The author would like to extend thanks to all team members of the AIDA project for their
support and expert contributions to the VLSI design automation tools presented in this
paper. He is in particular grateful to Mrs. B. Martin who has integrated the multitude of
textual contributions into a single presentable format.

287

P r o j e c t No. 802

CAD OF ANALOG CELLS
Giinter Wagner*

G M D , St. Augustin, F R G

1 Introduction
Whereas large effort up to now has been spent in design aids for digital integrated
circuits, a corresponding development in analog integrated CAD has not been oc
curred.
Digital circuits mainly distinguish only between three logical levels (High, Low and
High impedance) and are generally controlled by a clock. This behavior makes them
very useful for application in computing machinary.

Analog circuits instead have to process all values continuously within a defined
voltage or current range. The structures in general are not very regular; influence
of effects like nonlinearity, distortion, noise etc. plays an impor tan t role and must
be considered very carefully. Appropriate to the increasing demands on speed, reli
ability, costs and lifetime of components in control mechanisms, sensor or switching
circuits, analog integrated circuits get a very fast increasing application area.
But , unfortunately there are no comfortable design tools to support the development
of this kind of ICs.
In CVS, work package 3 we aim at closing this gap and propose a system to give the
designer a powerful tool to support the design of analog integrated circuits, if wanted
from scratch.
The system is to lead the designer through the whole design process and will be
highly interactive. Of course, if an already designed cell meets the specification of
the needed circuit, this cell may be used unchanged for a possible implemention
within a circuit of higher complexity. If, however no cell of the l ibrary fullfills the
demands of the specification at least for par t , a complete new design s tar t ing from
scratch must take place. The most convenient case, however will be the third one:

*G. Wagner is project manager of the EEC CVS project (No. 802) work package 3. He
is with Gesellschaft fner Mathematik and DatenTerarbejtung mbH, Grossprojekt.E.I.S., P.O.
Box 1340, 5205 St. Augustin, FRG

288

The cell demanded for meets the specifications for part, that means, the user will be
able to modify or to supplement an already existing cell of the library to meet the
specifications.
The designed circuit will be checked only for functionality by using a circuit resp. a
SC simulator like SPICE, BONSAI or DOSCA. An additional check on layout errors
(DRC,ERC) will not be performed. By using the system, where layout is correct by
construction, these checks are superfluous.
This way guarantees both a high reliable and fast development cycle as well. It
demands for a high sophisticated design system, able to guide the user through the
design process, giving proposals or hints how to proceed during the design of a special
analog circuit.
The system uses AI techniques and object oriented programming. Knowledge based
synthesis is provided in the schematic (topology and parameterization) as well as in
the layout design phase.
The system may be adapted to any technology by providing the necessary rule base.
For that purpose, a large number of small hierarchical rule bases instead of a large
one is involved.
The paper describes in general terms both, the concept of so-called skeleton cells as
well as the complete design cycle. The system allows expansion both in rules and
scope. The input of rules can be done either in text form or graphically.
In the 1. subsection the User Interface (UI) will be presented. The 2. subsection
explaines the concept of so-called 'skeleton cells' their use and the information avail
able in the library. Finally in the 3. subsection, the implemented simulators with
their extensions and optimizer are presented. The conclusion will show up the results
reached up to now and the way how to proceed within this project.

2 The system
2.1 User Interface (UI)

UI stands for the interface between user and system. It has to manage and to control
the design process (see fig. 1).

INTERFACE
TO CVS-DB

UI

LIBRARY SIMULATOR, OPTIMIZER

LAYOUT BUILDEF *

FIG. 1 THE SYSTEM ARCHITECTURE

289

2.1.1 Architecture
The UI is menu driven. That means, that for all activities within the system a special
menu is available to support the user during the design process. Using 'icon's makes
handling of the system very easy and comfortable (see fig. 2).

Hardware
Char.

N /

Device
- ^ Indep. _ ^
^ Graphics

CRT

FIG. 2 Structure of user interface

For the different steps of the design (schematic, layout) , editors of different types are

290

available. To input textual information like rules or simulator input files, a suitable
editor has been generated. Secondly, to input or output a schematic, a schematic
editor is provided. It is to give the user a graphical overview on the circuit he is
working on.

Schematic will be input by clicking the corresponding components like resistors,
capacitors or transistors at a menu displayed on the screen. As will be explained
later, not only the graphical information of a component is available, instead there
is a complete data structure appended to each symbol selected from menu. Further
more UI has to enable the input of rules (textually or graphically) for e.g. another
technology data or to add new knowledge about the design process.

Based on the specialized structure of the editors, definition of 'macro's is possi
ble. These macros contain information about naming, the graphical representation,
ports where their instances can be connected, a set of component or macro instances,
junctions and a set of rules. An additional netlist (perhaps extended) will be au
tomatically generated during the schematic input process. This netlist, possibly
together with some additional information of the circuit like 'nodesets' or similar
parameters represents the data part of the simulator input file. Of course, simulators
will be started by the UI.

Another task of UI is to support the interactive generation of the layout. So, it
must be able to display the layout, generated so far and additionally allow to perform
modifications on it.
All tasks, described above, are managed by the UI. Each design step is supervised
by the UI. It has been made to enable guidance of the user through all steps of the
design process.

2.2 The concept of skeleton cells and their use
2.2.1 Cell generation

Cell generation entails the user specified refinement of an implementation. The user
is presented with an implementation consisting of components and so-called skeletons
connected in a particular fashion.
Given certain requirements, the user interactively specifies which subunits of the cell
he wishes for further refinement. Skeleton cells within this system are 'sub-parts'
out of which complex circuits are built. For demonstration let's take an operational
amplifier (OPAMP, see fig. 3). This circuit can be divided into e.g. four parts, the
part to generate the bias, the input difFerential stage, the intermediate stage and the
output stage. These parts themselves consist of e.g. current mirrors, level shifters,
difFerential pairs and so on.

They are represented by 'skeleton' cells. These are data structures containing
the necessary framework used in different phases of the design activities. They are
active data structures which allow to generate an OPAMP with very specialized
specifications.

Dependent on the special application, these parts look quite differerent. That
means, to meet for example more restrictive specifications - a cascode connected
current mirror to increase the dynamic resistance of a stage - a particular 'imple
mentation' of a skeleton (see fig. 4) will be needed. Cell generators (see fig. 5) to

291

generate the cell layout, are attached to the possible 'implementations' of a 'skele
ton'.

BIAS
NETWORK

INPUT
STAGE

INTERMEDIATE OUTPUT
+ KC

our

" ONE POSSIBLE SKELETON CEIL IMPLEMENTATION OF A

CURRENT MIRROR.

FIG. 3 OPAMP

If a design contains cells whose implementation is not fixed, the user designs the
subunits in a top down manner to meet the overall specs. He may pick the selected
cell in the editor and invoke the system (by application of rules) to generate it. The
old skeleton implementation will be replaced in the ceil by the new generated one.
This can be done either automatically or highly interactive.
During the design shown above, the parameterization steps are to determine the
topology and the parameter values of the cell.
As we have demonstrated above, the design of analog cells is not only supported
by the system to link already existing analog circuits, it instead is supported in the
design process some levels lower. By this kind of design a real customized analog
integrated circuit generation is enabled.

2.2.2 New cell layout design

In order to produce a layout, the system must be initialized with a full set of tech
nology files and in addition a set of component generators in minimum. In general,
generators within this system are functions which produce the layout of a number of

292

components which together form a well denned circuit function.
The generation process can be divided into five steps, namely:

OPAMP
(bipolar)

Differential
stage

Intermediate Output
stage stage

/ I \
Bias
current source

/1A
differential

pair

FIG. 4

SKELETON IMPLEMENTATION
SELECTION

Current
mirror

/ \
npn pnp

basic current mirror w i th mult iple output

basic current mirror w i th 1 output

base current compensated current mirror
w i th current shunting resistor w i th 1 output

base current compensated current mirror wi th
currents shunting resistor w i th multiple output

resistor ratioed current mirror

constant current stage for low current levels
wi th 1 output

constant current stage for low current levels
wi th mult iple output

wilson current mirror

cascode-Connected Current mirror

r CCCM with high output
impedance

293

• Definition of the outline and the position of ports
Prior to the actual design, the user must define the interface of this cell to its
surroundings. If the user specifies nothing, the layout system will try for a square
cell and place the ports without contraints. If, however the space allocated by
the user is not enough, he will be notified by the problem as soon it is detected
and is given a suggestion as to its correction as well.

• Selection of component types
This is the process of selecting the layout implementation of components speci
fied at the schematic level.
In order to start the layout design phase, components must exist at the schematic
level and must be imbedded in a netlist implying that all their ports are loaded.
The loading values affect the layout structure. Another factor which may play
a role in this selection is the way sets of components react to each other. Exam
ples are current mirrors, loading stages etc. The generation of these structures
is performed by 'cell generators'. The dimensions of the selected components
(e.g. width to length ratio of a transistor) are under user control; the actual
structure however is fixed.

The selection of a generator for a circuit component or a set of them can be
altered at any time. The system automatically recognizes when a selection
needs to be updated, if for instance, some of the conditions responsible for
previous selection have been altered. In this case, the system recognizes the
changing automatically and gives a warning of the eventual incompatible layout
implementation.

• Flo or planing
This is the process of placing the different components of the circuit relative to
each other. The information about the mask geometry of a component or how to
place it on a circuit is laid down in 'objects'. The skeleton cell data structure is
responsible for collecting this information. The floorplaning process is an inter
active process. In each case, the system checks user input data on compatability
with its own stored-in knowledge. If the user requests an action resulting in an
illegal state, the system will reject the action. In any case additional knowledge
may be added at each time to improve the system. The floorplaning process is
an initial step, to guide the following steps during layout phase.

• Placement and routing of components
In contrast to digital placement considerations factors as heat feedback, match
ing, wire impedance, etc. play an important role during the placing and routing
process of components. It is very difficult to decide which effects are more im
portant or not in a certain design. The relative importance given above varies
from one design to the next.
In our design system we distinguish between wires and components, connected
by wires. Wires, as opposed to circuit components, are generated by the sys
tem on demand by the user. On user prompt, connected components on the
schematic view are connected in the layout view. The connection process is
automatic, but the user may influence it. Control of the routing process may be

34

direct, indirect or both . Direct control means the user makes suggestions to or
places constraints on the routing pa th . Indirect control means the user places
constraints on the types of signals and /o r components which the wire may he
parallel or cross. Constraints may be further inherited from the schematic.

The rout ing process entails analysis software which on-line calculates charac
teristics of the wire being produced. For each wire, for example, a function is
called which calculates its resistance. Such parasit ic values are available at any
t ime to the user and may be included in the netlist for use in simulations.

The placement and routing process is mechanized via the Skeleton da ta struc
tures . Design rule correct layout in any case is guaranteed, as are layouts which
are one-to-one mappings of the schematic. So, no design rule checker or electri
cal rule checker is necessary.
Even if knowledge about the addit ional effects in analog integrated circuits like
matching as mentioned above is not stored-in in the system, the circuit will work
correctly in a conventional sense, a valuable feature in any design tool.

• M o v i n g p l a c e d c o m p o n e n t s
Components which have been placed and then routed, will often need to be
moved. The system provides a feature, where the user is relieved from discon
necting connected wires and recalculating parasitics. This is done automatically.

• Initializations:

1. schematic
2. transistor width, length

3. gate, source and drain pins, junctions and

4. DRC informations like overlaps.

• Generation of graphic object primitives like rectangles etc.

1. gate area (polysilicon)

2. drain area (n diffusion)
3. source area (n diffusion)

• Generate active area (conjunction of poly and 'diffusion' area)

• Generate the layout ports

Fig.5 Structure of a NMOS Transistor Generator

295

2.2.3 Library
As pointed out in the sections above, a lot of information about the design process
must be stored within the system. Not only technology information like design rules
must be available for the system, but a lot of knowledge how to fullnll the demands
on the circuit must be present for the system. So, we have to distinguish between
at least two types of technology information within the library: the first one, direct
dependent on the process to avoid fabrication errors and the second one special in
formation on how to get the wanted result regarding mismatching, heat effects or
for example other parasitic effects like crosstalking, noise etc. The information set is
directly changeable by the user. The first set may be exchanged more often whereas
the rule set of the second type possibly only will be supplemented by new rules.
The cell generators are integrated part of the library. They are stored in a very
effective way in order to guarantee fast access time and a high degree of flexibility to
the cells. This is achieved by using COMMON LISP structures.
To have access to simulation results of prior simulation runs during a design pro
cess, waveforms of for example node voltages are stored within the library ,too. Of
course, to get simulation output, input information, i.e. control information for the
simulation run must be available. It is input through the UI and important data as
for examples node presets are stored in the library. Cells are stored in the library in
a coded form (cell generators). So, to input already existing cells into the library, a
program will be available to convert the typical circuit description of a cell (netlist,
possibly extended) into the cell generator format. To avoid storing a cell twice, a
structure detecting system will be built in.
Another very important role of the library is the connection of this system for the
design of analog cells into the CVS system. This is accomplished by another interface
to prepare this information for the official CVS data base for integrated circuits.

S I G K U
ID

F i g . 6 : SC phase conparator

> O U T

296

2.3 Simulators and Optimizer

Integrated circuit design without verifying the results is not reasonable. So, electrical
simulators are integrated in the system. The best known one is SPICE. It is usable
to check many properties of a circuit like the transient or frequency behavior or to
regard noise considerations of a circuit. But there are also some difficulties. If the cir
cuit becomes larger, i.e. more than some tens of transistors, the simulation will take
a lot of CPU time. By this reason, some effort is spent to develop a feature to save
computing time. This is reached by the introduction of macromodels. Macromodels
are well situated to model the behavior of a much more complex circuit by replacing
components or groups of components by for example simple controlled sources and
impedances. By doing that, simulation time goes down significantly without loosing
accuracy. It must, however be mentioned, that no new macromodels are developed.
Instead, already existing ones are suggested to be used dependent on their special
properties to model the behavior of a certain circuit.
The second integrated simulator is BONSAI. It has similar properties as SPICE. The
advantage of BONSAI over SPICE is the close connection to an existing experienced
and well working CMOS process line.

The simulators mentioned above, are best suited for simulation of smaller elec
trical circuits, consisting of only some tens of (nonlinear) components. DOSCA, a
simulator for switched-capacitor circuits reduces this problem for part. By parti
tioning the whole complex circuit into parts activated by phase signals at certain
determinated timepoints (see fig. 6), a breakdown into different independant subcir-
cuits is possible.
By this kind of partitioning simulation of even larger circuits is feasable. Additional
to these possibilities DOSCA is extended to handle nonlinear SC-networks, too. That
means, simulation of e.g. AD-Converters and PLLs is possible.
The ECONOMIC optimizer is another very useful tool to be enhanced within this
project. Proper values of designable parameters, such as supply voltages and stripe
widths, must be determined to fulfill the requirements of the circuit characteristics.
The approach is based on a boundary curve used as an assessment criterion to visu
alize problem diagnosis and to control the interactive optimization process.
This program will be used, if a cell in the library meets the requested demands for
part and there has been left a variable part within the cell for optimization purposes.

3 Conclusion

In the previous sections a system for analog integrated circuit design based on ar
tificial intelligence techniques has been presented. The method to come there is a
new one and allows the user to generate an analog integrated circuit starting from
scratch in a very efficient individual way. Already fixed unchangeable skeleton cells
are unknown within this system. They are active data structures, used to enable this
flexible design style.

297

Based on the knowledge stored within the system, the user is guided through the
whole design process. This is the reason, why also not very experienced peoples may
use the system to generate analog circuit of high quality and performance.
Only very few tools are needed for design support. These are very common electrical
simulators like SPICE, BONSAI and DOSCA. As has been pointed out, other tools
like DRC or ERC for example are not needed, checks on correctness of the produced
layout are performed implicitly by application of the system suggested design steps.
The complete design package is part of the CVS project. It will be integrated into
the whole CVS system through an interface from the library to the CVS data base.
Output of the analog design system will be an extended layout description (possibly
CIF) containing the outline, the ports to the world and the layout of the circuit itself.
The system will be available for both BIPOLAR and CMOS design. First versions of
all parts of the design package are running for BIPOLAR design, CMOS will follow.
With the integration of comfortable digital and analog design aids for integrated
circuits we will be able to realize hybrid circuits. The application area will be very
large. One example may be to move intelligence from a central processor to the front
end of a controlled system. Both, performance and reliability of the resulting system
will increase on a large scale.

Acknowledgement

The author is pleased to acknowledge the valuable discussions with I. Rugen and D.
Hoppner, AEG; L. Moore, ANACAD; J. Biiddefeld, W. Brokherde and B. Hosticka,
FHG-IMS. W. Borutzky and B. Schwarz read the draft of this paper and gave valuable
comments. I also thank K. Wolcken for his encouragement to prepare this paper and
implementing this project.

298

References:

[1] T. J. Kowalski
An Artificial Intelligence Approach to
VLSI Design
Kluwer Academic Publishers , 1985

[2] G.L. Steele
Common Lisp, the Language
Digital Press, 1984

[3] Y. Tsividis, P. Antognetti
Design of HOS VLSI Circuits for Telecommunications
Prentice-Hall, Inc. , 1985

[4] K. Antreich, S. Huss
Ein interaktives Verfahren zur Optimierung integrierter
Schaltungen
Sonderdruck aus Electronics and Communication, Band 32,
1982

[5] E.E.E Hoefer, H. Nielinger
Spice, Analyseprogramm fuer elektronische Schaltungen,
Benutzerhandbuch mit Beispielen
Springer Verlag , 1985

[6] Alan B.Grebene
Bipolar and MOS Analog Integrated Circuit Design
John Wiley & Sons, 1984

[7] P.R. Gray;D.A. Hodges; R.W. Broderson
Analog MOS Integrated Circuits
IEEE Press, 1980

[8] Multiple Storage Quad Trees: A Simpler Faster
Alternative to Bisector List Quad Trees
IEEE Transactions on Computer-Aided-Design
Vol. CAD-5, No. 3, July 1986

[9] Second Half Year Report, EEC CVS Project, No. 802,
Work package 3, 1987

299

Project No. 962

Three-Dimensional Algor i thms for a Robus t and Efficient
Semiconductor Simulator wi th P a r a m e t e r Ex t rac t ion

Giorgio Ba.cca.rani

Dipartimento di Elettronica, Universita di Bologna
viale Risorgimento, 2 - 40136 Bologna, Italy

Abs t rac t

Li this paper we describe the aims, the structure and the achievements of the ESPRIT
project no. 962E-17 entitled: "Three-Dimensional Algorithms for a Robust and Efficient
Semiconductor Simulator with Parameter Extraction". The project started in April 1986,
and is therefore at an early stage of development. Yet, very promising results have al
ready been achieved in several areas of numerical device simulation, including discretization
schemes, mesh generation, and solution procedures. The excellent European expertise in
this Geld promises to rapidly £11 the gap with USA and Japan.

1. In t roduc t ion

Numerical simulation of semiconductor devices in two dimensions is nowadays a well-esta
blished technique for the design of advanced electronic components and processes. As device
miniaturization progresses toward submicron feature sizes, however, three-dimensional ef
fects are getting more and more important even for nominally-standard planar devices, thus
making.two-dimensional simulation codes inadequate for device-performance prediction. In
addition, increasingly complex device geometries are being devised, such as the buried-
electrode dynamic RAM cell, presently being used in high-capacity memory devices, the
floating-gate EPROM cell, and the I2L NOR gate, which are inherently three dimensional.
All the above devices can only be simulated by means of three-dimensional device-analysis
programs.

This project aims at the investigation of suitable algorithms for the analysis of semiconductor
devices in three dimensions, and at the development of a project code implementing the
most efficient of those algorithms. Most of the activity reported so far in this field has been
performed in Japan: Hitachi [l], NTT [2], Oki [3], and Toshiba [4] have all developed their
own three-dimensional simulators. Also, a 3-D version of the IBM's code FIELDAY has
been reported [5]. It is therefore appropriate that a joint European effort be focused on
the solution of the challenging technical problems associated with the development of a 3-D
simulation code with unprecedented flexibility and performance.

The project code to be developed in this context is expected to handle complex device ge
ometries, thus requiring the use of non-standard elements such as isoparametric "bricks",
tetrahedra or triangular based prisms; it will allow for sophisticated physical models ac
counting for the most important physical mechanisms affecting device behaviour, and will
be able to perform steady-state, small-signal and transient analyses.

From the numerical standpoint, one of the most important differences between two- and
three-dimensional device-analysis programs stems from the massively larger number of mesh
points necessary for an adequate description of a 3-D structure. Due to the inherent non-
linearity of the semiconductor equations, this will require repeated solution of extremely-

300

large systems of linear equations (some 20,000 or more) which dictates the use of entirely
new, parallel algorithms to be run on suitable machines. Also, automatic generation of 3-D
meshes conforming to complex device geometries is going to be an extremely challenging
task, requiring a great deal of effort.

In the next section, the structure of the project is briefly summarized. Sections 3-7 discuss
the current status of the activities for each workpackage of the project. In section 8 some
preliminary steady-state simulations of a non-planar 3-D MOSFET will be shown, illustrat
ing new results on a classical 3-D problem: the narrow-channel effect. Finally, conclusions
are drawn in section 9.

2. Structure of the project

The partners participating in this project are listed below:

• Rutherford Appleton Laboratory (UK)
• General Electric Co. (UK)
• Philips (The Netherlands)
• SGS Microelettronica (Italy)
• Analog Devices (Ireland)
• IMEC (Belgium)
• Trinity College Dublin (Ireland)
• University College Swansea (UK)
• NMRC (Ireland)
• University of Bologna (Italy)

As can be seen, the list comprises four industrial partners, three large research laboratories
and three universities. RAL is acting as a prime contractor of the project. The allocation
of manpawer over the 4-year project among the various partners is shown in table I.

RAL (UK)
GEC (UK)
Philips (The Netherlands)
SGS (Italy)
ADBV (Ireland)
IMEC (Belgium)
TCD (Ireland)
UCS (UK)
NMRC (Ireland)
UBO (Italy)

16 Man Years
14 Man Years
16 Man Years
8 Man Years
4 Man Years
4 Man Years

12 Man Years
12 Man Years
4 Man Years
8 Man Years

Table I - Allocation of manpower

Five main areas of activity have been identified and, correspondingly, the project has been
subdivided in five work packages, namely

• Physical models and validation
• Discrete problem formulation
• Mesh generation and refinement
• Solution procedures
• Project code

301

In what follows, we provide a general description of the aims and preliminary achievements
for each of the above workpackages.

3 . Physical models and validation

The first workpackage, "physical models and validation" is intended to investigate phys
ical models for numerical simulators, analytical MOSFET models for circuit simulation,
and parameter extraction techniques. Test-structure fabrication and measurements and
software validation represent additional major topics of this activity. To date, the activ
ity carried out in this context includes measurements of the multiplication factors at low
electric field in bipolar transistors and comparisons among presently-available 2-D device
simulators (IMEC), development of MOSFET capacitance models and capacitance measure
ments techniques (NMRC), investigations of the link betweeen process, device and circuit
simulators (ADBV) and research on worst-case prediction of MOSFET parameters from
sensitivity-analysis techniques (SGS).

4. Discretization techniques

Much work is presently being done in the field of discretization techniques, and different
schemes are being pursued in order to assess, at a later stage of the project, the most
successful ones. Preliminarly, a 3-D Poisson solver has been developed by different partners,
and the following results have been achieved:

• A 3-D solver using isoparametric "brick" elements has been constructed and tested at
Philips. It uses trilinear finite element discretization, ICCG to solve the linear equations,
a detailed line search technique to solve the non-linear equations and can cope with large
problems (20-40,000 unknowns) by suitable memory-management techniques. Degen
erate bricks, i.e. bricks where corner nodes coincide have been accommodated using a
Gauss quadrature rule, thus allowing flexible geometries to be described.

• A 3-D Poisson solver using tetrahedral elements has been constructed at GEC. Simple
tetrahedral meshes have been obtained using division of finite difference meshes, and
the combination of linear solver (ICCG) and non-linear line search techniques have been
successfully checked on meshes of up to 10,000 nodes. The calculation of nodal volumes
for charge lumping and pipe width for the Scharfetter-Gummel approximation has been
sucessfully tackled for general tetrahedra. The present limitation is related to the lack
of a suitable mesh generator.

• A finite-difference Poisson solver has been constructed at TCD, which has been tested
on problems up to 10,000 nodes. ICCG is used to solve the equations, and machine
virtual memory is used to accommodate the problem size. More recently, this has been
extended to the on-state problem.

• A finite difference Poisson solver has been constructed at UCS and tested on problems up
to 1,000 nodes. Lumped charge, a direct solver, and a non linear line search technique
are currently being used. The limitation is currently placed by availability of mesh
generation, and the expansion to larger problems will require a change to an indirect
solver (ICCG).

• A 3-D solver using triangular prisms has been succesfully constructed at the University
of Bologna. It combines Poisson solution and one carrier (electron) continuity equa
tion, which makes it suitable for a nearly exhaustive simulation of unipolar devices.
The problem size is currently limited to a few thousand nodes as a direct solver is
used for the linear equations. The line search method by Bank and Rose [6] is suc
cessfully employed by the Poisson solver, and a convergence acceleration algorithm first
suggested by Anderson [7] has been implemented to speed up the convergence rate of

302

the employed decoupled scheme. Current developments include a change of the linear
solution technique.

Quite a bit of effort has been devoted by Philips to the extension of the Sharfetter-Gummel
[8] discretization scheme to quadrilateral elements in two dimensions. Boxes are constructed
using the centroides of the elements and the midpoint of the element faces and edges. An
expression for the distribution of the current density in the element has been obtained,
and the tangential component along mesh edges matches the one-dimensional Scharfetter-
Gummel formula. This approach is going to be extended to the third dimension in the near
future.

A final remark is in order at this point to better clarify how the development of different
Poisson solvers will contribute to the design and implementation of the final code. Due to
the lack of previous experience in 3-D simulation, several options had to be explored before
taking final choices: type of elements, discretization schemes, linear solvers, etc. It was felt
that this kind of activity could be suitably subdivided among the partners according to their
own specific interests, and that creativity had to be encouraged rather than suppressed at
this stage of the project. This preliminary work is therefore of the utmost importance to
assess the relative advantages and disadvantages of the various numerical techniques, and
will help selecting the most appropriate ones for the final 3-D code.

5. Mesh generat ion and refinement

Four major areas of activity have been identified:

• Production of tetrahedral meshes by the generalization of the 2-D Delaunay method;
• Generation of prismatic meshes by extending the capability of existing two-dimensional

triangular generators into three dimensions;
• Mesh generation and refinement using hexahedral elements;
• Use of multigrid techniques in device simulation.

There are several methods of generalizing Delauney mesh generation to 3-D problems. The
following techniques have been considered

a) Generation using an underlying hexahedral mesh;
b) Generation using only a boundary description of the domain;
c) Generation using the convex hull of a transformed coordinate space.

Approach (a) is of course the simplest, but it does not allow for the exploitation of the
potential generality of tetrahedral elements. Experience to date with tetrahedral mesh
generation indicates that there are a number of additional logical problems present in three
dimensional generation which are not found in two dimensions. These are in the areas of
element degeneracy and topology swapping to form Delauney tetrahedra.

Two partners (UCS and UB) have generalized existing two-dimensional mesh generators
by projecting two-dimensional slices through the device, and by merging the projections.
This technique leads naturally to the use of prismatic elements in the discretization. These
extensions are based on the two-dimensional generators GENTIP (UCS) and ATMOS (UB).
Considerable success has already been achieved with this type of mesh generation. Figure 1
shows a typical 3-D MOSFET mesh generated at the University of Bologna. As can be seen
from the figure, the use of prismatic elements does not prevent the user from handling non-
planar structures, although geometrical non-uniformities in the third dimension can only be
taken care of by a step-like boundary.

Work in the area of hexahedral mesh generation is currently being pursued at Philips, where

303

the use of quadrilateral meshes in 2-D has long been advocated.

6. Solution procedures

This workpackage aims at providing robust and efficient algorithms for the solution of the
3-D semiconductor equations. It is subdivided in the following tasks

a) Linear solvers;
b) Non-linear solvers;
c) Transient solvers.

Concerning point (a) above, two basic methods can be used for the solution of the linear
system, namely, i) direct methods and, ii) preconditioned iterative methods. The choice af
an appropriate method is essential to ensure numerical efficiency of the code, as most of the
required CPU time is spent for the repeated solution of the linear system. Depending upon
the properties of the coefficient matrix, different solution methods must be selected. For
the Poisson problem, the resulting coefficient matrix is symmetric and positive definite. In
this case, it is generally accepted that the conjugate gradients method, combined with an
incomplete Choleski factorization (ICCG), is more efficient than direct methods, at least for
a large number of equations.

For the linear system occurring during the solution of the full set of equations, no definite
conclusion can be drawn. In this case the involved matrices are not symmetric, and the ICCG
method is ruled out. Therefore, either L-U decomposition or a variant of the CG method,
the so-called "Conjugate gradients squared" (CGS) method, has to be used in connection
with an incomplete block preconditioning [9]. In the latter case, however, the precondition
ing depends heavily on the regular structure of the matrix, which cannot be ensured with
tetrahedral and triangular-based prismatic elements, or when adaptive refinement of the
mesh is performed during computation.

For the solution of the linear system, a speed-performance advantage can be achieved using
vector processors and/or parallel architectures. Consequently, suitably parallel algorithms
will have to be developed, even though the portability of the code will be severely restricted.
It is felt that some of the most innovative results of this project are to be expected in this
area, which is far less explored than others highlighted in the previous sections.

7. Specifications of the project code

The design and implementation of a 3-D project code is perhaps the most challenging task
of this project, as it involves a cooperative effort from several partners and a clear definition
of suitable interfaces between input preprocessor, mesh generator, numerical solver, and
output-graphics facilities. In order to comply with the above requirements, the use of a
suitable data-base management system is in order.

The input preprocessor is intended to provide a complete description of the geometrical and
physical structure to be simulated, a definition of the physical parameters pertaining to the
various device regions, and the required commands for the solver, including bias points for
DC and AC solutions and applied waveforms for transient analyses.

The mesh generator ought to be, as far as possible, automatic, in order to relieve the
user from the need of an interactive refinement, which requires a great deal of physical
understanding of the device behaviour.

The main properties of the numerical solver are listed below

304

• Geometrical flexibility, to make it suitable for any kind of devices (MOSFET's, bipolar
and power devices);

• Availability of relevant physical models, such as SRH and Auger recombination, band-
gap narrowing, impact ionization, etc.;

• Availability of a number of boundary conditions to allow for ideal and resistive ohmic
contacts, Schottky-barrier junctions, gates and floating gates;

• Availability of DC, AC and transient analyses;
• Availability of voltage, current and mixed boundary conditions on both ohmic and

Schottky contacts;
• Adaptive-mesh refinement capability.

Finally, sophisticated graphic tools intended to visualize several output data, including un
known functions in a 3-D domain, perspective contour surfaces, 3-D plots on arbitrary device
cross sections etc. must be provided. Here again the need of standardization requires that
some graphic system, such as GKS, be selected as a common graphics standard throughout
the project.

8. M O S F E T simulation in three dimensions

As a first example, a classical 3-D problem, namely the narrow-channel effect in MOSFET's
has been tackled at the University of Bologna using a newly-developed 3-D code called
HFIELDS-3D [10]. The discretization mesh is shown in figure 1. The simulated MOSFET
has a channel length L = 1/zm and a nominal channel width W = 1.2 fim. Due to the
symmetry of the structure, only half device is actually considered. In the front plane, where
we accommodate the triangular bases of the prisms, we take advantage of the flexibility of
the mesh which can conform to the "bird's beak" at the transition between the channel and
the field region. Current flow occurs mainly in the third dimension, i.e. normal to the front
plane.

Figure 2 shows a perspective plot of the electric potential in equilibrium in the plane at
the thick-oxide silicon interface. The two upper "plateau" represent the source and drain
regions, separated by a well in the channel region. Figure 3 shows instead a plot of the electric
potential in the plane at the gate-oxide silicon interface. As this plane enters the thick-oxide
region, we notice a ridge at the periphery of the channel and an increased potential in
the field-oxide, due to the different relationship between the surface potential and the gate
voltage.

The fringing effect due to the field-oxide penetrates deep in the channel region when the
device is biased in subthreshold. Consequently, we notice a smaller current in the 3-D
structure than we have in a corresponding 2-D MOSFET with the same nominal channel
width. On the other hand, if we define an effective channel width by fitting the 3-D current
in subthreshold, we end up with a smaller 2-D current in strong inversion. This effect is
demonstrated in figure 4, where we compare the 2-D and the 3-D turn-on characteristics at
VDS = 0.1 V, having adjusted the effective channel width of the 2-D device. Figure 5 shows
the corresponding turn-on characteristics with VDS = 3.0 V. The increased drain voltage
tends to enhance the penetration of the field lines in the channel region, thereby reducing
the drain current in subthreshold even further.

From the above considerations it turns out that the fringing field which is responsible for
the so called "narrow-channel" effect, is a rather complex function of the gate and drain
voltage, as well as of the substrate voltage, and cannot be simply described in terms of a
threshold shift. The use of a 3-D simulation code can therefore be of some help in gaining a
better understanding of this effect, and it can represent a valuable alternative for predicting

305

the electrical characteristics of narrow-channel MOSFET's.

9. Conclusions

In this project the problem of investigating the most efficient algorithms for 3-D simulation
of semiconductor devices has been tackled. A number of discretization schemes is being
pursued by various partners, and the obtained results will soon be compared in order to
identify the most successful ones to be incorporated in the project code. Results achieved
after a one-year work are very encouraging, as a preliminary version of a general-purpose
3-D code using triangular-based prismatic elements has already been demonstrated, and a
Poisson solver based on tetrahedral elements has been successfully constructed. Triangular
prisms and tetrahedra are at the present time the most promising elements to be considered
for future developments. From the standpoint of geometrical flexibility, the latter should
be preferred. However, the problem of appropriately defining the control volumes to be
associated with each node in the general case of a tetrahedral mesh is at the present time
largely unexplored aud, in the author's view, the solution of this problem will be the key to
the success of the method.

Much work remains to be done in several areas in order to produce a complete simulation
system to be used as a design tool in an engineering environment: among these, a user-
oriented input preprocessor, a reliable and flexible tetrahedral-element mesh generator and a
powerful graphics system for the visualization of the output data. Also, from the algorithmic
standpoint, work must be done in order to improve the efficiency of the linear solver to be
used when the coefficient matrix is non-reciprocal, as it happens to be when a coupled
solution scheme of the basic equations is used. Recent results obtained at Philips with the
CGS method combined with an incomplete L-U preconditioning appear to be very promising,
while not being tied to a regular matrix pattern.

In any case, 3-D simulation is going to be far more expensive than 2-D simulation, owing
to the extremely large number of mesh points required for a detailed description of a 3-D
semiconductor device. Consequently, parallel algorithms will have to be developed in order
to reduce the computation time below acceptable limits. It is felt that the most innovative
results, as far as efficiency is concerned, will probably come from this area of activity,
as a major breakthrough is unlikely to emerge from new studies in the field of numerical
techniques.

Acknowledgements

The author is indebted to A. Bryden (RAL) and P. Mole (GEC), who provided informative
material on the current status of the activities within the project. Figures 1-5 are the result
of a cooperative work carried out at the University of Bologna.. Finally, financial support
from the European Community is gratefully acknowledged.

References

1. T. Toyabe, H. Masuda, Y. Aoki, H. Shukuri and T. Hagiwara: "Three-dimension
al device simulator CADDETH with highly convergent matrix solution algorithms",
IEEE Trans, on Electron Devices, vol. ED-32, pp. 2038-2043, 1985.

2. K. Yokoyama, M. Tomizawa, A. Yoshii and T. Sudo: "Semiconductor Device Simulation
at NTT", IEEE Trans, on Electron Devices, vol. ED-32, pp. 2008-2017, 1985.

3. Y. Namba, J. Ueda, T. Miyoshi and S. Ushio: "Two/Three Dimensional Device Simu
lator", from Simulation of Semiconductor Devices and Processes, Eds.: K. Board and
D. R. J. Owen, Pineridge Press, Swansea, 1986.

306

4. N. Shigyo and R. Dang: "Three-Dimensional Device Simulation Using a Mixed Pro
cess/Device Simulator", from Process and Device Modeling, Ed.: W. L. Engl, North
Holland, 1986.

5. E. M. Buturla, P. E. Cottrell, B. M. Grossman, C. T. McMullen and K. A. Salsburg:
"Three-Dimensional Transient Finite-Element Analysis of the Semiconductor Transport
Equations", from Numerical Analysis of Semiconductor Devices, Proc. of the NASEC-
ODE II Conference, pp. 160-165, Boole Press, Dublin, 1981.

6. R. E. Bank and D. J. Rose: "Parameter Selection for Newton-Like Methods Applicable
to Nonlinear Partial Differential Equations", SIAM Journal of Numerical Analysis, vol.
17, pp. 806-822, 1980.

7. D. G. Anderson: "Iterative Procedure for Nonlinear Integral Equations", A.C.M. Jour
nal, vol. 12, pp. 547-560, 1965.

8. D. L. Sharfetter and H. K. Gummel: "Large-Signal Analysis of a Silicon Read Diode
Oscillator", IEEE trans, on Electron Devices, vol. ED-16, pp. 64-77, 1969.

9. J. Meijerink: "Iterative Methods for the Solution of the Linear Equations Based on
Incomplete Factorization of the Matrix", Publ. 643, Shell, Rijswijk, The Netherlands,
1983.

10. P. Ciampolini, A. Gnudi, R. Guerrieri, M. Rudan and G. Baccarani: "Three-Dimen-
sional Simulation of a Narrow-Width MOSFET", to be presented at the ESSDERC-87,
Bologna, Sept. 14-17, 1987.

307

Gat« cooUct

Iniulttor —

Balk contact

Source conUct

Drain contact

Semiconductor

Fig. 1: Prismatic-clement 3-D mesh of the simnlated MOSFET.

U.,kl[«f.
wvh>|u>|

Widll |ua|

Fif. 2: Perspective plot of the electric potential
in the plane at the Seld-oxide silicon interface.

Fig. 3: Perspective plot of the electric potential
in the plane at the gate-oxide silicon interface.

<. l.E-06.

£ l.E-08.
9
a l.E-10.
'3
O l.E-12.

l.E-14.

l.E-16

/ ^
/ 3D

/ 2D
/

/
/ Vds = 0.1 v

0.0 0.4 0.8

Gate voltage [v]

1.2

<. l.E-06.

£ l.E-08.

o l.E-10.
•a 1
° l.E-12.

l.E-14.

l.E-16

1 - '

// 3D
'// 2D

Vd« = 3.0 v

0.0 0.4 0.8

Gate voltage [v]

1.2

Fig. 4: MOSFET tnrn-on characteristics according
to the 2-D and 3-D simulation codes.
The drain voltage is VDS = 0.1 V.

Fig. 5: MOSFET tnrn-on characteristics according
to the 2-D and 3-D simulation codes.
The drain voltage is VDS = 3.0 V.

II. SOFTWARE TECHNOLOGY

Parallel Sessions

1. Environments 311

2. Advanced Environments 361

3. Metrication and Management 415

4. Formal Methods 451

311

P r o j e c t No. 937

SPECIFYING MESSAGE PASSING AND REAL-TIME SYSTEMS
WITH REAL-TIME TEMPORAL LOGIC

Ron Koymxms & Ruurd Kuiper

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Erik Zijlstra

Foxboro
Koningsweg 30, 3762 EC Soest, The Netherlands

Abstract

Temporal logic is a simple extension of classical logic with temporal
operators. When a computation is seen as a sequence of states changing
over time, one can reason about such sequences with temporal logic: the
classical part describes the static aspect, the states, and the temporal opera
tors describe the dynamic aspect, the relation (in time) between states.

Temporal logic has proved to be a most versatile tool for the
specification and verification of concurrent systems. It has been applied to
a wide variety of systems, such as concurrent programs, communication
protocols, hardware, VLSI etcetera.

Nevertheless, temporal logic is not suited on beforehand for the
specification of two important classes of systems: message passing and
real-time systems. We introduce an assumption that enables the descrip
tion of message passing systems and develop an extension of standard tem
poral logic, called real-time temporal logic, for describing real-time sys
tems. We illustrate the resulting formalism by three examples.

This work was carried out as part of ESPRIT project 937:
Debugging and Specification of Ada Real-Time Embedded Systems (DESCARTES).

312

1. INTRODUCTION

Temporal logic is a simple and elegant extension of classical logic (preposi
tional and predicate logic) with temporal operators for reasoning about situa
tions changing in time. The underlying semantics of temporal logic makes a
clear distinction between the static aspect of a situation, represented by a state,
and the dynamic aspect, the relation (in time) between states. This distinction
is reflected in the syntax: a state is described by classical logic, while the tem
poral operators are used for the description of the evolution of the situation
over time. In this way states and time need not be introduced explicitly in the
logic itself.

This picture of states and their relation in time fits well with the notion of
computation as used in computer science. A computation can be seen as a
sequence of states where each transition from one state to the next state in the.
sequence (each step of the computation) can be thought of as a tick of some
computation clock. The corresponding time model is in that case the set of
natural numbers. Temporal logic with the natural numbers as time domain is
a variant of linear time temporal logic. This variant is especially suited for the
description of computer systems which are then seen as generators of execution
sequences.

Since the introduction of (linear time) temporal logic in the area of pro
gram verification ([PI]), it has proved to be a most versatile tool for the
specification and verification of concurrent systems. In that context it can,
amongst others, be used for

reasoning about safety properties (e.g. partial correctness, mutual exclu
sion) and liveness properties (e.g. total correctness, fairness),
describing systems at any level of abstraction,
compositional reasoning: the specification of the whole system is a func
tion of the specifications of its subcomponents.

Consequently, temporal logic has numerous applications in computer sci
ence. It has been successfully applied as a specification and verification method
for concurrent programs, communication protocols, VLSI, hardware etcetera. It
can furthermore be used to give axiomatic definitions of concurrent program
ming languages and some temporal logics even have been made executable
(thereby unifying programs and specifications). More information, including
further references, can be found in overview papers by Lamport ([Ll]) and
Pnueli ([P2]).

Nevertheless, temporal logic is not suited on beforehand for the
specification of two important classes of systems: message passing and real
time systems. The importance of these two classes is stressed by their mani
fold appearances in practice:

message passing is one of the most important means of interprocess com
munication in distributed systems, either on a high level (e.g. in telecom
munication applications where programming could be done in a high-
level concurrent language with asynchronous message passing such as

313

CHILL [CHILL]) or on a lower level (such as in implementations of syn
chronous languages for distributed computing like Ada [Ada]),
among the many realtime applications (e.g. online reservation systems)
there are some highly critical systems such as computer controlled chem
ical plants and nuclear power stations.

Because message passing systems are so widely used and the dangers of mal
functioning realtime systems affect most of us (think e.g. of flight control
software for civil airplanes), it is of vital importance to develop formal tech
niques for reasoning about them. For message passing this development has
been actively going on for several years. For realtime, however, the situation
is alarming: theoretical research has almost completely ignored realtime
aspects.

In this paper we introduce an assumption that enables the description of
message passing systems and give an extension of standard temporal logic,
called realtime temporal logic, for the description of realtime systems. We
illustrate the resulting formalism by three examples: a classification of pure
message passing systems, a pure realtime system and a mixture of both.

This paper is structured as follows. In section 2 we give a short summary
of prepositional temporal logic. Section 3 contains a description of message
passing and realtime systems. Realtime temporal logic is introduced in sec
tion 4. Section 5 contains the three examples mentioned above.

2. PROPOSTTIONAL TEMPORAL LOGIC

We first define the syntax of PTL, Prepositional (Linear Time) Temporal Logic.

Let / be a nonempty set.
PTL uses a prepositional language with

Vocabulary: atomic propositions P,(i €l)
prepositional connectives ■, A
temporal operators X , U, Y, S

Formulas: Pt (i 6 /)
V i. / i A / 2. Xf „ / , Uf 2, Yf1,f1S/2(/1,f2 formulas).

The operators X, U , Y, S are called respectively 'nexttime', 'until', 'lasttime'
and 'since'.

The semantics of PTL is as follows. A state is a mapping from / to
{True, False} : a state indicates which atomic propositions are true in that
state. A model is an infinite sequence of states. An interpretation is a pair
<M,n> where M is a model and n a natural number (representing the
present). Truth of a formula / in an interpretation < M, n > , notation
M, n r= / , is inductively defined by:

314

M,n\=Pi
M,n\=->f
W > B | = / i A / 2

M,n\=Xf
M,n\=f 1U/2

M ,n\=Yf
M,n\=/1S/2

Mn(i) = True
not M ,n\=f
M ,n\=f j and M , n (= / 2

there exists m^- n such that M,m\= f 2 and
for all y such that n^ j <m: M , j\= f x

n > 0 and M, n 1 (= /
there exists m^n such that M, m^= / 2 and
for all y such that m < y " ^ r e : M, j\=f v

From the four temporal operators above many other temporal operators
can be derived. Two very important temporal operators are F ('eventually')
and its dual G ('henceforth') These can be defined by

Ff := true Uf where true = > (/>, A >/*,) for some i el,
Gf :=^F ■* f .

As an example of the use of these operators we mention the combination GF...
which corresponds intuitively with 'infinitely often'. This combination is often
used for the expression of fairness properties.

3. MESSAGE PASSING AND REAL-TIME SYSTEMS

Let Messages be a nonempty set of messages. A schematic picture of a
message passing system could be

in (m) , .out (m)
>l MPS h > MPS = Message Passing System

where m £ Messages and
in (m) corresponds to the acceptance (from the environment) of message m

by the MPS, and
out (m) corresponds to the delivery (to the environment) of message m by the

MPS.

The MPS can be a simple buffer or transmission medium but also a complex
communication network, in (m) and out (m) constitute the interface with the
environment and out {m) is considered to be the system reaction on the
environment action in (m). Of course, the above picture should be supple

mented by restrictions on the functions in and out, dependent on the particu

lar type of message passing system considered. For all types we take the fol

lowing restrictions as basic assumptions:

315

BA1. the acceptance and delivery of messages can be viewed as instantane
ous actions (in the sense that always a unique moment of time can be
identified at which a message can be said to be accepted, respectively
delivered), which are always possible,

BA2. at any moment of time, at most one message can be accepted (respec
tively delivered),

BA3. the MPS does not create messages by itself (in other words: the bag of
delivered messages is always some part of the bag of accepted mes
sages),

BA4. the speed of the MPS is finite, i.e. there is a positive (maybe infinite)
delay between the acceptance of a message and its delivery.

An example of a MPS often occurring in practice and satisfying BA1-BA4 is a
transmission medium with a probability between zero and one of a successful
transmission.

Besides the basic assumptions above, message passing systems can be dis
tinguished further by properties such as

- reliability properties
• perfect: all accepted messages are (eventually) delivered
• imperfect: messages may get lost

- ordering disciplines
• FIFO (like a queue)
• LIFO (like a stack)
• unordered (like a bag).

An example of an unordered MPS is a communication network in which every
message is sent on to an arbitrary node until it reaches the destination node.

It is difficult to list precise characteristics for real-time systems like we
gave above for message passing systems. However, time clearly does play a
dominant role. Three subjects we want to mention here are:

'promptness requirements', e.g. every time A occurs, B must follow
within 3 seconds
'periodicity properties', e.g. A occurs regularly with a period of 3 seconds
time models: some real-time systems control continuously changing phy
sical entities, such as volume and temperature; in such a case a discrete
time model (like the natural numbers) is questionable.

4. REAL-TIME TEMPORAL LOGIC (RTL)

It can be proved (see [K]) that many message passing systems can not be
specified with PTL (see section 2) or even its first-order extension. The essential

316

fact here is thai PTL can not distinguish the different instances of one and the
same message accepted by the MPS and hence can not trace back (in time) every
delivered message to its unique moment of acceptance. For real-time systems there
is a simpler reason why these can not be specified with standard temporal logic:
PTL has only qualitative temporal operators and hence is not capable to express
quanti tat ive measures of time. Furthermore, the semantics of PTL is based on a
discrete time model and, as noted at the end of the previous section, this compli
cates the description of specific applications in which continuous processes are
involved.

To solve the problems for message passing systems we assume that incoming
messages can be uniquely identified, e.g. by means of conceptual time stamps. This
makes the above mentioned tracing of delivered messages to their moments of
acceptance possible. The assumption of unique identification is not as restrictive
as it may seem on first sight. This assumption can be justified by the notion of
data-independence of [W]. Informally, a system is called data-independent when
the values of the supplied data do not influence the functional behaviour of the
system. One of the results of [W] implies that the correctness of a data-
independent system does not depend on the uniqueness of the incoming data.
Since message passing systems only pass data, they are clearly data-independent.
The problems for real-time systems lead to our motivation for RTL, Real-Time
Temporal Logic. RTL introduces quantitative temporal operators and its seman
tics allows dense time models also, like the rational and real numbers.

We now define RTL more formally. Consider a time domain T with a linear
order < (in particular we think of the natural and real numbers) . RTL uses a
first-order language with quantification oven

the data domain, e.g. Messages : Vm , 3 m ,
the time domain T : vr , 31 .

Note that quantification ranges over global variables only.
The temporal operators are U = t and S=t for all t 6 T.

The semantics of RTL is as follows. Let T. be the set of all states. A model is
a mapping from 7" to E. For an interpretation <M, t > , where M is a model
and t €T, the temporal operators are defined as follows:

M,t\=/1U = tof2 := M,t+t0\=f2 and
for all t' such that t<t'<t+t0: M,t'\=fx

M,t\=f , S = l . / 2 := M.t-t0\=f2 and
for all t' such that t— t0<t'<t: M,t'\=f v

In the above definitions it is assumed that t+t0 and t—10 exist in T. Whenever
this is not the case (e.g. t—t0<0 for the natural numbers as time domain) the
above formulas are false in <M ,t >.

Using these real-time operators again many derived operators can be defined
amongst which the original U and S of PTL from section 2:

/1Uf2 := f2 v (/ , A Bt (r > 0 A ftu=t / 2))

317

/ i S / 2 := / 2 V (/ ! A 3f (l > 0 A / , S = I / 2)) .
Apart from the operators F and G as defined at the end of section 2 we also use
an analogue of F that refers to the past instead of the future, but without includ

ing the present:
Pf := 3t (t>0 A t r u e S = £ /).

5. EXAMPLES

5.1 Message Passing Systems

Our first example concerns message passing systems. Under the assumption
of uniqueness of accepted messages, which can be translated as

G Vm ■ (in (m) A P in(m)) ,
we can formulate the basic assumptions BA1BA4 from section 3 as the following
set of axioms:

BA 2 G Vm Vm' [((in (m) A in (m)) v (out (m) A out (m'))) » m = m]
BA 3a,4 G vm [out (m)-> P in (m)]
BA 3b G s/m -• (out (m) A P out(m)) .

There is no need to specify BA1 because this is already fulfilled by the nature of
the formalization: in(m) and out(m) can be true or false at any moment. Notice
that we split BA3 (no creation of messages) into the following two cases:

BA3a no creation of altogether new messages,
BA3b no multiplication of messages already present.

Axiom BA 3a,4 does not cover requirement BA3b as is shown by the BA3billegal
behaviour

in (m) out (m) out (m)
1 1 1

which is allowed by this axiom. Therefore we need a separate axiom BA 3b.

Next we specify FIFO, respectively LIFO:

FIFO G vm Vm' [(out(m) A P out(m')) » P (in(m) A P in(m'))]
LIFO G Vm vm' [(out (m) A P out(m')) »

(P (in(m') A P in(mT) v P (out (m') A ->P in(m)))].

Both axioms are independent of the loss of messages, in other words of the per

fectness of the MPS. FIFO simply says: if m comes out after m', then m must
also have come in after rri . LIFO distinguishes two cases when m comes out after
m' :

318

1. m was put on the stack when m was already there
2. m was already taken from the stack before m was put on it.

Note that FIFO and LIFO become equivalent when it is additionally assumed that
the capacity of the message passing system to store messages is 1 (since in that
case the first disjunctive clause of LIFO, point 1 above, is impossible). It is easy to
check that the axiom for either FIFO or LIFO together with the assumption about
the uniqueness of incoming messages imply axiom BA 3b.

Intuitively, all the formalized properties above are safety properties. It is nice
to notice that all axioms above use only the temporal operators G and P and
hence are safety properties according to the syntactical characterization of tem
poral formulas into safety and liveness properties of [LPZ]. When we want to
formalize a typical liveness property such as being perfect the corresponding
axiom uses the liveness operator F:

G Vm [in (m) —» F out (m)].

Although the above specification is quite formal, we like to draw attention to
an alteration that enables a clearer distinction between the roles of component and
environment. The properties formulated in the axioms about message passing sys
tems constitute in fact requirements about both the MPS itself and its environ
ment. Consider, for example, BA3a,4 respectively uniqueness of messages. Also,
some of the properties are, at least in their formulation, interdependent. For
instance, nonduplication of messages by the MPS can only be formulated in the
manner of BA3b by virtue of the uniqueness of messages property of the environ
ment. Furthermore, the aim is in general to specify and construct a component,
rather than its environment. Although in the above description of message pass
ing systems it is fairly easy to see which responsibilities are intended to be
fulfilled by the component, this is not always the case. (Even in this simple
example a mischievous interpretation is allowed in which the MPS does nothing at
all, but where the environment miraculously sends messages on the out line as
well, in just the required manner.)

It pays therefore to give specifications in such a manner, that it is precisely
the component properties that are requested, described via the dependencies upon
environment properties. A formalism which allows to express the distinction
between component and environment activity is then necessary. We give an out
line of how this can be achieved, exemplified on the MPS treatment above. More
information about this approach can be found in, e.g. , [L2.BKP].

Firstly, we view specified behaviour as given in terms of a slightly extended inter
face. In the MPS example above we used predicates in (m) and out (m). We
extend this interface with the information of who is active: component or
environment (or both). We express this distinction by means of extra predicates
act (C) and act (E), denoting activity of component, respectively environment.

Secondly, to emphasize the component/environment distinction, we usually
describe the requirements about the component and its dependency on the

319

behaviour of arbitrary environments via an implication of the form: environment
properties —» component properties. Note, that although in most cases this
suffices, sometimes the dependencies are of a more intricate form than captured by
the implication. Then this restriction can be dropped but the idea of describing
the component in an arbitrary environment should be maintained: it is not
allowed to forbid certain environments, but components can be allowed to mis

behave in unsuitable environments.

The specification of the MPS example is then adapted as follows. We assume
a model in which at each moment environment, component or both are active.
This is expressed by

G (actiC) V act (£)) .

The MPS is then specified by:

If {the environment satisfies}

G vm -> (in (m) A P in (m))
{uniqueness of messages}

and
G Vm Vm' [(in (m) A in (m)) —► m — m]
{no simultaneous inputs}

and
G (out (m) » act (C))
{no output by environment}

then {the component satisfies}

G Vm Vm' [(out (m) A out (m)) —» m = m']
(no simultaneous outputs}

and
G vm [out (m) » P in (m)]
{no creation}

and
G vm i (out (m) A P out(m))
{no multiplication}

and
G (in(m) » act(E))
{no input by component}.

Note, that in an environment which does misbehave, e.g., inputs the same message
more than once, the component is allowed not only to output this message more
than once, but to show any aberrant behaviour. This is consistent with the idea
that when applied in an inappropriate environment, a component may fail.

320

5.2 Watchdog Timer

Our second example specifies a pure real-time system, a watchdog timer. A
processor is monitored by a timer, the watchdog. The processor sets the timer
with time-out period ! by a signal enable (t) and it should reset the timer by a
reset signal each time before the time-out period expires. When the processor does
not succeed in resetting the timer in time, the processor will be halted by a halt
signal from the watchdog. At any time, the processor and the watchdog timer can
be restarted by an initiate signal from the environment (e.g. an operator pushing a
button) . Once the timer is set with enable (t) after an initiate signal, the time-out
period remains t (and thus every subsequent enable (t') signal is ignored) until
the next initiate signal.

To identify the first enable (t) after an initiate we define

firstenable(t) = enable(t) A (^3t' enable(t'))S initiate.

The only essential thing to be specified is the generation of the halt signal. For the
moment ignoring the possibility of an interrupting initiate signal, this can be
characterized by

G(halt «—» 3t [t > 0 A -reset S=t

(firstenable(t) V
{reset A -^halX A -ihalt S firstenable(t)))]).

The explanation hereof is as follows. A halt signal may be generated if and only
if the timer just timed out with some period t, so during that period t no reset
signal occurred and at the start of that time-out period either the timer was set
(for the first time after an initiate) or the first reset signal (since the timer was
set) that is not followed by another reset within a period t occurred (to get the
first reset signal it is required that the processor has not already been halted since
the timer was set).

An interrupting initiate signal would restart the whole system and to incor
porate this we have to add that during the whole period of time concerned no ini
tiate signal occurs. This leads to the final and complete specification

Gihalt <-• 3 l [f > 0 A (-reset A -. initiate) S=t

((firstenable(t) A ->initiate) V (reset A ->halt A ->initiate A
(->halt A -iinitiate) S (firstenable(t) A -<initiate)))]).

5.3 Terminal Adaptor

Our third example is a mixture of message passing and real-time. It concerns
a simplified terminal adaptor. On one side bytes are received from a data link
operating on 512 bytes/second. On the other side bytes are transmitted to a ter
minal with a rate of 300 bytes/second. The adaptor has a buffering capacity of

321

JV J bytes and it prevents buffer overflow through sending stop and start signals to
the data link, as soon as the buffer becomes more than 80% full, respectively more
than 80% empty. It is assumed that after the sending of a stop signal at most N 2

bytes are sent by the data link, (of course N 2 should be less than one fifth of N {).
The data link may resume sending bytes only after it has received a start signal.

Let in (ft) denote the reception of byte ft from the data link, and out (ft) the
transmission of byte b to the terminal. Since the terminal adaptor operates as a
perfect FIFO message passing system (with additional real-time restrictions), we
assume uniqueness of incoming bytes

G vft -. (in (ft) A P in (ft))
and hence can use the axioms for message passing systems, in particular BA 2, BA
3a,4 , FIFO and perfect:

1. G vft vft' [((m(f t) A in(b')) v (out(b) A out (ft'))) — ft = ft']
2. G vft [out(b)-> P in(b)]
3. G v h v t . ' [(out (b) A P out (ft')) -» P (in (b) A P in (ft'))]
4. G vfe [m (f t) - » F out(b)]

As already remarked, requirement BA3b follows from the uniqueness of incoming
messages together with FIFO.

For the real-time part we need some more derived real-time operators:
F=tJ := true U = t J

/ i S > £ o / 2 := 3f (f > r 0
 A fiS=t / 2) .

Similarly one can define F <t etcetera. Furthermore we need a temporal operator
like P, but including the present:

Pf j = / v Pf .
Using P we can express that byte b is at the moment contained in the buffer of
the terminal adaptor:

buffered(b) = P m (ft) A -, P out (b).

Just to illustrate the specification method we assume that the reception from
the data link is regular, with period 1/512, while the transmission to the terminal
is irregular, but whenever a byte is available a transmission takes place within
1 /300. The latter can be specified by

5. G [(3 ft buffered(b)) -» F <1/30o 3 ft' out (V)].

The specification of the regularity at the other side is complicated by the presence
of the stop and start signals. But whenever these signals do not interfere in the
period of 1/512, the reception is regular. This can be specified by

322

6. G vft Kin (6) A ^ F <1/5l2 start A . / ?_ 1 / 5 1 2 ((. sTart) S stop)) -*
(3 6" in(b'))U=Usn 3 6' i n (6 ')] .

After the data link received the start signal, the sending of bytes can resume at
any time. But after a stop signal has been sent by the terminal adaptor, the send

ing of bytes remains regular, although at most N 2 bytes may be sent. This regu

larity is guaranteed by also demanding a 'backward periodicity' of the input since
the reception of the first byte after a start signal:

7. G v& [in(b)-> (((. 36' in(b')) S = 1 / 5 1 2 3 b' in (ft')) v
((. 3f in(b'))S start))].

The following axiom specifies that at most N 2 bytes may be received after a stop
signal:

8. G [(,(-• start) S>N2/512 stop)-* -< 3 b in(b)].

Finally, we have to specify the generation of the stop and start signals. For
simplicity we assume that N r is divisible by 5 and we define the following abbre

viations to indicate the situations where the buffer is more than 80% full, respec

tively more than 80% empty:

almostfidl=3bl---3b4 [, f=1 b^b-. A A bufferedib,)],

| " i 1 „
5 — N,
A

almost empty = > 3 b 1 ■ ■ • 3 b 1 [: j = 1bi^bj A A buffered(bi)].

Note that for each value of the constant N j these abbreviations can be written out
to fixed length formulas. What remains is to express that the stop and start sig

nals should be generated the first moment that the buffer becomes (again) almost
full, respectively almost empty. In general, the first moment that a formula /
becomes true after having been false before can be expressed for dense time
domains by the formula

/ A (/» / -► (- /) S /)
where S does not include the present:

/ , S / 2 := 3 r (r > 0 A / ^ ^ / 2) .
When one also wants to cover the case of discrete time models, the possibility of
/ being true the previous moment should be excluded. So, define the operator J
as

Jf ■■= f A (/>/ » (((. t r u e) S /) A (/) S /)) .

323

Using this operator our last two axioms are:

9. G [J almost full *—» stop]
10. G [J almost empty «—► start].

In fact, as can be seen from these last two axioms, the stop and start signals are
not essentially needed and hence the terminal adaptor can be specified in a more
abstract way only in terms of in and out. This can simply be done by substitut
ing the equivalences of axioms 9 and 10 at the appropriate places in axioms 6, 7
and 8.

Acknowledgements

We thank those present at the DESCARTES realtime paradigms meeting in
Eindhoven and the EUT group meeting in Mook for stimulating interaction.

324

References

[Ada] The programming language Ada. Reference manual,
Lecture Notes in Computer Science 155, Springer 1983.

[BKP] H.Barringer, R.Kuiper, A.Pnueli, Now You May Compose Temporal Logic
Specifications,
16th ACM Symposium on Theory of Computing, pp. 51-63, 1984.

[CHILL] CHILL Recommendation Z.200 (CHILL Language Definition),
C.CI.T.T. Study Group XI, 1980.

[K] R.Koymans, Specifying Message Passing Systems Requires Extending
Temporal Logic,
6th ACM Symposium on Principles of Distributed Computing, August
1987.

[Ll] L.Lamport, What good is Temporal Logic?
Proceedings of IFIP83, pp. 657-668, North Holland 1983.

[L2] L.Lamport, Specifying Concurrent Program Modules,
ACM Transactions on Programming Languages and Systems, Vol. 5, No.
2, pp. 190-222, April 1983.

[LPZ] O.Lichtenstein, A.Pnueli, L.Zuck, The Glory of The Past,
Logics of Programs, Brooklyn, June 1985,
Lecture Notes in Computer Science 193, pp. 196-218, Springer 1985.

[PI] A.Pnueli, The Temporal Logic of Programs,
18th Annual Symposium on Foundations of Computer Science, pp. 46-
57, IEEE 1977.

[P2] A.Pnueli, Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Current Trends,
Lecture Notes in Computer Science 224, pp. 510-584, Springer 1986.

[W] P.Wolper, Expressing Interesting Properties of Programs in Propositions!
Temporal Logic,
13th ACM Symposium on Principles of Programming Languages, pp.
184-193, 1986.

325

Project No. 1277

IMPLEMENTING THE PCTE USER INTERFACE ON SUN WORKSTATIONS

Author:
Brian Hayselden, Software Sciences Limited, London and
Manchester House, Park Green, Macclesfield, Cheshire,
England, SK11 6SR

This paper presents a summary of the experience gained from
implementing the PCTE User Interface on Sun Workstations
whilst retaining the ability to run native window based tools
in parallel with tools using PCTE windows. The paper assumes
some knowledge of the PCTE User Interface specification.

1. INTRODUCTION
The development work described in this paper was undertaken as part of
the ESPRIT Sapphire project [1], which has amongst its tasks the
porting of an implementation of PCTE (Emeraude) to various systems
(Sun, VaxStation 2000, VAX, HP9000 and IBM PC/AT).
At the start of the project (September '86), only a prototype impleme
ntation of a subset of the PCTE User Interface was available. This
subset although fairly portable assumed total control of the display
surface and therefore precluded parallel running of host window tools.
The basic objectives of the User Interface component of the port were
to produce a complete industrial quality implementation (not a
prototype), to report on the PCTE specification and porting problems,
and to develop a validation suite for the User Interface. These basic
objectives were extended to include a requirement to support parallel
running of native Sun tools. In addition the ability to copy text
between windows running under the two regimes was to be provided.
These extended requirements, coupled with limited prototype capability
and unavailability of the prototype source, lead us to embark on a
complete implementation of the User Interface using Sun software facil
ities where possible.
The sections below record the points of interest arising from the
design and implementation of the User Interface on Sun Workstations*,
followed by a review of the current state of the User Interface compon
ent of the Sapphire project including future developments.

2. TECHNICAL OVERVIEW
2.1. Software Environment
Support for PCTE Basic Mechanisms (OMS etc) is provided by extension of
the Unix* Kernel. In the Sun version these changes are based on
version 3.2 of the Sun Operating System which provides a high degree of
System V / BSD 4.2 compatibility.

Sun Workstations* - Sun Workstations is a trademark of Sun Microsystems
UNIX* - Unix is a trademark of Bell Laboratories.

326

The U s e r I n t e r f a c e i s i m p l e m e n t e d i n C, u s e s t h e PCTE OMS f o r s t o r a g e
of i c o n s e t c . , a n d u s e s t h e Sun View f a c i l i t i e s a v a i l a b l e w i t h t h e 3 . 2
r e l e a s e . The r e s u l t i n g v e r s i o n r u n s on b o t h Sun 2 a n d Sun 3 w o r k s t a t i
ons .

2 . 2 . ARCHITECTURAL ASPECTS

2 . 2 . 1 . P r o c e s s A r c h i t e c t u r e

To a c e r t a i n e x t e n t t h e p r o c e s s a r c h i t e c t u r e was p r e - d e f i n e d s i n c e t h e
U s e r I n t e r f a c e s p e c i f i c a t i o n d e s c r i b e s t h e u s e of a s e p a r a t e s e r v e r
(User Agent - UA) h a n d l i n g d e v i c e i n t e r a c t i o n s and a p p l i c a t i o n r e s i d e n t
r o u t i n e s (A p p l i c a t i o n Agen t - AA) which i n t e r a c t w i t h t h e UA i n
r e s p o n s e t o t o o l r e q u e s t s .

O v e r v i e w of P r o c e s s A r c h i t e c t u r e a n d Communica t ion Mechanisms

PCTE

In te r face

App l ica t ion

App l ica t ion
Agent L ibrary
Routines

Messages
to User
Agent

App l ica t ion

Appl icat ion
Agent L ibrary
Routines

Messages
from
User Agent

User Agent

Cal ls Sun View &
Sun CGI Pixuins

Messages to
Appl icat ion
Agents

Sun
N o t i f i e r

PCTE
Kernel

PCTE
Message
Queues

Device
2.2.2. AA <-> UA Communications
PCTE messages are used for AA to UA communication. There is a single
message queue which all AA's use to send messages to the UA, and one
message queue per AA used for UA to AA messages.
2.2.3. UA Event Handling
The UA has three types of asynchronous event to handle:

- events from the device;
messages from AA's;
an alarm handler used to handle timeout of blocking
input calls and also to assist in monitoring AA's
failure to respond.

The UA uses the Sun Notifier [3] to assist in managing these events.
The Notifier handles all polling of the device, simplifies the multip
lexing within the UA, and also allows handlers to be registered with
the notifier for invocation when specific events occur.

327

2.2.4. Use of Sun Software Facilities
In addition to use of the Notifier mentioned above. Sun View facilit
ies are used to support many of the User Interface objects (e.g.
windows, icons, fonts), as well as to support the User Interface
Bitmap and Text drawing primitives. Sun CGI (in Pixwins) is used to
support the graphics functionality.
The specification supports the creation and deletion of windows etc.
in a random order as well as the display and overlap of all data types
(text, bitmap and graphics) within a single window. For these reasons
use of the Sun facilities in an integrated manner to support the PCTE
functionality is not as straightforward as might be envisaged.
2.2.5. Input Handling
All input is first seen by the Sun Notifier which directs it to the
appropriate window handler. For windows owned by the User Interface
this is a UA routine. This routine interprets the event if necessary
and notifies the occurrence (if not ignored) to the appropriate AA
where it is queued for notification to the application either by direct
call of tool function (event mode) or in response to a specific input
call (collect mode).
The queuing of input events in the AA avoids problems with requeuing of
input notifications in transit when input modes change, and avoids
problems in the UA if a rogue application is not reading its input.
2.2.6. User Interface Object Ownership
We have taken the stance that User Interface objects (e.g. windows,
frames, graphics elements) are owned by the process which created them.
In most cases the objects are not usable by other processes, even child
processes.
Some User Interface objects are readable by more than one process:

Grey Scale Bitmap Frames;
Fonts;
Information accessed via a selection.

2.2.7. End-User Image
The end-user image was not fully defined by the prototype and aspects
of the prototype image were not extensible to a full implementation.
We have produced a definition of the end-user image but do not preclude
changes from the style we have adopted, which has much in common with
the Sun style, to a standard (to be defined) PCTE style. One aspect we
expect to change is scroll bar operation.
2.2.8. Size of Development
The AA is approximately 30,000 source lines (including build state
control red tape, comments and blank lines) in 150 source files and
gives a total executable size of approximately 120Kb.
The UA is approximately 70,000 source lines (same basis) in 245 files
and gives an executable size of approximately 900Kb. This latter
figure includes the Sun Library software.

328

3. WHAT DID WE LEARN FROM THE DEVELOPMENT
The items listed below are in no particular order, and some of them
state the obvious, but they are included since they relate to the
history of the development.
3.1. Advantages of Using Proprietary Software
Use of the Sun software reduced the amount of code to be produced. For
example we were able to use the available Sun functions for drawing
graphics elements such as closed elliptic arcs with wide borders and
fill patterns.
Less new software means less errors and hopefully less test time.
3.2. Disadvantages of Using Proprietary Software
Code size is increased since proprietary code provides functionality
additional to requirements.
The code may be less portable, although use of higher level functions
may ease portability.
Although there may be less errors overall, any errors in proprietary
software take longer to pin down and may not be fixable or circumventa-
ble until a future release.
If you are using the host software in uncommon ways (e.g. developing a
window manager on top of a window manager as we were), then the risk
of hitting limits and host software interaction problems not envisaged
by its designers is increased, and documentation is less likely to give
directly applicable guidance.
3.3. Consistent Standards in the PCTE UI Specification
The specification manifests a lack of consistency in aspects such as
function and parameter naming, parameter description and usage.
Good standards consistently applied make a specification easier to
assimilate and also easier to criticise constructively. Poor or incon
sistently applied standards have the reverse effect.
3.4. Specification Interpretation
As I discuss in more detail in section 4 we have raised a large number
of comments on the specification and, in order to complete the design,
assumptions were made in response to those comments. As one might
expect the process was iterative since many areas interact and as
design progressed new problems caused us to re-think our solutions.
Even where problems were identified there was frequently more than one
valid solution and it remains to be seen how good we have been at
choosing the right one.
3.5. Implementation Helps to Flush Out Problems
Many of the difficulties we encountered in interpreting the specificat
ion were highlighted only when doing low level design and implementat
ion. Hopefully having produced a complete implementation a definitive
User Interface specification can now be produced.
I have not yet seen the comments produced by the ESPRIT VIP project and
cannot therefore judge whether we have a large proportion of comments

329

in common, or whether the different objectives and viewpoints have
produced a significantly different set of comments.
3.6. Functional Level of the Specification
As well as highlighting problems with the specification, in terms of
whether it is unambiguous and implementable, we also have some
questions as to the level of facilities provided.
In some cases the need to include or exclude a facility might be
decided on the basis of whether or not it is needed for a software
tools environment. In other cases there is clearly a need for a parti
cular capability, but it is not clear whether the functionality should
appear directly in the interface, or be left to a higher level to
provide using the existing primitives.
Examples I would cite are:
a) There is no access to the final pixel image of a window which

might be constituted from several viewports.
b) For text frames: should the control of wrapround of text at

line end appear as a feature of the interface or be left to
tools to manage?

3.7. Advantages of the PCTE User Interface
PCTE provides a single User Interface specification document which
although it needs improvement is nevertheless easily navigated and does
not need extensive examples of function usage. The set of functions is
fairly easy to assimilate and use.
The application view of data is separated from the end-user's view.
The provision of viewport hierarchies gives powerful capabilities.
Although different functions are provided for the handling of the diff
erent data types (Text, Bitmaps and Graphics), the display mechanisms
(viewports and windows) are type independent and imply no restrictions
on combining data types within windows.
PCTE provides a higher facility level (Menus, Window Titles, Window
Scroll Bars etc) than X Windows.
The adoption of a server architecture leads to smaller application code
size.
3.8. Disadvantages of the PCTE User Interface
PCTE limits access to some primitive operations (e.g. control over
line joining algorithms). In some cases this may actually be an advan
tage for a software tools interface.
PCTE has some missing functionality (e.g. there is no capability for
accessing the pixel image of a window or text or graphic viewport). It
remains to be seen which 'missing' facilities are important for the
target usage. The functionality can always be added.
The performance is likely to be slower than that of a tool using native
facilities directly since an extra process switch is involved. This is
evident when drawing mouse trails for example, but the overheads can
be limited. It remains to be seen what the requirements are in a soft
ware tools environment for facilities of this nature where direct

330

end-user feedback is required and the amount of tool activity in
response to a single event is small.
There is no doubt that the Functional Specification needs improvement.
This is being addressed.
There is a shortage of tools using the interface. The PACT toolset
will of course address this problem.
3.9. Interworking with the Host System
As stated in the introduction we wished to provide the capability of
running existing Sun tools in parallel with tools using PCTE windows.
This gave us a number of benefits and also some difficulties.
It is clearly commercially beneficial to allow concurrent running on
systems with an established customer base.
We were able to use the window based DBXTOOL during testing.
TTY emulation was provided by the native Sun facilities. In the future
it is expected that a standard method of mapping TTY onto a PCTE window
will be developed.
We used the Sun facilities for icon image generation etc. pending the
availability of PACT tools.
Direct visible comparison of the performance of simple tests was
possible (e.g. rubber banding and mouse trailing).
At first sight Sun selection handling and PCTE selection handling
appear to have a lot in common and time was spent trying to evolve a
unified selection system. However there are fundamental differences
within the default schemes such as PCTE's inclusion of multiple
selections and different data types and Sun's use of multiple key
operations to give composite actions.
These differences lead us to adopt a narrow interface between the two
schemes whereby text could be copied from a Sun window to a PCTE window
and vice-versa using the Sun PUT and GET operations.
3.10. Don't Start From Here!
We started from a far from ideal position since the Functional
Specification was unproven, there was no documentation of the
rationale which might have resolved ambiguities and there was no full
implementation to refer to for clarification.
3.11. Interaction between End-User Image and Application
Although separation of the application interface from end-user image is
generally a good thing, it is nevertheless essential to identify the
end-user functionality since this can impact the tools view of interac
tion sequences.
A tool writer needs to know that the interaction style for the tool
will not conflict with system function operations, and will not
confuse the end-user.

331

4. The PCTE User Interface Specification

Throughout the development of the PCTE User Interface on Sun workstati
ons a significant number of observations were made as to inconsist
encies, contradictions, ambiguities and information missing from the
specification. Although some of these observations related to facilit
ies and capabilities, a large proportion demanded resolution before a
consistent low level design could be produced.

These observations excluded any of a typographic nature except where
such errors affected the technical meaning of the specification. Thus
spelling errors in text descriptions were not deemed significant.
Incorrect spelling in field names in structures or ambiguous text desc
riptions were treated as significant.

Each comment was recorded and given one of four classifications. It
should be noted that apart from class [A] the class of the comment does
not give any real guidance as to the extent of its impact. Some involve
simple changes, others might involve changes to several functions.

[A] Typically a minor clarification such as an additional error
return value or clarification of parameter value ranges.
Statements are given this class if they are likely to be
correct and/or if the cost of change is likely to be small
(e.g. re-compile).

[B] These are comments which affect the tool interface as specified
but not the basic functionality supported. Examples are details
of parameter interpretation and valid sequences. No impact on
end-user image is envisaged if the assumption is changed. The
cost of change is typically higher than for [A].

[C] Similar to [B] but with end-user image implications. For
example statments are made as to what is displayed in boundary
conditions for graphics elements such as circles with zero
radius.

[Z] Comments highlighting an aspect which we think could benefit
from change. For these comments the Sun implementation follows
the PCTE specification, but the comment registers our reserva
tions as to the usefulness of a facility which is provided
and/or its method of presentation, or our view that a missing
facility should be provided.

At the time of writing (July '87) the numbers of comments raised were
as follows:

[A] [B] [C] [Z]

127 147 99 59

The SAPPHIRE project is reviewing these comments and proposals will be
placed before the PCTE Interface Management Board in due course. It is
hoped that a significant proportion of our assumptions (classes [A],
[B] and [C]) will be accepted as per our implementation.

4.1. Further Breakdown of Class [Z] Comments

The [Z] class includes comments on the need to review aspects which do
not affect functionality such as function naming standards as well as
comments on possible additional functionality such as access to final
window image. A more detailed analysis of these gives:

332

Comments relating to consistency and clarity'of specification 27
(E.g. The need for naming standards)
Comments questioning the functionality 32
(E.g. Lack of a BATCHING facility and access
to window pixel image)

CURRENT STATE AND FUTURE DEVELOPMENTS
5.1. Status of "Sun View" Version
The User Interface implementation on Sun is available for evaluation.
At the time of writing (July '87) we have a version which is complete
except for text frame output. A complete version is planned to be
available in October '87.
The July version has not been fully tested, and we are developing a
PCTE User Interface validation suite in parallel with completing the
implementation.
5.2. GIE Emeraude Sun Version
A version evolved from the initial prototype is being developed by GIE
Emeraude. This version will run on Sun, but runs at the PIXRECT level
and so precludes concurrent use of Sun Window tools.
5.3. X Windows Version
The SAPPHIRE project is now actively looking at producing a version of
the User Interface running on X Windows Version 11. Such a version is
needed for the VaxStation and the HP9000. Since Sun now intends to
support X Windows we may choose to make this version common.
X Windows provides an interface to support window managers and provides
most of the facilities needed to support the PCTE User Interface. The
only significant problem is that the PCTE User Interface allows event
driven input whereas X Windows provides on demand reading only. The
solution to this problem seems to require the involvement of a separate
process (the UA) in the input path in these circumstances.

5.4. Functional Specification Update
It is important that the functional specification is upgraded to
address outstanding comments. Amongst the many problems in resolving
these comments, resolution of comments relating to additional and
redundant functionality demands the involvement of potential users of
the interface (e.g. PACT and SAPPHIRE tool writers).

6. IMPACT TO DATE
An early (April '87) version was demonstrated at the Ada Europe Confer
ence in Stockholm. This demonstration showed PCTE as a whole, using
the User Interface facilities to display information obtained from the
OMS and to direct navigation through the OMS.
6.1. Evaluation
A version of PCTE User Interface is scheduled for delivery to ESTEC for
evaluation, and some ALVEY projects will take versions.
Another aspect of Project SAPPHIRE is to evaluate PCTE by porting

333

ECLIPSE to PCTE. The database aspects of- ECLIPSE already use PCTE,
and the remaining work involves mapping the ECLIPSE application interf
ace (which currently uses Sun window facilities directly) onto the
PCTE User Interface.
6.2. Summary
The Sun implementation works and is available despite all the difficul
ties encountered. Further work is needed and is in hand to conclude
the development.

REFERENCES
[1] Project Sapphire 1229 (1277) PCTE Portability Annex 1.

CAP Industries Limited.
[2] Sun PCTE Porting Experience Report.

Software Sciences Limited.
[3] Sun View Programmer's Guide. Sun Microsystems.

Revision A of 17 February 1986.

334

Project No. 1277

THE SAPPHIRE PROJECT : BUILDING CONFIDENCE IN PCTE

Hike Tedd
Department of Computer Science, University College of
Wales, ABERYSTWYTH, Wales, UK

1. INTRODUCTION
A new generation of software tool support interfaces has been
defined. In Europe there is the Portable Common Tool Environment
(PCTE) [1]; in the US there is the Common APSE Interface Set (CAIS)
[2], soon to be succeeded by CAIS-A. References [3] and [4] give
more background and some comparison of these interfaces.
All these tool support interfaces attempt to provide a much more
powerful environment for the software tool than those provided by
Unix and typical manufacturers' operating systems. In particular,
they provide sophisticated facilities for structuring and
manipulating data, and for ensuring the integrity of the data.
Also, by not being proprietary to any computer manufacturer, and
hopefully becoming widely available, the existence of PCTE gives the
promise that tools using it will be portable across a wide range of
computer hardware.
PCTE is one of the notable successes of the ESPRIT programme. It is
much more powerful than CAIS. A production quality implementation
of PCTE, Emeraude, is already on the market, whereas quality
implementations of CAIS have only just started to be worked on. The
CAIS-A design has used PCTE as a prime source of ideas, so it should
be comparable in sophistication, but it is years behind PCTE in
development.
PCTE represents a real opportunity for the European Software
Industry. Its widespread use in Europe could mean much expanded
markets for software tools, with consequent incentives for European
tool-writers to invest, and eventual benefits to European software
developers when they reap the gains from the availability of better
tools.
However, recognising the virtues of PCTE, and making sure that it is
widely used in Europe, are two different things. There is natural
caution with the introduction of any new technology. No one likes
to be among the first users who may meet problems; people like to
see that the benefits of sophisticated features are real; there is

The Sapphire project is part funded by the Commission of the Eu
ropean Communities under the ESPRIT programme, project 1229(1277).
The participants in the project are CAP Industry Ltd. (UK, prime
contractor), Software Sciences Ltd. (UK), GIE Emeraude (France), and
UCW Aberystwyth (UK).

335

concern that much sophistication might have performance penalties; a
range of general tools needs to be available; the interface needs to
be widely available to gain the portability benefits.
Bridging this confidence gap is what the Sapphire project is all
about. The project has three main areas:

- Making PCTE widely available
- Gaining experience of using PCTE
- Studying the performance of systems built on PCTE

2. MAKING PCTE WIDELY AVAILABLE
2.1. Overview
The Emeraude production-quality implementation of PCTE was developed
on the Bull SPS-7, which is not much used outside France. The
Sapphire project is porting Emeraude to the following widely
available systems:

SUN 2 and 3
IBM PC/AT
DEC VAX
DEC VAX Station 2000
HP 9000 series 300

The first major port, to the SUN, has already been demonstrated.
An initial study predicted, and the project's experience has
confirmed, that porting Emeraude is reasonably straightforward if
the target architecture already has an implementation of Unix System
V or similar. The exception to this is the area of User Interface,
where PCTE's rich facilities must be built on the very different
facilities and concepts of different architectures. Our approach to
this has been first to implement the user interface for the SUN,
using SUNView as a base, and then to base our implementation on X
Windows Version 11, giving a much more portable implementation for
the future. The companion paper [5] describes this strategy in
detail.

An important part of a successful port is to validate its
functionality. A PCTE Validation suite is being developed, and one
public deliverable of the project will be a report describing the
Suite and documenting the results of its operation on each of the
five ports.
The benefits of this part of the project will not just be the ports
themselves. By demonstrating that PCTE can be implemented on such a
range of architectures, by reporting on our experiences, and by
improving the portability of Emeraude itself, we will contribute to
confidence that PCTE can be made available on many other

336

architectures within a reasonable budget arid timescale.
2.2. The SUN Port
The SUN port was first demonstrated at the Ada Europe conference in
Stockholm, in May 1987, and can be seen at the exhibition associated
with this ESPRIT Technical Week. There will be several releases of
this port during 1987.
The host configuration is a SUN 2 or SUN 3, running SUN 3.2 OS, with
4MB of main memory, and at least 71 MB of disc; TCP/IP protocols are
used for distribution. Later versions are expected to use version 4
of the operating system, and eventually to move to OSI protocols for
distribution.
2.3. The VAX Ports
The first VAX Port should be available late in 1987. This will be
hosted on Ultrix 2.0, and will have full PCTE functionality except
for the user interface, which will be a 'teletype subset' (since
typical VAX systems lack bit-mapped screens).
During 1988, a full version of PCTE will be available on the VAX
Station 2000. This will have a complete user interface, based on X
Windows.
2.4. The PC/AT Port
The IBM PC/AT, its clones, and its successors (the PS/2, and other
80386 based systems) are the most widely available systems capable
of running PCTE. So it is very important that PCTE be ported to
this architecture.
The port is based on Microport's version of Unix System V. The
first release will be early in 1988. It requires a PC/AT or
similar, with 2 MB of main memory, EGA graphics, and a mouse.
2.5. The HP 9000 Port
The final port to be undertaken is to the Hewlett-Packard 9000
Series 300. This is a 68020 based system, with a high resolution
display, keyboard and mouse, and Ethernet networking. The port will
be based on the host's version of Unix, HP-UX 5.2. It is planned to
complete this port during 1988.

337

3. GAINING EXPERIENCE WITH PCTE
3.1. Overview
This part of the project will move some very substantial toolsets
onto PCTE, and report on the problems met and the benefits
perceived. The toolsets are Eclipse, a major Integrated Project
Support Environment (IPSE); Fortune, a sophisticated documentation
support system; and an Ada compiler. The relationship of PCTE and
CAIS is also being studied.
3.2. Eclipse
This is one of the major IPSE developments that are part of the
Alvey research programme in the UK. Eclipse provides three major
toolsets to the end user, to support the LSDM methodology, to
support the MASCOT methodology, and to develop Ada programs. These
toolsets are themselves very dependent on generic Eclipse tools,
notably a generic design editor. All the tools of an installation
present a uniform interface style to the user, and make use of the
Eclipse database, which provides uniform access to fine-structured
data as well as coarse data.
Eclipse Version 1 was hosted on Unix, using SDS-2 and Foundation
(two Software Sciences products) to support the coarse level
database.
Eclipse Version 2 is hosted on PCTE, using its Object Management
System (OMS) to support the coarse level database. The total
dependence of Version 2 on PCTE illustrates the confidence felt in
PCTE.
After a comprehensive study had been made of the problems of moving
to PCTE, implementation has proceeded quickly; all three toolsets
were first demonstrated running on PCTE at the Alvey conference in
Manchester in July, and can also be seen at the exhibition here.
3.3. Fortune
This is another substantial Alvey project. The project will produce
a documentation system for software engineers, running on a network,
with individual workstations accessing a common database. Various
types of component (e.g. diagrams, code, text) and the cross-
referencing between them are supported. The advances over existing
systems lie in Fortune's configurability for different methods, and
ability to interact with other tools in the software engineering
environment.

The actual rehost of Fortune lies outside the Sapphire project, but
one report of Sapphire will be a study of the problems and benefits
of moving Fortune to PCTE. An obvious immediate benefit is that the
PCTE version is much more portable than the native SUN version.

338

3.4. Ada Compiler
CAP have already retargeted the Telegen Ada compiler to the 80286
architecture. As part of Sapphire, this compiler will be
retargeted, and rehosted, to the PC/AT running PCTE. This includes
the integration of the compilation system with PCTE so that the OMS
of PCTE is used to support the Ada program library.
Again we will assess the benefits, and any problems, in using PCTE
for this system.
3.5. Relationship to CAIS
This area of the project will study the relationship of PCTE and the
US standard, CAIS. A mapping of CAIS onto PCTE will be designed and
implemented, and comparisons made between PCTE itself, CAIS
implemented on Unix, and CAIS implemented on PCTE. By attendance at
KIT meetings, the definition of CAIS-A is being followed.

4. STUDYING PERFORMANCE
Both for Eclipse and for Fortune, it will be possible to conduct
trials comparing performance of the PCTE-based versions with the
non-PCTE-based versions of the software. For Eclipse, the
comparison will be between Version 1, based on SDS-2 and Foundation,
and Version 2, based on PCTE. For Fortune, the comparison will be
between the native SUN version and the PCTE-based version. This
experience will be captured in project reports.

REFERENCES

[1] PCTE. A Basis for a Portable Common Tool Environment.
Functional Specifications. Fourth edition. 1986.
[2] Common Ada Programming Support Environment (APSE) Interface Set
(CAIS). DOD-STD-1838, 9 October 1986.
[3] Lyons T.G. & Tedd M.D. Recent Developments in Tool Support
Interfaces, CAIS and PCTE. Ada UK Conference, York, January 1987.
[4] Lyons T.G. & Tedd M.D. Technical Overview of PCTE and CAIS.
Ada UK Conference, York, January 1987.
[5] Hayselden B. Implementing the PCTE User Interface on SUN
Workstations. ESPRIT Technical Week, 1987.

339

Project No. 974

A KNOWLEDGE BASED ENVIRONMENT FOR S/W SYSTEM
CONFIGURATION REUSING COMPONENTS

J.-F. Cloarec (*), R. Valent (**)

The paper presents a concise overview of the KNOSOS project
(number 1221) and gives the results obtained in the first year of its
life. During this period, a mixed strategy was used :
- According to the "waterfall" model of life cycle, the Users' needs

and Users' requirements (URD) were investigated, giving the view of
major industrial partners from Telecommunications and Space
applications.

- From the state of the art on Software Reusability, KNOSOS approach
and expected support were defined.

- Employing rapid prototyping, typical examples of components reuse in
large programs are being implemented. Their experimentation, now in
progress, will produce a refined version of the URD and give early
inputs to the Software Requirements Document (SRD) of the
precompetitive prototype.

Necessary features of the knowledge representation models and of
composition algorithms were in this way identified. KNOSOS is
classified as an intelligent environment to support the "product view"
of reusability techniques (Esprit work programme area 2.3.3.5).

1. INTRODUCTION
The KNOSOS objectives are the development of knowledge rich environments and
active methods to support the software engineering.
A precompetitive prototype shall demonstrate that reusing components to build
large to very large industrial software, is a real goal to achieve in the next
future.
The KNOSOS team approach is that of the industrial S/W life cycle, this means
that the development is preceded by extended work to define the Users' needs [1]
and to synthetize common Users' Requirements Definition (URD) [2].
In order to shorten the time needed by standard procedures using the so-called
"Waterfall" model, intensive usage of rapid prototyping is planned.
In the first part of the paper are presented the KNOSOS team's main findings in
Users' needs and requirements, the second part outlines the KNOSOS software

(*) National Telecommunication Research Center (CNET), LAA/SLC/AIA, Route de
Trggastel, 22301 Lannion Cedex, France.

(**) Engineering Software International (ESI), 20 rue de Saarinen, SILIC 270,
94578 Rungis Cedex, France.

340

reusability approach, the third describes the first results concerning component
description and handling, deduced from preliminary partner requirements and
prototype experiments.

2. KNOSOS USERS' NEEDS AND REQUIREMENTS
2.1. Users' needs
2.1.1. The State Of The Art In Reusability Within The Consortium
The KNOSOS Consortium is composed of three "hi-tech" companies in the fields of
Telecommunications, Electronics and Space, a Research center, and two Software
houses. Their experience and needs in software reusing, is various and different.
This is maybe the main asset of the project, because a large spectrum of real
problems could be identified and investigated.
The state of the art within the Consortium is mainly characterized by the
following points :
- Methods and Tools consist mainly of libraries of components, but no specific

reusability tools are presently used. What is reused is mainly the design,
through human experience and training.

- Reusability ratio is :

. high within products/projects,

. low to medium, between products/projects.
- Critical issues are variable with respect to the industry, but the following

are identified as target of reusability :
. Specification,
. Documentation,
. Design,
. Test,
. Maintenance.

2.1.2. What Is Expected From KNOSOS
KNOSOS shall demonstrate that it can bring real support to obtain :
- Increase in productivity,
- Project management enhancement in terms of :

. Estimation of cost,

. Time scheduling,

. Resource optimizing.
- Quality assurance improvements.
2.2. Users requirements
Some requirements are considered essential and others only desirable. Priority
order is to be defined later in the revised URD, taking into account the results
of the feasability study.

341

2.2.1. General Requirements Are Expressed In Terms Of :
- Software engineering support for :

. Whole life cycle,

. Various types of software, eg. real time ...,

. Evolution,

. Customization.
- Compatibility with existing software development tools and environments,
- Portability,
- Distributed environments,
- Standards enforcement,
- Quality control procedures retrieval,
- Reuse methodology :

. How to use KNOSOS,

. How to structure components, eg. a specification for headers,

. How to reclaim the existing components.
2.2.2. Functional Requirements Are Expressed In Terms Of :
. Development support,
For top down approach, configuration management, support to prepare an offer,
component history, interface with existing development and management
tools ...,

. Software configuration and construction,
With list of unsatisfied requirements, components which partly satisfy
requirements, rules to combine components, control of the assembling criteria
such as : run time, memory size ...,

. Software configuration management,
Taking into account several specification levels, automatic retrieval of
information by scanning component headers, dependence links between
abstraction levels, transformation methods from levels to levels, richer
functional role description, customized management and version control,
troubles reporting, changes control, history management, trust vector ...

2.2.3. Requirements On Man/machine Interface
. Supported by IBM PC-like and SUN-like workstations,
. Windows and mouse,
. Keyboard/ASCII-terminals,
. Interactive and batch,
. Compatibility with PCTE users' interface,
. Display with graphic features.

342

2.2.4. Operational Environment Requirements
Concern the operational system on which KNOSOS should be installed, ie. UNIX, VM,
VMS.
2.2.5. The Feasibility Confirmation Will Be Assessed On The Following Studies :
. Representation of specification,
. Levels of abstraction,
. Transformation method,
. Functional-role description,
. Automatic extraction of information for headers.
This is to be validated with prototyping of pragmatic Users' examples.

3. THE KNOSOS SOFTWARE REUSABILITY APPROACH
3.1. Current Software Reusability Approaches
Software reusability is becoming a great concern as well for industrial software
producers, as it has been developed in the previous chapter, than for research
labs. This interest has been emphasized during the latest Software Engineering
Conferences where Software Reusability Tutorials were proposed and witnessed a
wide attendance [31, C4D.
We can divide software reusability approaches into two basic groups [5] depending
on the nature of what is to be reused : reusable building blocks, and reusable
patterns of analysis or design. We will discuss also the main issues on software
reusability.
3.1.1. Reusable Building Blocks
The components been reused are atomic building blocks such as subroutines,
functions, program modules ... which are organized and combined according to
well-defined rules. The emphasis is on the development, the accumulation and the
reuse of program components themselves, stored in an application library [6], or
on the definition of organization and composition principles, for example pipe
mechanisms in UNIX that allow and encourage the reuse of programs [7], or the
object oriented programming that is able to produce new object classes by
specialization, using inheritance mechanisms : versions of procedures that
require modifications are added to a specialized object class, while the
unchanged procedures are inherited [8] [9].

3.1.2. Reusable Patterns Of Analysis Or Design
In this approach, more than reuse of passive components, reuse is the
reactivation of the generation mechanisms to produce new software systems or
components.

Language-based Systems emphasize on the notation used to describe the target
system. The languages used are Very High Level Languages (VHLLs) or Problem
Oriented Languages (POLs). The firsts rely upon a small number of semantically
neutral primitive constructs such as mathematical sets, abstract types or
predicates [10], while the seconds incorporate a rich set of problem domain
specific information.

343

Application Generator Systems, like DRACO [11], rely on a general knowledge and
expertise about an application domain and their use to produce new software
systems like new solutions to problems in this domain.
Transformation Systems allow the system designer to specify the target system in
a VHLL, and to perform incremental changes, from a terse but poorly performing
specification, into an efficient executable form. For example systems to
transform LISP programs into FORTRAN code Q 2] , or transformation systems used as
a methodology for program development [13].
3.1.3. Issues On Reusability In Programming
While the reuse of building blocks is the easiest to implement and can give
immediate results, the reuse of patterns of analysis or design is thought to be
the more promising for the long haul. When software evolution is the primary
requirement, the record of the main design decisions (Design Plan), like for
hardware Redesign [14], is essential.
The main issues are the economic payoff of reusability compared to the
investment, this obviously depends widely on the software domain of application,
and the impact of reusable programming on software models that designers must
bear in mind [15].
3.2. KNOSOS Approach
KNOSOS intends to focus on "Programming in the Large", that is to say reuse
software by constructing and managing complex systems made of a collection of
components. This is opposed to "Programming in the Small", that is producing new
software components from control blocks and programming idioms. We think that the
two approaches are complementary but that the first one is more tractable and
promising for the short and mean terms, as we can expect to devise methods and
tools independently of any programming languages and specific machines. The
reuse of components seems to be both more adapted to the industrial needs, and
more likely to produce interesting results, analogous to the large development,
use and reuse of hardware components.
Our assumption is that most of the two software reusability approaches, reuse of
building blocks and reuse of design analysis, can be captured using reuse of
software components of different types and at different abstraction levels
(software development phases).
The general reuse process is a follow :

SPECIFICATION -r V DEVELOPMENT >■ PRODUCT >

BY-PRODUCTS

reuse loop

The development of software yields :
- a main product, that is a software system made of a collection of modules and

the corresponding documentation,
- and by-products that are intermediate descriptions, test procedure and data,

and use of tools.

344

Reusability is then the reuse of a library of products and of a collection of by
products, and we believe that both can be considered as software components of
two kinds : simple components and complex components (packages and sub-systems).
Simple components are parts of software that :
- are identified as management items,
- fulfill a functional role,
- have interconnection interface,
- are able to be assembled to form complex components,
- can be transformed using tools.
Most of the time, these components are described or implemented using semi-formal
or formal languages like specification languages, VHLLs, POLs, or programming
languages. So we can expect them to have fairly well defined features, and that
facilities to help extract information relevant to reusability could be
developed in the near future.
They are defined at several levels of abstraction corresponding to the several
stages of software production that are roughly :
- software specification,
- design,
- implementation,
- test and integration,
- maintenance and evolution,
- documentation (in parallel with every stage).
The application of human skill or production tools like generators,
transformations, compilers, configurations ... transforms or refines a level to
another. For example an executable component (module) is produced from a source
component using a compiler.
These tools are to be described as components too.
Taking into account several abstraction levels can dramatically improve
potential reusability like in [16], because the higher levels can be devised to
be environment and/or implementation independent.

4. KNOSOS FIRST RESULTS
4.1. Principles And Functionalities
To meet the users' requirements, the aim is to propose a sheme, and corresponding
tools, to set a comprehensive library of components. On the one hand, we intend
to be able to reuse them, on the other, we want to use experience to elaborate and
express reusability principles so as to improve reusability of components
(Expert System Approach).

345

For this, the main KNOSOS basic functionalities are :
- Description of components and expression of knowledge about them,
We are defining a model of carponents that is to be the basis for the
formalization of one or several description headers.
This model must take into account the modularity principles of "Information
Hiding" : there is no needs to know its implementation to use a component,
"High Cohesion" : each component is made of strongly related sub-parts, and
"Low Coupling" : every component can enter in several combinations.
The implementation will use a Knowledge Representation System based on the
Frames Model 17 and on an Object Oriented Language. Basic simple components
are to be prototype descriptions of classes, consistency and reusability
principles are to be procedural attachments and rules sets.
The main items of this model, as we can see it to-day, are :

. Identification,
With name, version, revision, type (source, executable,
documentation, specification, test, data ...)

. Functional role,

To describe the performed functional role, and sub-roles (to capture
the functional architecture of systems) ...

. Interface description,
Featuring imports, exports, shared data structure ...

. Environment,
Taking into account operating system, machine, language, tools,
quality level ...

. Implementation,
For algorithm description, memory occupancy, efficiency, special
constraints ...

. History.
To keep history of tests, evolutions, reasons behind changes ...

- Component retrieval,
One of the impediments in reusing a library of components is the difficulty to
know and understand what we have. General classification schemes are
incomplete and never fit well with the actual needs.
We propose, instead of classification, to study and give general search
facilities implementing Artificial Intelligent Algorithms like : use of
partial pattern matching, unification, search for similarities ... and
exploiting the Knowledge Model of components.

346

- Component assemblage
The last step in reusing components is the construction of carplex systems out
of them, while controlling the consistency and quality of the composition.
We will study and implement algorithms and interactive procedures derived from
Problem Solving Algorithms used in Artificial Intelligence. Starting from the
description of the target functional roles, the constraints or principles to
enforce, and the evaluation criteria, components descriptions and rules are to
be interpreted as knowledge chunk to combine in order to find a valid
composition. According to 18 , a composition must comply with the "Well Formed
Composition Rules", that is a solution must be "Complete" : every import or
needed resource is satisfied, "Conflict Free" : there is no exportations or
resources incompatibilities, and "Minimal" : there is no useless components.
We intend to study and propose satisfactory algorithms to find efficiently a
first acceptable solution, admissible ones to find optimal solutions regarding
quality criteria, and exhaustive algorithms to find the best incomplete
solutions when no exact solution is found. The goal is not to automatically
compose new systems, but rather to propose partial, yet consistent, solutions,
while leaving delicate decisions to the designer.

4.2. Types Of Knowledge To Be Represented
The Users needs and the corresponding prototype experiments, lead us to
characterize the different types of knowledge to be represented in KNOSOS.
4.2.1. Model Of Software Components
The main types of components are :
- Code Modules,
With identification, functional-role, functional architecture, assemblage
interface, environment and implementation constraints ...

- Documentation,
With document structuration, links between documents, summary of content,
associative access using keywords, corresponding dictionary of concepts ...

- Test Modules,
They are ordinary code modules but with additive dependencies between tests and
executable modules, and hidden dependencies from test to test (history of
tests, tests constraints and data).

- Abstract Components,
Descriptions of specifications, algorithms ... are considered as common
components as they are supposed to be described using some specific language
(VHLLs or POLs). But they are likely to have also new types of relationships
from one level of abstraction to the others (transforms, refinements,
generators . . .) .

- Facilities and Tools.
For example Compilers, Editors, Generators ... They also must be considered as
common components but with specialized relationships with other types of
components.

347

4.2.2. Rules And Know-how
These rules are to express high level relationships between components with the
flexibility needed to be method and application independent, but adaptable to the
preferred ones in a software factory.
We can list :
- Consistency rules,
To check types, managerial laws (version, revision ...) and so on,

- Good Decomposition in modules,
To enforce principles of modularity,

- Reusability Principles,
To test criteria to define reusable components such as modularity, well defined
interfaces, customization, parametrization ...,

- Good Composition of Systems,
To be able to build "Well-formed Compositions", while taking into account
quality criteria and environment constraints,

- Know-How Rules,
To support the use of general facilities (Compilers, Editors ...) and special
tools, and to give expert rules and rules of thumb to help the interactive
selection of components,

- Heuristic Rules,
Used by the retrieval and the composition algorithms to control their search
for plausible components.

4.2.3. History Of Changes
It is important to be able to manage the evolution and maintenance of the
different components, that is mainly :
- Describe changes,
- Document the reasons behind changes,
- Keep history of changes.
4.2.4. Complex Software Systems And Packages
Complex systems in use and delivered to customers must be represented and managed
with their composition, status, customer, site ...
4.2.5. Numeric And Procedural Knowledge
The above types of knowledge are mainly symbolic ones. But we have also to deal
with numeric and procedural knowledge such as : size of memory needed, execution
times, heuristic functions to compare the quality of two sub-systems, criteria
for reusability ...

348

4.3. KNOSOS Experiments And Study Strategy
From the expression of the Users' Needs, described in the Users Requirements
Definition (URD), KNOSOS is being studied in three main steps :
- KNOSOS rapid prototyping and experiments,
They use mainly the SIBEMOL [19] prototype Configurer System implemented using
the Knowledge Representation System ROSACE, both systems developed at CNET.
We study typical reuse problems proposed by the different partners, and rapidly
prototype them to understand better the problems as well as the possible
solutions. For this, SIBEMOL is modified on ad-hoc basis, without spending much
time for integrating the resulted extensions.
Up to now, four typical cases are being studied :

. Evolution of a software system and reuse of the test programs and
data (YARD example [20, 21]),

. Modification dependencies, or how to find accurately the components
actually affected by a change (ALCATEL example [22]),

. Construction of a complete systan out of components produced and
manipulated by several development tools (MATRA-Espace [23] and
DORNIER [24] examples),

. Customization of a man-machine interface using menus, with advice
(documentation) to use them (ESI example [25]).

These examples stemmed from the partners experience with their own
configuration tools like LIFESPAN (YARD) and VM/SE (ALCATEL).
They are helping to explicit the Users' needs, to devise the KNOSOS reusability
principles and functionalities, and to identify the types of Knowledge
Representation and of Reasonning to perform.
They will be developed and completed later and lead to the Revised URD.

- KNOSOS precompetitive prototype and specification (SRD),
The second step is the specification of the main KNOSOS functionalities from
the Revised URD, and the integration of solutions taking into account priority
order. A first full fledged KNOSOS precompetitive prototype is to be developed
to validate the general proposition, with the following features :

. a general component model [26, 27] (formalized header) and rules
implemented with ROSACE,

. search and interactive composition algorithms implemented in Common-
Lisp [28],

. interface with the extended Relational Data Base DAMES (ESI) to
manage the factual base (component headers, library of components),

. man^machine interface using windows/mouse/keyboard systems.
This prototype will be developed on a workstation running UNIX, that is a
system compatible with the European PCTE [29] System.

349

- KNOSOS special instantiation and customization.
The KNOSOS Esprit project will end with the above pre-industrial prototype and
the corresponding general specification. This later defines a generic tool
that must be instantiated and customized for specific companies environments
and goals. For example, transfer to a given machine and system, development of
new man-machine interface, interface with preferred Relational Data Base,
production of facilities to (semi) automatically extract description and
document headers from source code (depending on programming languages),
integration to existing configuration systems, extension of the component
model or headers ... This is left to further users appreciation. But basically,
using Artificial Intelligence techniques like Knowledge Representation and
Rules sets, KNOSOS will be flexible and easily adaptable to given procedures
and users.

5. CONCLUSION
The study "Users needs" has shown that :
- Reusability is a real fact in industry,
- Various ratios of reusability are now obtained, better ones within one project

than between projects,

- There is a real need to set-up a reusability methodology and to provide
corresponding environment and tools.

The users requirements document stressed that :
- Common requirements can be agreed upon,
- Research work shall be further done on a limited number of topics such as

levels of abstraction of components, use of transformation method, refinement
of functional role descriptions, and headers automatic generation,

- Prototyping of pragmatic examples is a good approach to refine the URD.
To meet the Users' requirements, the KNOSOS approach to software reusability is a
"Programming in the Large" one where a comprehensive model of software
components, aimed to be reusable at the code level as well as at the design
level, is being elaborated and implemented using a Knowledge Representation
System. Powerful algorithms, implementing Artificial Intelligence techniques,
are also studied to retrieve and assemble components to help the building of
complex systems out of them, while enforcing consistency, managerial and expert
rules, and promoting the reuse of existing components..

We believe that the future use of such a tool, connected to an extended
Relational Data Base, and provided with a friendly man-machine interface, (i)
will greatly improve software reusability in industry, and (ii) will help exhibit
criteria and principles to devise better reusable components.

ACKNOWLEDGEMENTS
We should like to thank all partners ALCATEL (F) : J.-P. Quillien, J.-P. Hubaux,
J. Nicolas, CNET (F) : J. Collet, DORNIER (RFA) : Dr. Katzenbeisser, F. Billich,
ESI (F) : J. Dubois (our project manager), J.-L. Gregis, MATRA Espace (F) :
B. Meijer, J.-P. Denier, and YARD Software (UK) : I. Pirie, A. Tilbury, for
their contribution to the KNOSOS project.

350

REFERENCES
[1] KN0S0S Team, "Users Needs Consolidated Report", KNOSOS Document 26/K/draft,

15/5/87
[2] KNOSOS Team, "URD Consisted Report", KNOSOS Document 25/K/Draft, 15/5/87
[3] Peter Freeman, "Software Reusability", Tutorial, 3rd. Software Engineering

Conference, May 27 1986, Versailles, France
[4] John Goodenough, "Software Reusability", Tutorial 5, 9th. International

Conference on Software Engineering, March 30, 1987 Monterey, Ca, USA
[5] Ted J. Biggerstaff and Alan Perlis, "Forewords" (Special Issue on

Reusability in programming), IEEE Transactions on Software Engineering
Vol 10, N° 5, Sept 1984

[6] Robert G. Lanergan and Charles A. Grasso, "Software Engineering with
Reusable Designs and Code", IEEE Transactions on Software Engineering
Vol 10, N° 5, sept 1984

[7] Brian W. Kernighan, "The UNIX System and Software Reusability", IEEE
Transactions on Software Engineering Vol 10, N° 5, Sept 1984

[8] Gael A. Curry, Robert M. Ayers, "Experience with TRAITS in the Xerox STAR
Work-station", IEEE Transactions of Software Engineering Vol 10, N° 5,
Sept 1984

[9] Joseph A. Goguen et al, "Programming with Parameterized Abstract Objects",
in Theory and Practice of Software Technology, 1982, pages 163-193

[10] M. Lemaitre, "Definition et Controle d'une Base de Donn£es Projet pour
un Systeme d'Assistance a la Programmation : SPRAC", ONERA-CERT/DERI
n° 1/3180/DERI, 1982

[11] James M. Neighbors, "The DRACO Approach to Constructing Software form
Reusable Components", the REUSE Project, University of California, Irvine.
Workshop on Reusability in Programming, Newport, sept 1983

[12] James M. Boyle and Monagur N. Muralidharan, "Program Reusability through
Program Transformation", IEEE Transactions on Software Engineering Vol 10,
N° 5, Sept 1984

[13] T. E. Cheatham, J. A. Townley, G. H. Holloway, "A System for Program
refinement", Harvard University, Cambridge (MA), TR 5-79, August 1979

[14] T. M. Mitchell, L. I. Steinberg, S. Kedar-Cabelli, V. E. Kelly,
J. Shulman, T. Weinrich, "An Intelligent Aid for Circuit Redesign",
AAAI-83, Washington DC, August 1983

[15] Elliot Soloway and Kate Ehrlich, "Empirical Studies of Programming
Knowledge", IEEE Transactions on Software Engineering Vol 10, N° 5,
Sept 1984

[16] Y. Hori, S. Kimura, H. Matsuura, "Reusable Design Methodology for Switching
Software", NTT Electrical Communication Labs, Tokyo, 1985

[17] M. Minsky, "A Framework for Representing Knowledge" in The psychology of
computer Vision, P. H. Winston (ED), Mc Graw Hill, 1975

351

[18] A. N. Habermann, D. Perry, "Well-Formed System Composition",
CMU-CS-80-817, March 1980

[19] J.-F. Cloarec, J.-F. Cudelou, J. Collet, "A Configurer for Switching System
Software Based on the Knowledge about the Assembling of Program Modules",
IFIP Working Conference, Budapest, September 1984

[20] A. Tilbury, "YARD S/S KN0S0S Test Case", KN0S0S Document 27/Y/RevO, YARD
S/S April 87

[21] A. Tilbury, "KN0S0S Typical Configuration System data and Problems from
YARD point of view", KN0S0S Document 29/Y/RevO, YARD S/S, April 87

C22] J.-P. Hubaux, J.-P. Quillien, "A Typical Industrial Problem", KN0S0S
Document 38/A/Revl, ALCATEL, Juin 87

[23] B. Meijer, E. Rames, "Example, description and use of SIBEM0L/R0SACE",
KNOSOS Document 33/K/Draft, MATRA Espace, May 87

[24] F. Billich, "DORNIER EXAMPLE for Test and Evaluation", KN0S0S Document
39/D/Draft, DORNIER, Juin 87

[25] J.-L. Gregis, R. Valent, "Evaluation of ROSACE, Example of an Advisor for
ESI S/W Project", KNOSOS Document 34/E/RevO, ESI, June 87

[26] B. Meijer, "Definition of a Component Model", KNOSOS Document 36/M/RevO,
MATRA Espace, June 87

[273 R. Valent, "Glossary of Header Terms", KNOSOS Document 40/E/Draft, June 87
[28] Guy L. Steel, "Common-lisp : The Language", Digital Press, 1984
[29] PCTE, ESPRIT Project number 32

352

P r o j e c t No. 1262

S F I N X : T o w a r d s PCTE b a s e d S o f t w a r e F a c t o r i e s

ABSTRACT:

The a i m s of S F I N X are t o :

* P r e p a r e f o r the e m e r g e n c e of i n d u s t r i a l P C T E b a s e d
S o f i y § C 5 E i S i S C l i l t h r o u g h the re a j_ j_za t j_on of
BI2i<>iYB?5 o b t a i n e d by c o m b i n i n g and i n t e g r a t i n g
on top of P C T E the r e s u l t s of the E S P R I T p_rojects
in the S o f t w a r e T e c h n o l o g y and A d v a n c e d
I n f o r m a t i o n P r o c e s s i n g a r e a s .

+ C o n t r i b u t e to the e r o m o t i o n w i t h i n the E u r o p e a n
c o m m u n i t y of the E S P R I T r e s u l t s in the a b o v e
m e n t i o n e d a r e a s , t h r o u g h the r e a l i z a t i o n of u s e r
o r i e n t e d d o c u m e n t s and t r a i n i n g c o u r s e s u p p o r t s .

The p r o j e c t s t a r t e d S e p t e m b e r 1st 1 9 8 6 . It is a f i v e
y e a r s p r o j e c t .

The d e f i n i t i o n p h a s e , w h i c h j u s t f i n i s h e d , a l l o w e d , in
a one y e a r t i m e :

* to p r o d u c e t e c h n i q u e s and t o o l s f o r gu a!if_ i c a t i o n
and i n t e g r a t i o n °f the v a r i o u s c o m p o n e n t s of the
S o f t w a r e F a c t o r y ,

* to s e t t l e down the t e c h n i c a l i n f r a s t r u c t u r e for
!!<p_e rj.men tatj_o n and e v a l u a t i o n ,

* to i n i t i a l i z e the e r o m o t i o n a c t i v i t i e s .

The s e c o n d p h a s e will c o r r e s p o n d to the w o r k i n g up of
the r e s u l t s of the d e f i n i t i o n p h a s e to b u i l d ,
e x p e r i m e n t and p r o m o t e p r o t o t y p e s of P C T E b a s e d
S o f t w a r e F a c t o r i e s .

F i v e c o l l a b o r a t i n g E u r o p e a n C o m p a n i e s are i n v o l v e d in
this p r o j e c t :

C A P <UK>, CRI (DK> , C S A T A <I>, E R I A (SP> and S F G L <F>.

T h i s p a p e r f i r s t e x p l a i n s why S F I N X is e x i s t i n g . It
then d e s c r i b e s r a p i d l y the S F I N X s t r a t e g y in o r d e r to
i n t r o d u c e two of the key a c t i v i t i e s c o n d u c t e d in the
p r o j e c t : q u a l i f i c a t i o n and i n t e g r a t i o n .

A f t e r a m o r e d e t a i l e d e x p l a n a t i o n of w h a t S F I N X has
r e a l i z e d w i t h i n t h e s e two d o m a i n s , it end s w i t h a
p r e s e n t a t i o n of the S F I N X longer term o b j e c t i v e s and
e x p e c t e d fol lowing up.

353

1. Iht S F I N X P r o j e c t

S F I N X , S o f t w a r e F a c t o r y I N t e g r a t i o n and e x p e r i m e n t a t i o n , is an
E S P R I T p r o j e c t in the S o f t w a r e T e c h n o l o g y s u b - p r o g r a m m e . It aims
at f u r t h e r i n g the e m e r g e n c e of a d v a n c e d S o f t w a r e E n g i n e e r i n g
E n v i r o n m e n t s , identified as S o f t w a r e F a c t o r i e s , based on PCTE (a
b a s i s for common tool e n v i r o n m e n t s) by using tools d e v e l o p e d
w i t h i n the f r a m e of E S P R I T in the S o f t w a r e T e c h n o l o g y and
A d v a n c e d I n f o r m a t i o n P r o c e s s i n g s u b - p r o g r a m m e s .

S F I N X is the logical f o l l o w i n g - u p of the other on-going E S P R I T
a c t i o n s in S o f t w a r e T e c h n o l o g y .

P C T E p r o v i d e s a set of p o w e r f u l , integrated and h o m o g e n e o u s
f a c i l i t i e s to s u p p o r t the d e v e l o p m e n t , the i n t e g r a t i o n and the
use of s o f t w a r e e n g i n e e r i n g t o o l s .

The S o f t w a r e T e c h n o l o g y and A d v a n c e d I n f o r m a t i o n P r o c e s s i n g s u b -
p r o g r a m m e s will result in the a v a i l a b i l i t y of s o f t w a r e
e n g i n e e r i n g tools s u p p o r t i n g d i f f e r e n t m o d e l s of s o f t w a r e
d e v e l o p m e n t p r o c e s s and implementing d i f f e r e n t m e t h o d s .

S F I N X has three o b j e c t i v e s :

* to v e r i f y , improve and p r o m o t e the u s a b i l i t y and
a v a i l a b i l i t y of P C T E as a b a s i s for S o f t w a r e F a c t o r y
i mpI erne ntat i on,

* to d e m o n s t r a t e that the tools p r o d u c e d at least by the two
s u b - p r o g r a m m e s can be combined in v a r i o u s i n s t a n t i a t i o n s of
PCTE based S o f t w a r e F a c t o r i e s ,

* to add to the d i s s e m i n a t i o n and e x p l o i t a t i o n of the r e s u l t s
of the two s u b - p r o g r a m m e s and c o n t r i b u t e to t h e i r
industrial i z a t i o n .

It p r o v i d e s a s u i t a b l e f r a m e w o r k for the q u a l i f i c a t i o n ,
i n t e g r a t i o n and p r o m o t i o n of tools as well as for e x p e r i m e n t a t i o n
with i n s t a n t i a t i o n s of S o f t w a r e F a c t o r i e s . W i t h i n this f r a m e w o r k
the u s e f u l n e s s of P C T E in an industrial c o n t e x t and the e m e r g e n c e
of S o f t w a r e F a c t o r y is e f f e c t i v e l y d e m o n s t r a t e d .

As u l t i m a t e g o a l , the SFINX p r o j e c t will enable a S o f t w a r e
P r o d u c i n g E n t e r p r i s e / C o m p a n y clearly to identify its r e q u i r e m e n t s
for a s p e c i f i c i n s t a n t i a t i o n of a S o f t w a r e F a c t o r y . Such
i d e n t i f i e d r e q u i r e m e n t s , w h i c h are s t r o n g l y d e p e n d e n t on the type
of p r o d u c t to be p r o d u c e d , the type of m a r k e t to be t a r g e t e d and
the quality of staff a v a i l a b l e , will f a c i l i t a t e the s e l e c t i o n of
the a p p r o p r i a t e m e t h o d s and tools as well as the i d e n t i f i c a t i o n
of the required level of i n t e g r a t i o n . E m p h a s i s is placed on
i n t e g r a t i n g tools at the h i g h e s t p r a c t i c a b l e level.

The result will be highly v a l u a b l e when t a r g e t i n g a common
m e t h o d o l o g y on tools used for s o f t w a r e d e v e l o p m e n t and when
f o r m a l i z i n g the e v o l u t i o n a r y i n c o r p o r a t i o n of a c o m p r e h e n s i v e set
of s t a n d a r d interfaces and m e t h o d s for i n t e g r a t i o n .

S F I N X was launched in the A u t u m n of 1 9 8 6 . It is a five y e a r s
p r o j e c t . The e f f o r t e s t i m a t e d is a p p r o x i m a t e l y 900 m e n - m o n t h . The
p r o j e c t p a r t n e r s a r e :

354

* CAP (U K) ,

* CRI (D e n m a r k) ,

* CSATA (I t a l y) ,

* ERIA (Spa i n) ,

* SFGL (France) .

SFGL is the prime c o n t r a c t o r and has s u b c o n t r a c t e d to VERILOG for
years 2 to 5.

2. Ihe SFINX Strategy.

2 . 1 . Ihe S.F. concep_t

The SFINX S t r a t e g y is based on the S o f t w a r e Factory c o n c e p t . This
concept must be considered as the necessary glue between the
various a c t i v i t i e s c o n s t i t u t i n g the d i f f e r e n t phases of the
p r o j e c t . It is the vehicle for achieving their coherence and to
reach a common u n d e r s t a n d i n g between the SFINX p a r t n e r s .

A p r e l i m i n a r y generic model of S o f t w a r e Factory has been d e f i n e d .
This model will be updated t h r o u g h o u t the whole life of the SFINX
project according to the e x p e r i e n c e gained in building instances
of S o f t w a r e F a c t o r i e s as well as to the f i n d i n g s based on t h e o r y .
This model will also be improved by f o l l o w i n g the work of other
non ESPRIT p r o j e c t s like the Alvey ISF project or the E u r e k a EAST
and ESF p r o j e c t s . The SFINX S o f t w a r e Factory model a c c o u n t s for
both technical and o r g a n i z a t i o n a l c o n s t r a i n t s and for the
c o h e r e n t o r g a n i z a t i o n of f u n c t i o n a l i t i e s p e r t a i n i n g to d i f f e r e n t
software m e t h o d s .

Using such generic model as a f r a m e w o r k , d i f f e r e n t instances of
the S o f t w a r e Factory will be d e d u c e d . They will be c h a r a c t e r i z e d
by different m e t h o d s for s o f t w a r e d e v e l o p m e n t and by d i f f e r e n t
life cycle m o d e l s , servicing d i f f e r e n t r e q u i r e m e n t s as resulting
from the software to be produced as welI as the type of m a r k e t
the produced software will be t a r g e t i n g . F u r t h e r , the quality of
staff, their level of e d u c a t i o n , and the level of component reuse
(i.e. the level of i n d u s t r i a l i z a t i o n) will be taken into a c c o u n t .

The
top

instances
of P C T E .

of the SFINX S o f t w a r e F a c t o r y will be realized

2 . 2 . The Project P h a s e s

The e l a b o r a t i o n
i d e n t i f i c a t i o n of

of the SFINX strategy
three d i f f e r e n t p h a s e s .

h as a I lowed the

A definition p h a s e , which c o r r e s p o n d s to the first year of
the p r o j e c t . During this p h a s e , all the required m e t h o d s ,
m§£b?Di§5!5 5Q°! tools necessary to achieve the other
a c t i v i t i e s c o n s t i t u t i n g the p r o j e c t have been defined and

355

specified. In particular a first generic model of S.F.

+ An implementation phase: selected tools from the Software
Technology, Advanced Information Processing and eventually
the Office Automation sub-programmes are qualified and
integrated to realize specific instances of the SFINX
Software Factory. Promotion of the results is ensured at al I
stages of this process through the delivery of documents,
training materials and demonstrations.

* An experimentation phase: experimentation with several
Software Factory prototypes, even if they correspond to
incomplete instantiations of the S.F. model, will provide
the basis for the creation of demonstration centers.

The first phase has been more dedicated
conceptual work while the two other phases
ex pe r i men tat ion.

to theoretical and
are more dedicated to

2.3. A p_ragmatj_c ap_p_roach

One of the main characteristics of the selected approach
pragmatic:

is to be

On one hand, all the theoretical results will be refined and
completed all along the project duration thanks mainly to
the results of Experimentation: Experimentation of tools,
results of integration, Experimentation of S.F.
instantiations.

On the other hand the S.F. prototypes will not be defined
starting from specific user needs or requirements and then
implemented, after having selected or developed the
appropriate tools.
The S.F. prototypes will be defined and implemented
depending on the characteristics of the available tools
coming from other ESPRIT projects and therefore depending on
the results of the tool Qualification.

2.4. A Historic Parallel to the SFINX Scenario

The Sof
compare
wide a r
ex pe r i m
re s u I t i
D u r i n g
s e v e n I
app I i ca
t h o u g h
ref e ren
for the
de ve lop
i d en t i f
to i mp I

t w a r e F
d w i t h
ea comm
en ts ,
ng in a
the f

ay e rs i
t i on I
a stab I
ce mod

dif f e
ed . In
i ed and
e m e n t s

acto r y
the

un i ca t
it wa
r e f e r

i rst
n o rd e
eve I
e d e s c
el wa
ren t

1982
work

uch id

Exper i
early
ion <th
s p oss
en ce mo
two yea
r to ac
and in
r i pt i on
s s t a n d
I aye rs
s o m e n

is now
eas .

me nt
stag
e p r
ib le
de I
r s ,
comm

19
w a s

ard i
are

ew c
i n p

a t i o
e of
e - O S

i n
for
the
o da t
79 t
not

zed
n o

o n c e
rog r

n ba
d ev

I st
19

O p e n
m o d e
e so
he i
d ev

in 1
w i
pt 0
ess

sed o
e I o pm
a g e) .
77 t

Sys
I was
me mo
deas
elope
984 a
n th
f a f
on an

n ESPR
ent of
As a

o set
tern I
ch an g

re st r
were s
d bef
nd sp e
e pro
unc t i o
inter

IT t
tec

re su
up

nter
ed f
uc tu
tab i
ore
cif i
cess
na I
na t i

00 I s
hn i qu
1 t of
ac t i

c on ne
rom f
ri n g
I i z ed
1982

c sta
of

p rof i
o n a I

may be
es f o r

s u c h
v i t i e s
ct i on .
i ve to
at t h e
, e v e n
. T h e
nda rd s
b e i n g

I e w a s
level

T h e p r e s e n t s t a g e of S o f t w a r e F a c t o r i e s a n d S o f t w a r e E n g i n e e r i n g

356

E n v i r o n m e n t s is to be c o m p a r e d w i t h the p r e - O S I s t a g e .

The w o r k of the S F I N X p r o j e c t is a i m i n g at on a p r a g m a t i c b a s i s
and on the b a s i s of the e x i s t i n g E S P R I T t o o l s to c a t e r f o r the
t r a n s m i s s i o n into f o r m a l i z e d w o r k on the S o f t w a r e F a c t o r y
c o n c e p t . T h i s will be c a r r i e d out by t a r g e t i n g a c o m m o n
i n t e g r a t i o n - o r i e n t e d t a x o n o m y on t o o l s used for s o f t w a r e
d e v e l o p m e n t and by a i m i n g at f o r m a l i z i n g the e v o l u t i o n a r y
i n c o r p o r a t i o n of a c o m p r e h e n s i v e set of s t a n d a r d i n t e r f a c e s and
m e t h o d s f o r i n t e g r a t i o n .

2 . 5 . S F I N X Acti v i t ies

The key a c t i v i t i e s of the p r o j e c t are Q u a l i f i c a t i o n , I n t e g r a t i o n ,
E x p e r i m e n t a t i o n and P r o m o t i o n .

Q u a l i f i c a t i o n will lead t h r o u g h a b e t t e r k n o w l e d g e of the
c o n s i d e r e d t o o l s to the d e f i n i t i o n of d i f f e r e n t p r o t o t y p e s of
s p e c i f i c i n s t a n c e s of S.F. w h i c h will be i m p l e m e n t e d and
e x p e r i m e n t e d . It leads a l s o to the i n t e g r a t i o n p r o c e s s in the
s e n s e t h a t it i d e n t i f i e s the t o o l ' s b e h a v i o u r at the s i t e s w i t h i n
a g i v e n i n s t a n c e of S.F. w h e r e i n t e g r a t i o n can t a k e p l a c e .

I n t e g r a t i o n will r e s u l t in the p h y s i c a l i m p l e m e n t a t i o n of
p r o t o t y p e s of may be i n c o m p l e t e i n s t a n c e s of S . F . . Q u a l i f i c a t i o n
and i n t e g r a t i o n a c t i v i t i e s are s u p p o r t e d by r u l e s , m e c h a n i s m s and
t o o l s e l a b o r a t e d d u r i n g the d e f i n i t i o n p h a s e a c c o r d i n g to the
S F I N X S o f t w a r e F a c t o r y m o d e l .

P r o m o t i o n , in the S F I N X s t r a t e g y , s u p p o r t s the d i s s e m i n a t i o n and
e x p l o i t a t i o n of the E S P R I T r e s u l t s as they are c o h e r e n t l y
o r g a n i z e d into p r o t o t y p e s of S o f t w a r e F a c t o r y . P r o m o t i o n a c t i o n s
i n c l u d e the p r o d u c t i o n of u s e r o r i e n t e d d o c u m e n t s and m a n u a l s ,
and c o m p u t e r a i d e d and v i d e o t r a i n i n g s u p p o r t s .

Experimentation within the p r o j e c t w i t h s e v e r a l S o f t w a r e F a c t o r y
p r o t o t y p e s will p r o v i d e the b a s i s f o r the c r e a t i o n of
d e m o n s t r a t i o n c e n t r e s .

The S F I N X p r o j e c t b u i l d s p r o t o t y p e s of S o f t w a r e F a c t o r i e s , and
t h u s p r o v i d e s a w o r k b e n c h for E x p e r i m e n t a t i o n w i t h the
d e v e l o p m e n t of S o f t w a r e F a c t o r i e s . A S F I N X S o f t w a r e F a c t o r y has a
P C T E k e r n e l and c o n s i s t s of t o o l s r e s u l t i n g f r o m the E S P R I T
programme .

The S F I N X E x p e r i m e n t a t i o n s h o u l d r e s u l t not only in e x t e n d e d
k n o w l e d g e on P C T E and the t o o l s in q u e s t i o n , but a l s o on S o f t w a r e
F a c t o r i e s and to s o m e u n d e r s t a n d i n g on c o m m o n r e q u i r e m e n t s to
S o f t w a r e F a c t o r i e s .

A c h i e v e m e n t of the S F I N X r e s u l t s l a r g e l y d e p e n d s on the
c o l l a b o r a t i o n w i t h o t h e r E S P R I T p r o j e c t s : s p e c i f i c a g r e e m e n t s
will be e s t a b l i s h e d in the f r a m e of a g e n e r a l c o l l a b o r a t i o n
s c h e m e .

R e s u l t s f r o m S F I N X q u a l i f i c a t i o n , i n t e g r a t i o n and p r o m o t i o n
a c t i v i t i e s , t o g e t h e r w i t h a s s i s t a n c e in p o r t i n g t o o l s on top of
P C T E , will c o n s t i t u t e a v a l u a b l e r e t u r n v a l u e f o r the
c o l l a b o r a t i n g p r o j e c t s and a d e c i s i v e step t o w a r d the

357

i n d u s t r i a l i z a t i o n of their r e s u l t s .

In s h o r t , the S F I N X p r o j e c t p r o v i d e s the s o f t w a r e p r o d u c t i o n
c o m m u n i t y with a P C T E based S o f t w a r e F a c t o r y work bench for
i n t e g r a t i o n and e x p e r i m e n t a t i o n .

Q y i i i f isii j_on

3. 1, O b j e c t i v e s

Qual ification in the S F I N X s t r a t e g y has two k i n d s of o b j e c t i v e s :

* c h a r a c t e r i z a t i o n of a tool in r e s p e c t of its u s e r s ,
d e s c r i b i n g what f u n c t i o n a l i t i e s it c o v e r s and how it
p r o v i d e s them; this kind of q u a l i f i c a t i o n is n e c e s s a r y in
o r d e r to locate the tool in its p e r t i n e n t instance of
S o f t w a r e F a c t o r y ;

* e v a l u a t i o n of a tool a c c o r d i n g to i n t e g r a t i o n m e t r i c s , in
r e s p e c t of its P C T E based o p e r a t i n g e n v i r o n m e n t s p e c i f y i n g
and q u a n t i f y i n g the way the tool uses it, in r e s p e c t of the
o t h e r t o o l s and in r e s p e c t of its u s e r s .

Q u a l i f i c a t i o n l e a d s , in S F I N X , to the i n t e g r a t i o n p r o c e s s , in the
s e n s e that it i d e n t i f i e s the t o o l ' s b e h a v i o u r at the sites w h e r e
i n t e g r a t i o n can take p l a c e .

Q u a l i f i c a t i o n is s u p p o r t e d
Q u a l i f i c a t i o n t o o l s .

by "Tool q u e s t i o n n a i r e " an d

3 . 2 . M e c h a n i s m s and t o o l s

The o b j e c t i v e of the "Tool q u e s t i o n n a i r e " is to p r o v i d e s t a n d a r d
c h a r a c t e r i z a t i o n of the tools and the a p p r o a c h is to d e t e r m i n e
how and w h e r e a tool f i t s into a S o f t w a r e F a c t o r y . T h u s , the tool
will be c h a r a c t e r i z e d a c c o r d i n g to the c o n c e p t s used in this
p a p e r , namely as life c y c l e , m e t h o d o l o g y and a p p l i c a t i o n a r e a .

Mere c o m b i n a t i o n of t o o l s d o e s not lead to a S o f t w a r e F a c t o r y . If
the a c t i v i t y of c o m b i n i n g t o o l s shall lead t o w a r d s a S o f t w a r e
F a c t o r y , two a s p e c t s of i n t e g r a t i o n are to be c o n s i d e r e d ,
t e c h n i c a l i n t e g r a t i o n and u n i f o r m i t y .
T e c h n i c a l i n t e g r a t i o n is i n v e s t i g a t e d t h r o u g h c h a r a c t e r i z a t i o n of
the tool i n t e r f a c i n g to its s u r r o u n d i n g e n v i r o n m e n t .
U n i f o r m i t y is i n v e s t i g a t e d t h r o u g h the d e t e r m i n a t i o n of the user
interface c h a r a c t e r i s t i c s of the t o o l .

Q u a l i f i c a t i o n tools include a P A R S E R and a T R A C E R , they p r o v i d e
help (s u p p o r t) for the a n a l y s i s and the e v a l u a t i o n of the way the
tool is using the o p e r a t i n g e n v i r o n m e n t .

The P A R S E R is doing a s t a t i c a n a l y s i s of the s o u r c e code of a
tool and p r o d u c e s a list s h o w i n g the used d e v i c e s of the
o p e r a t i n g e n v i r o n m e n t .

358

The T R A C E R

+ c a p t u r e s all or a user s p e c i f i e d p o r t i o n of the i n f o r m a t i o n
f l o w i n g b e t w e e n the tool and the o p e r a t i n g e n v i r o n m e n t
(PCTE)

* p r o v i d e s s t a t i s t i c i n f o r m a t i o n on the actual usage of P C T E
p r i m i t i v e s .

T h e s e i n f o r m a t i o n s are g a t h e r e d d u r i n g tool e x e c u t i o n and
s u b s e q u e n t l y e d i t e d .

3 . 3 . A c t i v i t i e s and R e s u l t s

Two levels of Q u a l i f i c a t i o n are c o n s i d e r e d :

+ Q u a l i f i c a t i o n based on p a p e r study

+ Q u a l i f i c a t i o n based on E x p e r i m e n t a t i o n (real use of a t o o l) .

Each of the S F I N X p a r t n e r s has in c h a r g e the Q u a l i f i c a t i o n of a
c e r t a i n n u m b e r of p r o j e c t s . P a p e r s t u d i e s d r i v e n by the "Tool
q u e s t i o n n a i r e " are p e r f o r m e d in p a r a l l e l on the d i f f e r e n t
p a r t n e r s ' s i t e s .
R e s u l t s of t his f i r s t level of Q u a l i f i c a t i o n are then g a t h e r e d
and a n a l y s e d in o r d e r to d e t e r m i n e , s t a r t i n g from w h a t can be
c o n s i d e r e d as a d i s o r d e r e d set of t o o l s , f u n c t i o n a l o r d e r e d
s u b s e t s , e v e n t u a l l y p a r t l y o v e r l a p p i n g , each of them
c o r r e s p o n d i n g to an i n c o m p l e t e i n s t a n t i a t i o n of S o f t w a r e F a c t o r y .
Th i s can also be c o n s i d e r e d as a way to d e t e r m i n e the f e a s i b i l i t y
of the i n t e g r a t i o n of the t o o l s w i t h i n a S o f t w a r e F a c t o r y from a
c o n c e p t u a l or f u n c t i o n a l p o i n t of v i e w .

A s e c o n d s t e p : Q u a l i f i c a t i o n
p e r f o r m e d in p a r a l l e l on the d
r e f i n e the a n s w e r s to the "Tool
the use of the Q u a l i f i c a t i o n too
s h o u l d allow to d e t e r m i n e the fe
from a t e c h n i c a l and e x t e r n a l <
s h o u l d also p r o v i d e i n f o r m a t i o n
w h i c h can be e x p e c t e d and help
me c h a n i s m s .
The r e s u l t s of this s e c o n d level
g a t h e r e d , a n a l y s e d all t o g e t h
l e v e l , they s h o u l d allow the ide
S o f t w a r e F a c t o r y i n s t a n t i a t i o n
r e a l i s e d w i t h i n S F I N X , s t a r t i n g
from c o l i a b o r a t i n g p r o j e c t s .

based on E x p e r i m e n t a t i o n still
i f f e r e n t p a r t n e r s ' s i t e s allow to
q u e s t i o n n a i r e " . It also implies
Is. R e s u l t s of such Q u a l i f i c a t i o n
a s i b i l i t y of a tool i n t e g r a t i o n
U s e r I n t e r f a c e) p o i n t of v i e w . It
about the level of i n t e g r a t i o n
to s e l e c t a p p r o p r i a t e i n t e g r a t i o n

of Q u a l i f i c a t i o n will then be
er w i t h the r e s u l t s of the f i r s t
n t i f i c a t i o n of the p r o t o t y p e s of
w h i c h could be (at least p a r t l y)

from the a v a i l a b l e tools coming

359

4- lQi§9n§ii2Q

4.1. Objectives

Integration within the SFINX strategy corresponds to the real
implementations of the prototypes of Software Factory identified
thanks to the results of the Qualification activity.

Integration includes two types of activities:

* porting to PCTE,

* integration on top of PCTE.

4.2. T_echnj_gues and mechanisms

may imply the use of one or mo
nding on the status of the con
role and location in the prototype,

eqration which is foreseen.

or more different
e considered tool,

depending on
mechanisms depending on the
depending on its role and I oca .
the level of integration which is foreseen

f relation which

These activities
L ._ : _ns (Jepe

U <i | / E •■ *J • • ! t j
 ftl

t h e l e v e l

The level of integration depends on the type
established between the tool and:

* the operating environment,

* the other tools outside the software life cycle
software life cycle,

* the external world: systems outside the Software
the Human Computer Interface (HCI) .

The integration techniques and mechanisms consist of:

* rules to be followed during the development of the tools

software support

i s

or in the

Factory,

A) tool for making known a
interfaces

layer making a tool independent of the
;e r

B) tool which supplies a layer making
appearence of the HCI to the user

C) PACT gateway toolkit

D) a systems analysis of the software development process

360

E) PACT metaschema

F) Remote procedure call abstraction

G) Interface Data Language and data conversion by stages

H) PACT tool composition

5- F_iQ§i n§§yii5 of. ibe BUSiSSi §Q<1 expected f oi iowing-u p_

Qualification of tools in regard of their relationship with the
operating environment, Evaluation of their integrabi Iity within
PCTE based Software Factories will provide the elementary inputs
for the elaboration of a guide for PCTE based tool developers.

The "Tool questionnaire" improved thanks to the results of its
use or more generally improved through the resluts of the
Qualification, Integration and Experimentation should serve as a
basis for the elaboration of guidelines for tool selection i.e.
guidelines for Software Factory builders helping them to select
and integrate the methods and tools the more appropriate to their
needs and requirements.

Therefore SFINX should contribute actively to the emergence of
PCTE based Software F a c t o r i e s . Such an action will be reinforced
by the creation of a structure intending to serve as a forum for
PCTE tool developers and more generally for PCTE based product
developers.

361

Project No. 125

THE USE OF THE OBJECT-ORIENTED APPROACH

IN THE G R A S P I N DB

S.Goutas, P.Soupos, C.Zaroliagis, D.Christodoulakis, D.Maritsas

Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece

Electronic Mail: dxri@dias.uucp

1. Introduction

One of the main trends that appeared after the software crisis in the early 70s, was
the development of software engineering environments (SEE). Pioneers in the field were
the GANDALF and MENTOR projects [5,9]. The promising results of both projects
led the CEC to include this area of research in the ESPRIT programme. One of the
first such projects in ESPRIT, was GRASPIN which aims at the construction of a
personal software development workstation dedicated to support formal specification
and stepwise implementation of large software systems.

The various tools of a SEE need a common representation of data in order to
cooperate and thus provide an integrated environment. This is achieved by using a
Software Engineering Database (SEDB). SEDBs must in general fulfill the following
requirements:

- there must be an appropriate database model capable of representing programs and
their semantics at the same time

- there must be a uniform and flexible query language in order to access the various
types of information stored, and finally

- the need for fast transactions with the database since we deal with interactive en
vironments.

The most important of the above is the data model which determines the abstract
view of data and defines a framework of concepts that can be used to represent programs,
program semantics and program development histories. For the best expression of the
above, the database model must provide a one-to-one mapping between whatever is
thought as an entity in a SEE and a database entity. Since a user's application in a SEE
may consist of several entities with a rather complex structure, conventional database
models (relational, network, hierarchical) are not appropriate because they are designed
to model mainly commercial data with lower complexity structure [1,7,11,13].

362

Existing SEDBs [5,6,8,9] handle two types of information: the program itself and
the semantic information about it. The standard approach for program storage and
retrieval has been their representation as abstract syntax trees (ASTs), while semantic
information is handled in a variety of ways. For example, in [5] program semantics is
handled using action routines (demons), and in [6] a hybrid storage system is proposed
where programs are stored as attributed ASTs and program semantics is organized
using relations. Although the former is quite powerful it does not actually organize and
store the semantic information in the database. The latter solves the above problem,
but an intergrated database model is not provided to avoid incompatibilities among the
various data structures used.

The aim of this paper is to present the GRASPIN DB, which is the SEDB of the
GRASPIN environment. For the development of the database the above requirements
and observations have been considered. The GRASPIN DB is object-oriented [18]. It
provides a powerful object-oriented interface both to the users and the tools of the
GRASPIN environment, while for the internal representation of programs and program
semantics it utilizes widely accepted concepts such as attributed ASTs and relations
[5,6,8,9|. The main advantage of the object-oriented interface is that it provides not only
a unified view on both programs and program semantics, but also supports information
hiding, data abstraction and inheritance. Furthermore, the object-oriented approach
meets most of the requirements discussed in [13] and provides a one-to-one mapping
between a database entity and a SEE entity.

The object-oriented interface is integrated with an object-oriented query language
providing methods for the retrieval and manipulation of objects. The query proces
sor developed for that purpose, serves the GRASPIN SEE as the only communica
tion/transaction mechanism between the environment and the database. Therefore, the
handling of database objects is strongly uniform and independent of their internal struc
ture. Basic feature of the query language is the ability to express queries that operate
on both ASTs and relations, thus providing a homogeneous mechanism for transfering
information from ASTs to relations.

This paper is organised as follows: section 2 presents an overview of the conseptual
architecture, section 3 the physical organisation, and section 4 the query language. All
figures are included in the Appendix.

363

2. The Data Model of the G R A S P I N DB

From a conceptual point of view, the GRASPIN DB is viewed as a collection of entities
that correspond to the several objects generated by the GRASPIN environment. These
entities are organized into classes that correspond to the entity-types whose instances
are the particular entities.

The class construct is the basic building construct of the GRASPIN DB. A class
specifies a particular data structure for the storage of any entity-type existing in the
GRASPIN environment (document, program, subprogram, diagram, etc.) and a set of
methods that manipulate this entity-type. In this sense a class is the data structure
which implements a set of class instances (objects) with a set of methods for handling the
objects of that particular class. The user cannot see the internal representation of a class,
he can only manipulate it by calling the associated methods. Objects of a particular
class which have further similar properties can be grouped in certain collections named
subclasses.

The other basic building construct in the GRASPIN DB is what is called in [12] as
system classes. These classes play an important role in the GRASPIN DB since they
are its basic building blocks. The whole database inherits the basic types and methods
from the system classes that constitute the basic kernel system. The most important
system classes are the so called TREE and RELATION. They are used for the internal
representation of programs and their semantic information, respectively. These system
classes contain the appropriate data structures and methods for the storage and retrieval
of ASTs and relations. Another system class is the class OBJECT which plays the
important role to be the superclass of all classes generated in the GRASPIN DB. Thus,
the data structures and methods provided either by itself or by the other system classes
are inherited to the other database classes.

Figure 1 of the Appendix shows an overview of the conceptual architecture of the
GRASPIN DB. As you can see, GRASPIN is a multilingual environment supporting a
certain number of Language Environments (LE). A LE is an interactive syntax-directed
SEE dedicated to a specific language; e.g. the syntax-directed SEE for Pascal programs
constitutes the Pascal LE. Each LE forms a database class, called LE-class. Such a
class is created by the Transformer which is a tool of the GRASPIN environment that
takes as input the specification of a LE in terms of the language description language
ASDL and creates the corresponding data structures into the database [4j. The main
role of the ASDL is to serve as the formalism which defines a complete translation
scheme for a LE [10], and therefore constitutes the Data Definition Language of the
GRASPIN DB. In other words, the GRASPIN DB schema is completely specified by
the ASDL description. The main parts of an ASDL description are: a) the description
of the grammar of the particular LE which is used for the storage of the ASTs, b)

364

the definition of relations for handling semantics and c) the definition of the semantic
actions, which operate on ASTs and relations and serve among others the information
transfer from ASTs to relations and vice-versa. Like every other language, ASDL has
some predefined types (e.g. number, string, list) and some predefined actions. As
denoted in [10], both of them can be imported from somewhere outside the ASDL. In
our case, the predefined types and actions in ASDL specifications of LEs are provided
by the database system classes.

To clarify the above, let us consider the ASDL module of figure 2 which describes a
simple fragment of a Pascal-like LE. Grammar rules, declared in the types part, give the
conceptual definition of the ASTs. The attributes part defines the attributes attached to
the symbols of the grammar and are used for the representation of semantic information
about programs as introduced in [14]. The relations part gives the definition of two
relations which are used for dataflow analysis purposes. Relation DEF interrelates
program variables and the corresponding program point where they are defined. In
a similar way, relation USE interrelates variables and the program point where they
are used. Finally, the actions part gives the definition of semantic actions operating
on ASTs and relations. Actions are described in a formalism equivalent to that of the
CDL2 language [15]. The action "repLand.eval" is based on some predefined actions
that will be explained in the next section. This action is invoked during editing of
a program to update the attributed AST and the corresponding relations. For more
details about ASDL the intrested user is refered to [10].

The transformer creates from the ASDL specification, the corresponding LE-class
with the following data structures: 1) a directed graph representing the grammar of
the LE and 2) a set of relational structures each one corresponding to a particular
relation which has been defined in the LE specification. Furthermore, the transformer
generates the LE-classs methods from the corresponding semantic actions. The data
structures and methods of the LE-classes are used by the tools of the environment to
create or manipulate the ASTs and the relations. Programs are stored as instances of
the corresponding LE-classes.

We conclude this section with some basic well-behaveness conditions required to
generate well-formed schemata from ASDL descriptions.

1. Each ASDL specification of a LE must define exactly one LE-class in the GRASPIN
DB.

2. Each predefined type of the ASDL must correspond to one and only one data type
defined in the system classes of the GRASPIN DB.

3. Each predefined action of the ASDL must correspond to one and only one primitive
method defined in the system classes of the GRASPIN DB.

365

3. The Internal Level of the G R A S P I N D B

In this section the internal level of the GRASPIN DB is presented. This part of the
database is crusial regarding efficiency, portability, consistency, e.t.c.

The internal level consists of three layers. The first is the database file management
system, the second layer deals with the data structures namely hierarchies and relations
and the third is the object interface.

3.1 The file managemen t system

For reasons of portability, restrictions on multi-user filling on some host mashines, con
sistency e.t.c, the GRASPIN DB is stored in one single file of the host, with random
access records of fixed size [16]. These records are called pages. The DB file system
deals with the internal management of this file. It is a hierarchical file system consisting
of file-directories and files. Directories and files alike are stored on disk in a set of pages.
The root of the whole file/directory structure within the DB file is the Master directory,
used for bootstrapping the DB, which contains an unordered set of pointers to every
directory.

3.2 Hierarchies

The abstract syntax of a LE determines the directory hierarchy as well as the inter
nal structure of the files that facilitate the storage of the ASTes. This hierarchy is
implemented by establishing pointers between directories. Thus the internal structure
of the DB is syntax directed. Every AST is a collection of two tables; a syntax table
that contains the context free structure of a document as a tree of nodes that contain
context dependent attributes and a symbol table that contains tokens and other lexemes
required for AST processing. Both tables are stored in separate files.

Every directory contains abstract syntax trees or subtrees of the same type. For
example there is a directory for the authors of a LE, a directory for the programs of
that author e.t.c, as you can see in figure 3 where the following grammar subset is used:

* environment ::= author[author]
* author ::= program(program]
* program ::= module[module],

module ::= stmtlist[stmtlist]

The asterisk denotes the creation of a directory for the subtree that corresponds
to the respective nonterminal. The root of the directory hierarchy of a LE is the Root
directory. The abstract syntax of a LE is also stored in the DB in a separate directory as
an asyclic graph. This graph is used by various syntax directed tools of the GRASPIN
environment.

366

3.3 Relations

As it has been mentioned, relations are aggregations of attributes over ASTes. In that
sense the relational structure is interwoven with the hierarchical one. Relations too
consist of two tables; a relation table, that holds tuples as sets of entries of equal size
and a symbol table, that contains the values of tuple fields.

As it has been mentioned in the previous section, relations are declared in the
ASDL description of the grammar of a LE and furthermore relations are associated to
grammar nonterminals. Thus relations are stored according to the nonterminals they
are associated with in the corresponding directory. Each table again occupies a separate
file.

Since the number of tuples of a relation is unknown and changes with time, the
size of the relation table changes dynamically according to the storage needs. For that
purpose a variation of linear hashing [17] has been used.

3.4 The Object Interface.

As mentioned in the introduction the GRASPIN database model is an object oriented
one. The database objects are either trees or relations. The tree objects' granularity is
denned in the grammar description that parameterises the database. Relation objects
on the other hand are single reltions. At the physical level the AST and the relations
that belong to a certain directory relations are objects. Therefore the DB objects are
not a meta structure of a high abstraction level of the database but they exist at the
physical level as well. This is an important point as far as efficiency is concerned.

The object interface is a set of primitives at the physical level for easier and more
efficient manipulation and maintainance of objects in main memory. The object interface
is the interface of the database low level structures to the object related database tools.
It basically constructs two data structures, that of the object and that of the object
table. The object is a simple structure that contains a pointer to its relation or tree,
it is created whenever a tree or relation is loaded in memory. All objecs are stored in
a memory area called the heap. An object can be accessed by a pointer from other
objects, when there are no references to an object this object is deallocated. The object
table associates pointers to objects with their real address in memory or disk.

367

4. The External Level of the G R A S P I N D B

The object oriented interface of the database is intergrated with an object-oriented query
language which, through its predefined methods, enables the retrieval and manipulation
of objects regardless their internal structure. Thus, the query language provides a ho
mogeneous mechanism for transfering information from ASTs to relations. Furthermore
the query language provides uniform access to the conceptual entities of the environ
ment, (eg. programs, users, dates etc.) since it is the only communication/transaction
mechanism between the database and the rest of the environment.

The query language has a message passing mechanism similar to the one introduced
in Smalltalk-80 [12] and a formalism similar to that of ASDL, in order to maintain
uniformity with the DDL of the database. Queries are defined and stored as methods
in a special class of the environment since they constitute the actual interface of the
database to the environment. The methods defined in the system classes constitute
the kernel of the query language. That is, they are the primitive queries that enable
the retrieval and the manipulation of the objects of some predefined data type. More
complicated queries may be defined invoking either the primitive queries or others that
have been defined previously.

The protocol of the system class TREE consists of methods that make possible the
creation and manipulation of an AST as well as the evaluation of its attributes. More
precisely, these methods can access a node or a part of it in an AST, traverse an AST,
evaluate its attributes, or replace subtrees of an AST with new subtrees, etc. The most
important of those methods are presented in figure 4. A derived or transient parameter
in a method denotes the receiver of a message, while inherited parameters denote the
arguments. To understand their use, consider the following example.

EXAMPLE 1: Assume that after editing a program, its AST is stored in the database
as an object T. Suppose now, that the user wants to replace a part of his program text
that corresponds to the subtree SI of T. The replacement of SI with the new subtree
S2 corresponding to the new text added, causes the incremental evaluation of attributes
which have been changed due to the replacement. This is done using the following query
which can be defined and stored as the body of a method in the database class.

(1) replace(T,Sl,S2)
(2) propagate(T,S2)

Line (1) of the above query means that object T receives the message "replace" by
invoking the corresponding method from the class TREE. This results to the replace-

368

merit of the subtree SI with the subtree S2. The replacement of the subtree-Si leads to
changes in the attribute values of T and thus reevaluation is needed. The propagation
of changes in attribute values is done in line (2) where the object T (after the tree
replacement) receives the message "propagate". This method corresponds to the well
known approach for incremental attribute evaluation, called change propagation. □

The protocol of the system class RELATION enables the manipulation of relations.
That is, it provides the basic relational operators (union, minus, cross, select, project),
allows the definition of a new relation as well as the updating of a new relation with
the value of a computed one. Figure 5 includes some methods of the class RELATION.
The following examples help to clarify their use.

EXAMPLE 2: Consider the relation DEF(Pp,Var), shown in figure 2, which associates
each variable of a program with the program point where it is defined. A possible query
of interest could be: "Find the program points where the variable A is defined in my
program". To answer the above query, we write:

select(DEF,(Var='A'),DEFl)
project(DEFl,Pp,DEF2)

The relation DEF1 receives the message "select" which selects those tuples from DEF
that meet the condition Var='A'. Consequently, the relation DEF2 is the receiver of the
message "project" which projects the relation DEF1 on Pp. □

Apart from the above queries, it is possible to express queries that operate on both
ASTs and relations. A useful kind of such queries is the one that aggregates the semantic
information from an AST and stores it to a certain relation. This is presented in the
following example.

EXAMPLE 3: Assume again the relation DEF(Pp,Var). The following query traverses
an AST and updates accordingly the relation DEF:

update(object>DEF>,object>T):
getroot(T,Root),
(visitnextnode(Next,Root), get(Next,P),

get(Next,V), maketuple(Tuple,P,V),
entertuple(DEF,Tuple), make(Root,Next),

369

□
5. Epilogue

The first prototype of the GRASPIN DB has been implemented on VAX 750/VMS in
CDL2 and LISP and has been ported to the Symbolics 36xx systems. The final prototype
of the GRASPIN DB as well as its integration with the other tools of the GRASPIN
environment will be achieved during the enhancement phase which has already started.

References

[l] Dadam P., et al., "A DBMS Prototype to Support Extended NF2 Relations: An
Integrated View on Flat Tables and Hierarchies", Proceedings of SIGMOD 86, page
356.
Zaroliagis C., Soupos P., Goutas S., Christodoulakis D., "The GRASPIN DB A
Syntax Directed, Language Independent Software Engineering Database", Proceed

ings of the 1986 International Workshop on ObjectOriented Systems, page 235,
Pacific Grove, CA, Sept 86.
Soupos P., Goutas S., Christodoulakis D., Zaroliagis C., "The GRASPIN DB A
Software Development Environment Database", ACM SEN, Vol.12, N.l, Jan 87.
GRASPIN Project Team, "Architecture of the Final GRASPIN Workstation Pro

totype", Technical Paper GRA 80/2, October 1986.
Notkin D. et al., Special Issue on the GANDALF Project, In the Journal of Systems
and Software, vol.5, No.2, NorthHolland, 1985.
Horwitz S., Teitelbaum T., "Relations and Attributes: A Symbiotic Basis for Editing
Environments", Proc. of the SIGPLAN 85 Symp. on lang. issues in prog, environ

ments, Seattle, WA, pp. 93106, June 85.
Linton M.A., "Implementing relational views of programs", Proc. of the ACM SIG

SOFT/SIGPLAN software eng. symp. on practical sofware development environ

ments, Pittsburgh, Penn., April 1984.
Stahl M., et al., "Documentation for the CDL2 Lab", November 1385, Report No
72, Katholieke Universiteit Nijmegen.
DonzeauGouge V., et al., "Programming Environment Based on Structure Editors:
The Mentor Experience", June 1980, Workshop of Programming Environments,
Ridgefield, Ct.

[10| ChristNeumann M.L., et al., "ASDLA Specification Language for SyntaxDirected
Environments", GRASPIN Technical paper GMD16/5, February 1986.

[11] Dittrich K. R., "ObjectOriented Database Systems: The Notion and the Issues",
Proceedings of the 1986 International Workshop on ObjectOriented Systems, page
2, Pacific Grove, CA, Sept 86.

370

[12] Goldberg A., Robson D., "Smalltalk-80: The Language and its Implementation",
Addison-Wesley, 1983.

[13] Imperial Software Technology, "Requirements for Software Engineering
Databases", Final Report, June 1983.

[14] Knuth D., "Semantics of Context-Free Languages", Mathematical Systems Theory,
Vol.2, No.2, Springer-Verlag, New York, 1968.

[15| Koster C.H.A., "Draft on a Textbook on CDL2", Informatics Dept., Nijmegen Uni
versity, The Netherlands, 1983.

[16] Dehottay J.P., "Preliminary description of SEEK's Syntax Oriented Database",
Nov. 1985.

[17] Litwin W., "Linear hashing: A new tool for file and table addresing", I.N.R.I.A.
[18| Christodoulakis D., Soupos P., Zaroliagis C , "The Implementation of a Software

Engineering Database Using Desk-size Computing Resources", to appear in the
Proceedings of EUROMICRO 87, 13th Symposium on Microprocessing and Micro
programming, Portsmouth, England, Sept 87.

371

Appendix A
Figures

Asdl
specifications
of LE

SYSTEM CLASSES

.RELATION j [T R E E ;

Fig.l

372

Module Pascal-like LE fragment.

types .

assignment
expr

ariogexpr

op
unop
id
number

a t t r i bu t e s .

name : id —
ppl : id >
pp2 : assignm

id,expr.
number;
id;
expr;
ariogexpr.
expr,op,expr;
unop,expr.

* Sstring.
Snum.
lent > $num

relations.

DEF($num>Pp,$string>Var).
USE($num>Pp,$string>Var).

act ions.

repl.and_eval(object>T>.object>Tl,object>T2) :
$replace(T,tl,T2), $propagate(T,T2),
$update(DEF,T), $update(USE,T).

endmodule.

Fig. 2

The attribute name is on the left of the semicolon, while the associated grammar
symbol is on the right. The attribute type is denoted on the right of the symbol >
, while the dollar sign ($) means that the corresponding attribute type or action
is imported. The notation >x means that x is an inherited (input) parameter, x>
means that x is a derived (output) parameter and >x> means that x is a transient
(inhereted and derived) parameter.

373

MASTER DIRECTORY

syntax
table

I relation
table

symbol
table

Fig. 3

Methods
getroot(object>T,R>object)

visitnextnode(N>object,object>R)

replace(object>T>,object>Tl,
object>T2)

propagate(object>T>,object>S)

evaluate(object>T>)

Semantics
finds the root of an AST T and

returns its pointer to R
visits the next node of a node
R and returns its pointer to N
replaces the subtree of the re

ceiver labeled T l with the sub
tree labeled T2

makes the propagation of attri
bute values at node S of an AST

specified by the receiver
evaluates the attributes of an
AST specified by the receiver

Fig.4 Protocol of the system class TREE

74

Methods
maketuple(T>object , object > a l ,

enter tuple(object>R>,
object>T)

union(object>Rl,object>R2,
R>object)

minus(object>Rl ,object>R2,
R>object)

cross(object>Rl,object >R2,
R>object)

select (object>Rl,(cond) ,
R>object)

project (object >R1,object > A1,

.. . . ,object>An, R>object)

Semantics
creates a tuple T (receiver)

consisiting of values specified
by the objects al , ,an

enters the tuple T to the rece
iver specified by the relation R
creates a new relation R which

is the receiver of the message
union of the relations R1,R2

creates a new relation R which
is the receiver of the message
minus of the relations R1,R2

creates a new relation R which
is the receiver of the message

cross product of R1,R2
creates a new relation R which

is the receiver of the message
select tha t select those tuples

from R l which meet the condition
creates a new relation R which

is the receiver of the message
project that projects relation

R on at t r ibutes Al, . . . ,An

Fig.5 Protocol of the system class RELATION

Methods
get(object>N,>P>object)

make(X>object,object>Y)

Semantics
returns the value of a part of

a node N specified by the rece
iver P, to the receiver

makes the value of object Y to
become the value of object X

Fig.6 Protocol of the system class OBJECT

375

P r o j e c t No. 401

ASPIS: A KNOWLEDGE-BASED ENVIRONMENT FOR SOFTWARE
DEVELOPMENT.

F. Pietri, P. P. Puncello, P. Torrigiani
(Tecsiel S.p.A., V. S. Maria, 19, 56100 PISA - ITALY)

G. Casale, M. Degli Innocenti
(Olivetti S.p.A., D.O.R., Via Palestro, 30, 56100 PISA - ITALY)

G. Ferrari, G. Pacini, F. Turini
(Dipartimento di Informatica, Corso Italia, 40, 56100 PISA - ITALY)

This paper gives an overview of the ESPRIT project 401, which aims at building a
knowledge-based software development environment. Its main novelty is the
exploitation of AI techniques in order to build tools called Assistants and to define an
executable logic-based specification language. The current status of the project is
described

0. Introduction

The main goal of the ASPIS project is to exploit AI techniques in order to build a software
development environment supporting a more flexible and effective life cycle characterized by smooth
transitions between user needs, specification, and design.

The ASPIS environment encompasses a set of tools specifically addressing tasks which are in the
earliest phases of software life cycle. Indeed, those phases (requirements analysis and design) are
very knowledge-intensive and require the expertise of skilled practitioners. The processes which
convert requirements into a specification and then into a detailed design, are often informal, labor
intensive and largely undocumented. It is elusive with the state-of-the-art techniques to plan to fully
automate them. However, Artificial Intelligence techniques can contribute to the improvement of the
quality and the productivity in those phases in two ways:

• they can provide techniques for building tools which augment the productivity of traditional
software construction [1].

• they can provide new and higher level programming paradigms (e.g. declarative, i.e. rule based,
programming), thus simplifying the whole job of building programs [2].

An evolutionary life cycle model has been adopted in ASPIS with the purpose of bridging the gap
between the Analysis and Design phases. Suitable languages and methods have been established for
both Analysis and Design and some application areas have been investigated with respect to these two
stages (Access Control Systems, Business System).

376

The most novel aspects of the project are the development of knowledge-based tools called Assistants
and the definition of a logic-based formalism, called Reasoning Support Logic, RSLogic for short,
for the specifications. Such specifications may be executed by a Prototyper Assistant in order to
verify immediately the properties of the system at hand and another assistant, the Reuse Assistant,
will be built to help the developer in reusing old specifications and designs. These two assistants are
called Support Assistants. The Knowledge-based Assistants are used directly by the developer when
accomplishing the Analysis or the Design of a particular application in a given methodology. So they
embody both knowledge about the method (Methodical Knowledge) and the knowledge about the
application area (Domain Knowledge). The Figure 1 shows the four Assistants and their logical
interconnections.

Analysis
Assistant

Methodical
Knowledge

Domain
Knowledge

User interface

Reuse
Assistant

Software ^
Data-Base rz Proto typer

Assistant

Design
Assistant

Methodical
Knowledge

Domain
Knowledge

User interface

Figure 1

The paper will give an overview of the project and will mainly focus on the functionalities of the
Analysis Assistant [3] along with examples and the techniques used for its development and on the
formal description of RSLogic and its animation environment. [4].

1. History and Goals of the Projects

The project is split into two phases: a one year research phase (April 85 - March 86) and three years
for development (April 86 - March 89). To date we have put our efforts in the definition of the
ASPIS Software Life Cycle (SLC) and the formal specification language, in the investigation of
Assistants' features and capabilities and in the design of the Knowledge-based Assistants. Currently

377

we are working on the development of a prototype which includes the Analysis and the Design
Assistants along with very simple facilities for transforming the results of the former into the input of
the latter. A knowledge representation system for this prototype has been built on top of Prolog
exploiting meta-interpretation. This tool provide the possibility of defining semantic networks where
the nodes can have also production systems as attributes [5]. Also a Prototyper Assistant, which
allow to execute (or animate) the formal specifications, is under development

For the final system a multi-layered expert system shell, which provides frame-like facilities and is
implemented in Lisp, is under customization for the Aspis purposes [6] in order to offer a suitable
interface with Prolog for prototyping. New versions of the Knowledge-based Assistants will be built
along with the Reuse Assistant and a graphical User Interface. All the various tools will be suitably
integrated in a development environment, which covers the SLC from the customer's needs to a
detailed design.

2. An evolutionary life cycle model

The traditional approach to software development includes the definition of different phases or steps
in a life cycle model, the definition of methodologies for each phase and the development of
supporting tools, sometimes integrated in a sophisticated environment.

During the development process, different representations of a software system are produced in the
various stages from particular viewpoints and with different purposes. Each representation must be
complete and consistent with the others. For this purpose, a lot of research has been accomplished in
the last years in the field of the formal specification languages [7,8,9].

The several existing life cycle models differ over the granularity of the stages, but most of them
include the traditional phases of requirements analysis, design, implementation, test and maintenance.
In all the SLC models the major bottleneck in the development process is the gap between
specification and design. Moreover, Analysis and Design are now universally recognized to be the
most crucial phases in the SLC, as the errors made in those phases have very heavy consequences on
the successive steps of the software development. We have concentrated our focus on those phases
and have tried to make such gap a smooth transition. We have picked and partially modified two
different methods for the Analysis and the Design respectively and we have defined a way to move
from one to the other stage.

The Analysis method is based on the DAFNE methodology [10], which comprises several stages
and intermediate results and uses the Structured Analysis (SA) language [11,12,13] for the analysis
of functions and Entity-Relationship schema [14] for the analysis of data. The SA language is a
structured but informal language which allows to describe a system in terms of functions (boxes) and
data (arrows connecting boxes). In order to have the possibility of testing the correctness and the
consistency of the specifications, a formalism to augment SA diagrams with semantic annotations has
been defined. This formalism is called Reasoning Support Logic (RSLogic) [15,16] and allows to
specify properties of a system via a set of axioms in a logic based language. Thus the ASPIS
specification language is a specification language in which the SA graphic features are used for

1 DAFNE is « trademark of Iulsiel S.p.A. and C.N.R.

378

representing the structural aspects while RSLogic takes care of the semantic issues. RSLogic can be
considered both as a step towards a different way of building software, if one thinks that the
execution environment can become so powerful that the specifications become the program, and as a
way of enhancing the classical software life cycle with the possibility of performing rapid
prototyping.
Indeed, rapid prototyping has been proposed as a powerful way of improving software productivity.
The possibility of building a quick prototype, starting from the user requirements, allows to avoid the
need of backtracking to the first phases of the life cycle, when the final software is tested.Our idea is
that the prototype, i.e. the executable specifications of a software system, is defined to be a
knowledge base, i.e. a collection of facts and rules describing the system. This approach presents
two advantages:

1. The prototype is defined in a completely declarative way

2. The notion of executability of the prototype is generalized, in that a knowledge base can be
queried in many different ways.

The Design has been split in design in the large and design in the small phases. The work to date has
been concentrated on the design in the large. A language to describe a system in terms of processes
and events [17] has been picked and conveniently modified in order to deal with features of real-time
systems and the top-down approach has been adopted for the moment [18]. Other design methods
might be adopted depending on the class of applications to be dealt

Usually the designer needs to properly retrieve the specifications in order to simply read them or also
to ask the analyst to modify them whenever he/she discovers they are not consistent. Furthermore,
the customer's needs (and consequently the specifications) may change, and the design must be
modified accordingly. The ASPIS SLC allows interaction between those two stages and comprises a
process, called Synthesis, which can be seen as the gathering of information from the Analysis
making it available in a suitable form to the Design phase and allowing an effective two-way
communication between the analyst and the designer [19]. It is a continuous process as the designer
needs to have the right information in several steps and to give feedback to the analyst. The Synthesis
process includes also consistency checks between Analysis and Design on the basis of heuristics
related to the application at hand. The Aspis development cycle is shown in figure 2.

379

I
Analysis of

Requirements

n "
Specifications Request \

, . of change

Specificatic

Synthesis

n
ins Request ^S

, r of change </^

Design

1
Design documents

Implementation

Prototyping

Figure 2

3. The Knowledge-based Assistants

Each of the Knowledge-Based Assistants will include knowledge about both the method the
developer has to follow in the Analysis or Design stages and the particular application area of the
system to be developed. We call the former Methodical Knowledge and the latter Domain
Knowledge. In such way the Assistants can provide the user with general suggestions and checks
about the various steps of the methods, the criteria to be observed in each step and the heuristics
useful to observe such criteria. Furthermore, more specific suggestions and checks related to the
Analysis and the Design of systems in a given application area will be provided. The knowledge
based assistants will give advice about the decision-making process, performing automatically some
transformations (whenever possible), supporting the development and the retrieval of project
documents, keeping track of the decisions for explanation purposes. A description of the Analysis
Assistant in terms of its capabilities, its knowledge organization and representation is shown in the
following sections.

3.1. The Analysis Assistant

In this section we try to explain what are going to be the main features of the Analysis Assistant. We
describe them on the basis of the exploited kinds of knowledge. The Knowledge Base of the
Analysis Assistant, as mentioned above, comprises mainly two kinds of knowledge: Methodical

380

Knowledge and Domain Knowledge. Within these two major subsets of knowledge we have
established further classifications with the purpose of establishing its organization. The Methodical
Knowledge consists of the rigorous laws of the DAFNE method and some "good criteria" or "well-
established empirical expertise", independent of a particular application, which allow us to satisfy the
method's laws. On the other hand, the current Domain Knowledge contains "well-established
empirical expertise" to adhere to the method in a particular application area.

The Analysis Assistant will substantially provide the user with suggestions and checks related to the
Analysis documents which are the basis of the two-way communication between the Assistant and
the user. The suggestions and checks provided by the Analysis Assistant, if accepted by the user,
will be transformed into editing operations on the Analysis documents.

3.1.1. Exploiting Methodical Knowledge.

A classification within the Methodical Knowledge is the following:

• Structure of the method;
• Criteria of the method;
• Domain-independent heuristics.

The structure of the method has to be represented in the Assistant in order to give to the user the
possibility of asking about the various links connecting the stages of the Analysis method. The user
following the method will always have the way of knowing the next method stage and the specific
steps composing a stage. In other words the user must always have the chance of asking "What have
I to do now?" or "What is the way for accomplishing this Analysis stage?".

When the user is carrying out a stage of the method, the Assistant will supply him/her with the
criteria to be observed in the accomplishment of that stage. Actually these criteria are part of the
DAFNE method, but they deal with the contents of the documents. Indeed their exact purpose is to
tell the user what he/she has to describe in each single stage, from which viewpoint and which is the
proper level of detail in order to have optimal (as complete and consistent as possible) specifications.
Besides providing explicitly the criteria to the user, the Assistant will be able to apply them in order to
verify the Methodical consistency among the already developed Analysis documents.

In some cases it is possible to have heuristics, coming from the expertise gained in following the
Analysis method, which allow the analyst to satisfy the criteria of the method. The heuristics will
allow a non-expert analyst to behave as an expert with respect to the development of Analysis
documents.

3.1.2. Exploiting Domain Knowledge.

The heuristics mentioned in the previous section (those independent of the application area) are
certainly not the only source of all the advice the Assistant is going to provide to the analyst. Indeed,
the most useful heuristics are seldom independent of the application area. Usually they are more

381

effective if related to the concepts of a Domain [20]. For example, it is surely more convenient to
have some alternative functional decomposition of the system at hand rather than general domain-
independent criteria to do it. Even more useful is to have alternative decomposition on the basis of
some parameters (e.g. non functional requirements). Functionally speaking, the Domain Knowledge
can be viewed as an enhancement and a specialization of the Methodical Knowledge heuristics
described in the previous section.

Furthermore, by exploiting the Domain Knowledge the Analysis Assistant will be able to verify, in
some cases, the adequacy of the current Analysis documents to some general concepts of the
Domain. Domain adequacy checks aim at advising the Analyst that the requirements he/she is
specifying are not completely in accordance with the Domain criteria included in the Assistant's
Knowledge Base.

Another functionality aiming at a complete exploitation of Domain Knowledge is the possibility of
establishing synonyms. When the user is creating the Analysis documents representing the
requirements of his system, he may like (or be forced) to use names different from the ones known
by the Assistant. Leaving to the Analyst the chance of fixing synonyms between his own labels and
the Assistant's ones has the effect of having user's labels connected with the right Domain concepts.
In such way the Analyst will be able to access Domain information through the use of his own labels.

3.1.3. Editing operations.

The main goal of the current Analysis Assistant prototype is not to supply the user with sophisticated
editing facilities for building the various Analysis documents, as they can suitably be supplied by
syntax oriented tools. However it is unavoidable to provide some editing operations which will be
invoked automatically by the Analysis Assistant as consequence of the dialogue with the user when
he/she accepts certain Assistant's advice. Some documents can even be automatically built on the
basis of other documents. So a tight integration between the proper Assistant and an editor
component is necessary, in such a way that they share the same internal representation of the
Analysis documents.

The ESPRIT Project GRASPIN has developed a sophisticated syntax and semantics driven editor
dealing also with graphical languages [21] and an integration of Aspis with such tool might be a goal
for the future work.

3.2. Knowledge organization in the Analysis Assistant

As we have pointed out in the previous section, while Methodical Knowledge refers mainly to the
knowledge about the DAFNE laws and stages to be developed, Domain Knowledge concerns about
specific application fields. The main goal the Analysis Assistant has to achieve, from the user point of
view, is to provide domain-dependent suggestions and advice while he/she is carrying out a particular
stage of the method. So, the knowledge has to be used and organized at two different levels of
abstraction in such a way that Domain Knowledge is seen through Methodical Knowledge.

382

A domain rule or fact will be included and exploited by the Analysis Assistant only in relation to a
specific methodical step.

Semantic networks with production systems attached as attributes to nodes are a suitable solution for
representing all the needed knowledge. The classes of the semantic network are going to describe the
abstract form of the set of objects and define the type of their attributes. Classes can be structured in a
hierarchical way by means of the IS_A relation. Production systems, in general, are used for
representing the procedural knowledge (e.g. the way of checking whether domain or methodical
criteria are satisfied).

3.2.1. Representing the documents.

Every S A Model is a tree of diagrams each of which containing boxes and arrows. The representation
of a Model, by using Semantic Networks, is quite straightforward. Each component of the Model
(diagrams), and each component of diagrams (boxes and arrows), are represented as a separate
objects. Such objects will thus be properly linked together in order to reflect the SA Model structure.
The classes defining the shape of the objects and the names of the links among them are shown in
figure 3.

The tree structure among diagrams is obtained by means of the "refinement" and "boxlist" links
which allow one to state that a box is both a component of a diagram ("boxlist") and the parent of
another diagram (its refinement).

Figure 3

383

In the overall system, S A Models are defined as a sort of abstract data type. The set of operations and
rules for manipulating all the SA diagrams included in a model, is included in the SA Model class
(such operations are just the editing facilities we have mentioned in the previous chapter). The editing
operations will be made available where necessary, by exploiting the network inheritance features.
Every methodical stage whose purpose is to create an S A model will be connected by an IS-A link to
the SA-Model class and will inherit all the related operations.

3.2.2. Representing Methodical and Domain Knowledge.

In order to represent Methodical and Domain Knowledge using the semantic network, we are going
to have a class in the network for each stage of the Analysis method and each concept of the Domain
at hand. Each of these classes can have production systems as attributes. Such production systems,
which are going to represent the most important chunks of knowledge that a Methodical stage or
Domain concept can have, may be activated either by the user or automatically by the Assistant itself.

The classes representing method stages are linked together on the basis of the sequence of the method
steps and the ones representing domain on the basis of the Domain relations occurring among
Domain concepts. Moreover, as we have commented in the previous section, Domain Knowledge
can be considered as a specialization of Methodical Knowledge. So, the classes representing Domain
Knowledge will be connected via IS_A links to the related Methodical Knowledge classes. Figure 4
shows the network representing a subset of the method stages with an example of a Domain class that
is a specialization (IS_A) of the Model_of_the_Environment class.

384

Figure 4

The Analysis Assistant, having the purpose of exploiting the knowledge contained in these classes,
will thus navigate through the method classes according to their links focussing at each moment on
one specific class representing a method step. When the "focus" is on a given method class, the
Analysis Assistant will provide the user with a list of predefined operations associated to that class,
which in general include the possibility of obtaining suggestions or consistency checks and also to
exploit the knowledge contained in the related domain class. Such Domain Knowledge can be
exploited by focussing the Domain classes which are the specialization (IS_A link) of the current
method step.

From the user point of view, indeed, the inheritance mechanism and the focus movement will be
transparent and he will only see a greater set of feasible operations and requests when he requires to
exploit also the Domain Knowledge. So there will be two major levels of abstraction in the user

385

interaction and the analyst will have the possibility of deciding the proper level and the kind
(Methodical and/or Domain) of help he needs.

4. RSLogic: The Rationale

The specification of a system has to take into account several issues: typically, the kind of data
accepted, manipulated and produced by the system and the operations on those data. Indeed the
specifications must point out the structural and the functional aspects of the system. RSlogic provides
a set of primitives for dealing with the above issues. Moreover, the specifications have to deal with
dynamic situations. In fact, there is a notion of passing of time: certain activities of the system under
specification occur within specific time constraints, others occur if some time constraints are not
satisfied. Dealing with the time issues introduces new problems.
In the literature one can find a lot of methods for dealing with the time issues. Typically most of these
methods are based on temporal logic [22,23]. In fact the ability of temporal logic of expressing the
relationships among the states of the system has a simple temporal interpretation: states have to be
understood as points of time and the relation among states is the causal/temporal dependency
relation. Using the temporal operators one can specify properties in terms of the states of the system,
properties that sound like eventually or necessary and so on, without considering time explicitly.
We believe that the simple temporal interpretation described above is not powerful enough to express
some timing constraints. The crucial point is that we do not only want to specify problems in which
events eventually happen, but also problems in which events must happen in some fixed time.
Moreover time constraints are closely related to the functionalities to specify, since they have start and
end, and the time passing is to be modeled together with the functionality. In order to achieve these
goals RSLogic has an explicit notion of time; from this point of view it is closely related to
[24,25,26] see [27] for a review.

The basic concept to understand is the concept of position. Positions denote places of the specified
system: a system is specified by describing its positions. Because we want to state the rules for
specifying how data flow in the system under specification dealing with both the structural,
functional and timing constraints, we associate to a single position its data and the time the position
has held its data. The above features lead to the concept of event. An event is a triples <q, v, t>,
where q is a position, v is a data and t a time stamp. A triple <q, v, t> denotes that the position q
holds the data v at time t. A state is a set of events, called event set, with a state actual time. Time
stamps in the event set can be either less or greater than the actual time: a time stamp t less than the
actual time means that the value v reached the position q at time t; a time stamp greater than the actual
time means that the value v will reach q at time t In other words, the state is to be understood as the
observation of the active positions i.e. the positions which either hold data or are going to hold data
at a given time. States are then organized in histories. A history is a sequence of states possible for
the system under specification. The set of valid histories, i.e. the sequences of states that can be
effectively stepped, is called the set of Viable Histories. The notion of viability is both a structural
and a semantic notion because it reflects the structure of the system, but, at the same time, it depends
on the properties of the data. For instance, a sequence of positions may be viable for some data and
not for others. In RSLogic the collection of viable histories is defined by a set of axioms, called
Transition Rules. A transition rule states that the presence of data, with suitable properties, in some
positions can produce other data in other positions, within given intervals of time. The transition

386

rules of RSLogic describe the ways a state of the system may change. In this way the set of possible
viable histories is defined. Thus the behaviour of the system is understood as a legal sequence of
states, namely a viable history.

The amalgamation between SA and RSLogic is straightforward. RSLogic positions correspond to
positions in the diagram. Typical examples of positions are input and output arrows of RSLogic. As
a consequence, Viable Histories correspond to paths in the diagram.

4.1 RSLogic Syntax

Specifications involve the description of the data accepted, manipulated and produced by the system.
In our logical setting, this fact is reflected in the syntax by the introduction of a Data Alphabet and
expressions.

Data Constants (c)
Data Variables (x)
Data Functions (f)
Data Expressions (exp)

exp::= c I x I f(expj ,expn) I
if Pl(expi,..., expn),..... pn(expi,..., expjj) then exp else exp

In order to describe the temporal features of the system at hand, a time alphabet and expressions are
introduced.

Time Constants (T)
Time Variables (t)
Time Expressions (texp)

texp::= T111 texpi + texp2 I texpj - texp2

Now we introduce the distinguishing feature of our logical formalism: the histories.

Position Constants
Event
Event Set
Event Set Variables
State
History Variables
Histories

e ::= <q, exp, texp>
es ::= {ei, ,ef} I s I (e
st ::= <es, texp>
hs : :=hls t lh 1 l lh 2

(q)
(e)
(es)
(s)
(st)
(h)
(hs)

1. .ef} u s

387

where II denotes the concatenation of histories.

Finally, transition rules, data axioms and queries are used for the specification and
prototyping the system.

Dam Atomic Formulae (daf)
Time Atomic Formulae (taf)
Viable History Facts (hf)
Data Rules (dr)
Transition rules (Trs)
Queries (qr)

daf ::= p(expj, ,expn)
taf ::= exp] = texp2 I texpi > texp2 I texpi < texp2
hf::=Viab(hs)
dr ::= daf :- dafj, ,dafn

Trs ::= From <qi,expi,texpi>, ,<qn,expn,texpn>
and not-occur q'i,....,q'r

with dafi,...,dafh,tafi,....,tafjc

Cons q"i, ,q"v

Produce <q"'i,exp"'i,texp"'i>, ,<q'"m,exp'"m,texp"'m>

qr ::= Viab(hs) with dafi,...,dafn,tafi, tafm

4.2 RSLogic Specifications

Data rules allow to state the properties of data involved in the system. Time rules state relations
among the time constants used in the system description. They have exactly the form of Prolog rules
and facts. The time stamps in the Produce part are assumed as relative to the time of application of
the rule. For instance:

From <q,v,t> Produce <q',f(v),T>

means that a new value f(v) will be produced in q' at time t+T.

The idea is that transitions transform states into states and, consequently, develop the histories. Any
transition, in general, adds new data in some new positions and consumes data in some old
positions. The informal meaning of a transition rule is the following

if data, with given properties are present in some given positions, and other given positions do not
hold data, then new data are computed in other given positions, each in a given (possibly different)
interval of time.

388

The application of a transition rule produces an event set, in which different events may have
different time stamps. Since time stamps may be different, it is not immediate to determine the time
stamp for an event set as a whole and the application time for a transition rule. The time stamp of a
whole event set, whose computation is explained below, is directly associated to it in order to form a
state.

It is quite natural to assign to a transition rule application the time at which all the conditions for the
rule become verified. If the rule does not require the absence of data, by not-occur specifications,
the situation is straightforward: the time assigned to a transition in a state s is the maximun time in
the subset of events (i.e. positions) necessary for the transition. If the rule requires the absence of
data in some given positions, the matter is a little less obvious to treat. Indeed , it is possible that the
rule is triggered by the disappearence of some data as effect of a previous transition. But the time of
disappearence of data is not registered in the actual event set. This is the principal motivation for the
explicit occurrence of a time stamp as time of the whole state.The basic idea is that the time assigned
to the application of a transition rule, in a given state, is the maximum time of the subset of the
necessary events of the state and the time stamp of the state itself. The same time stamp is assigned
to the produced state.

Notice that, the time assigned to a state is the time in which the generating transition fires and not the
time in which the effects of the transition occurr. Usually a state contains events with a time stamp
greater than the time stamp of the state itself. Consider the following example. The inputs of a safety
system (e.g. for a nuclear reactor) are a set of safe ranges that must be observed by data coming
from the reactor itself (core data). Suppose that, whenever core data are out of the safety range a red
signal is immediately set on and some more detailed alarm data are output after, say, a few seconds.

core-data

<

safe-range

r

NUCLEAR REACTOR

SAFETY SYSTEM

red-signal

alarm-data

Consider the following history fragment:

<{<safe-range,vo,To>,<core-data,v j ,Ta>} ,T\> II
<{<safe-range,vo,To>,<red-signal,on,Ta>,<alarm-data,d,T2>),Ta>.

The presence of data v\ out of safety ranges in position core-data has produced the addition of the
two events <red-signal,on,Ta> and <alarm-data.d,T2> with T2>Ta. The time assigned to the new

389

state is Ta , since this is the time stamp of the event that caused the transition. The event <alarm-
data,d,T2> may be thought of as a future event, which is at now precisely foreseeable.

5. The Support Assistant

The Support Assistant (Prototyper and the Reuse) are characterized by the fact that they depend on
the availability of formal specifications and designs. Their functionalities are requested by the user
during a session with a Knowledge-based Assistant whenever necessary, so they have to be tightly
connected with the other assistants.

The Prototyper Assistant is in charge of executing the formal specifications, namely the RSL
annotations of the S A diagrams, in order to animate the system under development and to provide the
basis for the various consistency checks. Currently a tool which executes the RSL transition rules is
under development and its integration with the Analysis Assistant is planned for the first ASPIS
prototype.

The animation environment for RSLogic has been built on top of Prolog for obvious reasons.
Indeed, part of the specifications, e.g. preconditions are Prolog goals. The animation environment
consists of a Translator, an Executor and an Interface.
The translator takes the RSLogic transition axioms, the function definitions and the queries as inputs
and yields a collection of Prolog clauses which are interpreted by the Executor. The generated
clauses contain calls to predicates defined in the Executor, e.g. the predicates which implement the
unification algorithm over sets and the predicates necessary for the execution of functions. Indeed,
Prolog does not allow the use of functions and it performs only syntactic unification
One of the main components of the Executor is the conflict resolution module. This module
determines the axiom which can be applied in the current step, performing some computations of
temporal relations over time symbolic constants. Such a computation can require interaction with the
user who is, possibly, asked to choose among different alternatives.

The verification of the preconditions occurring in the transition axioms is left to the underlying Prolog
executor. The interactions between the Translator and the Executor are made transparent to the user by
the Interface module. The Interface allows the user to interact with the system via the use of menus.

The Reuse of old specifications, designs and code on large scale and in a structured way is another
important field of current research. Mainly two problems will be tackled in the future work on the
Reuse Assistant: to access to the various components and to verify semantically that they are the right
objects. For the first task an informal approach by keyword searching is followed and for the second
a more formal one by executing the related specifications in order to check whether they present some
properties or not and to understand their semantic.

5. Conclusions

The ASPIS project tackles several problems which are considered to be crucial in the SLC, such as
the definition of formal specification languages, rapid prototyping, software reuse and the

390

development of knowledge-based tools, which embody both knowledge about a methodology and
knowledge about the application domain. Most of the investigation work on the application of AI
techniques to Software Engineering fields has been completed. Now the project is going to reach an
important milestone: the first prototype. The intent is to show that our ideas can work and that our
apporach can improve the efficiency of software development and enforce the semantic consistency
of the software results as they evolve from the specification to the detailed design.

Acknowledgments

We should like to thank all colleagues of the ASPIS team for the useful discussions we have had with
them.

REFERENCES
[I] R. Baher, C. Green, T. Cheatham, "Software Technology in the 1990's Using a New
Paradigm", Computer, IEEE, Nov. 1983.

[2] "Special Issue on Artificial Intelligence and Software Engineering", IEEE Transaction on
Software Engineering, SE-11, Nov. 1985

[3] ASP/40: "Specification and Design of the Analysis Assistant", Project Deliverable, Mar. 1987.

[4] ASP/38: "RSLogic", Project Deliverable, Mar. 1987.

[5] ASP/39: "Knowledge Representation System", Project Deliverable, Mar. 1987.

[6] ASP/32: "The ASPIS Rule-Based Knowledge Representation Language", Project Deliverable,
Nov. 1986.

[7] R. Baher et al., "Operational Specification as basis for Specification Validation", in Theory
and Practise of Software Technology, Ferrari, Bolognani, Goguen Eds. North Holland
1983.

[8] P. P. Chen et al., "Formal Specification and Verification of Distributed System", Specification
Validation", in Theory and practise of Software Technology, Ferrari, Bolognani, Goguen
Eds. North Holland 1983.

[9] P. Zave, "An operational approach to requirements specification for embedded systems" IEEE
Trans, on Soft. Eng., SE-8, 1982

[10] G. Lojacono, "DAFNE: Analysis", Italsiel Internal Report, 1984.

[II] D. T. Ross, "Structured Analysis (SA): a Language for Communicating Ideas", IEEE Trans,
on Soft. Eng., SE-3, Jan 1977.

391

[12] D. T. Ross, K. E. Schoman, "Structured Analysis for Requirements Definition", IEEE
Trans, on Soft. Eng., SE-3, Jan 1977.

[13] D. T. Ross, "Applications and extensions of SADT", IEEE Computer, 1985

[14] P. P. Chen, "The Entity-Relationship Model -Toward a Unified View of Data", ACM Trans,
on Data Base System, Vol. 1, No. 1, March 1976.

[15] G. Pacini, F. Turini, "Animation of Software Requirements", Industrial Software
Technology, (R.J. Mitchell Ed.), P. Peregrinus Ltd, London, 1987.

[16] M. Degl'Innocenti, G. Ferrari, G. Pacini, F. Turini, "RSLogic: A Formalism for Requirement
Specification and Animation", (submitted for pubblication).

[17] ASP/41: "Specification of the Design Assistant", Project Deliverable, Mar. 1987.

[18] E. Yourdon, L. Constantine, "Structured Design", Prentice-Hall, Inc. Englewood Cliffs, New
Jersey, 1976.

[19] ASP/42: "Specification of the Syntesis Process", Project Deliverable, Mar. 1987.

[20] B. Adelson, E. Soloway, "The Role of Domain Experience in Software Design", IEEE
Transaction on Software Engineering, SE-11, Nov. 1985.

[21] GRA/80: "Architecture of the Final GRASPIN Workstation Prototype", Project Deliverable,
Oct. 1986.

[22] L. Lamport "What Good is Temporal Logic", Proc. IFIP, (R. Mason Ed.), North Holland,
1983.

[23] A; Pnueli "Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: a Survey of Current Trends", in Current Trends in Concurrency (J. de Bakker Ed.)
LNCS 224, 1986

[24] J. Allen, J. Koomen, "Planning using temporal logic" UCAI 83, 1983

[25] R. Lee, H. Coelho, J.C. Cotta, "Temporal Inferencing on administrative databases"
Information Systems, Vol. 10, N. 2, 1985

[26] R. Kowalski, M. Sergot, "A logic based calculus of events" New Generation
Computing, Feb.1986

[27] F. Sadri, "Representing and reasoning about time and events: 3 recent approaches" Internal
Report, Imperial College, 1986

392

P r o j e c t No. 973

Integrating Graphics into Prolog

Nicola Preston
CRIL

12 bis, rue Jean Jaures
92807 PUTEAUX

France

The work described in this paper is partly funded by the European ESPRIT program (project p973)

1. Presentation of the Esprit project ALPES - p973
The Esprit project ALPES - p973 (Advanced Logical Programming Environments) aims to build

the prototype of a high-level programming environment for logic programming and the Prolog language
in particular. This 3-year project began in June 1986 and is based on the results of a pilot phase Esprit
project : ALPES - p363. The specification phase ends with the first project deliverables in September
1987.

The aim of the project is to combine the efforts of several industrial and academic research
groups in order to improve the usability and efficiency of Logic Programming languages. Despite its
enormous potential, Prolog has seldom been used for many real large scale applications due to certain
universally recognised shortcomings.

Twelve different issues are to be studied and prototyped in different 'Tasks' of the project before
being integrated in a unique environment The author has been working with M.J. Prospero of Univer-
sidade Nova de Lisboa and T. Gandilhon of BULL AI Research Centre in France on the Task 'Prolog
and Graphic Systems', and this paper includes descriptions of the work and ideas of all three.

2. Why graphics extensions to Prolog ?
The only way for an interactive Prolog program to communicate with the end user in the tradi

tional Edinburgh syntax is by the built-in primitives for text and line-feed input and output. This is
very unsatisfactory, as dialogue with any interactive program is often made easier and more attractive to
the user by a graphical presentation. In particular, user interfaces based on overlapping windows,
menus, icons and a mouse pointing device have become so popular that their layout and functionality is
almost standard. The ALPES programming environment will present such an interface to the Prolog
applications programmer and he or she should in turn be able to write Prolog programs that present data
in different windows and allow the end-user to choose different options with a mouse. Indeed, Prolog's
suitability for rapid-prototyping means it could be used in the development of user interfaces, which
involves experimenting with different configurations to find which is most ergonomic [1]. A graphical
presentation of data structures and relations in the form of trees and other graphs is very helpful and is
needed for various tools of the ALPES environment such as the debugger and the browser. Another use
of graphics extensions might be to dynamically illustrate the behaviour of simulation programs or
games-playing programs.

But as well as offering the possibility of user-friendly interfaces to any applications program,
graphics facilities in Prolog also open the way for inherently graphical applications such as CAD and
graphics databases. These fields call for accurate and complicated drawings and have traditionally used
graphics programs employing a very different programming style from that encouraged by Prolog, being
very specialised, procedural and algorithmic and not at all 'intelligent' in the sense that different
representations of the same data are necessary for different purposes [2,3]. The potential contribution
of Logic Programming to this field, which is now beginning to interest many researchers (see papers
from recent Eurographics and IFIP working group 5.2 conferences) cannot be evaluated without graph
ics extensions to Prolog which allow the Prolog programmer to represent and reason about geometric

393

models of real world objects with the aid of drawings displayed on the screen.

3. Criteria
What are the criteria invoved in designing the integration of graphics facilities into Prolog in the

context of the ALPES project ?
Already in the above paragraph the principal difficulty of defining graphical extensions to Prolog

for the ALPES environment can be seen : the extensions must be general enough to serve the needs of
writers of inherently textual applications who want a user-friendly interface and graphics programmers
who want to define complex drawings. For the latter, there is no point in providing graphics facilities
in Prolog if they inhibit the Logic Programming style of programming. The aim of the ALPES project
is to encourage the use of Logic Programming, which is often rejected as being unsuitable for the
development of real applications, so the graphics must be reasonably fast. This implies an interface to
routines written in a lower-level language where necessary. Also, the ALPES project does not cover
the programming from scratch of low-level graphics routines, which has already been done elsewhere
and would consume too much manpower, so we must make as much use as possible of packaged
software.

I develop the implications of these criteria in the following paragraphs.

3.1. Window manager interface
We must provide the means for the Prolog programmer to manipulate windows and, as we must

interface to existing software as much as possible, this means interfacing to a window-manager. How
ever, window-managers were not designed to manipulate accurate drawings of geometric models and
have an approach and representation of images which is fundamentally different from that of the com
puter graphics software traditionally used for this application. We must therefore also interface to more
traditional graphics routines whose output will be displayed in windows managed by the window-
manager.

Window managers are usually programmed using the object-oriented programming paradigm and
windows can only be manipulated using the very procedural functions which they have predefined as
'methods'. An interesting proposal for implementing a window manager in Prolog is given in [1] but
we consider the interface to an existing window manager the least interesting of the graphics extensions
from the point of view of Logic Programming and do not have the space to discuss it further in this
paper.

3.2. Logic programming style
A pure logic program has both a declarative and an operational semantics. Conditional

definitions or 'rules', shared variables, structured terms and non-determinism give it great expressive
power. Prolog already has many non-logical features but graphics extensions should be integrated in
such a way as to enable the Prolog programmer to come as close as possible to the ideal of a pure logic
program, so as to benefit from its power and clarity, when manipulating graphical objects. In the fol
lowing paragraphs I discuss in more detail how this can be achieved.

3.2.1. Declarative representation of drawings
Drawings should be represented in Prolog by declarative specifications which can be reasoned

about like any other Prolog object and which can be interpreted to display the drawing on the screen.
Relations between a drawing and the Prolog object which it illustrates can then be specified so that
whatever the properties of the object they are passed to and automatically illustrated by its drawing.

3.2.2. Non-determinate drawing function
The action of drawing on the screen has no logical, declarative semantics in Prolog and must be

implemented as a side effect. In order for the drawing of an object to be integrated into non-
determinate Prolog programs as cleanly as possible, the side effect should be undone on backtracking.
This is explained further below. The problem with undoing drawing on backtracking is that the

394

implementation becomes quite complicated if the drawing is superimposed on another drawing on the
screen, which must be restored when the former is erased.

3.23. Drawings which change
Prolog has no notion of editing or changing the attributes of an 'object' except by successive

instantiations during the resolution of a goal. Otherwise, for Prolog, once the value of an attribute of an
'object' changes, it is no longer exactly the same 'object'. A Prolog goal might include the definition
of an object which is drawn on the screen. When the goal subsequently fails and backtracks to try
another solution the drawing is erased on backtracking and redrawn according to the next solution. The
undoing of side-effects on backtracking enables the dynamic illustration of the solution of a Prolog goal
and like this a changing drawing is represented declaratively and cleanly.

3.2.4. Structure of drawings
Another way in which a drawing might be required to change for a given application is by the

addition or deletion of parts.
The most natural way to describe most drawings is as composite objects made up of elementary

parts, eg: a drawing of a car composed of drawings of wheels, windows, doors etc, where the properties
of the drawing, such as colour, might be local to a part or apply to the whole drawing. It should be
possible to build up the description of a drawing as composed of predefined 'building block' parts
which are transformed or given different attributes. It must also be possible to describe several
independent drawings superimposed or otherwise combined to form an overall picture, eg: in a chess-
playing program the chess pieces must be drawn superimposed on the board [4,5].

If a drawing is structured into different parts it should be possible to display the parts individu
ally, in particular to display parts as they become instantiated or to modify parts which are reinstan-
tiated without having to erase and redraw the whole drawing (although those parts which lie on top of
or underneath the modified parts may have to be redrawn).

3.2.5. Uninstantiated variables
A drawing can be represented as a term in Prolog which is interpreted by graphics routines to

show the drawing on the screen. The drawing cannot be shown on the screen, however, until 'ground'
(fully instantiated). Thus, if there are uninstantiated variables in the definition of a drawing given by a
Prolog clause, it can only actually be drawn on the screen when all the variables have been fully instan
tiated by the Prolog resolution.

3.2.6. Drawing output
If a built-in predicate must be explicitly invoked for the drawing side-effect then the programmer

has the choice of either showing successive alternative definitions of the object or only the final solution
and different parts can be drawn and erased selectively. The alternative to using built-in predicates
with graphical side-effects is to have the Prolog interpreter carry out the side-effects automatically at
certain points, eg: showing the drawing on screen on the 'assertion' of its definition into a 'graphical
database' or at the point at which the definition becomes fully instantiated, but it is difficult to define a
scheme like this that is general enough for all possible applications.

3.2.7. Invertibility
It must be possible to translate the representation of a drawing in the graphics standard back into

its representation in Prolog. Like this, tools such as graphics editors written in other languages and
handling drawings represented as in the graphics standard can be used to generate drawing definitions
which can be translated into terms to be used in Prolog programs. It is thus not necessary to write
graphics tools in Prolog unless they make use of Prolog's capabilities.

395

33. Graphics standards
As explained above, we need to interface to exisiting graphics routines. Several graphics pro

gramming standards have been established which offer the benefits of portability and presumably a
complete definition of the necessary functionality in the domains of application they were designed for.

Most graphics standards, being based on traditional programming styles, are extremely procedural.
Before anything can be drawn on the screen successive levels of the graphics system must be initialised.
The appearance of each output primitive depends on what has been drawn beforehand and what attri
bute values have been set beforehand in a completely free and unstructured way. Although obliged to
interface to such graphics systems as explained above we will try to hide as much of this as possible
from Prolog in order to enable a declarative programming style. The Prolog Graphics interface will
therefore not be a Prolog binding of a graphics standard as we consider that this needlessly introduces a
low and procedural programming level into Prolog [6,7].

4. PHIGS
We have decided to base the representation of drawings for the graphics interface on the proposed

graphics standard PHIGS [8].
In the context of Prolog, PHIGS is very interesting because in its Centralised Structure Store

(CSS) it holds a dynamic structured representation of all drawings. This representation is almost com
pletely declarative and is traversed by the post function to show a drawing on the screen. If the
definition in the CSS of a drawing (called a structure) is changed while the drawing is visible on
screen (posted), then PHIGS automatically updates the drawing on the screen. This means that PHIGS
routines can be used to implement backtracking graphics functions in Prolog.

Another interesting feature of PHIGS is that structures may invoke other structures as parts of
themselves. If a structure contains an execute structure element for another structure then the second
structure is invoked as a part of the first. The second structure may have its own structures-as-parts,
and so on, so that a drawing may be defined by a tree or more complicated network of structures rooted
in the single structure that carries the name of the drawing. The same structure can be invoked by
many different parent structures. The structure definition is not duplicated in each invocation but
pointed to. This means that if its definition is changed, it changes in all its invocations in all structures,
and it will be redrawn according to the new definition everywhere where it appears on the screen at the
time. This is very useful for CAD applications where the same basic part, such as a nut, may be used
throughout different products.

A structure consists of a list of elements, which may be output primitives (eg: line, polygon,
text), invocations of other structures (ie : execute structure element), attribute values (eg: linestyle,
font) or other properties such translation, scale and rotation transformations.

A structure invoked as part of a parent structure inherits the attribute values of the parent as
defaults which are overwritten by any attribute values of its own during traversal. An output primitive
will be transformed according to the current composite transformation, composed from the global and
local transformations. The global transformation is the composite transformation, inherited from the
parent structure unless overwritten by a set global transformation element of its own.

Structure definitions are either loaded from files or created by performing incremental edit opera
tions on the contents of an initially empty named structure. The structure contents can then be further
edited at any time. If a structure which has not been defined is invoked by name by another structure
then an empty structure with that name is automatically created and will be the basis of subsequent edit
operations. An empty structure can be posted, in its own right or as part of another structure. Subse
quent definition of the structure, like any edits to a posted structure will be visible straight away on
screen, everywhere that the structure appears.

A named but empty structure is thus like an uninstantiated variable in Prolog. When it is defined
by a PHIGS edit it is fully 'instantiated' both in the CSS and on screen. However, in Prolog partial
instantiation of a variable is possible and could be a way of adding elements to a drawing but in PHIGS
once a structure contains a single element it is considered fully defined and must be

396

5. Description of Graphics Facilities in Prolog
This is a description of the implementation decided upon according to the criteria discussed

above, with the drawing representation and functions based on the PHIGS standard [9].
There will be a basic graphics interface which interfaces Prolog to functions defined in the PHIGS

standard as well as to window manager functions by means of built-in predicates. This basic Prolog
Graphics Interface is defined to ensure that as little as possible of the procedural and computationally
heavy work that is better done in lower level languages is left in Prolog. It is minimal so as to be use
ful for a wide range of applications. By writing higher level predicates which call the built-in predi
cates of the Prolog Graphics Interface, by defining data-structures in Prolog and by writing meta-
interpreters, we will then implement more specialised and powerful graphics facilities in Prolog.

Using various trial applications to test our ideas, we began by specifying the basic graphics inter
face. This is now well defined and I describe the main concepts below in some detail, and then go on
to discuss higher-level graphics programming, giving examples of possible applications and program
ming aids.

5.1. Description of the Prolog Graphics Interface
Drawings will be represented in Prolog as structured terms. When fully instantiated, such

definitions can be 'asserted' into the Prolog Graphics Interface by means of a built-in predicate.
Another built-in predicate will be provided to traverse the definition and display on screen any drawing
defined in the Prolog Graphics Interface.

Below I use bold for terms defined in PHIGS and italics for terms defined for the Prolog Graph
ics Interface.

5.1.1. Data structure

5.1.1.1. Image
An image is a fully-defined drawing in co-ordinate space, equivalent to a PHIGS structure.

However, in the Prolog interface, in order to ease the analysis of drawings and make them more
declarative, images are structures of a certain form. A structure is traversed from beginning to end so
that an attribute value or other property applies to output primitives or execute structure elements
occurring after it in the list only. Each output primitive or sub- structure of a structure may have
different properties. But in an image, properties are separated from parts and the properties are applied
to all the parts of the image. To give an output primitive different properties it must be defined as a
separate image and invoked as a part. This means that it is always be possible to define a structure in
terms of an image, but the image may have to be broken down into more part images than the struc
ture. Images must belong to one of two types : simple images which contain only output primitives as
parts and which are thus 'terminal' or 'leaves' in the image network, and composite images or 'nodes',
whose parts are all invocations of other images. This image typing subsumes the difference in PHIGS
between local and global transformations : the transformation property of a composite image is always
inherited by its parts and pre-concatenated to any transformation property of the parts. An image is
defined by : a name ; a type ; its properties ; its parts.

5.1.1.2. Scene
A scene is a collection of images to be viewed together in a window, possibly superimposed on

each other. The scene is defined as a list of image names, each paired with a priority which gives the
order of superposition. In PHIGS there is no declarative definition of a scene, which is implicitly built
up by a series of post commands.

397

5.1.2. Built-in predicates

5.1.2.1. Definition and display of drawings
Three sorts of 'object' are 'created' and manipulated by the side-effects of the built-in predicates

of the Prolog Graphics Interface : images, scenes and views. A view is a scene displayed on screen in a
window. Images and scenes are objects in the database of the Prolog Graphics Interface only, but a
view is also an object on screen : the contents of a window.

The built-in predicates which create 'objects' such as drawing definitions in the Prolog Graphics
Interface will reject definitions that are not fully instantiated as the handling of uninstantiated terms is
best done in Prolog. The predicates will fail or abort with an error message if the arguments are
invalid. They will succeed as many times as their arguments can be 'matched' exactly like other Pro
log predicates, except that on each re-try the side-effects of the previous try will be undone.

In the lower level graphics routines all names of 'objects' must be unique and fully instantiated.
The Prolog Graphics Interface, however, will allow several objects to be given the same name and the
'matching' and instantiation of names will be as for other Prolog terms.

The built-in predicate draw defines an image in the Prolog Graphics Interface. If this image has
been named as part of a viewed scene but not defined, then (as in PHIGS) draw causes the image to be
displayed everywhere where it is viewed. Similarly, the predicate scene defines a scene and, in the case
of scenes already named as views, causes the scene to be displayed in its window.

The predicate view displays a scene in a window, completely covering any previous contents of
the window.

5.1.2.2. Inquiry predicates
If the definition of a drawing is implemented as the side-effect of a non-logical predicate then

there must be a complementary predicate which gives the drawings already defined. Logical predicates
with a declarative semantics are reversible but if we try to use the same predicate to 'assert' the
definitions of drawings and to find which definitions have been 'asserted' then the semantics of the
predicate are not clear when the arguments are bound variables. The built-in predicates drawn, is_scene
and viewed will therefore give the definitions of 'objects' currendy exisiting in the Prolog Graphics
Interface.

S. l23. Modification of drawings
The side-effects of the drawing definition and display predicates will be undone on backtracking,

so image definitions can be handled in a completely declarative way in Prolog, and the programmer can
place the display predicate to achieve the desired effect on screen. But for speed or aesthetics of
display update, or where an incremental programming style is more natural, built-in predicates will also
be provided to access the definitions of drawings and modify or delete them, with the side-effect that
they are automatically updated wherever they are visible on screen. These predicates are defined to be
close to PHIGS functions for maximum speed of display refresh.

5.1.2.3.1. Erasing definitions
Erase removes the definition of the named image from the Prolog Graphics Interface. If the

image is part of a viewed scene then erase causes the image to be deleted from the screen everywhere
where it appears.

Similarly, erase_scene removes the definition of the named scene from the Prolog Graphics Inter
face and causes any views of the scene to be erased from their windows.

5.1.2.3.2. Replace and redraw
Replace takes as arguments two image names, and replaces all invocations of the first image as a

pari by the second image name , and redraws the first image as the second everywhere where it is
viewed as a pari.

398

Redraw is similar to draw but if the named image is already defined in the Prolog Graphics Inter
face then, instead of adding another definition, it replaces the existing definition and redraws it every
where where it is viewed.

5.1.2.3.3. Editing

replacepart
replaceprop
addpart
addprop
takepart
takeprop
add_element
take_element

For the drawn image or scene named, replace, add or delete a part, property, or element (image-
priority pair in a scene definition) and update any views of the image or scene.

5.1.2.4. User-interaction
Unlike in PHIGS where output primitives are grouped into classes for these operations, they will

work at the level of images in the Prolog Graphics Interface. Prolog pattern matching used on the
image names defined in the application already gives the same functionality as PHIGS classes.

PHIGS allows synchronous and asynchronous models of user input but in the Prolog Graphics
Interface it will be left synchronous, as it is now in Prolog, ie: moving or clicking the mouse will not
have any effect until the user is explicitly asked to pick something on the screen. This is because asyn
chronous input would require the model of execution of Prolog to be completely changed.

Pick and configurable menu functions will be provided as built-in predicates so that the display of
the menu, prompt, highlighting of the valid choices, erasing of the menu once the choice has been
made, etc. can be left to the low-level graphics routines. Other built-in predicates will provide tracking
and rubber-banding feedback for well-defined interactive functions, such as asking the user to fix the
end-point of a line, opposite corner of a box, etc.

Built-in predicates will provide non-declarative highlight and makejnvisible functions which
operate on entire images and are considered to be 'temporary', ie: are not reflected in the Prolog Graph
ics Interface image definitions . Highlighted (ie: inverse video) and invisible could also be included as
'permanent' properties of images, to be intercepted by the Prolog Graphics Interface and implemented
using the highlight and makejnvisible functions.

5.2. Higher level graphics programming

5.2.1. Automatic display
Let us start by considering aids to automate the display function. A draw_and_view predicate

could take an image definition and, using defaults for attributes not specified in the call, automatically
define a scene containing just that image and display it in a window sized to be just big enough. The
next step is to automatically display either all image definitions or all scene definitions in the Prolog
Graphics Interface.

To automate drawing further, we can write a meta-interpreter for applications which consist of a
graphical illustration of objects or events in a program which is not inherently graphical. For this, we
try to imagine which types of Prolog object or event might need to be drawn. For example, certain
clauses can be designated as having a graphical representation which is to be automatically displayed,
either, for clauses to be displayed 'statically', when the clause is added to the Prolog database by a
'consult' or 'assert' or, for clauses to be displayed 'dynamically', when the clause is solved as part of
the resolution. The picture of a clause will be erased again if the clause is respectively 'retracted' or
backtracked over during resolution. All clauses depicted 'dynamically' during the resolution of a

399

particular user query can be erased when the user types carriage return after the resolution of the query.
Sets of clauses, or events such as the beginning or end of a resolution could also be given representa
tions.

In the following simple maze program the Prolog resolution of the path through the maze, includ
ing backtracking, can be dynamically illustrated using such a meta-interpreter. We designate the
'maze_fragment' unit clauses in the database which pre-define the maze as to be depicted on 'consult'
and the clause 'path_fragment' each time it is solved. In order to draw an outline around the maze,
which is not directly defined by the 'maze-fragments', we must define the graphical representation of
the set of all maze-fragment clauses or an initialisation drawing to be displayed at the start of this
user-query.

maze(End,End,Path).

maze(Current_Node,End,Path_so_far) :-

path_fragment(Cunent_NodeJJext_NodeJ>ath_so_far),
maze(Next_Node,End,[Current_NodelPath_so_far]).

pam_fragment(Nodel,Node2,Path_so_far):- some_maze_fragment(Nodel,Node2),
NOT member(Path_so_far,Node2).

some_maze_fragment(Nodel,Node2) :- maze_fragment(Nodel,Node2).

some_maze_fragment(Nodel,Node2) :- maze_fragment(Node2,Nodel).

5.2.2. Redisplay
Different Prolog terms in a program may represent the same drawing on screen, and when such a

term is displayed it must replace the current drawing. Alternatively, it may be the same Prolog term in
different states of instantiation which represents a single changing drawing on screen.

The above example can erase unsuccessful path-fragments on backtracking because the drawings
are independent. In a drawing of a tree where the nodes are of variable size, however, in order to fit in
a new subtree substantial parts of the tree may have to be reformatted. Consider the following simple
meta-interpreter to build and dynamically display the resolution tree, Tree, of Goal : <- and & are
operators representing the mother-daughter and sister relationships in the tree originating from :- and ,
respectively in the program clauses.

anim(Goal.Tree) :- animl(Goal,Tree,Tree).

animl(true,true,Tree).

animl((Next_subgoal,Rest_subgoals), Next_subtree & Rest_subtrees, Tree) :-

animl(Next_subgoal, Next_subtree, Tree),
animl(Rest_subgoals, Rest_subtrees, Tree).

animl(Goal, Goal <- Subtree, Tree) :- special_redraw(Tree),
clause(Goal,Subgoals),
animl(Subgoals, Subtree, Tree).

The term Tree' is gradually instantiated by the resolution and at each cycle of the meta-interpreter
'special_redraw' must find (solve) the format of (the instantiated part of) the Tree image and display the

400

new image in place of the old. If the image is broken down into parts so that it has the same structure
as Tree, then changes in Tree as different clauses are tried and succeed or fail will be reflected as local
ised changes in its image. 'Special_redraw' could then compare each successive image of the whole
tree with the current one and send the minimum number of edit commands to PHIGS for faster and
more pleasing display update.

5.2.3. Uninstantiated variables in drawings
In the above example clause heads will be printed at each node. As the variables in these clause

heads are instantiated by the resolution, it may be desirable to update the display accordingly. The
meta-interpreter above can be modified to track changes in the instantiation of such variables and cause
the display to be updated, although for complex terms this may be quite slow.

In the above example, Tree is partly instantiated but the image is always fully instantiated. There
may be applications which require the definition and display of images containing uninstantiated vari
ables representing parts which are to be displayed as soon as the variable is instantiated later in the
resolution. On the instantiation of the variable, a sort of type checking must be carried out to ensure
that the resulting drawing has a valid syntax.

5.2.4. Complex images
As it stands, the Prolog Graphics Interface described above is cumbersome to use to define or

analyse complex drawings.
Inquiry predicates must be provided which give the properties of an image part resulting from

inheritance, including the transformed co-ordinates, in abstract space and perhaps in the co-ordinate sys
tem of the view window.

The applications programmer will want to build-up and break-down complex drawings using pro
totype parts. An optional naming scheme can be defined which relieves the programmer of the burden
of thinking up names for all images and can be the basis of tools to, for example, provide specialised
versions of standard drawings with configurable properties, or provide copies of standard drawings
which can be modified without modifying the standard. My ALPES project colleague, MJ. Prospero,
has developed such a model.

5.2.5. Constraints and geometry
Template images will be provided for standard geometric shapes (square, triangle etc) and

definitions of the geometric properties which constrain their co-ordinates. The programmer will want to
manipulate these and other images which are partially instantiated, ie: with certain attributes which are
variable, and governed by constraints on the values of these attributes.

Such constraints could be used, for example, in an circuit-board design application where the user
suggests a place for a new component and the system checks constraints, such that certain types of
components are never adjacent. Prolog is good at checking a suggested value against a set of con
straints as in this example, and in the case where the programmer knows which quantity will be
undefined, a procedure can be written to deduce its value from certain constraints as in tree formatting
discussed above. However, a set of separately defined declarative constraints cannot necessarily be
solved by conventional Prolog to give any one of several possible unknowns, because of Prolog's fixed
search strategy. The solution of a set of mathematical constraints is entirely dependent on their order
and conventional Prolog cannot solve simultaneous equations.

In order to reason about the basic geometric shapes mentioned above, an applications program
would have to be equipped with knowledge of the different properties and ways of defining these
shapes and the way shapes are related by transformations and by combination [10].

5.2.6. Object Oriented Programming
Drawing definitions in the Prolog Graphics Interface are hierarchies of objects (structures) with

pre-defined inheritance of properties. A view of a drawing in a particular window is a separate object
which inherits structure and properties from the definition. Furthermore, in most applications these

401

graphical objects will illustrate or represent other objects (abstract notions or models of real-life objects)
in the Prolog program. It would probably be helpful to many applications programmers for the
analysis, building, definition of relations between or operations on graphical and non-graphical objects
to be able to view them using a similar paradigm to that of Object Oriented Programming [11].

6. Relation with other ALPES Tasks
From the discussion of higher-level graphics programming approaches above, it can be seen that

some problems and needs arise which are not limited to graphics in Prolog. There is a need for
extended unification, to attach side-effects to the instantiation of variables and impose type checking
more efficiently than can be done by a meta-interpreter. We need to regroup the definitions of images
and their properties, constraints and relations to other images or other Prolog objects and to be able to
solve sets of constraints. There is thus a need for some sort of abstract data types or objects.

These questions come into the domain of other Tasks in the ALPES project where people are
working on other extensions to Prolog, and in particular the work on Data Typing, Extended
Unification, Functions and Objects. We are already co-operating in the Graphics Task with these Tasks
and with the people working on the Editor, Browser and Debugger tools which need a graphical inter
face. In the next phase of the ALPES project this co-operation will be increased to arrive at an
integrated and consistent programming environment.

References
[I] A. Michard, E. Monceyron, Le Systeme Graphique ASH-Prolog et son Utilisation pour le Proto-

typage Rapide d'Interfaces Homme-Machine, LNRIA - Centre de Sophia Antipolis, 06560 VAL-
BONNE, France

[2] I.C. Braid, Geometric Modelling, Notes Prepared for Eurographics '85 Tutorial.
[3] M.J. Pratt, Interactive Geometric Modelling for Integrated CAD/CAM, Advances in Computer

Graphics 1, Ed. G. Enderle, M. Grave, F. Lillehagen, Springer Verlag, 1986
[4] R. Helm, K. Marriot, Declarative Graphics, 3rd International Conference on Logic Programming,

London, 1986, Springer Verlag, 1986
[5] F. Pereira, Can Drawing be Liberated from the Von Neumann Style? Tech. Note 282, AI Center,

SRI International, June 1983
[6] W. Hubner, Z.I. Markov, GKS Based Graphics Programming in PROLOG, Computer Graphics

Forum 5 (1986) 41-50
[7] R. Krishnamurti, P. Sykes, A Graphics Standard for Prolog, The Prolog/GKS Binding, ESPRIT pro

ject ACORD task T3.1 Deliverable Report, January 1986
[8] Information Processing Systems - Computer Graphics - Programmers Hierarchical Interactive

Graphics System (PHIGS), Draft Proposal ISO dp9592/l-198n(E), October 1986
[9] N. Preston, J.M. Prospero, T. Gandilhon, "Prolog and Graphics - Specification", Deliverable for

WP3.1, ESPRIT project ALPES - p973, September 1987
[10] F. Arbab, J.M. Wing, Geometric Reasoning : A New Paradigm for Processing Geometric Informa

tion, International Symposium on New Direstions in Computing, Trondheim, Norway, 1985, IEEE
Comp. Soc. Press, 1985

[II] T. Gandilhon, Proposition d'une Extension Objet Minimale pour Prolog, Programmation en
Logique, Actes du Seminaire 1987, CNET

402

Project No. 892

DATABASE SOFTWARE DEVELOPMENT AS
KNOWLEDGE BASE EVOLUTION

Matthias Jarke
Universitat Passau

P.O.Box 2540, D-8390 Passau
F.R. Germany

Raf Venken
BIM S.A.I.N.V.

Kwikstraat 4, B-3078 Everberg
Belgium

Abstract. In ESPRIT project 892 (Development of Advanced Interactive Data-intensive
Applications, DAIDA), we are investigating a knowledge base management systems
approach to the development and maintenance of large interactive information systems.
Individual development environments based on the conceptual systems modelling language
SML, the design language TDL, and the database programming language DBPL are viewed
as distributed knowledge bases, to be integrated via three facilities: prototyping in
PROLOG, rule-based mapping assistants, and a global KBMS for documentation,
communication and maintenance. This paper describes the DAIDA philosophy and
architecture with a particular emphasis on the knowledge-based components, presents the
status of a first implementation effort, and sketches potential areas of industrial impact

1 INTRODUCTION

Database-intensive information systems are among the most important software applications. Due to
their often extended lifespan (more than a decade is not unusual), their development and, in
particular, maintenance have been an important bottleneck for the application of information
technology in organizations. ESPRIT project DAIDA, now early in its second year, attempts to
exploit the specific properties of this class of applications to build powerful database software
development and maintenance environments, combining concepts from database design, artificial
intelligence, and software engineering. This is in contradistinction to some other ESPRIT projects
that strive for general software development support and therefore cannot utilize specific knowledge
about the intended class of applications.

The goals of DAIDA can be described from two distinct perspectives within the ESPRIT work
program. From the software technology viewpoint, DAIDA attempts to provide efficient
knowledge-based support for a commercially important class of software applications, applying and
extending results obtained in the area of formal specifications and software databases. Our main
observation is that current formal methods do not suffice for a completely automatic transformation
process in the area of programming-in-the-large; we therefore propose to encapsulate existing theory
in several small-scale "expert systems" called language and mapping assistants, and to embed these
mapping assistants in an environment (compatible with commercial systems such as PRADOS
[RI85]) in which manual and automatic development tasks are integrated in a meaningful way.

The DAIDA team consists of: BIM, Everberg/ Belgium, prime contractor (Eric Meirlaen, Vera
VanHeukelom, Raf Venken ~ administrative manager); Cretan Computer Institute, Iraklion/ Greece
(Alex Borgida, Maria Mamalakis, Manolis Marakakis, John Mylopoulos, Yannis Vassiliou); GFI,
Paris/ France (Gerard Bonin, Alain Rouge); Johann Wolfgang Goethe-Universitat, Frankfurt/
F.R.Germany (Gerhard Ritter, Joachim W. Schmidt, Martin Weigele, Ingrid Wetzel); SCS
Technische Automation und Systeme GmbH, Hamburg/ F.R. Germany (John Gallagher, Rainer
Haidan, Ingo Ropcke, Gemot Ullrich); BP Research Centre, Sunbury/ England (Horst Adler, Gerard
OTDriscoll); Universitat Passau, Passau/ F.R. Germany (Matthias Jarke — technical manager,
Manfred Jeusfeld, Thomas Rose).

403

From the Advanced Information Processing perspective, DAIDA proposes a new approach to the
implementation of knowledge base management systems (KBMS) which extends ideas from coupling
expert systems and databases [JV84]. Rather than just accessing existing databases as in the coupling
approach, specialized information systems (with database and transaction structures) are created as
backends to a knowledge representation language; this allows much more flexibility and efficiency
than previous approaches, at the expense of a relatively high development cost for the KBMS. As the
DAIDA environment improves, however, this expense may be considerably reduced.

In order to be able to concentrate on the novel aspects of the DAIDA architecture and to increase the
industrial potential, it was decided to base the project on (variations of) existing tools and languages.
In particular, BIM-PROLOG was chosen as the implementation language for most knowledge-based
components. The other languages used in the project are adapted versions of the languages CML
(developed in ESPRIT project LOKI), TAXIS (developed at the University of Toronto), and DBPL
(developed at the University of Frankfurt). Experiments have been conducted with a number of
commercial and ESPRIT-developed graphics tools, to be integrated into our development
environment One important aspect of the industrial potential of our work is portability, demonstrated
in the project by the joint use of a SUN-UNIX and a VAX-VMS environment

DAIDA is now at a stage where initial designs of the major components (the languages, their
environments, the prototyping facilities, and the global KBMS) have been developed and
implementation of the first of two intended prototype system has begun. The industrial partners
expect to embed components similar to those developed in DAIDA into their commercial software
development environments. This paper presents the DAIDA architecture and its rationale, and its
potential impact on better and faster system development

2. THE DAIDA ARCHITECTURE

2.1 A General KBMS Concept for Design Applications

A knowledge base management system (KBMS) for design applications can be understood as
illustrated in figure 1. A group of developers interacts with a problem-solving environment which
offers features such as interfaces, inference mechanisms, tools, design methodologies, and
communication facilities. This environment (and through it also the developers themselves) has
access to a common service, in figure 1 called the documentation knowledge base, in which persistent
information about the design can be stored. Such persistent information should typically include:

- representation of completed and incomplete design objects in different versions and variants
(the design outcomes),

- representation of the design history (as to communicate the design decisions and their
rationales across time or among designers),

- representation of the methodologies, development standards, and special tools valid or
available in the problem-solving environment (the design rules).

Problem
Solving

Environment

TELL

ASK

Documentation
Knowledge

Base

Fig. 1: Basic KBMS architecture

404

Conceptually speaking, a KBMS provides two functions [BL86]:

TELL: KB x Assertion - > KB'

maps a pair (consistent knowledge base, input) to a new consistent knowledge base. As implied by
this definition, we would expect from a KBMS that its abstract TELL operation includes checking of
syntactic correctness, consistency of the knowledge base and, in particular, integrity with respect to
any design object types, design decision classes, and methodologies, development standards, and
higher-level specifications. Obviously, the realization of the TELL operation is one of the main
difficulties in creating a KBMS for design applications (and probably a major reason why a
generalized KBMS does not exist yet). A traditional relational DBMS would be a simple KBMS
where Assertions are only ground facts whose structure is predefined by a single initial, more
powerful assertion (schema definition).

The other operation,

ASK: KB x Query —> Answer

allows the user to question the KB about its knowledge. Again, the implementation of such a
mechanism for a design KBMS can be very complex, involving retrieval of complex objects,
rule-based deduction or even general theorem-proving, representation switching, etc. By comparison,
the query language in a traditional relational DBMS would just involve first-order predicates over the
given simple structures.

2.2 Characteristics of Data-Intensive Information Systems

The main task in designing a KBMS can be seen as determining TELL and ASK operations that are
representationally adequate to the task to be supported, yet can be efficiently implemented.To
determine the special requirements for a KBMS architecture in DAIDA, we have identified two major
distinguishing features of data-intensive information systems applications.

Firstly, databases have a double role. On the one hand, they store beliefs about the real world (e.g.,
beliefs about the properties of employees working in a company); on the other, they are becoming an
important part of this real world (e.g., they are used by certain employees for particular tasks, where
beliefs about these same employees may also be stored in the database). The dual role implies that the
validity problems of data descriptions and the longevity of the data must be explicitly taken into
account in a development and maintenance environment In DAIDA, this is achieved by employing a
systems modelling language, for describing a history of the subset of the world the intended database
system is to model, as well as of the subset in which the system is to be embedded. For example, an
existing database, for which an additional application is to be written, would be part of the latter
subset Prototyping in PROLOG facilitates the animation of these models for validation purposes.

Secondly, the software world prescribed as part of the above "world model" knowledge base, has
the unique property that it can be included into the knowledge base; that is, the whole software
development process can happen under full control of the computing environment (this distinguishes
software CAD from, say, bridge CAD). Rule-based mapping assistants provide the DAIDA
environment with a way to create (not just design) the software world semi-automatically by
transformation decisions; two additional language levels, a declarative design language TDL (evolved
from TAXIS [MBW80]) and a procedural database programming language (DBPL) address the
specific problems of conceptual and program design. Maintenance can be partially automated by
tracing the consequences of evolving beliefs about the combined external and software worlds. A
global KBMS serves as a documentation and communication tool to coordinate development and
maintenance work.

2.3 KBMS in DAIDA

Summarizing the last section, there are unique opportunities and challenges to be exploited in a
database programming environment, due to the amount of knowledge we have about the applications
(existing databases) and to the degree of control about our products; these opportunities and

405

challenges arise mostly in the areas of program transformation, design maintenance and prototyping.
Thus, we can now derive a special case of the KBMS architecture: the general DAIDA architecture
presented in figure 2.

The user community and the problemsolving environment are broken up according to the layers of
world and system model, conceptual design, and database program design, and the transformations
(mappings) among these. Similarly, the documentation KB takes the special form of a global KBMS.
We now briefly describe the roles of these components (for a more detailed description, see
[BORG87, JARK86]).

System

Analyst

System

Designer

Database

Programmer

SML
^ * ■

« w

TDL ,

World Modd

System
Modd

\

DBPL

Conceptual

Design

<) —
Database
Pr ogranu

Specification
Assistant

Design
Assistant

Mapping
Assistant

Programming
Assistant

Mapping
Assistant

W

GKBMS

Design
Object

Knowledge

Design
Process

Knowledge

Fig. 2: DAIDA architecture

2.3.1 Conceptual World and Systems Modelling in SML

The highest level of the DAIDA architecture provides a conceptual model of the existing and intended
systems and their environment This "enterprise analysis" level has traditionally resisted formalization
and was therefore often neglected, although it is known that errors at this level may have very severe
consequences. The systems modelling language SML offers very flexible yet formal facilities to
describe the history of a subset of the world (including the information system).

SML extends previous work on the requirements modelling language RML [GBM86] and the
conceptual modelling language CML developed in ESPRIT project LOKI, by features specific to
modelling systems objects and activities. It combines an objectoriented representational framework
with a logicbased assertion language to describe constraints on objects and properties. Object classes
are organized into generalization hierarchies with strict inheritance of properties and assertions. An
important design consideration is extensibility of the language. To achieve this, classes are
themselves considered objects which can be instances of metaclasses to be defined by the user.
Similarly, property categories which describe common assertions on properties can be defined
freely. An important metaclass in SML is SYSTEM_ACTIVITY which offers specialized property
categories for describing information systems functions, based on SADT ideas [RS77]; the system
objects are then related to the corresponding realworld objects. Finally, an intervalbased time
concept [ALLE83] allows the description not just of states but of histories of the real world. SML
will extend the corresponding CML approach by integrating aspects of hypothetical future worlds and
version concepts; these are needed to describe alternative possiblities for creating an information
system.

406

The SML environment will offer a dialog management component, structure-oriented editors, and
window-based interaction facilities for knowledge base manipulation and querying. The latter
includes a prototyping facility which allows the animation of world and system model by example
instances. The SML support system is being realized in BIM-PROLOG such that the implementation
of the prototyping facility corresponds to the querying of properties.

2.3.2 Conceptual Data Design and Predicative Specification in TDL

While the first level of the DAIDA architecture describes the role of an information system in the
world, the second level is responsible for the conceptual database design, interface facilities, and
predicative specification. The design language TDL [BMMS87], derived from earlier work on
TAXIS [MBW80], offers three major concepts for this purpose. As in TAXIS, entity classes offer
means to describe a conceptual database structure (semantic data model) from which concrete
database systems can be derived. Transaction classes represent abstract state transitions for this
database, defined by predicative pre- and postconditions. Script classes describe the interaction of
various subsystems with each other and with their users .

Supporting the central level in the architecture, TDL has to be designed in a manner compatible not
only with the knowledge description language SML and the database programming language DBPL,
but also with the prototyping language PROLOG. While it shares the object-oriented framework with
SML, TDL's structure is much more rigidly focused on the systems design task. There are only
predetermined metaclasses (entity, transaction, script, and exceptions) and property categories
appropriate for these metaclasses. The general time concept of SML is replaced by a state transition
mechanism with destructive update. Correspondingly, the representation of SML time information in
TDL script and transaction definitions is the most central mapping task in going from the SML to the
TDL level; it can build on substantial time-related research in AI and databases [ALLE83, SNOD86].
The predicative style distinguishes TDL from TAXIS; TDL is being designed in a way that
predicative conditions can be easily derived from SML and mapped to DBPL; furthermore, at least a
subset of them can be directly prototyped in PROLOG. Specialized property categories such as
INVARIANT, INITIAL, CONSUMES, PRODUCES, and GOALS define the role of the predicates
in transactions.

The TDL environment will contain essentially the same facilities as the SML environment However,
the emphasis of the prototyping tools is on (almost) full functional prototyping, attempting to derive
PROLOG code directly from the transaction specifications using a library of standard PROLOG
builtins.

2.3.3 Database and Transaction Development in DBPL

The third level of the DAIDA architecture is concerned with the efficient implementation of the
conceptual design in a particular database programming environment The database programming
language DBPL [MRS84, ECKH85] is based on a data model supporting the predicative access and
control of large shared data sets and has the system programming language MODULA-2 as its
algorithmic kernel. DBPL data sets are made up of elements constructed by the data structures of
MODULA-2, and can be restricted and queried by first-order expressions which can be abstracted as
selectors resp. constructors [MRS84, JLS85]. DBPL data objects can be made persistent by declaring
them in a database module which exports their type, value, and possibly transactions over them.
Transactions serve as the unit of integrity, recovery, and concurrency control.

DBPL is distinguished from the upper-level languages in that (a) it does not support the inheritance
mechanisms of generalization hierarchies, and (b) it has to realize predicative specifications as
imperative programs. Therefore, we naturally have two major mapping tasks, structure and
transaction mapping. TDL-to-DBPL mapping assistants can be based on theory developed in the
implementation of semantic data models [WEDD87] and predicative programming [HEHN84]. The
need for a separate database programming level arises since there are usually several alternatives how
to realize the mapping tasks (a) and (b), and current theoretical understanding does not suffice to
choose automatically among them.

Additionally, DBPL introduces the new structuring principle of modules for software; thus, there is a
software organization problem to be solved at the DBPL level itself. Finally, the current version of

407

DBPL does not have a corresponding concept for scripts; one idea is to make TDL scripts directly
executable in the DBPL environment, another idea is to map them to user manuals for DBPL.

Besides the mapping assistants and a GKBMS interface, the DBPL environment will contain
structure-oriented editors, database design aids, and code management facilities.

2.3.4 Integrative Tools

Initial implementations of all three languages are avaiable or will be completed during the current
project year. Integration among the three levels is provided by several components in the architecture.
As mentioned, PROLOG-based prototyping facilities enable validation of the SML and TDL models.
Mapping assistants support the user in transforming SML descriptions into TDL designs, and TDL
designs into DBPL implementations. Finally, the Global KBMS provides a shared service intended
to:

- coordinate development within and between the three language levels,
- assist in ensuring consistency concerning terminology, validation and formal correctness,
- support maintenance (i.e., corrections, adaptations, and enhancements).

This service consists of specialized documentation data structures, inferences mechanisms, database
and dialog management facilities, and will be described in some more detail in section 3.

2.4 A DAIDA Development Example

The following example (figure 3) is based on an experiment [JR87] in which we applied the DAIDA
methodology manually to information systems applications in project meeting organization. An SML
world model starts from the activity, Meeting, within a project and describes its related activities and
entities in a real world with time. Among other things, meeting preparation, conduction, and
follow-up is different for people in different roles, namely organizers and other participants. Based
on this observation, the SML system model is positioned in the world model in two functional parts
(also called system activities or views), one supporting an organizer, the other a participant.

The combined world and system model are mapped to a TDL design model. The role of the system
model within long-term world model activities is represented by a script, office-internal meeting
schedule, certain aspects of other activities and data are mapped to data classes, transaction classes,
and their corresponding constraints. Within the TDL model, data class hierarchies and corresponding
transaction hierarchies must be synthesized from the mapping results, to achieve an integrated
conceptual design; this could be called a particular strategy for view integration, to be supported by
the TDL knowledge-based design assistant. In our example, we detected that from the various
outputs of meeting we could compose a conceptual office document database, consisting of expense
notes, working papers, invitation letters, minutes, and the like.

The integrated design model is then mapped to a DBPL database structure and transaction design.
There are several decisions and trade-offs involved in mapping the above-mentioned generalization
hierarchy of papers, and the corresponding hierarchy of transactions, to a set of relations, views,
integrity constraints, and database transactions in DBPL (see section 3.1).

3. THE KNOWLEDGE BASE MANAGEMENT ENVIRONMENT

A Global Knowledge Base (GKB) represents the history of a particular database and its associated
application software in an evolving real-world environment. This, we call a software world. Thus,
the GKBMS is a management system to create and maintain knowledge about software worlds.
Following this chain of reasoning, it appears natural to employ the language, SML, as an internal
knowledge representation language for the GKBMS. In this section, we illustrate the interaction of
knowledge-based components such as mapping assistants with the GKBMS, and describe a first
partial implementation.

408

LEVEL EXAMPLE OBJECTS MAIN TASKS

World Model
(SML)

Person

System Model
(SML)

Conceptual Design
(TDL)

Database Design
(DBPL)

Meeting^>- Organization
- ^Letters

visitor support
function

t
document
database
hierarchy

t
relational
document
database

organizer support
function

document
-► processing

hierarchy

f
document

-► processing
transactions

office
internal
meeting
schedule

domain description

role of system
in the world

system description

temporal
mapping

data and transaction
integration

structure I transaction
mapping

modular
software

developement

Fig. 3: Overview of an example development

3.1 Interaction of Mapping Assistants and Global KBMS: An Example

In this subsection, we use a small subexample from section 2.4 to demonstrate the intended
integration of knowledge-based components in DAIDA. The example concerns the implementation of
TDL entity class hierarchies as DBPL data structures. The entity classes are listed below and sketched
in figure 4.

ENTITY CLASS Papers WITH
date: Date
author: Person
content: Text

END { Papers };

ENTITY CLASS Invitations ISA Papers WITH
receiver: Organization
sender: Person
forProject: Name
meetDate: Date

INVARIANT
author = sender

END {Invitations };

409

To map faithfully the generalization hierarchy of entity classes, the DBPL programmer must create
record structures, relation types and variables. There are several alternatives which would be shown
to the user by a mapping assistant [WEDD87]. Here, we assume that just one relation, InvitationRel,
is created from the hierarchy.

TYPE InvitationType = RECORD
paperkey: Surrogate;
invitationkey: Surrogate;
date: DateType;
sender NameType;
content Text;
receiver OrganizationType;
forProject: NameType;
meetDate: DateType;

END;
InvitationRelType = RELATION paperkey, invitationkey OF InvitationType;

The artificial keys (surrogates) are generated since TDL does not identify objects associatively; the
programmer can replace these keys by associative ones. In a second step, constructors are introduced
to build views that simulate those objects of the generalization hierarchy not physically represented in
DBPL relations. The constructor ConsPapers computes a relation which projects InvitationRel on the
paper attributes (note that the author attribute was left out in InvitationRel due to the constraint in the
definition of the entity class Invitation).

CONSTRUCTOR ConsPapers FOR Inv: PaperType;
BEGIN

< i.paperkey, i.date, i.sender, i.content> OF EACH i IN InvitationRel: TRUE
END;

Such a constructor would, for example, be used to implement elegantly a transaction that generates
general papers (not invitations). Conversely, transactions for inserting into specialized relations must
also consider the predecessor relations in the IsA hierarchy.

An idea of the user interface we are implementing is given in figure 4, mirroring a particular moment
in mapping a TDL hierarchy to DBPL relations. Three windows show design objects in TDL and
DBPL (the latter an incomplete code frame in which the user should insert the relation key), one a
graphic representation of the TDL generalization hierarchy, and the last one an excerpt of a
dependency graph relating all objects visible in windows on the screen. All of the graphical functions
have already been realized in prototype versions but have been simplified in figure 4 for
understandability.

As indicated by the figure, the interaction between mapping assistant and GKBMs involves three
steps, each alternating between user control, tool (=mapping assistant) control, and GKBMS control:

(1) The mapping assistant sets a focus in the dependency graph of the GKB (here: the
generalization hierarchy to be mapped) and requests information about the environment of
design objects and dependencies (by ASK operations concerning TDL and DBPL levels).

(2) Given this environment, the mapping assistant, supported by the GKBMS, offers the user
a choice of applicable mapping rules of which the user selects one by a TELL (here: to map
the hierarchy to a single relation). This choice is not shown in the figure but would also be
documented in the dependency graph .

(3) The mapping assistant executes the selected mapping rule by creating or changing objects
(here: DBPL objects), TELLs the GKB about the changes, and returns control to the user
for refining those parts of the new objects that could not be completed automatically, and
TELLing the GKBabout the refinements.

410

Fig. 4: Example of a window-based GKBMS usage environment

3.2 Functional Definition

As described in section 2.1, a KBMS can be functionally characterized by its ASK and TELL
operations. The definition of TELL describes the knowledge structures the KB can be informed
about; in SML, these are hierarchically organized object descriptions and assertions over time. The
kind of knowledge inserted into the KB includes (formal definitions can be found in [JR87]):

- knowledge about SML, TDL, and DBPL design objects,
- knowledge about the design tools offered by the development and mapping assistants,
- knowledge about the history of development and maintenance decisions, represented as

justifications for design objects.

A design justification represents a design decision and its rationale by relating a new (version of a)
design object to the objects it was derived from, including the rule object (if more than one rule was
applied, several justifications must be created); a time stamp represents the recording time for the
justification to deal with version management issues. A set of justifications can be viewed as a
dependency graph similar to those used in [SS77, DOYL79] which completely represents the design
process. It is presently expected that cyclic dependency graphs will be forbidden. The graph can be
partitioned into subgraphs by defining dependency classes similar to object classes.

The ASK operation on an SML knowledge base allows querying for properties of the objects or truth
values of assertions. Specifically, the GKBMS ASK operation will allow:

the retrieval of design object and design rule representations,
the tracing of relationships among design decisions.

411

Given the above structure of the TELL operation and remembering the example in section 3.1, there
are at least three abstraction levels a GKBMS user (human or program) could be interested in:

- object level: Here, the user wants to retrieve one or more design objects (or design rules) in
the source-code syntax of their original language (i.e., SML, TDL, or DBPL). Object level
operations work in the "software world" rather than in its GKBMS representation. If we
have a partially specified object, this representation would be a code frame. The code frame
representation is typically employed by the human user for programming, or by programs
such as language-sensitive editors, compilers, or interpreters.

- object representation level: Here, the user wants to retrieve one or more SML representations
of software world objects. This representation allows a more compact viewing of the design
objects and is the one on which the pattern-matching part of design-rule assistants operates.

- dependency graph level: Here, each design object or design rule is viewed as an
uninterpreted atomic or molecular node in the dependency graph that represents the design
process. By molecular we mean that there could be several abstraction levels at which
dependencies are defined, e.g., at the level of relation or at the level of attribute. The
dependency graph representation plays a central role in maintenance support It will be used
to explain designs by tracing back their development history, and for propagation of change.

When the user (human or system) ASKs the KB, it is therefore very important to specify the level at
which the answer is desired. A second important consideration is the size of the KB. Even looking at
very small examples, there is a very large number of design objects and dependencies involved in
designing a system through all levels. Besides choosing the correct level of abstraction, the user must
also be able to define a working area ox focus in which he/she/it is interested. Objects close to the
focus (e.g., neighbors in the dependency graph representation) are expected to be more interesting to
the user than those further away.

3.3 Architecture and Implementation Environment

The GKBMS will be designed and implemented in two layers: the GKBMS kernel and a distributed
interface. The graphics interface must be separated from the query language, to make the query
language and kernel portable between SUN-UNIX and VAX-VMS. Internally, the query language
must be separated from the kernel since there are different kinds of users (human and machine). The
GKBMS kernel system will provide:

- a typed design object base which contains the hierarchically organized object-representation
level SML representation of design objects. It is currently foreseen that the object level
representations (i.e., the software world itself) will be managed by each environment
individually. This implies that each environment has to provide a two-way translation and
access mechanism, so that access to design objects at other levels (or to previous and
incomplete versions of own design objects) can be effected.

- a typed design dependency base which contains the dependency graph. The edges of this
graph are typed to account for the different kinds of design decisions . This appears
necessary to manage the complexity derived from the very large number of possible
relationships an object is involved in.

- a design rule base which contains abstract representations of all the rules, methods, and
tools contained in the individual mapping and design assistants. The design rule base
provides a common specification language and storage for tools that could be implemented in
very different fashions. The rule base specification also serves as a basis for determining
when a particular tool is applicable, and as a basis for explanation facilities.

- A query evaluation system and an integrity checking system for the TELL and ASK
operations. The query evaluation system will support the operations indicated in the
examples but also object-oriented secondary storage access. The integrity checking
subsystem will check typing and assertions of design objects; other consistency maintenance
tasks will be included later in cooperation with the belief maintenance system.

- A justification-based belief maintenance system intended to document rule applications,
ensure consistency of the knowledge base (and, therefore, hopefully of the designs
represented in it) and to propagate changes by interpreting change propagation as guided
search for culprits of integrity violations.

412

c VAX Graphical Interface) c SUN Graphical Interface
)

Program Interface

Manipulation Language
(TELL)

Query Language
(ASK)

Kernel System of the GKBMS

Integrity
Checking
System

Belief
Maintenance

System

Design Object
Base

instances

schema

Design Dependency
Base

instances

_>V.
schema

Design Rule
Base

instances

schema

^«««

c D SML Support System

PROLOG & Workstation Tools J
Fig. 5: Layered architecture of the global KBMS

The program interface will offer ASK and TELL operations as well as more complex composite
operations in a syntax based on the SML assertion language. It will be translated to BIM-PROLOG,
enhanced with object-oriented built-in predicates. At the dependency-graph level, the GKBMS query
language will contain primitives for graph search, to aid in the tracing of dependencies and to facilitate
the implementation of the two graphics interfaces. This architecture implies that mapping assistants
must be specified (not necessarily implemented) in SML.

Finally, the user interface system will provide window-based support for text, (simple) graphics,
and menu-based interaction of the GKBMS with human system developers (possibly also with end
users who may have questions about the system). Besides formal query language and menu-based
expression of queries and assertions, there will also be mouse-based selection and copying of

413

objects, as usual in a workstation environment. Interface objects will be specified in SML, and layout
information can be stored with this specification. Dialog sequences will be managed following an
XS-2-like approach [BHMN85].

The DAIDA workplan foresees two distinct prototypes, the second building on the capabilities of the
first The first prototype, whose implementation is currently underway, will assume an empty
rule set; consequently, design and mapping rules cannot be entered, checked for consistency, or
retrieved from the first system version. Thus, the first prototype is approximately a design database
with fairly sophisticated data structures (those of SML, including dependency graphs), query
languages (allowing recursion), and user interfaces (allowing focusing and graph traversal). The
documentation database will be filled manually, as designers document their decisions. Under these
circumstances, maintenance support is limited to the (human) review of previous design processes
that could be applied analogously. Nevertheless, these are very useful services, in particular because
the GKBMS can be used by each individual environment to manage intermediate results.

The first prototype forms the kernel of the second prototype which will focus on rule processing,
especially in the form of mapping assistant rule specification, design explanation and maintenance
support. Through interchange with the mapping and design assistants, much of the documentation
will be automated. Consistency checks and propagation of change through selective rule application
replay will be offered by an extended belief maintenance system [DOYL79, DEKL86, DJ85,
RICH84] with support for abstraction. The documentation of design rule applications for subsequent
replay in the case of maintenance has also been proposed elsewhere but has met with limited success
in a general environment where there is usually not enough knowledge to restrict the choices
[BALZ85]; it is hoped that more knowledge can be brought to bear in tdatabase programming.

4 CONCLUSION

The use of automated transformation support in software development environments is a
well-recognized concept but few practical implementations exist; one exception is the REFINE system
developed at Kestrel institute [Smith et al. 1985], others are being developed in ESPRIT projects
such as METEOR. Major features distinguishing DAIDA's approach include the emphasis on

- knowledge-based support rather than automation of analysis, design, and programming,
- exploitation of knowledge about a particular domain: data-intensive information systems,
- the temporal component of knowledge bases,
- to a large degree, adaptation of existing languages and tools with similar philosophies.

For the research partners, this context has presented a large number of unique and challenging
research questions, including those of how to transfer theory to practice. For the software houses
involved, DAIDA appears as an attractive approach to evaluate and extend their logic programming,
object-oriented and graphics tools, and to upgrade their commercial software development
environments by practical and extensible knowledge base management components.

REFERENCES
[ALLE83] Allen, J.F. (1983). Maintaining knowledge about temporal intervals, Commit. ACM 26,
11,832-843.

[BALZ85] Balzer, R. (1985). A 15 year perspective on automatic programming, IEEE Transactions
on Software Engineering SE-11, 11, 1257-1267.

[BHMN85] Biagioni, E.S., Hinrichs, K., Muller, C , Nievergelt, J. (1985). Interactive deductive
data management - the smart data interaction package, in Brauer, W., Radig, B. (eds.): GI-Kongrefi
Wissensbasierte Systeme, Springer, 208-220.

[BL86] Brachman, R., Levesque, H. (1986). Knowledge level interfaces to information systems, in
Brodie, M.L., Mylopoulos, J. (eds.): On Knowledge Base Management Systems, Springer, 13-34.

[BMMS87] Borgida, A., Meirlaen, E., Mylopoulos, J., Schmidt, J.W. (1987). First Version of TDL
Design, Esprit Project 892 (DAIDA), Cretan Computer Institute, Iraklion, Greece.

414

[BORG87] Borgida, A., Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y. (1987). The
software development environment as a knowledge base management system, appears in Schmidt,
J.W., Thanos, C. (eds.): Foundations of Knowledge Base Management, Springer-Verlag.

[DEKL86] de Kleer, J. (1986). An assumption-based TMS, Artificial Intelligence 28, 2, 127-163.

[DJ85] Dhar, V., Jarke, M. (1985). Dependency-directed reasoning and learning in large systems
maintenance, IEEE Transactions on Software Engineering, to appear.

[DOYL79] Doyle, J. (1979). A truth maintenance system, AI Memo 521, MIT, Cambridge, Mass.

[ECKH85] Eckhardt, H., Edelmann, J., Koch, J., Mall, M., Schmidt, J.W. (1985). Draft Report on
the Database Programming Language DBPL, Johann Wolfgang Goethe-Universitat, Frankfurt, FRG.

[GBM86] Greenspan, S., Borgida, A., Mylopoulos, J. (1986). A requirements modelling language
and its logic, in Brodie, M.L., Mylopoulos, J. (eds.): On Knowledge Base Management Systems,
New York: Springer-Verlag, 471-502.

[HEHN84] Hehner, E. (1984). Predicative programming, Comm. ACM 27, 2, 134-150.

[JARK86] Jarke, M., ed. (1986). DAIDA Global Design Report, Esprit Project 892 (DAIDA),
Johann Wolfgang Goethe-Universitat, Frankfurt, FRG.

[JLS85] Jarke, M., Linnemann, V., Schmidt, J.W. (1985). Data constructors: on the integration of
rules and relations, Proc. 11th Intl. Conf. Very Large Data Bases, Stockholm, 227-240.

[JR87] Jarke, M., Rose, T. (1987). Global KBMS Design and Development Strategy, Esprit Project
892 (DAIDA), Universitat Passau, FRG.

[JV84] Jarke, M., Vassiliou, Y. (1984). Coupling expert systems with database management
systems, in Reitman, W. (ed.): Artificial Intelligence Applications for Business, Ablex, 65-85.

[MRS84] Mall, M., Reimer, M., Schmidt, J.W. (1984). Data selection, access control, and sharing
in a relational scenario, in Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.): On Conceptual
Modelling, New York: Springer-Verlag, 411-436.

[MBW80] Mylopoulos, J., Bernstein, P.A., Wong, H.K.T. (1980). A language facility for
designing interactive data-intensive applications, ACM Trans. Database Systems 5, 2, 185-207.

[RI85] Rauch, E., Insel, B. (1985). PRADOS - die SCS Software-Engineering-Umgebung, in
Balzert, H. (ed.): Moderne Software-Entwicklungssysteme und -werkzeuge, BI
Wissenschaftsverlag, Mannheim, 253-262.

[RICH84] Rich, C. (1984). A formal representation of plans in the Programmer's Apprentice, in
Brodie, M., Mylopoulos, J., Schmidt, J.W. (eds.): On Conceptual Modelling, Springer, 239-269.

[RS77] Ross, D.T., Shoman, K.E. (1977). Structured analysis for requirements definition, IEEE
Transactions on Software Engineering SE-3, 1.

[SKW85] Smith, D.R., Kotik, G.B., Westfold, S.J. (1985). Research on knowledge-based
software engineering environments, IEEE Trans. Software Engineering SE-11, 11, 1278-1295.

[SNOD86] Snodgrass, R. (1986). Research concerning time in databases: project summaries,
SIGMOD Record 15.

[SS77] Stallman, R.M., Sussman, G.J. (1977). Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis, Artificial Intelligence 9,2,135-196.

[WEDD87] Weddell, G. (1987). Physical Design and Query Compilation for a Semantic Data Model,
Ph.D. Thesis, University of Toronto, Canada.

415

Project No. 300

THE REQUEST DATABASE FOR SOFTWARE RELIABILITY AND SOFTWARE
DEVELOPMENT DATA

Chris DALE

National Centre of Systems Reliability, United Kingdom Atomic Energy
Authority, Wigshaw Lane, Culcheth, Warrington, WA3 4NE, United
Kingdom

REQUEST (REliability and QUality of European Software Technology) is
carrying out a variety of research which has a common requirement
for data from the industrial development and use of software. A
data collection and storage activity has been established by REQUEST
to ensure that the data required is collected, stored and made
available for analysis, but also to experiment with the direct role
of such a database in improving European software quality. This
paper describes the current status of this activity.

The first stage of the database work has involved identifying the
metrics and other software engineering data which it is desirable to
collect; developing a data model incorporating these items; and from
this devising methods of collecting and storing the data. Much of
this work is now complete, so that data is being collected from a
number of industrial data providers for storage in the REQUEST
database machine at Winfrith.

The second stage will involve developing and using data analysis
methods which will produce useful feedback to data providers and
other users of the services, as well as providing analysis
facilities to enable the research work of REQUEST on software
quality and reliability to continue. Most of this development work
is now underway.

It is intended that services based upon the REQUEST database work
will be available at a future date, to assist in future enhancement
of European software quality.

1. THE REQUEST PROJECT

The REQUEST project is a collaboration of seven companies from five EEC
countries, aimed at providing improved and validated techniques for measuring
and modelling software quality and reliability, supported by appropriate
prototype tools. The project Is primarily concerned with developing metrics
and models which span as much of the development life-cycle as possible from

416

specification to life-use, and with providing useful and timely information for
project quality management decision making and control.

In particular, REQUEST aims to develop:

- a constructive quality model (COQUAMO) which can be used to predict and
control quality characteristics throughout the software
development process;

- improved reliability models which incorporate testing information into
models;

- new approaches to modelling the reliability of single version and multiple
version software systems, which incorporate development process and
software structure information by the use of "explanatory variables" (ie
variables which are used to adjust a basic reliability model);

- standards and guidelines for software data collection and analysis;

- a database of software data which is used to validate proposed metrics and
models.

It is an objective of the project to produce prototype tools, where
appropriate, to enable ready use of metrics and models.

In pursuit of these aims, the project has been organised as three
sub-projects:

1 Quality measurement, modelling and prediction;

2 Reliability measurement, modelling and prediction;

3 Data collection and storage.

This paper concentrates on the third of these sub-projects, describing the
current status of this activity. It is important to appreciate however, that
the data collection and storage activity was initiated principally to satisfy
the needs of the researchers working in the other two areas. It has become
increasingly clear that the work of sub-project 3 is of great potential value
to researchers and others outside the REQUEST project, with a wider range of
applicability than to the relatively narrow technical interests of REQUEST
researchers. There is, therefore, a strong exploitation opportunity associated
with this data collection and storage part of the REQUEST project.

THE DATA COLLECTION AND STORAGE SUB-PROJECT

The purpose of any data collection activity, in software engineering as
elsewhere, is to enhance understanding of the phenomena about which data are
collected. Thus the reason REQUEST wishes to collect data is to develop an
increased understanding of software quality and reliability, based upon data
collected over a period of time from a large number of projects. This same

417

data, however, has other uses which will be of more obvious and immediate
benefit to those organisations providing the data. In this way, collection and
elementary analysis of data from a project can significantly enhance management
understanding and control of the problems of that particular project. It is
these short-term benefits which persuade data providers to allow REQUEST to use
their data, rather than the longer-term, more esoteric benefits sought by
REQUEST researchers.

The prime objective of the REQUEST data collection and storage activity Is to
provide a data resource to support the needs of other REQUEST sub-projects.
This necessitates:

identification of the data requirements of REQUEST researchers;

- identification of sources of the required data;

- establishment of procedures for collection of the data;

- establishment of a database system to store the data and permit analysis
by REQUEST researchers.

When work began on identifying the data requirements, it was quickly realised
that a very general, highly flexible data model would be needed, because

- the research will inevitably generate new data requirements as it
progresses

- the researchers require industrial data, so that the data model needs to
cope with data from a wide range of industrial software development
practices.

The development of this model proved to be a very large and complex task, but
the model now forms the basis of both the design of the REQUEST database, and
the data collection manual which has been developed to facilitate collection of
the data. The data collection manual is one example of the beneficial
co-operation there has been between this project and the Software Data Library
Project (SWDL) funded under the UK Alvey programme of research and development
in advanced information technology.

Identification of sources of data is one of the aspects of the work which is
carried out by the REQUEST data collection team. This team has members in the
UK, France, Denmark and West Germany who are responsible for co-ordinating
REQUEST data collection within their respective countries. Their duties
include the initial identification of potential data providers, holding
meetings and giving presentations to encourage the provision of data to
the project, together with certain activities associated with the data
collection Itself. In the UK, data collection team activities are carried out
by the Software Data Library project on behalf of REQUEST.

Data collection procedures are based around the data collection manual, which
describes the data to be collected and how the forms contained in the manual
should be used. An important aspect of data collection from a diverse
population of data providers is the notion of comparability data. In order to
enable comparison and analysis of data from differing projects, it is essential

418

to have a clear understanding of the definitions used in each individual
project from which data is collected. A useful example of this idea is the
lines of code metric, which can be defined in many different ways. Unless it
is known how it is defined on each individual project, it is impossible to make
intelligent comparisons between projects. This same principle applies to all
data which are collected for the REQUEST database.

Having determined the data requirements, and the more general requirements of
the REQUEST researchers, it has been possible to develop the (hardware,
software and human) system which comprises the REQUEST database. As with other
aspects of the work, this has been determined primarily by the needs of REQUEST
researchers. There is, however, another important group of people who need to
be satisfied: the data providers. It is necessary to provide services to
those who provide data to the project, in order to encourage them to do so, and
to repay them when they have provided data. The needs of such users have also
been taken into account in defining the system.

The REQUEST data collection and storage sub-project can thus be summarised as a
database which collects data from data providers and provides services to
REQUEST researchers and to data providers.

THE REQUEST DATA MODEL

The software data model developed by REQUEST (in association with the SWDL
project) provides a basis to the database design and to data collection which
is as comprehensive and flexible as possible at the current time. The model
consists of

a definition of each entity for which data is collected (eg component,
task)

- a definition of the relationships between the entities (eg a component
is modified by an operation which may be due to a software engineering
note)

- a list of attributes associated with each entity (eg a component may
have the number of lines of code counted, a task may have the
development method used recorded).

Figure 1 provides a top-level generic view of the data model.

419

SOFTWARE AND
TEXTUAL

COMPONENT
dependences

SOFTWARE
ENGINEERING

NOTE
EVENTS

PRODUCT RELEASE
<

happens

INSTALLATION SITE

FIGURE 1
REQUEST generic data model

Some of the boxes in Figure 1 represent entities, whilst others represent
groups of entities, as explained below.

Organisation

Project

Employee

Project Group

Installation Site

Product Release

Task

Operation

- a body which controls projects.

- an activity which develops product releases.

- a person employed by an organisation.

- a group of employees.

- the site at which a particular product release is
being used.

a collection of software and textual components
delivered to customers.

a planned software engineering process (eg design
of a software component).

- an unplanned software engineering process (eg
dealing with an incident).

420

Development Environment the environment in which software engineering tasks
are carried out-

Workspace the physical environment in which an employee
works.

Resource

Software and Textual
Component

Software Engineering
Note

this comprises four entities recording usage of
consumable resources (eg man hours) and non-
consumable resources (eg men) by employees and
project groups.

this comprises three entities recording data about
items created by any of the software engineering
processes involved in producing a product.

this comprises three entities recording data about
incident reports, fault diagnoses or change
requests.

Events - this comprises three entities recording data about
groups of incidents, faults or changes.

Having outlined the entities of the model, attention now turns to the
attributes of these entities which are recorded. These are shown in Figure 2,
together with the entities to which they apply.

The attributes (shown without underlining) appear in two ways in Figure 2.
Attributes within parentheses actually refer to groups of individual metrics,
whereas attributes without parentheses are themselves metrics. For example,
the attributes of component include (Quality) and Complexity. Here,
(Quality) represents the individual metrics Reliability, Maintainability,
Reusability, Extendability, Efficiency, Usability, Integrity and Generality -
each of which is measured on a subjective 5-point scale - whilst Complexity is
itself a metric, also measured on a 5-point scale.

The model which has been outlined above is a very general one and it is thus
necessary to customise the model to the practice of any particular data
provider, in order to make the task of data collection a practicable one. This
customisation process can be thought of as a "pruning" of the "tree" shown in
Figure 2. Because there is a strong correspondence between the data model and
the data collection forms, it is a relatively straightforward task to customise
the forms to the particular data collection activity by simply removing those
forms or parts of forms which are not needed.

4. THE REQUEST DATABASE SYSTEM

The REQUEST database runs on a DEC MicroVax at the United Kingdom Atomic Energy
Authority's Winfrith site in the South of England, using the INGRES DBMS. All
data collected will be resident on this machine, but for reasons of
confidentiality and security all identifiers of people, programs, projects or
organisations will be removed and replaced by codes before entry to the system.

421

organisation

 ^ pigjssl «J

(D«tr»»jti»i (Budg«) (SponKX)
allact)

i—rn 1
Effort Schedule (U x t t n e (DedcaM

usage) resources)

(Developer

I — Standards & guidelines

(Software tUH profile)

employee *

I ^ developer

project qrouo

I I
(Start) (Project' group dass)

d e v e l o p m e n t (Administrative
characttrisbcs)

product release ^

* I — ' 1
Succaa Affflirmnn

installation site

J .

I \
ftnvironment workspace

(Phytic* d u n c a r K H a)

r
(CuMomar) (UMga)

software

(U r a a d e s d a)

(Vccatutoy)

(Gnpll

'1 comoonenl

laaual _ r
(S t t

"
/K | T ~ L (Stniclura)

process

l ash operation

(Procass osfinilion)

docufflant mlnula

module) subsystem _ ^ s y & t f i m — T

I . ' . £
(Modutaffty) (Funcfton (Stuck**) ■—

points)

(Structure)

(Function points)

(Software das*)

/■T\ T \
davalopmant p h u a worfi tadinlcai avantdrtvan

Nam acivtty acavtty

resource usage record

Elton

SMI

(Uachlna usaga)—

_ consumable

Software engineering note I
Tumovar

timesheet

nonconsumable (Oadtauad

ratourcas

/■ \
amilC^—employee

I
Tumovar

^chanaaa ^)

Sifinis

 ^ laujis

^ incidents

FIGURE 2
E n t i t i e s and a t t r i b u t e s of the REQUEST data model

422

Direct access to this system will be limited to named researchers working on
the REQUEST project.

Users of the system who are not REQUEST researchers will gain access to data by
connecting to a separate machine at Winfrith, which will (by prior arrangement)
contain data to which they have access authority, or an empty copy of the
database to allow entry of new data to a holding database. This strategy has
been adopted to afford maximum protection to any commercially sensitive
information stored on the system.

The basic REQUEST database system is now operational, based upon the INGRES
facilities and commercially available statistics packages. Work to be carried
out over the next few months will lead to enhanced MMI and analysis
facilities.

5. USER CONTACT WITH THE REQUEST DATABASE SYSTEM

There will be many kinds of users of the system, but they can be divided into
three distinct categories - REQUEST researchers, data providers and others.

The researchers involved in the REQUEST project will clearly receive the best
level of service, since the system has been designed with their needs in mind.
They will be the only ones with direct access to the MicroVax, but even they
will not be told to which particular people, programs, projects or
organisations the data they are accessing refers.

Data providers are another group who will have a wide range of services
available, in recognition of the contribution they have made to the REQUEST
project. One of the chief benefits to data providers is the verification and
analysis report - for every data set submitted, a report will be produced for
the data provider giving an analysis of the data submitted, aimed at both
providing useful feedback to the data provider and checking that there are no
unexplained anomalies in the data.

The verification and analysis report consists of a series of statistical
analyses of the provider's data, examined both in isolation and in comparison
with other relevant data in the database. Once the initial analyses have been
performed the report is reviewed by an experienced statistician and a software
expert, who will add to the report their comments, explanations and queries on
particular features of the data, such as values detected as anomalous.

Examination of and agreement with the content of this report by the data
provider is a vital part of the data verification process employed by REQUEST.
The report will also be valuable to the manager of the project to which the
data relate, as it will help him to Identify, understand and diagnose
particular problems which have occurred in his project, and take appropriate
remedial action. It will be useful to the organisation providing the data in a
more general sense by helping to identify problems with the way in which they
develop software, and enabling them to compare their performance with that of
their competitors.

423

Other services for data providers include:

1 Data providers will be able to view on-line the data they have
submitted.

2 Their data will be stored at least until the end of the REQUEST
project.

3 As part of their contact with REQUEST, they will automatically
receive a great deal of technical advice on software engineering data
collection.

4 Periodically REQUEST will publish summaries of database content.

5 Statistical queries can be submitted to the database manager for
processing. This service cannot currently be provided on-line for reasons
of confidentiality and security, because these queries would relate to
the entire database. Such requests for analyses will be subject to the
constraints imposed by confidentiality and available resource.

6 Data providers will be able to carry out on-line analyses of the data
they have submitted.

7 Data providers will be able to carry out comparisons of their data
with summaries of the database on-line.

8 At a later date it is hoped to provide access to "typical" project
data; considerations of confidentiality prevent this at the current
time.

9 On-line data entry will be available to those who find this
convenient.

The "others" category of user will have more limited facilities - in many
cases, none at all. Currently it is proposed that groups of bona fide
researchers approved by the REQUEST project will be able to obtain data for
analysis from the REQUEST database, subject to conditions such as obtaining the
permission of the data providers affected. These facilities will clearly be
limited by the resources available within the REQUEST project, though in many
cases it may be possible to establish a quid pro quo, so that there is some
benefit to REQUEST in return for services provided - the most obvious example
of this is where data is provided, as discussed above.

It is hoped that the potential for providing a service based on the database
can be fulfilled in the future, but the current priorities are to keep two
groups of people happy - the REQUEST researchers, and the data providers.

So far only user services have been discussed in this section. Another
important contact between REQUEST and users is the provision of data to
REQUEST. Here the interface is normally a human one - a member of the REQUEST
data collection team representing REQUEST, and a "data collection supervisor"
representing a data provider. The precise nature of this relationship varies a
great deal, because of national differences and because of differences between

424

data providers. The following provides a general framework for the
relationship, which is tailored to individual requirements:

1 Identification of data source - a telephone call, letter, or other
personal communication initiates the contact by identifying a potential
data provider.

2 Initial contact presentation - a meeting is held to explain the
REQUEST data collection activity and provide enough information for the
organisation to decide whether to become a data provider.

3 Agreement visit presentation - the agreement to provide data is
formalised, the data model is customised, and the detailed arrangements
for collection of data are established.

4 Data collection visits - batches of data are collected at agreed
intervals, with some initial checking and analysis.

5 Verification report approval - the data provider keeps one copy of
the report, and signs a second one to confirm the veracity of the data, at
the same time responding to any questions raised during the verification
and analysis process.

An important aspect of this sequence of events is the amount of contact between
the REQUEST data collection team member and the data collection supervisor,
providing opportunities for the data provider to learn from the experience and
expertise developed on data collection issues within the REQUEST project.

CONCLUSIONS AND FUTURE WORK

Among the major achievements of the REQUEST data collection and storage
activity to date are the following:

• Development of a general data model of the software engineering
process, incorporating the ability to compare data collected from
projects carried out in diverse software engineering environments.

• Development of a database system based on this model, as a means of
storing the data and providing the necessary services.

• Development of a data collection methodology, covering all aspects
from initial contact with a potential data provider, to the
verification of data using statistical and software engineering
expertise.

• Enrolment of data providers in several European countries.

Achievements that we aim to be able to report during 1988, or before, include
the following:

425

Development of full capability to produce verification and analysis
reports.

Provision of analysis facilities to REQUEST researchers.

Completion of data collection and verification cycle for a
significant number of projects.

Publication of reports summarising database contents.

Establishment of a database service.

Automation of certain aspects of the work.

The exploitation opportunities of the work that has been done and is planned
are considerable, and extend beyond the scope of the reliability and quality
interests of REQUEST researchers. There is a strong possibility of developing
a generally available information service based upon the REQUEST database,
which could be useful in many areas of software engineering. One example of
this is the role that such a database could play in the area of certification,
by assisting to identify the basis on which particular software should be
certified.

Subject to the reservation that much of what has been developed has yet to be
tested in "the real world", I feel that the achievements of this activity are
considerable, and hope and believe that many other projects will be able to
benefit at a future date from the work that has been done. I believe that the
REQUEST database will prove to be an enabler of a great deal of valuable work
in the area of software metrics and more generally, and hope to find a way of
making appropriate services available to a wide audience at an early date.

ACKNOWLEDGEMENTS

I should like to thank all those in REQUEST sub-project 3, the REQUEST data
collection team, and the SWDL project for their contributions to the work
reported in this paper. There are many others, both inside the REQUEST project
and outside, who have not been directly involved in the work but who have
provided support, encouragement, advice, and (mostly) constructive criticism,
whom I also thank.

426

P r o j e c t No. 1609

SMART: A SYSTEM DESIGNER APPROACH TO EVALUATE THE PERFORMANCE
OF COMPLEX FAULT-TOLERANT SYSTEMS

A.KUNTZMANN J.FIGUEIRAS
CISIINGENERIE UNIVERSITY of CATALUNYA
3, rue LECORBUSIER 94578 RUNGIS CEDEX BARCELONA
FRANCE SPAIN

ABSTRACT

A Markov model considering physical and design faults is the basic support for the work
presented . The model can be split into two sub-models dealing with physical and design
faults separately.
The generalization of the evaluation approach to reliability-oriented systems is considered .
From this modeling approach, the development of a suitable tool for system designer is
presented, devoted to the evaluation of a design architecture in terms of Reliability,
Availability, Maintenability,Cost, Management resources .
This work is partially supported by the Commission of the European Communities under
the SMART project.

INTRODUCTION

One of the most critical problems that is faced by fault-tolerant system production is how to
monitor architecture design together with development process in order to meet
performance criteria, ensuring cost effectiveness . Evaluation models encompassing
physical faults and design faults introduced during the development process could help to
solve this problem . The need for such an evaluation has recently be pointed out (1).
Due to the complexity of current software and hardware designs, it is no longer possible to
cope with design faults for critical applications using only a fault-avoidance approach, and
fault-tolerance techniques for design faults should be considered in many cases .
Design diversity (2) is a possible approach that provides potential effectiveness for design
fault-tolerance.
Some work has been done towards combined modeling of physical and design faults (1),
(4), but, at the best of our knowledge, no evaluation of a system incorporating both types
of faults and including the performance aspects has been carried out.
SMART , through data collection measurement analysis and modeling, will provide the
system manager with techniques and tools for evaluation, prediction and optimization of
applications that have to match constraining fault-tolerant objectives .

CURRENT STATE OF PRACTICE

In general, correctness of software and software reliability are correlated . Intuitively, this
means that the fewer faults there are (left) in a piece of software, the less likely it is to fail.
However, high reliability can be obtained in spite of lower correctness if the faults are of a
kind that seldom manifest themselves as failures, or if the software has been built to check
its results and repair the effects of the faults before failures occur.

42

One of the two main techniques for producing fault-tolerant software is the recovery block
technique . At strategic points, if a problem is detected, the former state is reestablished,
and the computation retried with backup software. The granularity of the prime and backup
models varies with the application . At the University of Newcastle upon Tyne, a research
project has been conducted to explore this technique (3).
The N-version approach is the other important strategy to fault-tolerant computing . It uses
several (in the simplest case, three independently developed versions of software that
perform the same functions according to the same specifications . (2) describes a project
where a specially instrumented environment has been set up in order to explore this
approach.

Fault-tolerant approaches to software construction represent a costly investment in
reliability, which is usually only justified when the cost of improving reliability by
marginally increasing correctness would be even greater . The predicted reliability as a
function of both input metrics expressing the marginal cost of improving correctness, and
the cost effectiveness of fault-tolerant techniques are therefore of interest for applications
where very high reliability is needed .
Performance engineering as a whole is becoming a very important and sensitive discipline
for system managers and designers . Obviously, there is a lack of an integrated approach
by which to judge the overall performance of systems, one of the reasons being the
difficulty of access to meaningful data for analyze .
SMART initiative, an ESPRIT project supported by the CEC, is a trial to encourage the
bridge between software science and fault-tolerant architecture evaluation . One of the first
objectives is to analyze the feasibility of deriving techniques from already existing theories
dealing with hardware configurations and adapting existing tools to take into account
software characteristics . The METFAC tool (6) developed by one of the SMART partner
will be the basis of work .
METFAC will have a twofold role : first, it will give evaluation support to assist the
integration of component models into system level models by aggregation and successive
refinement; secondly, it will serve as starting point for achieving an efficient and usable
tool for system designers .

EXPERIMENT

Let us consider a system composed of two independently designed computation lanes
sharing a given set of input and producing separate output that are compared by a totally
self-checking (TSC) monitor M . The output of the system is taken from lane 1 and is
considered valid as long as no failure indication is given by M.
The faults under consideration are classified as follows :

- physical faults
in lanes

related
unrelated

in monitor
benign
latent

- design faults (in lanes)
unrelated
related

Design faults are viewed as domains in the system input space (sequences of input vectors)
. In the fault model considered, domains in different versions are either disjoint (unrelated
design faults) or coincident (related design faults).

428

The behavioral model is obtained by combining the fault model with the maintenance
strategy . An unsafe failure occurs if an erroneous output is given without failure indication
(identical errors in both lanes or latent monitor fault). When a failure indication is issued
the system stops for diagnosis . If a permanent fault is found, a maintenance operation
starts .
In order to quantify the dependability of the system, we will use as a measure the unsafety
US(t), defined as the probability of having an unsafe failure over the first t time units of
operation (ignoring the time spent in the safe down mode) .

THE SMART APPROACH

The SMART project has identified three major area to manage the development of the
system designer tool:

- the characterization of fault-tolerant architectures against metrics defined towards
three reference systems (product characteristics, management environment, and
development process) in order to quantify software architectures against metrics . Each
architecture will be considered as an aggregation of software/hardware components .

- the modelling of performance :
. for a single component within the three reference
systems,
. in a framework combining the three reference
systems,
. for the whole system using a structural approach .

- the development of a performance monitoring tool focusing on :
. a user friendly graphical interface,
. the possibility for system designers both to express
the constraints of the system and to build the
preliminary architecture,
. a research and mathematical interface for model
builders,
. a facility to analyze the attibutes of each components
and the relationships between components,
. a support to validate the prediction achieved .

This tool will be the framework to compose the results from various models for single
components within each reference system and to perform both the aggregation of
components based on the description of different fault-tolerant structures and the
combination of models according to production rules .

Some fault-tolerant basic mechanisms considered as primitives will be available in the data
base of the tool ; the designer will be able to build any system architecture from these
primitives, to run the model and to compare the results (Reliability, Maintenability, Safety)
with the requirements to be met .In a further step, some amendments should be suggested
by the tool to improve one or two of the selected criteria.

429

Different modes of use may be identified along the different phases of the system life cycle

- the system designer identifies the requirements to be performed by the
final product,
- the system designer defines a possible architecture for the system from
basic fault-tolerant components,
- before the end of the design phase, a complete analysis of the proposed
solution is

achieved towards the different relevant metrics by either running the
existing models or estimating the results from the expertise base and
statistical procedures support,
- going further through the life cycle, some data might be measured on the
system to validate the approach and obtain a better set of fitted models .

Iterations are possible in each above mode .

METHODS

Methods to match the above defined objectives are split into four categories :

- methods to define a Metrics reference system,
- methods to characterize Fault-tolerant Architectures,
- methods to model system performance,
- methods to build an efficient and usable tool.

The Metrics Reference System

Software product metrics are compiled from existing sources and experiments .

Software management metrics are derived from the abundant descriptions available in the
literature and economical studies .

Development process metrics, especially those describing fault-tolerant approaches, such as
for example proof of correctness, validation coverage estimator, structural complexity at
different stages of the life cycle , are developed in SMART project.

The reference system addresses the quantification of the interrelated areas:

- the properties of the software product being developed, including performance,
reliability, availability, maintenability and reusability .

- the properties of the software management environment, focusing on constraints
such as cost, calendar time, manpower and risks .

- the properties of the software development process, including the design
methodologies used and the tools available . The need of validated software
components relying on life cycle activities and the earliest condidtions of the
development are carefully analyzed .

430

The characterization of Fault-tolerant Architectures

The general purpose is to give evidence through several examples that the selected set of
metrics does characterize the design and development of fault-tolerant systems .

The following fault-tolerant techniques are considered :

- cold/hot redundancy,
- fault recovery and fault masking (by HW or SW),
- recovery block,
- new version programming,
- diversity .

Modelling and quantifying performance

The objective is to formalize performance as a composite result of parameters in a
multi-dimension system.
A global modelling approach is built step by step .

The SMART tool

The tool is the framework to compose the results from various models for single
components within each reference system . It is flexible enough to be modified and
extended according to the expertise gained through various experiences .
The integration of such a tool into the development environment (PCTE) and the link with
all the other tools used to develop the system is strongly taken into account to improve the
efficiency .
The kernel of the SMART tool will be an improved version of METFAC taking into
account the software behaviour through new production rools .

CONCLUSION

Pointing out that the major challenges for fault-tolerance systems are :

- explosive growth of complexity that will avoid rough duplication for
economic reasons and make unefficient any unstructured testing approach,
- design faults avoidance,
- specification faults avoidance,

SMART tends to provide a complete metrication reference system by improvement and
adaptation of the already existing results and an integrated tools set for monitoring
fault-tolerant systems development: estimation, evaluation and prediction .

This global approach is based both on the extension of software reliability theory and on
the improvements of existing techniques for performance evaluation of fault-tolerant
architectures .

431

REFERENCES

(1) J.C LAPRIE, Dependability Evaluation of Software Systems in Operation,
IEEE Trans. Software Eng. vol SE-10 Nov 1984

(2) A.AVIZIENIS, The N-version Approach to fault-tolerant Software,
IEEE Trans. Software Eng. vol SE-11 Dec 1985

(3) T.ANDERSON, P.A BARRETT, D.N HALLIWELL, An evaluation of software
fault-tolerance in a practical system,
IEEE Trans. Software Eng. vol SE-11 Dec 1985

(4) A.COSTES, CLANDRAULT, J.C LAPRIE, Reliability and Availability Models for
Maintained Systems Featuring Hardware and Design Faults,
IEEE Trans . Computers vol C-27

(5) J.A CARRASCO J.FIGUERAS, A.KUNTZMANN, Evaluation of safety-Oriented
Two-Version Architectures
Report under publication Jan 1987

(6)J.A CARRASCO J.FIGUERAS, METFAC : Design and implementation of a software
tool for modeling and evaluation of complex fault-tolerant computing systems
FTCS 16 Vienna July 1986

(7) R.A SAHNER, K.S TRIVEDI, A Hierarchical Combinatorial-Markov Method for
solving Complex Reliability Models,
ACM/IEEE Fall Joint Computer Conf. Dallas Texas Nov 1986

(8) V.KINI, D.P SDZWIOREK, Automatic Generation of Symbolic Reliability Functions
for Processor-Memory Switch Structures
IEEE Trans, on Computers vol CE-31 August 1982

(9) SMART consortium, Technical Annex of the contract January 1987

432

Project No. 938

IMPISH: a RDBM5 extended to handle Logical rules and
documents .

Michel BOSCO, Michel GIBELLI
DIG-TL
CETE Mediterranee
B.P.39 13762 LE5 MILLES CEDEX , FRRNCE

Abstract :

IMPISH is a software able to manage information which has
been modelised in several w a y s . It will be used first in
the Software Project Management Field.

The Codd relationship is the basic concept of the model,
but some extensions of the usual relational languages
have been designed and coded, in order to handle logical
rules and documents.

It provides the user with several interfaces for
traditional applications as well as expert systems.

1. INTRODUCTION

Those Information Systems based on a relational vision, or even
'ERR', of the real world, are, for the most part, implemented on
relational DBMS.

The computer-assisted management of software projects is a
typical application: the creation of a prototype management
workbench (IMP Workbench, which stands for Integrated Management
Process Workbench) (4) demonstrates the need for a host structure
for an information system capable of managing modelised data and
texts .

In this article we will present a first prototype
structure, IMPISH (IMP Information System H o s t) :

of this

- an introductory paragraph will describe the 'world' of software
project management, the first modelised and implemented on
IMPISH.

_ secondly, we will define more precisely
information managed by the system,

433

the types of

the following paragraph will identify the aims and the
essential characteristics of this management by describing the
languages for access to the system,

paragraph five will show the architectural composition and the
role of the main elements to finally justify the design and the
use of the different tools chosen for the realisation of the
system.

2. One use of IMPISH
(a data model for the management of software projects)

Computer assisted management of software projects, a branch of
Software Engineering, presents several areas of major interest:
Software Engineering workbenchs are today accepted as tools which
favourise the production of quality software at reasonable cost
(5) (6) . They are normally organised around an information system
C7) (8) where the reference data is stored, checked and modified.

It is this information that the project Leader wants to
manipulate, either interactively, or by using management tools
(planning tools, status reports...) (4) (9) (1 0) .

control system

information system

Specifications
production system

Product

Project Leaders workbench

Production workbench

fig. 1 : Systemic Approach of the Organisations [20]

The 'data' handled in the scope of software production is
extremely complex: work carried out by B.W. Boehm and his team
has shown that in a similar 'ERR' expression, there can be as
many as thirty entities involving more than 200 attributes and
interconnected by some 170 relations. The mock-up of the Concerto
information system has produced similar findings (8) .
In a modelisation limited to management, we have evidenced some
thirty entities and more than forty relationships uniting in
excess of 100 attributes.

Moreover, our analysis of the management process (12) has shown
the existence of numerous documents, either composed by the
manager (at least twenty different types), or consulted by him
(in fact more than thirty different types generated by the
production environment).

434

fig. 2 : Subset of the mode implemented in IMP Workbench

Software
Software

Quality
Quality

Manual
Assurance

Task and Resource Plan
Progress Report

Plan

fig. 3 : Some documents producted by the IMP Workbench

F i n a l l y , a s e r i e s of e x t r e m e l y d e t a i l e d e n q u i r i e s , i n t h e f o r m of
i n t e r v i e w s of management e x p e r t s , has l e d us t o the e x t r a c t i o n
o f :

- C o n s t r a i n t s

- Systematic Behaviour leading to a modification of data.

It is important to comment at this point that the constraints can
affect the entity values, just as much as the conditions of
existence of the documents, or even both at the same time:
For example, it is interesting to be able to add a document to
the body of information which was used for its compilation and be
able to signal its obsolescence in case of modification of the
information .
The use of these Facts, Documents, Logical Behaviour (Rules), may
be simultaneous. It therefore justifies the setting up of a
software structure, purpose-built, allowing the modelisation of
this information and its handling.

435

flWW!'!i!^'''W!'fl!'!W^

>*&?*'

Views
the

INTERACTIVE
USE

CLASSICAL
TOOL

\ I /
EXPERT
SYSTEM

dosumeifit
ba5g_ log :al base

3. The information in IMPISH

Formally, we can classify the information managed by IMPISH in
three logical groups, three 'bases':

the facts, which we will show simply in the form of a t-uple,
expressed under the form ERR C14)
- the non-factual constraints and logical rules, expressed simply
under the form of Prolog,
We will gather these two sorts of information under the generic
title "modelised information", as opposed to the following:

the documents, or, more generally, digital information usually
entered in the files (physical information).

3.1 The facts
In the first version of IMPISH the modeIisation of the facts has
been simplified by the use of the Codd concept, and the base
concept will be the relationship. Implemented on a relational
DBMS the facts will be "rows" of "tables".
They are accessible using traditional SQL-like commands.

436

The integration of these commands into the traditional
programming Languages makes them accessible in reading and
writing by C procedures, for example, and therefore to tools
written in this Language.
We have also developed an interface which authorises their use in
Prolog programmes (1 5) .

3.2 The logical rules:

By this we mean, at the same time the expression of constraints
(rules needing to be verified) and that of actions ('daemons') in
Prolog, as well as operations for the handling of facts
(insertion, deletion, modifications to t - u p l e s) .

The notion of Constraint needs to be clarified:

The constraints of unicity (k e y s) ,

The dependency by reference:

If R is a 'resource ' ,
If B is a 'class of resource',
Then 'R. type of resource' must equal one of the instances of
'B. class of resource k e y 1 .

- The functional dependencies:

If B is a 'class of resource',
Then 'B. number of available units' must equal the
number of instances of resource R in which 'R. availability
equaIs 'free ' .

- The multivalue dependencies:

If T is a 'task' ,
Then 'T. date start'+'T. duration' must equal 'T. date end'.

- The value domains.

437

It should be noted that certain of these concepts are taken into
account in the relational DBM5, or that their writing is made
easier (key, value d o m a i n . . .) . But the logical programmation
enables us to extend appreciably the implementation of this
notion of constraint.

Another contribution as a result of the integration of an
inference engine to the DBM5 is the definition of the 'daemons'
on the relationships: they can be expressed by the activation of
actions once an operation on the table has been validated.
We will see later how we have been able to
Language for these constraints.

def ine a def ini t ion

3.3 The documents:
We will refine the definition of these by separating the
documents tagged by an entity attribute CREF DOC) from those
which tag a group of attributes belonging to different elements
of the model, and constructed by one of the tools which may
access the information system (TOOL DOC) (cf. fig. 4) .
The documents are accessible through the research mechanisms of
the DBMS, and their content, once tracked may be handled by no
matter which appropriate tool (word processor for a document,
editor or compiler, for a source c o d e . . .) .
In the case of tagged documents, a document instance is
considered as an attribute (a "column v a l u e ") . We shall call this
special "column* a 'link'.
In the case of TOOL DOC a document type is considered as an
integral entity - as a "physical document" type - which is added
conceptually to the model.
Its attributes are:
'ident if ier '
'access path'
'type'
'version number ' .
The access path is, in fact, the access path to a copy of the
document (and not the document itself).
The 'type' is a generic semantic name, the value domain of which
is defined for one application: Quality Plan, Meeting agenda...
The identifier is the current name of a given instance of a
document of type 'type'.
The key of this entity is composed of 'identifier', 'type 1, and
'version number'.

438

For each type of document there will exist an instance "draft",
corresponding to a syntactical frame emptied of all semantics, a
standard instancing, the introduction of which is carried out at
the moment the model is defined.

EAR
MODEL

/'Document type

Document Type

:
. •

.....
Document Instances

REF D O C

fig. 4 : The Links between the relational data base and the document base

3.4 The Management of Time with IMPISH

Three kinds of temporal information can be managed in IMPISH:

_ The live informations which represent the current state of the
base ,

- The historical informations which deal with the past of the
base ,

- The simulated informations why are hypothetical and do not
consist in shared references,

On an earlier version, we applied these notions to the only
facts managed by the DBMS and documents.

We plan to implement a temporal management of logical rules in
the near future.

A. The Management of Information in IMPISH

The aims of IMPISH are to ensure:

439

The definition of each of these data types and the
corresponding models: it implements a data definition language
which enables the definition of the ERR model, the constraints on
the model, the model of the documents, the constraints on these
documents, the 'daemons' acting on these models,

The handling of this data, interactively by a user, but also
automatically by the tools written in the procedural languages
(C, Objective C) or declarational (Prolog): these tools Cor
assistants) can access to the knowledge of existing facts and
modify them if the rights of access allow it,

The autodocumentation of the commands and the model: this last
service ensures, on line, a knowledge of sub-models and links
(constraints...) the multiplicity of which makes the models
global vision rapidly virtually impossible,

The archival storage of bases (relational, logical and
documentary) ,

The possibility to construct with ease tools on an
already-existing base,

- compatibility with SOL in the first version.

The realisation of these services is a result of the management
of the coherence of the base of facts and documents, and the
sharing of the information - notions of transaction, of rights of
entry .

4.1 The DDL

The nature of the key words and the command syntax of the
language will be very close to their counterparts in SQL (19).
Their semantics wiLl, however, be different particularly since
what we call "base" is the union:

- of a traditional DBMS base (factual b a s e) ,

- of a Prolog world (logical base) which contains the model,

- of a hierarchy of files (base documents).

Thus, the following commands, of which the syntax is SOL - like,
are spread across these three worlds:

CRERTE-DRTRBRSE
CLOSE-DRTRBRSE
ORTRBRSE
0R0P-0RTRBR5E

Another command, RRCHIVE-DRTRBRSE, has been added, to ensure that
the base is recorded the instant it is activated, and to save the
links which exist between "DBMS base" and "document base".

440

The commands which relate to the "tables" Ccf relational tables)
have he following behaviour:

CRERTE-TRBLE , which incorporates the keys and the links:

CRERTE-TRBLE table 1 C c o M col2) linkl link2 KEY c o M HD

Its activation gives rise to:

- the creation of a relational table,

- the adding of the reLation to the Prolog model,

- the creation of a "unique index" on column ' c o l V of the table,

the creation of links, such as the adding of these to the
Prolog models and the creation of a corresponding file space.

Rn optional key-word enables to define a column or table as
historical, i. e. to be memorised in case of modification such a
mechanism, based on the handling of SOL "VIEWS" will allow
retrievals for any given period.

-DROP-NRME,

-RENRME-COLUMN, also pertaining on links

-RLTER-TRBLE, which have a SQL-like behaviour spread across the
different bases Clogical and document)

-CRERTE-DDMRIN the syntax of which is the following:

CRERTE-DDMRIN (name of domain) ONTO (predefined domain)

PROGRAM (prolog program)

where the prolog program (16) defines a predicate the
satisfaction of which confers to a value the quality of belonging
to the domain.

Then come the commands which enable us to define and manage the
different types of constraint:

-CRERTE-REFERENCE (attribute) TO (attribute)

where an attribute is, in fact, a pair:

(table name) . (column name)

-CRERTE DEPENDRNCY (attribute) ON (attribute LIST)

ASSIGNING (assigning - LIST)

PROGRRM (prolog - program)

where :

(assigning - LIST)::= (attribute) = (prolog - variable)

441

(assigning - LIST) I

NIL;

The system manages the correspondence between the interested
attributes (the first of the list of assignments depending on the
others) and the prolog variables which "designates" them.

-CONSTRAIN (table name)
WHEN (type of manipulation) (operational type)

RSSIGNING (assigning list)
PROGRAM (prolog program)

The type of manipulation may be INSERTION, DELETION or UPDATING,
the operational type BEFORE or RFTER.

-CRERTE-OREMON (table name)
WHEN (type of manipulation)

RSSIGNING (assigning list)
IF (condition) (other condition)

THEN (action list)
PROGRRM (prolog program)

where an action is a prolog goal, the realisation of which will
lead to the manipulation of facts and rules in the system.

The structure of the prolog program which describes the
conditions in the three previous commands is not trivial, and our
work will lead to their formalisation.

-RERD-CONSTRRINT (table name)

edits the list of all the constraints covered by 'table name' and
sends back their internal number.

-DROP-CONSTRRINT (number)

removes the constraint of internal number 'number'.

The commands relating to the documents known "TOOL DOC":

- CRERTE-DOCTYPE,
- RENRME-DOCTYPE,

DROP-DOCTYPE, create, rename or remove the file spaces (direc
tories) organised for the management of documents in IMPISH.

Finally, the DDL includes the 50L - like commands:

- GRRNT,
- REVOK,

442

and a system command which allows the "compilation" of prolog
programs (for example, expert systems in the field modelised in
the b a s e) . It is this command, which when activated generates, at
the same time, a new modified Prolog code and a set of rules
declaring the file (pathname) as being interpret able by the
metainterpreter associated to the current base:
- INTEGRATE (pathname).

4.2 The DML
The data manipulation commands offered by IMPISH start with:
- INSERT INTO (insert statement) (list of Link assignments)
The "insert statement" is based on its SQL equivalent. However,
(list of link assignments) is optional.
Here are some examples of the command grammar:
(list of link assignments) ::= nil | (list of link names)

(list of link values) ;

(link value) ::= LINK (pathname) | VHL "(string";

This causes an extension of the command at the "base documents",
by creating instances of documents tagged by the link name and
containing either a character string (string), or the contents of
the buffer file with the address (pathname)

- DELETE FROM (table name) (condition statement)
(qualification) ;

where
-(qua Ii f icat ion) WITH (name of predicate) ((list of terms));

This notion of qualification is an extension of the conditional
expression (the SOL "WHERE" statement) which allows an operation
to start only if the predicate "name of predicate", activated on
the list of terms, is verified. This verification is executed by
the Prolog inference engine.
You will notice that the removal is spread to the base documents,
but the conditions of execution cannot affect the content or the
address of a link.

UPDPTE (table name)
SET (update statement)

443

(condition statement)

Cqualif icat ion) ;

Cf. DELETE above and the UPDATE SOL.

- SELECT PLUS (selection list) FROM (list of table names)

(condition statement) (order statement) (qualification);

where :

(selection list) ::= (select list) (select link list);

(select link list) ::= (select link) (select link list);

(select link) ::= (link name) | VRL (Link n a m e) ;

This SELECT gives access to the tagged documents by using the
navigation mechanisms of the DBMS, either by returning a
pathname, or by returning the content of the documents (VRL)

You will notice that the selection mechanism is extended by using
the screening ((qualification) optional))

The occurrence of Keyword HISTORY enables the activation of
selection on the historical data base thus giving the validity
start date (VSD), the validity end date (VED) for a given fact.
Reciprocally we will access the status of a fact at any given
date using the "virtual columns" VSD and VED in the (selection
LIST) or the (condition statement).

Such a feature is particularly useful With statistic or analogic
tools.

Several commands allow access to "TOOL DOC":

- STORE-TOOL-DOC (pathname) (type of document) (id)

(dependency expression);

where :

(id) (string) | (string) (version number) | (string) LRST;

This definition of (id) allows the document to be memorised,
either as the last version, or as the replacement of the version
(number of version), or even as the replacement of the last
version (LRST).

444

The (dependency expression), the grammar of which is not
completely rigid allows us to define the degrees of dependency of
the document with a certain number of instances of entities from
the modelised base.

- DELETE-TOOL-DOC (type of document) (id*)

where :

(id*) ::= (string*) | (string*) (version number)

I (string*) LPST;

(string*) satisfying the specifications of the star convention of
Unix .

This command destroys the document or documents concerned.

- GET-TOOL-DOC (type of document) (id*)

(selection of documents expression);

This command returns the documents selected:

- either by using the star convention,

or by using (selection of documents expression) which allows
access to documents which "depend" on instances of relations,
themselves eventually determined by the combination of a "select
statement" and a screening (qualification).

We will soon see a considerable evolution in these commands,
brought about by object-oriented techniques which will allow us
to return to a single structure (an object) the set of data
linked to a document: date of creation, dates of handling,
identification of handlers...

Finally, IMPISH offers commands for the use of classical
transaction mechanisms of the OBMSs extended to the logical
worlds and of documents (by keeping a l o g . . .) :

- LOCK,

- UNLOCK,

- BEGIN-U/ORK,

- COMMIT-WORK,

445

ROLLBRCK-WORK.

finy errors arising during the use of IMPISH are managed by a
mechanism of error treatment which signals in which base
(relational, logical, or document) the errors occur.

5. The architecture and operating mode of IMPISH

The aim of IMPISH is to bring together the abilities of a DBMS
and a logical programming language, not to rewrite one or the
other. It was our wish to Look upon the base components of our
system as "black boxes".
INFORMIX*, Prolog II** and the FMS (File Management System) of
UNIX*** are respectively the DBMS, the logical language, and the
FMS Of IMPISH.
The DBMS allows the memorising and handling of the facts, the 56F
the documents. We will not elaborate on their particular
funct ionali ty .
The logical language, is the medium of expression for the
knowledge (essentially that of constraints, daemons and general
m o d e l) , and the opening to tools of "expert system" type.
R fourth component of our system, the "Translator", provides the
interfacing of IMPISH with the tools of application following an
object-oriented philosophy (cf.fig. 5) .
Finally, an interactive handling module is being developed on the
system.

PROLOG
TOOL

Prolog y
terrace
IMPISH

LARKS

O.O.
TOOL

HUMAN
USER

TRANSLATOR

I
INTERACTIVE
MODULE

• • • • • • • / • / ,
• • • • • • / • • • ,

K&HWi)2*

I | Objective-C

| j ;gg| j Prolog II

\,\\\] ESQL-C & C

jVVV\] UNIX Schell & C

L£gende : Languages of
Implementation

fig. 5 : Software Architecture of IMPISH

446

•INFORMIX: Relational Database Systems

••Prolog II: ProloglR

*»*UNIX: RT&T - Bell Laboratories

5.1 Prolog in IMPISH

_ as a knowledge medium:

The database model, the model of the base documents and of the
constraints, links and daemons, are represented in the Prolog
environment.

Furthermore, the adding of mechanisms (5L resolution, Forward
reasoning...) to the base principles of Prolog increases the
inference capacity.

- like the environment coupled to the DBMS:

We will not elaborate on the techniques used at this point:

The work we have done in this direction has led to the
development of a prototype, LARKS C15) (Logic and Relational
Knowledge S y s t e m) , in which several approaches (compilation,
metainterpretation) have been implemented.

For the moment reduced to the porting of a single coupling
procedure, we have continued to concentrate on the rewriting of
the metainterpretation mechanism and the evaluation of the
different methods. This will allow us to define an automatic
process optimising the choice of the method for access to the
database, in relation to the program and the considered Prolog
goal.

The new functionalities offered are as follows:

R Prolog goal related to a table of the DBMS will naturally try
to erase itself in the Prolog world, but in the case of a
failure, the attempt at erasing will be extended to the t-uples
of the table.
If 'task' is a table, the goal 'task(x,y , 3) ' will generate the
backtrack on the set of triplets (x,y,z) where z=3 of the
relationship ' task ' .

However, it is still possible to Limit the domain of erasing to
the Prolog world alone by evaluating the goal through the
predicate ' local ' :

'Local(task(x ,y ,3)) ' provokes the resolution of 'task(x,y,3) ' in
the Prolog environment alone.

447

Conversely, the insertion, the deletion and the modification ol
Prolog facts relative to a DBMS table, by using the predicate;
'assert db', 'update db' and 'delete db' is made possible in thi
base itself.

of
s
e

Finally, other possibilities (saturation with repercussion in the
database...) are being investigated at this very moment.
We should note that the use of Prolog allows a simple
implementation of the syntactic command analysis, the execution
of which is assured by external predicates added to the language,
which enable fine control of the errors.

5.2 The IMPISH Translator
R real interface to IMPISH for the tools developed and
implemented in "Object Oriented" mode, this component receives
messages (for a presentation of the principles and the 0.0
vocabulary, see (21) (22)). Those messages define:
- a LMO command including variables,
('receive': "select task.name from task where task.duration = *x ")
- the list of these variables and the objects assigned to them,
('var' :»x)

the name of the class which will contain the result of the
request to the information system.
(' rep ' : Taskname)
For example:
(translatorObject 'receive': "select task.name from task where
task . duration = »x" 'var':*x:durationObject ' rep': Taskname)
Objective-C Syntax (22)
It then deduces the veritable command, for example:
"select task.name from task where task.duration M "
It launches its activation (towards Prolog) and recovers the
result which it transforms into an instance of the response class
(here "Taskname")

5.3 The interactive module
This tool is destined at the same time to the administrator of
the information system and to the user who wishes to consult the
status of this information.

448

For once it is merely specified, it will allow an interactive and
guided interpretation of the DDL and the DML (limited depending
on the nature of the u s e r) , and the activation of the tools for
handling documents (editors, c o m p i l e r s . . .) .

It will incorporate a users manual and above all a function of
autodocumentat ion and interrogation of the model of the different
bases of the system.

6. Conclusions

The IMP Workbench project demonstrates the interest there is in
using IMPISH for the management of software projects.

However, although the results to-date are satisfactory, they
require deeper study:

the methods of modelisation and of acquisition of knowledge
according to the three "works" considered,

the evaluation and improvement of coupling procedures
(metaprogrammation and optimisation of the m e c h a n i s m s) ,

the formalisation of the writing of the constraints and
daemons,

the definition of the dependencies between physical and
modelised information,

all these points continue to be the object of research work,
articles, and thesis.

The use of IMPISH in the near future for other applications, and
the realisation of the interactive module will enable its
evaluation to be completed.

acknowledgements

This study has been carried out under the auspices of the project
ESPRIT P936, IMP Workbench, partially founded by the Commission
of the European Community, and involving ICL (G B) , prime
contractor, the CETE Mediterranee (F) , NIHE (I r) , Imperial
College (G B) , and Verilog (F) .

The authors wish to thank all those involved in this project,
particularly L. Boi, B. terranova, and K. Sebti for their
contribution to the specifications of IMPISH.

References

C D BERNIER J. 8, al .
Convergence des bases de donnees et des systemes experts
MBD No 5, December 86
RFCET

12] GARDRRIN G., SIMON E.

449

Bases de donnees deductives: Lengages de regies et
recursivite
Journees FIRTECH: Bases de donnees et Intelligence
Rrtificielle - Paris, Rpril 87

[33 CEE, E5PRIT Program: Integration of Logic Programming
and Data Bases - Venice, December 8B

[4] BOI & al.
General Specification and Design of IMP Workbench
ESPRIT delivery - P938 -1987

[5] RNDRE E., MORERU B., ROUGEOT B.
Vers un atelier flexible et integre: le projet CONCERTO
CONCERTO - Perros-Guirec, fevrier 86

C6] PCTE: Technical documentation

[7] BOLOGNR M., ROMOLI C.
An ER Database for Software Engineering: the Portable
Common Tool Environment Approach
PCTE ESPRIT Project

[8] RLLEZ F., BOI L. BDUBENIDER Y., HECKENROTH H.
R mockup of a CONCERTO Workbench Program information system
using F1 formalism
BIGRE No 43-44 - July 1985

[9] RLLEZ F., BOI L., BOSCO M., BENOIT S., de la MOTTE COLAS Y.
The CONCERTO Workbench pilot station
CONCERTO - Perros-Guirec, February 86

[10] PIM5 Information Manager
PIMS ESPRIT Project documentation

[113 PENEDO M.H.
Prototyping a Project Master Database for Software
Engineering Environments
IEEE - 1985

[123 IMPW General Specification and Design
IMPW ESPRIT Project documentation - P938 -

[14] CHEN P.P.
The Entity Relationship Model: towards a unified view of
data
RCM Transactions on Database Systems - March 1976

[15] BOI L., BOSCO M., GIBELLI M.
Logic and Relational Knowledge System
EEC, ESPRIT Program: Integration of Logic Programming
and Data Bases - Venice, December 1985

[16] NGUYEN G.T., OLIVRRES J.
SYCSLOG: systeme logique d'integrite semantique
TIGRE - R.R. IMRG No 26 - January 1985

[17] MIRRNOR S., VINCENT C.
Promenade avec CRMPU5
MED No 2 - January 1986

450

[18] Prologia: PROLOG II, Reference manual

[19] Relational Database Management System:
INFORMIX - SQL reference manual

[20] LEMOIGNE J.L.
Les systemes de decision dans les organisations
PUF - 1974

[21] Xerox Learning Research Group
The Smalltalk-80 System
BYTE No 6 vol. 6 - August 1981

[22] COX B. J .
Object Oriented Programming: Rn Evolutionary Approach
Addison Wesley, August 1986

451

P r o j e c t No. 315

Software development in RAISE

Chris George

STC Technology Ltd, London Road, Harlow, Essex CM17 9NA, U.K.

1 Introduction

This work is part of Esprit project 315 RAISE — Rigorous Approach to Industrial Software Engi
neering. We show how the RAISE specification language (RSL) is able to capture the functional
requirements of a piece of software in an initial specification, and is also able to capture particular
design decisions as the specification is developed into an implementation in some programming lan
guage. To do this RSL has two important features — it is wide spectrum and it allows specifications
to be encapsulated in s t ruc tu res . The RAISE method then allows one to assert and then prove
relations between structures, and in particular the implements relation.

This paper shows how such relations may be asserted and proved, and how the resulting structures
and relations between them are held in the RAISE data model. While several RSL specifications are
presented it is assumed that most of the details of RSL are explained in [3], a paper on RSL also
being presented during this technical week. It is also hoped that RSL is sufficiently well designed for
some understanding at least to be immediate!

2 Initial applicative specification

This paper uses a running example, an implementation of a set of values as an ordered tree, so that
it can be searched reasonably efficiently. (The values will have a natural ordering or a key on which
they can be ordered.) But from the outside it should not matter how the set is organised, and so
our initial specification can be more abstract than an ordered tree. In fact we start with an ordering
as a list. We will first need to define a structure presenting values and their ordering.

VALUE =
structure

type
Value

value
le: Value x Value —» Bool w h e r e

Va:Value,b:Value,c:Value sat
le(a,a) A
(le(a,b) A le(b,c) =>• le(a,c)) A
(le(a,b) A le(b,a) => a=b) A
(le(a,b) V le(b,a))

end VALUE

This structure defines a type Value and a linear order le. We will use VALUEin the structure defining
our set. This effectively gives us a parameterised structure — we can later substitute any type with

452

a linear order for VALUE. This might be integers ordered with ' < ' , names ordered alphabetically, or
records with keys which can be ordered.

We now define a set as an ordered list:

VAL LIST =
s t r u c t u r e

use VALUE
type

OrderedJist :: those seq:Value* sat is.orderedJist(seq) opaque
value

is ordered list (seq:Value*) :Bool =
match seq with

() then true,
{*) then true,
(x)~(seql as (y)~*) then le(x,y) A is ordered list(seql)

end omi t ,

add .to Jist (i:Value,mk-Ordered_list (seq: Value*))
gives mk-OrderedJist(seql:Value*) sa t

elems seql = elems seq U {i},

del from list (i:Value,mk-Ordered list(seq:Value*))
gives mk-Ordered_list(seql:Value*) sat

e lems seql = elems seq\{i},

is_inJist (i:Value,mk-Ordered_list(seq:Value*)) :Bool = i 6 elems seq,

empty .list: OrderedJist = mk-OrderedJist(O)
end VAL.LIST

If we want VAL LIST to be an abstract definition we do not want the fact that we have used
ordered lists as our way of holding sets to be visible. We therefore opaque the type definition of
Ordered list. This has the effect of hiding the definition of Ordered list, but not the name, from
outside the structure. Note that we could not hide the name as well as the type or we would not be
able to express the types of the values which are also visible outside. Thus we know from outside
that the type of isJnJist is some sub-type of Value x OrderedJist —• Bool and that of add-to Jist is
some sub-type of Value x Ordered list —* Ordered list so that we may use the value of an application
of add-to Jist in an argument of is-in.list. Thus making a type definition opaque changes the possible
ways in which we are allowed to develop it. If OrderedJist were not opaque we would only be able
to use lists to represent it. Having made it opaque we can use something else (and we in fact intend
to use ordered trees).

Note that in the definition of OrderedJist we have used '::' instead of '= ' . If we define some type
T by a definition of the form T :: Tl where Tl is some type expression, then we can distinguish
values of type T from values of type Tl, because there is a bijection m k - T automatically defined,
of type Tl—* T, and this function can be used in pattern matching. Thus we are making T and Tl
isomorphic instead of equal — to any value of T there corresponds a unique value of Tl and vice
versa. Types which we wish to opaque must be defined in this way; opaquing is really like hiding
the mk- function.

On the other hand, we do not want the function is.orderedJist to be visible outside at all, because
it is irrelevant to our abstract view of sets. Hence we omi t it, and it is totally invisible outside the

453

structure. Both types and values may be omitted, and are visible outside unless omitted.

2.1 Implementability

Having written down a structure like VAL.LIST we would like some confirmation that what we have
written makes sense. More formally, we would like there to be at least one model of our specification.
For types we must show the type is nonempty; values are defined as members of a type, and so the
same approach suffices for them as well. Sometimes type existence is guaranteed immediately. For
example, if we define a type using a type constructor, such as A X B, then its existence is guaranteed
if A and B exist. Thus the existence of Value* is guaranteed immediately, assuming Value exists,
since '*' (which creates a list type) is defined for all types. For types defined by a subtype predicate,
the subtype is defined if the type being subtyped exists and there is at least one value satisfying
the predicate, i.e. if the predicate is not contradictory. Therefore Ordered-list exists if we can find
lists of values which satisfy is-ordered Jist. Since the empty list will do, the type clearly exists.

For the (function) value is ordered list we need to check that for any list seq of type Value* the
function will return true or false. The constructive nature of the algorithm, and the well founded
recursion (the recursive calls are on shorter lists) assures us this is so.

For add.to .list we need to check that for any Value and any Ordered-list we can construct another
Ordered-list whose elements are exactly those of the original list plus the new element. This is clearly
possible — we could outline a constructive algorithm to do so. The other functions are similarly
easy to check.

2.2 P r o p e r t i e s of a s t r u c t u r e

So what properties does this structure have, viewed from outside? For example, we would like it to
be true that if we add an element to an Ordered-list value, and then check if it is there, the answer
should be true, i.e.

V(i:Value,s:OrderedJist) sat is.in.list(i,add_to_list(i,s)) = t r u e

If we could unfold the function calls, i.e. use the definitions, we could prove this immediately.
However, we are not allowed to unfold values of opaque types, because to do so would expose the
particular representation used. We might then be able to prove, and so rely on, properties true only
of that representation. But the whole point of making types opaque is for them to be developed into
other types for which properties true only for the original representation no longer hold. We need
some properties, i.e. a theory of VAL LIST which is independent of its opaqued type. To do this we
may define another structure VA LSET as follows:

VAL SET =
s t r u c t u r e

use VALUE
type

Set.of.val
value

add.to.set: Value X Set.of.val —♦ Set.of.val,
del from set: Value X Set of val —► Set of val,
is.in.set: Value x Set.of.val —> Bool,

454

empty set: Set of val
value ax iom

V(i:Valuej:Value,s:Set of val) sat
is-in-set(i,add.to_set(j,s)) = (i=j V is_in_set(i,s))
A
is_in_set(i,del-from_set(j,s)) = (i^j A is_in_set(i,s))
A
is.in_set(i,empty _set) = false

end VAL.SET

This RSL structure is much more like specifications in the style of algebraic or axiomatic languages
such as OBJ, but it has the same overall shape as VAL LIST. We have a single type Set of val but
this time there is no definition for it. We then define four values, but this time we want to define
them in terms of each other. A convenient way to do this in RSL is to give only very loose definitions
in the value section, and then to give one or more axioms in a value axiom section. Here the
value section establishes nothing more than the base types of the four values (and the fact that the
functions are total, since we have used '—>' rather than '—*')■ Thus any values with these base types
that satisfy the axioms which follow will satisfy this specification.

Since there is no type definition there is nothing to opaque and no problem about seeing the definitions
from outside. Thus given our earlier property

V(i:Value,s:Set_of_val) sa t isJn_set(i,add_to_set(i,s)) = true

(expressed in terms of the function values from VALSET) we can prove it immediately, since

is in set(i,add to set(i,s)) = i=i V is in set(i,s)
= true V is_in_set(i,s)
= true

We will therefore take VALSET as our most abstract specification, and show that VAL-LIST is
a development of it. In particular, we want to show that the theory of VAL SET is a sub-theory
of that of VAL-LIST (or, equivalent^, that all models of VAL.LIST are models of VAL.SET). We
may then describe VAL LIST as an implementation of VAL SET. In RAISE we always use the term
implementation in this precise, formal sense.

Note first of all that it is common to regard models as defined 'up to isomorphism', i.e. to disregard
the particular names used for things. This makes it possible to use add to set for the value from
VALSET and add.to.list tor the corresponding value from VAL-LIST. It would be very confusing if
we had to use the same names for both! We will assume the obvious correspondence of Xset from
VALSET with X.list from VAL-LIST.

To show that VAL LIST is an implementation of VAL SET we show that the theory of VAL SET is
a sub-theory of VAL-LIST, i.e. that statements true in VALSET are true in VAL-LIST. Statements
true in VAL SET are either stated in it in definitions or provable from them, so we only have to
check those actually stated. It is a trivial task to check the axioms. For example,

is.in.list(i,add_to.list(j,s)) = i 6 elems add.to.list(j,s)
= i € (elems s U {j})
= i=j v i e elems s
= i=j V is.in.list(i,s)

455

Note that if there were a non-opaqued type definition in VAL SET, such as

Set of val = Value-set

(where -set is a built in type constructor) we would have had to find or prove a similar definition
in VAL-LIST, and as things stand the implementation proof would not go through. This shows how
non-opaqued type definitions restrict the possible implementations.

2.3 D e v e l o p m e n t of a p p l i c a t i v e s t r u c t u r e s

We have already created one example of a development, in showing VAL-LIST to be a development
of VAL SET. We are now ready to give the structure VAL TREE which uses a tree representation
for our sets.

VAL.TREE =
structure

use VALUE
type

Tree :: [Node] opaque,
Node = those (l,v,r):Tree x Value x Tree sat

match 1 'with
nil then true
mk-Tree(n) then le(max-tree(n),v)

end
A
match r wi th

nil then true
mk-Tree(n) then le(v,min.tree(n))

end omit
value

max tree (tr:Node) :Value =
match tr wi th

(*,v,nil) then v,
(*,*,mk-Tree(r)) then max_tree(r)

end omit,
— min.tree is similar to max.tree

add.to.tree (i:Value,tr:Tree) :Tree =
match tr wi th

nil then mk-Tree(nil,i,nil),
mk-Tree(l,v,r) then

if i=v then tr
elsif le(i,v) then mk-Tree(add to tree(i,l),v,r)
else mk-Tree(l,v,add-to-tree(i,r))
end

end,
— del.from-tree is also defined in the obvious manner

isjn.tree (i:Value,tr:Tree) :Bool =

456

m a t c h tr 'with
nil t hen false,
mk-Tree(l,v,r) t h e n

i=v V is_in_tree(i,l) V is_in_tree(i,r)
end,

empty _tree:Tree = ni l
end VAL.TREE

We now need to check the consistency of our specification, as with those defined previously. The
existence of types Tree and Node is easy to check, and function definitions are all constructive with
well-founded recursion.

The next step is to prove that VAL TREE is an implementation of VAL LIST. To do this we can
adopt a strategy based on that used for VDM, as defined for example in [1]. For each opaque type in
VA L-LIST we need to find a type in VAL.TREE such that there is a surjective retrieve function from
the latter to the former. Thus in this case we need a function of type retrieve: Tree —» Orderedjist
that is a surjection (i.e. all possible values of type Orderedjist can be generated from some Tree).
The retrieve function is easy to define — it generates a list by depth first left to right traversal of
the tree. The ordering on the list comes from the ordering on the tree.

Having proved this retrieve function to be total and surjective we would check that for any non-
opaqued types in VAL LIST there were equivalent definitions in VAL TREE (where equivalence
means that we may use the retrieve function(s) in showing it). This does not arise in this case, and
so we are left with checking the values.

For each visible value in VAL.LIST we must find an equivalent value in VAL-TREE, such that the
type of the value in the latter is (using the retrieve function(s) as appropriate) a sub-type of the type
of the value in the former. For example, we must show that under the retrieve function the type of
add to tree is a sub-type of the type of add.toJist.

But it is also worth noting that since VAL.LIST implements VAL.SET, if VAL TREE implements
VAL.LIST it will implement VAL.SET, since implementation is transitive. Furthermore, it is pre
cisely the property that VAL TREE implements VAL SET that we are interested in — the view that
users have is of the set properties, not any special data structures used to give efficient implementa
tions. It will therefore suffice to show that VAL TREE implements VAL SET, which merely involves
showing that VALSETs axioms are true in VAL-TREE. This is a fairly simple task. (Showing that
VAL.TREE implements VAL.SET does not of course establish any implementation relation between
VAL.TREE and VAL.LIST.)

3 Imperat ive RSL s t ructures

We would like to use our Tree definition to create an imperative tree structure, i.e. one that holds a
value of type Tree in a state. Such structures are commonly called objects. We therefore create the
following object:

VAL-TREE.OBJECT =
select

ope ra t ion
add: Value =5- wr i t e ,
delete: Value => wr i t e ,

457

is in: Value =>■ Bool read,
can-extend: Value =>■ Bool read,
empty: =>■ write

from
structure

use VAL.TREE
variable

tr: Tree := empty .tree
operation

add (i:Value) ■write tr:Tree where is in(i) V can extend(i)
is tr := add_to-tree(i,tr)

end add,

delete (i:Value) write tr:Tree is tr := del from tree(i,tr)
end delete,

isjn (i:Value) :Bool read tr:Tree = is.in.tree(i,tr)
end isJn,

empty write tr:Tree is tr := empty tree
end empty,

can.extend: Value =>• Bool read
end VAL TREE OBJECT

3 . 1 Fi l ters

VAL-TREE-OBJECT is denned by defining an imperative structure and then filtering out the values
(and the type Tree) inherited from VAL TREE. Note that only the signatures of operations are given
in a filter (and that we use double arrows like '=>' for operation types to distinguish them from
function types). Note also that variables are never exported from structures, and so the operation
signatures do not mention the name tr. Hence the type Tree does not need to be exported.

3.2 B o u n d e d o b j e c t s

You will notice that can.extend is defined differently from the other operations — in fact only its
signature is given. So why has this operation been introduced at all? The reason for its introduction
is that it is likely at some stage that we will have to put some bound on the size of trees we can
store, but do not yet know how to specify such a bound. Should it be the number of nodes, or
the depth of the tree, or some combination of these? How will it be related to the size of values
we wish to store? But if we do not specify any restriction, and make the add operation total, it is
impossible to do a correct implementation when we do want to introduce a bound. It is therefore a
good idea to introduce an operation when the imperative object is first formed which can be used
in the pre-condition of operations which seem likely to (structurally) extend the variable's value.
Since we only know the signature of this operation at present (i.e. it will read the state variable's
value, plus the value it is proposed to add, and return a Boolean) we only specify it this far. Thus
without an axiom it is simply more loosely defined than it would be with one. We can later restrict
its definition by making it more explicit as we develop the structure.

458

4 St ruc tures as parameters

We have already met this notion in parameterising our structures VAL SET, VAL LIST, VAL TREE
with the structure VALUE.

We are going to implement our tree object using a notion of storage. To do this we will first define
a general notion of storage as a mapping from locations to elements, without giving any notion of
what locations and elements actually are. Hence we will have a parameterised structure for storage,
and we can later instantiate one or both parameters as required. We first define the structures
ELEMENT and LOC, each of which does no more than define a type name.

ELEMENT =
s t r u c t u r e

t ype Element
end ELEMENT

LOC =
s t r u c t u r e

t ype Loc
end LOC

We can now define a storage type, with some values, in the structure STORAGE.

STORAGE =
s t r u c t u r e

use
ELEMENT
LOC

type
Storage :: Loc —» Element opaque ,
LocsJn.use = those (loc:Loc,st:Storage) sa t isJn.use(loc,st),
Extendable = those st:Storage sa t is.extensible(st)

value

is.in.use (loc:Loc,mk-Storage(st):Storage) :Bool = loc 6 d o m st,

assign ((loc,mk-Storage(st)):Locs in-Use,v:Element) :Storage = mk-Storage(st + [loc—»v[),

get ((loc,mk-Storage(st)):Locs.in.use) :Element = st(loc),

extend (mk-Storage(st):Extendable,v:Element)
gives res:Locs_in-use sa t

31oc:(those x:Loc sa t x £ dom st) sa t
res = (loc,mk-Storage(st U [loc—»v])),

contract ((loc,mk-Storage(st)) :Locs in use) :Storage = mk-Storage(st\{loc}),

is.extensible (mk-Storage(st):Storage) :Bool = {loc|loc:Loc sa t loc £ dom st} / {},

empty store: Storage = mk-Storage([])
end STORAGE

459

Note that since the final storage implementation will be finite we have included functions to extend
and contract storage, and a notion of extensibility.

4.1 Instantiation of pa ramete r s

In order to create an implementation of trees using storage, we want to specialise the notion of
Element in storage to something that can be a tree. A suitable type is Treel as defined in the next
structure VAL TREE EL.

VAL.TREE.EL =
structure

use
LOC
VALUE

type
Treel :: [Loc]
Nodel = Treel X Value X Treel

end VAL.TREE.EL

We now create the appropriate storage model by replacing ELEMENT with VAL.TREE-EL in the
next structure, VAL TREE.STORAGE. This is done with the keyword provid ing . In general we can
write STRUCTURE w i th B providing A provided STRUCTURE uses A, and B implements A.
In this case we are providing for ELEMENT (which is indeed used by STORAGE), and ELEMENT
only exports one abstract type Element. Thus all we need is a structure exporting at least one type.
VAL-TREE-EL exports two, and so we could use either. We in fact need Nodel to replace Element,
and we must say so in the fitting clause that is part of the providing clause. Unless the names are
the same we must include such fitting information in p rov id ing clauses.

Note that the storage structure used below in VAL.TREE.STORAGE is not STORAGEbut

STORAGE
with VAL.TREE.EL providing ELEMENT
fitting Nodel for Element

which is a new structure, which exists only inside VAL.TREE.STORAGE. We therefore give it a
name ST to distinguish it from STORAGE. Technically, the form 'use A' means that the using
structure shares the structure A with any other structure containing the same use clause. The form
"use A NAME = A ' means that the using structure has created a copy of A, with the name ANAME
which is not shared with other users of A. When we are p rov id ing for a use we must always make
a local copy since it is a new structure we are creating.

VAL TREE STORAGE =
structure

use
ST = STORAGE

with VAL.TREE.EL providing ELEMENT
fitting Nodel for Element

type
Connected tree = those tr:(Treel x ST.Storage) sat is connected(tr),
Stored.tree = those tr:Connected.tree sa t is.ordered(tr)

460

value

start-of (start:Treel,store:ST.Storage) :Treel = start,

store.of (start:Treel,store:ST.Storage) :ST.Storage = store,

is connected (start:Treel,store:ST.Storage) :Bool =
match start wi th

nil then true,
mk-Treel(n) then

if ST.is in use(n,store)
then let (l,*,r):Nodel = ST.get(n,store) in

is_connected(l,store) A is.connected(r,store)
end

else false
end

end,

is ordered ((start,store):Connected tree) :Bool =
m a t c h start wi th

nil then true,
mk-Treel(n) then

let (l,v,r):Nodel = ST.get(n,store) in
(l=nil cor le(max_treel(l,store),v)) A
(r=nil cor le(v,min.treel(r,store))) A
is_ordered(l,store) A is_ordered(r,store)

end
end,

max.treel ((start as mk-Treel(n), store) : Connected-tree sat s t a r t / n i l) :Value
let (*,v,r):Nodel = ST.get(n,store) in

match r wi th
nil then v,
* then max_treel(r,store)

end
end,

— min.treel is similar to max.treel

add-leaf (i:Value,store:ST.Extendable) :Stored_tree =
let (y:Loc,storel:ST.Storage) = ST.extend(store,(nil,i,nil)) in

(mk-Tree 1 (y) ,store 1)
end,

add to treel
((i,tr as (start as mk-Treel(n),store))
: Value x Stored tree sat

s t a r t / n i l A
(is_in_treel(i,tr) V ST.is_extensible(store))) :ST.Storage =

let (l,v,r):Nodel = ST.get(n,store) in
if i=v then null
elsif le(i,v) A l=nil then

let (y,storel):Stored.tree = add leaf(i,store) in

461

ST.assign((n,storel),(y,v,r))
end

elsif le(i,v) then add to treel((l,store),i)
elsif r=nil then

let (y,storel):Stored tree = add.leaf(i,store) in
ST.assign((n,storel),(l,v,y))

end
else add.to.treel((r,store),i)
end

end,
del_from_treel is defined similarly

is in treel (i:Value,(start,store): Connected tree) :Bool =
match start wi th

nil then false,
mk-Treel(l,v,r) then v=i v

is_in_treel(i,(l,store)) V
is_in_treel(i,(r,store))

end
end VAL TREE STORAGE

The aim of producing VAL TREE.STORAGE is that it should be an implementation of VAL TREE.
However, it should be immediately apparent that while add_to_tree in VA L. TREE can be invoked for
any (ordered) tree, add_to.treel, the corresponding function from VAL TREE STORAGE, can only
be called either when the integer to be added is already present or when the storage can be extended.
Thus we would in effect be trying to implement a function with a more partial one, and our attempts
would be doomed to failure. We therefore go on to define VAL.TREE.STORAGE.OBJECT, since
we know that the partiality of adding elements was included in VAL TREE OBJECT.

VAL TREE STORAGE-OBJECT =
select

operation
addl: Value =>• write,
delete 1: Value => write,
is.inl: Value =>• Bool read,
can extendi: Value => Bool read,
empty 1: =>• write

from
structure

use VAL_TREE_STORAGE
variable

tree: Stored_tree := (nil, empty _store)
operation

addl (i:Value)
write tree:Stored tree

where is jnl(i) V can_extendl(i)
is
match start wi th

nil then tree := add Jeaf(store.of(tree) ,i),
* then tree := (start_of(tree),add-to-treel(i,tree))

end
end addl ,

— deletel is defined similarly

462

is inl (i:Value) :Bool read tree:Stored tree = is in treel(i,tree)
end is .inl,

empty 1 write tree:Stored_tree is tree := (nil,empty-store)
end empty 1,

can extendi (i:Value) .Bool read tree:Stored tree = ST.is extensible(store of(tree))
end can .extendi

end VAL TREE STORAGE OBJECT

5 Development of objects

We want to show that VAL.TREE.STORAGE.OBJECT implements VAL.TREE.OBJECT. If we
look at the signatures of the two objects there is the obvious correspondence between the types,
variables and operations. Since the type Tree is opaque we can use a retrieve function in the same
way as we did between the applicative structures VALTREE and VAL LIST. Thus we define

retrievel ((start,store):Stored_tree) :Tree =
m a t c h start wi th

nil then nil,
ink-Treel(n) then

let (l,v,r):Nodel = ST.get(n,store) in
mk-Tree(retrievel(l),v, retrievel (r))

end
end

in the obvious manner.

retrievel is a total function on Stored tree by definition. To perform a proof similar to that used
earlier we would also need to show that retrievel is a surjection. This is, however, not obvious
— we would need to show that we had enough storage to create as large a tree as we could with
VAL.TREE.OBJECT. We have some degree of freedom in deciding how can-extend should be im
plemented — this was why it was left vague — but it is not clear how to proceed.

We instead appeal to the notion of a simulation as described in [2]. This is more general than
the technique of a retrieve function, but still sufficiently strong to show that the object specifica
tions are behaviourally equivalent, which is what we require. The proof is not included here but is
straightforward.

It leads to a condition on can extend of the form

V(i:Value,str:Stored_tree) sat can_extend(i,retrievel(str)) => is.extensible(store.of(str))

Since can.extend was not given any definition we can regard this as merely giving an implementation
constraint on it. This is perfectly safe since, there being no definition for can extend, users were not
entitled to make any assumptions about it beyond the fact that it returns a Boolean value.

463

6 The RAISE data model

We have now created a number of structures and relations between them. It is clear that we need
some way of holding all this information. At the trivial level the first requirement must be some
means of relating structures to their names. Without this the use clauses in structures would be
meaningless.

The second requirement is that there must be some means of storing and accessing the proof obliga
tions and proofs of the implementation relations between structures. In fact we generalise from this
slightly and say that we want to be able to record such relations even when we know that they are
not implementations, but are related in some less strong way. Thus in the running example we know
that VAL TREE STORAGE is not an implementation of VAL TREE because the add operation is
more narrowly defined in the former, but it still might be useful to show that it is related in the sense
that VAL TREE is part of VAL. TREE STORAGE'S history, and may even share some properties.

This leads on to another requirement. We hope eventually to implement structures in some pro
gramming language. We will later want to maintain these programs — to correct errors or change
their behaviour. To do this properly we need to follow their development backwards, to find the
appropriate level at which an error was made or a decision recorded that is now to be changed. Thus
we must be able to record our development process in such a way that it can be followed in reverse.

There is also a need to be able to divide projects up into pieces that can be developed separately,
while having some confidence that when these separate pieces are combined again the result will
obey its original specification. This is why we need substitution to be monotonic with respect to
implementation. But it also means being able to record which developments are related to each
other, both to control the effect of changes and so that the development process can be followed in
reverse.

Lastly, there is a need to record and access non-functional requirements, and reasons for developing
things in certain ways. Thus each structure will be associated with an informal text, and so will
developments.

This leads us to the following simplified description of the RAISE data model.

6.1 Descriptions

We firstly extend the notion of a s t r u c t u r e slightly to include informal text and also formal properties
— any properties of a structure we have proved or asserted may be recorded here. We call these
extended structures descriptions. Descriptions may be named and accessed by their names.

6.2 Relations

Relations between structures are indexed by the names of their source and target descriptions. They
contain a statement and possibly a proof (at some appropriate level of rigour) of the semantic relation
being asserted. They also record whether the relation is an implements relation. We have informally
created the following relations so far:

VAL SET
VAL-LIST
VAL SET

VAL.TREE

Yes
Yes
Yes
No

464

Source Target Implementation?

VAL LIST
VAL-TREE
VAL TREE

VAL-TREE.STORAGE
VAL.TREE STORAGE-OBJECT VAL.TREE-OBJECT Yes

6.3 Developments

As well as descriptions and relations between them we need to record how a specification was devel
oped, in terms of what descriptions were developed from what, what relations were used to justify
the steps in this development process, and what developments are related to others. For this purpose
we use the notion of a development. Developments are named (so that they can be referenced), and
have associated informal text so that comments on a development, its non-functional requirements
etc., may be documented.

Developments consist of lists of development steps. Each development step records three things.
The body names the description that is developed by the step. The contracts names the set of
developments whose steps contain descriptions that are used in the body but are being developed
separately. The purpose of this field is to record developments contributing to this one, so that when
tracing back from a later implementation one can discover the history of its development. The view
may be used to name a more abstract description that is implemented by the body. Its use will
become more apparent in the creation of the development SET-DEV below.

6.3.1 S E T . D E V

The first development we shall set up is that showing the development of the applicative set which
is developed into first a list and then a tree. The development is called SET DEV, and is created by
generating the development step

{|body=VAL_LIST,contracts={},view=VAL_SET|}

We then want to add to SET DEV a development step with body VAL TREE. What should its view
be? We could make it VAL-TREE itself (an option we always have, as any description implements
itself), or we could make it VALLIST since we have recorded the appropriate relation between
VAL-TREE and VAL-LIST. But it would be best to make it VALSET, since this gives the most
abstract view of VA L TREE for the reasons we discussed earlier — it is expressed axiomatically. We
therefore append to SET.DEV the development step

{|body=VAL_TREE,contracts={},view=VAL_SET|}

to extend SET DEV. (Note that we do not insist on any relations between development steps. Thus
the relation between VAL-TREE and VAL-LIST is not a pre-requisite to adding this step.)

This illustrates one reason for having views, rather than only a body and contracts at each de
velopment step. It allows us the option of merely showing that we are still implementing the same
abstraction. When a view changes between development steps it is a sign that something has changed.
Our next development step is a typical example of this.

465

We now want to extend the development to the imperative form. We have VAL TREE OBJECT and
VAL.TREE.STORAGE.OBJECT, and a relation recording that the latter implements the former.
We can therefore add the development step

{|body=VAL_TREE_STORAGE.OBJECT,contracts={STORAGE.DEV},
view=VAL_TREE_OBJECT|}

where STORAGE DEV is the development of the storage model, described in the next section.
It is used here because VAL-TREE.STORAGE.OBJECT uses VAL.TREE.STORAGE which uses
STORAGE, and because STORAGE is to be developed separately. Note that it is only such separate
developments that are referenced in the contracts field, not all used descriptions. The change of view
between this development step and the previous one indicates that something has changed, and in
this case it is the form of the interface to the descriptions which are now imperative (i.e. they include
operations).

6.3.2 S T O R A G E J D E V

We have only one description in this development so far, and so must use it as the body and view.
We therefore create the single development step

{|body=STORAGE,contracts={},view=STORAGE|}

We can extend STORAGE.DEV separately from SET.DEV. If we are able to maintain STORAGE
as the abstract view while developing the body to ST0RAGE1, say, then it will be possible for
VAL.TREE.STORAGE.OBJECT (or some later development) to replace STORAGE with STOR-
AGE1 with confidence that its theory will not thereby change. This is because substitution is
monotonic with respect to the implements relation. That is, representing the implements relation
b y ~ :

From VAL TREE STORAGE OBJECT ~ VAL TREE OBJECT
and STORAGE1 ~ STORAGE
and the fact that VAL TREE STORAGE OBJECT uses STORAGE
if we let VAL_TREE_STORAGE_OBJECTl =

VAL_TREE_STORAGE.OBJECT
with STORAGE1 provid ing STORAGE

then we can deduce VAL.TREE.STORAGE.OBJECTl ~ VAL_TREE_OBJECT

References

| 1 | C.B. Jones, Systematic Software Development Using VDM. Prentice Hall International, 1986.

[2] T. Nipkow, TVon-deterministic data types: models and implementations. Acta Informatica, 22,
pp 629-661, 1986.

[3] E. Meiling, A spreadsheet specification in RSL. This volume.

466

Project No. 315

A Spreadsheet Specification in RSL
- An Il lustration of the RAISE Specification Language

Erik Meiling

Dansk Datamatik Center
Lundtoftevej 1C
DK-2800 Lyngby, Denmark

The main features of the RAISE Specification Language RSL are explained.
The language is illustrated by an example showing pieces of the specification
of a simple spreadsheet system.

1 Introduction

RAISE is an acronym for a "Rigorous Approach to Industrial Software Engineering". The
aim of the RAISE project is to construct a method and a specification language, based
on mathematics, for the development of software in industry, together with a collection of
computer based tools supporting the specification language and the method.

Software development projects can be divided into a number of development stages, and
RAISE covers the stages ranging from specification, via design, to implementation. All
those stages in a RAISE software development are described using the RAISE Specifica
tion Language, RSL. Therefore, RSL must be able to describe a problem both at a very
abstract level and at a level close to the programming language chosen for the project. The
method for developing an RSL specification from the most abstract specification through
intermediate levels to the implementation is described in another paper presented at the
ESPRIT Technical Week 1987 (George [1]). The present paper concentrates on illustrat
ing the various features of the RAISE Specification Language. Additional examples of
RSL specifications can be found in George [1].

1.1 The Basic Concepts of RSL

In this paper, RSL is described using a specification of a simple spreadsheet system as an
example. First, the basic concept of an RSL structure is introduced. Structures are the
building blocks and abstraction units in RSL. Structures constitute the frame in which
the RSL entities types, values, variables, operations and processes are defined.

RSL types can be defined by constructive type expressions similar to the domain equations
found in the meta-language of VDM (the Vienna Development Method, cf.Bj0rner [3],
Jones [4]). Types can be used in the definition of named values. An important kind of
value in RSL is the function. A function can be defined in three different ways:

467

• Explicit definition using the language of value expressions within RSL.

• Implicit definition denning a function by a predicate relating the function result and
the parameter.

• Axiomatic definition in which the function is defined through algebraic axioms.

A structure may introduce a state through the declaration of variables, and different
instantiations of the state of a structure can be created through copying of such a structure.
The variables of a structure are not directly accessible outside the structure. Instead,
manipulations of the state of a structure is performed through calls of operations defined
in the structure. Operations can be thought of as "functions" with side-effects, and an
operation can be defined explicitly using the statements of RSL or implicitly by a predicate.

Parallel activities are described through the introduction of processes in structures. RSL
processes are based on CSP (Hoare [2]). Processes communicate through named channels.
They can be defined explicitly using RSL parallel combinators or implicitly through a
failure assertion which is a predicate describing the allowed sequences of communication.

2 Introducing the Spreadsheet Example

In this section we illustrate the basic elements of the RAISE Specification language. The
example chosen to illustrate RSL is a specification of features of a spreadsheet such as
Jazz and Lotus1. We will only sketch some of the features of a spreadsheet system in
RSL, but we emphasize that each structure shown is complete in the sense that it follows
the rules of RSL. It is considered important to be able to express partial knowledge about
the solution to a problem, especially in the early phases of software development.

A spreadsheet can be conceived as a rectangualar diagram of entries, each entry addressed
by a row and a column identifier. An entry may be empty, it may contain data (in the
example integers and text) or it may contain a formula computing the value of the entry
on the basis of other entries in the diagram. This description can easily be expressed in
the following RSL structure:

1 Jan and Lotus are trademarks of Lotus Development Corporation.

468

SHEET.TYPES =
s t ruc tu re

use ENTRY.TYPES =
s t ruc tu re

type
RowJd,
ColJd

end

type
Entry j d = RowJd X Coljd
Entry

Formuli
Sheet
Data

= [| empty.entry : Unit ,
number : Int ,
string : Text ,
form : Formula

i. = Sheet —» Data
= Entry j d -4- Entry
= Entry dropping form

end

The structure is the building block and abstraction unit in RSL. The structure above
contains only type definitions, but RSL structures can also be used to define values,
processes, operations and variables. Structures are combined using the structure operations
as explained in section 5. The type definitions will be explained in the following section.

3 Types in RSL

RSL types should be thought of as sets of values. The type definitions of Entry Jd, Entry,
Formula, Sheet and Data show how types can be constructed explicitly by type expressions
(the right-hand sides of the equality signs). RSL is rich in providing type operators, and
in this RSL follows the tradition of VDM.

The definition of Entry Jd shows a type defined as a Cartesian product of other types.
The type Formula consists of all functions from the type Sheet to the type Data. The
type Sheet consists of all functions from a finite subset of the type Entry-id to Entry. The
types Entry and Data are so-called union types, which can be though of as a set of values
where each value has a tag indicating the kind of the value. The possible tags for values
of type Entry are "emptyjentry", "number", "string", and "form". Values of union types
are written as shown by the following examples of values of type Entry:

[| number= 7 |]
[| string = "house" |]
[| empty.entry |]

Unit is a predefined type used to indicate the absence of information contents. The three
values shown above are also of the type Data, since this type consists of all the values of

469

Entry not having the tag form. Union types are often used in conditional constructs using
the tags to choose among different cases. An example of this is shown later.

The definition of the types RowJd and CoUd in the inner structure ENTRY.TYPES is
given without an explicit type expression. This means that nothing can be assumed about
the construction of these types. The reason for embedding the types in an inner structure
will become apparent in the subsequent section on structure operations.

Subtypes can be formed by attaching an arbitrary predicate to a type. Consider the type
definition of sheet:

Sheet = EntryJd -^ Entry

Since the type Sheet only contains functions defined on a finite subset of Entry Jd, this
definition expresses that only finitely many entries are in use at any given time. Suppose
we consider an implementation of spreadsheets in which only the non-empty entries are
represented. This can be done by changing the above definition to

Sheet = Entry Jd —► (Entry dropping empty .entry)

Alternatively, the same effect can be achieved by defining a subtype in which we select
the appropriate values by a predicate:

Sheet = those f: (EntryJd -^ Entry) sat [|empty_entry|] £ rng f

i.e. the value (| empty .entry |] is not in the range of any function in the type Sheet.

4 Values in RSL

Since RSL is rich in providing type operators, it follows that RSL is rich in the facilities
offered for specifying values (data). In the previous section, we have seen how to construct
Cartesian types, union types and function types. This section gives examples of other type
operations as well as examples of the way in which values of such types are written.

The examples are given as value declarations in a structure. Such a value declaration
consists of a name, a type expression and (optionally) an expression denoting the value in
question.

470

EXAMPLE =
s t ruc tu re

value
i
ilist
iset
fct
irec
ixi

Int = 3
Int* = (1, 13, 5)
Int—set = {x * x | x : In t sat 1 < x < 9}
Int x In t —> In t = A (x,y). x + y
{|fl : In t , f2 : In t |}
In t x In t = (3,6)

value axiom
irec.fl = 3

end

The value i is of the predefined type Int and is given the value 3. Notice that we are
talking about named values, not variables. The value ilist is a list of integers, and it may
be manipulated using the usual list operators such as head, tail and concatenation. In
general, the use of type operators introduces a number of predefined operators on values of
the type. The value iset is D set of integers, and its value is given by a set comprehension
in which a predicate is used instead of explicit enumeration, fct is a function given a
value through a function "constant", i.e. a lambda expression. Function values can also
be specified in a more traditional syntax as shown in the next section. The identifier irec
is of a record type (similar to record types of most programming languages) with field
name fl and fS, but in the example its value is not given. Instead, an axiom is given
stating that the field fl has the value 3. The value of the field fS is left unspecified. In
such cases when more than one semantic model fits an RSL specification, we say that the
specification is underdetermined. Underdetermined specifications are often used in the
early stages of the software development, since it allows the specifier to leave possibilities
open to be determined at a later development stage.

Splitting a value definition in two parts as it was shown for the value irec is often used in
connection with the definition of functions. The part in which the name and the type is
stated is called the signature part. An example of a function signature is

geq : In t x Int —> Bool

The remaining part of the function definition can then be given in the axiom part. The
use of signatures will help in highlighting the interface information of a structure. It can
also be used in connection with operations and processes.

5 Structure Manipulations

In this section explain how structures are combined by the RSL structure operations. We
use our example of the spreadsheet to show how the basic functions working on a sheet
can be defined. We will define functions for inserting, deleting and evaluating entries.

471

BASIC-SHEET =
structure

use SHEET.TYPES
value

insert(sh: Sheet, entJd: Entryjd, ent: Entry) : Sheet is
sh + [entJd —» ent]

delete(sh: Sheet, entJd: Entry Jd) : Data is
sh + [entJd ->• [|void|]]

eval(sh: Sheet, entJd: Entry Jd) : Data is
m a t c h sh(entJd) wi th

[|form = f|] then f(sh)
val then val

end
end

The "use SHEET.TYPES" construct causes the entities introduced in the structure
SHEET.TYPES to be included in the structure BASICjSHEET. In the example, the
entities are all types and they are used in the definition of the functions insert, delete and
eval.

These three functions are defined explicitely, i.e. by an expression computing the re
sult. The definitions of functions are just a special case of value definitions as shown in
the previous section; RSL does, however, allow the more traditional syntax for function
definitions shown above.

Consider the function insert. The result of an application of insert is a value of type Sheet,
i.e. a finite function from entry identifications to entry values. The result is constructed
using the infix operator "+", called function overwrite, such that the resulting function
will only differ from the parameter function sh when called with the argument ent.id, in
which case ent is returned. The definition of delete is similar. The definition of eval makes
use of pattern matching as explained in a subsequent section.

Let us now return to the inner structure of SHEET.TYPES:

ENTRY-TYPES =
structure

type RowJd, ColJd
end

By omitting type equations for RowJd end Col.id we have not committed ourselves to a
particular representation of row and column identifiers. However, if we want to do more
than trivial manipulations on values of these types, we need to commit ourselves further.
In our example, we will use integers as row and column identifiers.

In order to express this commitment, we may choose to use an extend structure op
eration on SHEET.TYPES or we can make use of an extend structure operation on
SHEET.TYPES or we can make use of a substitution structure operation replacing the

472

structure ENTRY.TYPES with a "more defined" structure. When using an extend op
eration, the commitment is expressed by adding axioms expressing the commiment. In
the following, we will illustrate the second alternative, structure substitution. Using the
structure

INT .ENTRY.TYPES =
s t ruc tu re

type
RowJd = Int ,
Coljd = In t

end

we can express the desired structure substitution in the following structure definition:

INT_SHEET_TYPES =
SHEET.TYPES wi th INT.ENTRY-TYPES providing ENTRY.TYPES

Any structure appearing in a use-clause of another structure may be subject to structure
substitution. The use of integers as row and column identifiers in BASICJ5HEET we
could write

INT _BASIC_SHEET =
BASICSHEET wi th INTJ3HEET.TYPES providing SHEET.TYPES

or, more directly

INT .BASICSHEET =
BASICSHEET

wi th INT .ENTRY.TYPES providing SHEET.TYPES.ENTRY.TYPES

Structure substitution can be thought of as structure parameterization where the structure
to be replaced plays the role of a formal parameter. The actual parameter must "provide
for" the formal parameter, i.e. it cannot contradict any of the properties of the formal
parameter. Therefore, the structure to be substituted is often referred to as a requirement
stating the minimal set of properties to be expected.

6 Patterns

The function eval in the previous section made use of a match expression to compute its
result. The match expression is a conditional expression in which the choice between the
alternatives is made on the basis of pattern matching. Patterns are widely used in RSL
specifications, and it is a powerful way to decompose data and express choices. In this
section we will use list patterns and union patterns to illustrate this.

Consider the first pattern mentioned in the match statement of the function eval:

[| form = f |]

This pattern matches any value of type Entry having the tag form. In case of a match,

473

/ becomes bound to the Formula component of the value (cf. the definition of the type
Entry in section 2). The second pattern of eval is just

val

which matches any value. The identifier val becomes bound to the value matched. Pattern
matching in match expressions is attempted in the order in which the patterns are given.
From these examples we see that a successful match gives rise to a binding of the identifiers
used in the pattern to the data components matched.

In our spreadsheet system, we need to be able to manipulate rows and columns of entries.
We therefore extend the structure SHEET-TYPES with the following types defining rows
and columns as lists of entries:

Row = Entry*
Column = Entry*

We can use these definitions to show various possibilities of list patterns. The patterns
can be used in a context in which a value of type Row (or Column) is to be matched. The
pattern

will match any row of length one and h will be bound to the entry in the row.

This pattern will match any non-empty row ("is the list concatenation operator), h will
be bound to the head of the row and t will be bound to the tail.

x~ ([| number = n |], t)

will match any row in which the last element but one is a value with the tag number. The
identifier n will be bound to the integer part of that tagged value.

Patterns can be augmented with a predicate giving a further constraint on the match:

([| number = x |], [| number = y |]) ~ t where x = y

This pattern will match any row in which the first two entries represent identical integers.

The last example shows a function for determining whether two rows or columns have
identical values. The function makes use of a Cartesian pattern to express the required
matching condition. The pattern "*" matches every value.

eq(rl:Row, r2:Row): Bool =
ma tch (rl,r2) wi th

then t rue ,
((xl) " r l , (x2) ~ r2) where eval(xl) = eval(x2)

t hen eq(rl,r2),
*

then false
end

474

7 Operations in RSL

In the spreadsheet example we have specified the central functions without being concerned
with how to present the sheet to the user. The basic facilities for the user interface are
defined in the structure below. The example shows how variables can be introduced in an
RSL structure and how variables can be manipulated through the operations defined in
the structure.

USERJNTERFACE =
s t ruc tu re

use SHEET.TYPES
opera t ion

EntryJd x Entry => wri te
EntryJd => Entry read
EntryJd =>• wri te
EntryJd =>■ wri te
EntryJd x EntryJd =>■ wri te
read omit

enter.entry
get_entry
cut_entry
paste_entry
copy.entry
show_sheet

variable
currentjsheet : Sheet := []
pastejiuffer : Entry := [| empty_entry |]

opera t ion axiom
copy_entry(fromJd : EntryJd, toJd : EntryJd)

wri te currentjsheet, pastejbuffer is
pastejbuffer := currentjsheet(fromjd);
currentjsheet := currentjsheet + [toJd —* pastejbuffer];
showjsheet

end
end

In the example, we have chosen to separate the definition of the operations in a signature
part and an axiom part as explained earlier. Only the axiom part for copy.entry is stated,
the other operations are left completely underspecified.

An operation can be thought of as a "function" with side-effects. The presence of side-

effects is indicated by the use of "=>•" instead of the function arrow "—►". Each operation
states its access rights (read access or read/write access) to the variables of the structure;
in signatures, however, only the access right to the variables as a whole is stated. Outside
the structure, the variables are not directly accessible. Instead, the operations defined in
the structure can be called to perform the required manipulations of the variables.

An operation may return a value, or it may only perform variable updates. The operation
copy.entry above does not return a value (indicated by the absence of a type expression
following the operation arrow). Its body is given as a sequence of RSL statements.

The above example also illustrates the use of the omit construct in the signature for the
operation showsheet. By using omit we express that the operation showjsheet is purely
local to the structure USERJNTERFACE and consequently not an operation to be called
by the user. This facility is a special case of a more general structuring operation in which

475

a structure can be denned from another structure by omitting and renaming entities.

The following example shows how we can create more than one spreadsheet using the
structures already denned.

USERJNTERFACE2 =
structure

use Ul = USERJNTERFACE,
U2 = USERJNTERFACE

operation
transfer JromJJl_toJJ2(fromJd : Entry Jd, to i d : Entry jd)

read Ul, ■write U2 is
U2.enter_entry(toJd, Ul.get_entry(fromJd));
U2.show_sheet

end
end

The use clause of the above structure creates two named copies of USER-INTERFACE
denned earlier. Since each of the copies contains a Sheet variable, we have effectively
created two spreadsheets. The operation shown illustrates how these spreadsheets can
be manipulated. Notice that the access clause contains the structure names instead of
the variables names since variables are not visible outside the structure in which they are
defined.

8 Implicit Definitions

All the value and operation definitions shown in the previous sections have been explicit
definitions. This is somewhat atypical since implicit definitions are commonly used, es

pecially in the early stages of development. In implicit definitions, a predicate is used to
describe the desired behaviour of the value, operation or process being defined.

The following example shows an implicitly defined operation to be included in the struc

ture USERJNTERFACE. The operation, new, takes no parameter and returns an entry
identification as its result. The effect of a call of new is to create a new entry in the
variable current-sheet.

new gives ent j d : Entry j d
write current .sheet
where

ent j d £ rag current_sheet A
current_sheet + [ent j d —» [empty.entry]] = current_sheet'

end

The predicate following the keyword •where state the properties of the result and the
transformation of the variables. Primed variable names refer to the value after the call of
the operation, unprimed names refer to the value before the operation.

476

1 Processes in RSL

This section illustrates the use of RSL processes. The process concept in RSL is based on
on CSP, Communicating Sequential Processes (Hoare [2]). Processes communicate values
via named channels. A process has an alphabet giving the name, type and direction for
each of the channels on which the process communicates. An alphabet consists of an
incomming alphabet and an outgoing alphabet, each being a union type. The tag names
are the channels and the type associated with a tag is the type of values which can be
communicated on the channel.

A communication is a value in the alphabets of the processes involved. Communication
takes place between processes running in parallel according to the following scheme: Any
two processes whose alphabet define the same channel must engage synchronously in
communication on that channel. If this is not possible, the two processes deadlock.

We illustrate the use of RSL processes by showing how multiple spreadsheets running in
parallel can be handled. The reader may think of a system in which several spreadsheets
are shown on the screen simultaneously and where commands to one spreadsheet can be
given in parallel with the computation of formula etc. in other spreadsheets. To specify this
situation, we replace the structure USER-INTERFACE shown earlier with the structure
SHEET-PROCESS shown below.

For brevity, only the facilities for entering and copying entries are included. Instead of
being operations, these facilities are specified as channels on which the parameters to the
corresponding operations are passed. The channels enter.cmd and copy_cmd and their
associated types are defined by the type Command-alpha, which is used as the input
alphabet of the process sheetjproc.

The process shtetjproc manipulates the spreadsheet current-sheet defined in the structure
SHEET-PROCESS. It is a loop accepting series of enter and copy commands from its
environment.

SHEET-PROCESS =
structure

use SHEET.TYPES

type
Command_alpha =

[|enter.cmd : Entry Jd x Entry, copy.cmd : Entry Jd x Entry i d |]

operation
show_sheet: read omit

variable
current_sheet Sheet := []
paste.buffer Entry := [| empty_entry |]

— continued on next page

477

process sheet.proc in Command_alpha is
while true loop

select
input (entJd, ent) from enter.cmd in

current_sheet := currentjsheet + [ent j d —> ent];
show_sheet

end
or

input (from id, to_id) from copy.cmd in
paste.buffer := currentjsheet(fromJd);
currentjsheet := current_sheet + [to_id —* paste.buffer];
show_sheet

end
end — select

end — while
end

end

This structure is now used in the structure SHEET.PR0CESS SYSTEM (shown on
the next page) in which a copy is created for each spreadsheet. This is done in the
"use SHEET = . . . " clause creating a structure for each value in the type Sheet Jd. In the
example, three copies are created: SHEET(shl), SHEET(shS) and SHEET(shS), thereby
creating three processes having the names SHEET(skl)' .sheet_proc,SHEET(sh2)'.sheet_proc
and SHEET(shS).sheet_proc. Since the type used as alphabet is also copied, each of these
processes has a separate set of channels, e. g. SHEET(shl).copy.cmd.

The communication between the user and the spreadsheets is handled by the process com-
mand-proc. Commands given by the user are modelled by having an input channel request
on which a identification of spreadsheet and a command is recieved, expressed in the def
inition of the type Keybord.alpha. The output alphabet of the process command.proc is
the union (created by the "or" type operator) of the sheet process alphabets as defined
by the type Command-alphas. The command process is a loop receiving requests from
the user and passing the command parameters on to the sheet process in question.

Finally, the entire system is expressed by the process sheet.processes in which all the
spreadsheets run in parallel together with the command process.

478

SHEET_PROCESS_SYSTEM =
structure

use SHEET.TYPES
use SHEET = [id » SHEET .PROCESS | id : SheetJd]
type

SheetJd = [| shl, sh2, sh3 |],
Keyboard.alpha = [| request : SheetId x Command_alpha |],
Command_alphas = or {SHEET(id).Commandjalpha | id : SheetJd}

process comma.nd.proc
in Keyboard_alpha out Command_alphas is
■while true loop

input req from request in
match req with

(sh, [| enter_cmd = cmd |]) then
output cmd to SHEET (sh) .enter.cmd

(sh, [| copy_cmd = cmd |]) then
output cmd to SHEET(sh). copy .cmd

end
end

end
end

process sheet.processes is
parallel

command.proc
and

parallel { SHEET (id) .sheet.proc | id : SheetJd}
end

end
end

2 Experience with the Use of RSL

The aim of RAISE is to provide improved methods for the software producing industry.
In order to ensure that the usability of RAISE in such industrial environments, three
industrial trial projects are being carried out. One of these, undertaken by BBC Nordisk
Brown Boveri A/S, is already in progress, and the remaining two projects, undertaken by
ICL and BBC Nordisk Brown Boveri A/S, will start early next year. A structure editor
has been developed for entering and editing RSL specifications. In the project already
started, the process concepts will play an important role, since it includes the specification
of protocols and communication. This project uses Modula2 as its programming language.
The experience gained from these industrial trials will provide input to an evaluation of
RSL, and a revision of the language is planned in 1988.

479

Acknowledgement

The work reported in this paper represents the collective effort of the RAISE project
teams. I would like to thank Jan Storbank Pedersen for helpful suggestions.

References
[1] George, C. W., Software Development in RAISE,

this volume.

[2] Hoare, C.A.R., Communicating Sequential Processes,
Prentice-Hall 1985.

[3] Bj0rner, D. and Jones, C.B., The Vienna Development Method,
Springer-Verlag 1978.

[4] Jones, C.B., Systematic Software Development Using VDM,
Prentice-Hall 1986.

480

P r o j e c t No. 432

GUIDE-LINES FOR BUILDING ADAPTABLE BROWSING TOOLS

J-L. Giavitto, Y. Holvoet, A. Mauboussin and P. Pauthe
Laboratoires de Marcoussis - CGE
Route de Nozay - 91460 Marcoussis - FRANCE

The aim of this paper is to oufline well fitted concepts to enable adaptable and
efficient browsing activities. This leads to the generation of a suitable environment
frame from a data description, a data representation, tools and constraints
declarations, and a communication specification. An existing prototype is briefly
described.

1. INTRODUCTION
One of the METEOR investigation domains concerns the design of a prototype of an
advanced development environment. Such an environment must support several formal
languages to express requirements and to develop specifications. The development process
requires the management of a large amount of data, made of complex entities and
relationships, changing in time.

In this paper we present the language and the related architecture suited for building adaptable
browsing tools. The emphasis has been put on concepts and techniques that can help in easily
and quickly generating graphical user interfaces and databases well fitted to browsing into
software engineering environments.

We first present the specifics needs of advanced software development environments. It is
then proposed to meet those needs through a global approach providing an adaptable and
powerful architecture for building environments. Finally, the implementation of a first
prototype is presented.

2. NEEDS OF ADVANCED DEVELOPMENT ENVIRONMENTS
2.1. Supporting various activities
When developing large software products, environments should help efficiently in managing
various kind of entities and relationships, from requirements engineering to software
maintenance. An environment should then support various kinds of activities [2] [4] [9] such
as: requirements engineering [14] [15], high level specification [3] [5] [8] [16], stepwise
transformation from formal specifications to executable ones, prototyping and validating
activities [20] [27], test data generation [6], project management, version management.

The various objects defined through these different activities are obviously not independent
and have to be stored in such a way that every repercussion of any modification on one
component be propagated over the other related components.

2.2. Supporting heterogeneous data

Related to the various activities, several formalisms can cohabit and must be supported at the
same time in the environment. For instance, inside METEOR, several languages are under
definition in order to express, in the most appropriate one, each of the various steps of the
development process [5] [10] [14] [16]. Therefore, it is important to be able to express the
existing relationships between components written in different specification languages.
Moreover, it is also indispensable to express the relationships between components, design

481

decisions, pieces of documentation...
Let us take the example of a module of specification, independently of the specification
language, it is involved in several contexts:
- as a component of one or more larger specifications,

- as a user of other specifications,

- as one of the various versions of this module,

- as a part of the development method, for instance the result of one of the transformation
steps,

- by its relation to a part of another complex (structured) object: for instance, the associated
documentation in natural language,

- by its relation to associated data sets for applicable tools,

Thus, such an object may be observed from several viewpoints, which show different facets
of its complex reality. Viewpoints may themselves be represented by complex entities. They
are dependent on the design method, the design language, the project management strategy...

2.3. Browsing activities
Searching relevant information at each step of the development process is a time consuming
and, however, important activity, mainly to deal with the data complexity. A classification of
browsing activities is given in [12]. Three categories emerge: search browsing, general
purpose browsing and serendipity browsing.

Search browsing corresponds to queries with a precise aim: for example to get information on
a specific module. General purpose browsing can be associated with a step by step exploration
of a given context. Serendipity browsing corresponds to a "random" navigation through the
data handled in the environment. It can be a trip through the different viewpoints attached to
an object. This is especially useful for beginners to apprehend the application domain and the
formalism used.

Browsing can imply an immediate access to the internal data representation, as well as
complex computations. Therefore, browsing powerfulness relies on the expressivity of the
requests and the efficiency of the data representation.

3. HOW TO SUPPORT BROWSING AMONG EVOLVING COMPONENTS
Browsing capabilities in advanced environment should be able to follow the evolution of the
environment (data organization and tools). Moreover they must unify and simplify the
various data manipulations.

The solution is to generate an appropriate environment frame from a description. The
environment frame is mainly a well fitted user interface and database services for browsing,
managing and maintaining information. Besides, this frame is designed to ease the integration
of specific tools for the completion of the environment. The environment frame is described
in Section 4 and the following paragraphs are concerned with the data organization.

3.1. Data organization

The ability to generate software development environments relies on a powerful language-
independent model. In such a model, the browsing activities can be expressed in terms of
navigation, independently of a particular instance (i.e. the actual structuring of a particular
environment). Thus, browsing becomes a syntactic activity through the organization of data

482

without reference to the underlying semantics.
The model must enable the data structuring inherent in the specification language (i.e. the
decomposition into entities and relations reflects the hierarchy and module decomposition
provided by the language); it must also enable the data structuring due to the method for
programming in the large (version management, documentation handling...).
In the approach reported in [17] the model describes a programming language in terms of a
grammar and the navigation is done through a derivation tree. This approach does not satisfy
our needs since it generates programming environments and not development environments.
On the other hand, a wider approach is obtained through the notion of information systems.
But relational models used to structure usual databases are not powerful enough for describing
the kind of information managed in a software development environment [21] [13]:

• In traditional databases or general object management systems the data descriptions are too
flat. To make complex data palatable to the user, and to make the browsing efficient, a
minimal condition is to type the data and organize them hierarchically.

• In classical databases there are numerous rather simple entities with few kinds of relations,
while software engineering databases should handle complex objects with many kinds of
relations [23]. Moreover these objects maintain complex interactions and only poor
mechanisms are provided by classical databases for constraints propagation.

In the following paragraphs, we propose a model and we then present a set of requests to
access data organized following this model and possible mechanisms for maintaining
constraints.

3.2. The Graph Description Language

The data of the environment are structured according to a declaration made using the Graph
Description Language (GDL). This declaration consists essentially of a hierarchy of node
and graph definitions and is used to parameterize browsing commands and database
management. It makes it possible to describe the components of an application in terms of a

nodes :: spec { attributes :: authonstring signature:file, axioms:file compiled:boolean, ... },
proc { ... },

graphs :: specification { belonging nodes :: spec, proc, param, draft, instantiate { },...
arrows :: use { (spec, spec), (proc, spec), ... } , ...
edges :: is an instance { (spec[0,l], instantiate^]) },

of { (instantiate^], proc[0,l]) },
using { (instantiate^], spec) },
parameterized by { (proc[+], param) },

attributes :: ...
}.

documentation { belonging nodes :: text {attributes :: sourcerfile },
picture {attributes :: source:file }

arrows :: include { (text | picture, text) }
}■

viewpoints :: expand { (spec, specificauon[0,l]), (proc, specification[0,l]), ... },
doc { (spec[0,l], documentation[0,1]), (proc[0,l], documentation ,̂ 1]), ... },

Figure 1 - Example of a partial LDG description

483

structure of typed attribute graphs.

An example of GDL description is given in fig. 1. It is a small part of the description
convenient for a structuring adapted to specification development using PLUSS [5] [10].
Examples of graphs, structured according to this description, are shown in fig. 2; a more
complete example, associated with the case-studies presented in [2] and [5], is shown in
Fig. 5.
A type, declared using the GDL, associates a description ({...}) with a unique name:

• A node description is composed of a set of attributes (names and types: string, boolean,
file, graph, node...).

• A graph description is made of sets of possible node-types (belonging nodes), possible
links (arrows and edges) and attributes (names and types).

• An edge (resp. arrow) description consists of a signature: a set of pairs (resp. ordered
pairs) of node-types with a possible constraint on the cardinality. It is local to a graph
description.

• A viewpoint description consists of a signature: a set of pairs (node-type, graph-type) with
a possible constraint on the cardinality.

Furthermore, a declaration in GDL automatically defines a more general graph-type, the
"FLAT-GRAPH", defined by the union of all the graph declarations. This graph-type does not
have any attribute and is needed to type the result of all possible requests (see Section 3.3).

The keywords nodes, graphs and viewpoints begin lists of node-, graph- and viewpoint
descriptions. Several lists of this kind can exist; therefore, the node descriptions and the
graph descriptions can be arranged in a modular and logical way. The defined nodes and
graphs have a global scope, i.e. their names can appear in other descriptions. When the scope
of a node description is restricted to a unique graph, the node description can be included in
the belonging-nodes list {instantiate, text and picture in the example).

NAME bBlongs to several specifications

(NAME

i
[CWH)

_)
JST 1

CELEMENT>
The spBcification of
NAME is another view

— ^ use,
"""&* include,
is an instance

k
of

(the representation
of a node of type
INSTANTIATE is
'nothing')

Figure 2 - Example of possible views

484

A cardinality constraint, noted a[x], is the number of occurrences of a relation: adjacent to an
entity of type a for an edge or a viewpoint, outgoing from a node of type a when a[x] is the
left-hand part of the signature of an arrow, and incoming into a node of type a when a[x] is
the right-hand part of the signature of an arrow. The following conventions are used: [+] for
at least one occurrence, [n] for exactly n occurrences, [n-m] for a number of occurrences
between n and m, [x,y...] for either x or y or... where x, y... are either n or n-m.

Several type declarations can describe the same information. Some of them may be more
useful than others. An empirical rule for building practical representations is to associate a
node with each conceptual or physical entity emerging from the methodology supported by
the environment. The relationships can be described in GDL either as links (use in the
example) or as nodes (instantiate) depending on the complexity of the relations. Therefore,
graph structuring is obtained by determining the most important views involved during a
specific application development, i.e. which types of nodes are related by which types of links
in a given view (graph).

The structuring model derived from this language is an extension of the entity relationship
model [24]. For example: it is possible to consider various graphs in which the entities are
shared, graphs can be associated with entities, the attributes of an entity can directly take on
values from the database (i.e. can be nodes or graphs)...

3.3. The access language

The kind of requests needed for efficient browsing activities are more complex than those
provided by usual query languages. For example, the transitive closure of a relation is useful
to handle dependencies between software components, and cannot be expressed using standard
relational operators [19] (such kinds of extension are provided in [8]).

Access to data is done via the composition of access primitives and operators. The access
primitives correspond to a direct naming of the entities. Naming convention are the following
(where [] indicates a part that can be omitted if there is no ambiguity):

graph-name[:graph-type]
node-name[:node-type][@graph-name[:graph-type]]
entity-name.attribute where entity-name is the name of a node or a graph.

Operators are generic since they take a type as argument They are split into two classes. In
the first class, the type of the result is a type defined in the GDL description, including the
type "FLAT-GRAPH". For example:

• next and next* take a graph g:G, a set of nodes belonging to this graph and a set of link-
types, and return a graph of type G. The result is a sub-graph of g:G whose nodes are
immediate neighbours of the given nodes, connected by links of the link-types in the case
of next and the transitive closure of the link-types in the case of next*.

• Selection by predicates: <(tp px), ..., (t{, p.), ..., (tn, pj> g:G returns a graph of type G
whose nodes are nodes of type tjt belonging to g and satisfying the predicate pr Links of
this graph are those connecting the selected nodes. The predicates p. are built over the
basic predicates (belongs-to-a-graph?, <,, empty-file?...) and functions associated with the
various types.

• Operations between graphs: intersection, contraction (of a sub-graph in a graph) union.
For example, the graph-type of the union of gl.Gl and g2:G2 is Gl if Gl = G2, FLAT-
GRAPH otherwise.

In the second class, the type of the result is a multi-set of values of GDL-types. For example:
• holding(node) gives as result the set of graphs {g | node e g } .

485

• associated-views(yiew, node) gives as result the set of graphs attached to node by the
viewpoint view.

• associated-nodes(yiew, graph) is the inverse of the previous one: the result is the set of
nodes {n | graph e associated-views(v('ew, n)}.

When the result is a set of values, iterators can be used to apply another operator to such a
result For example:
• ForEachipp, set) is an iterator which applies op to each element of set.

The previous set of queries is well fitted to browsing among the data. Search browsing and
general purpose browsing are well supported and they become syntactical activities. For
example, requests concerning the import relation in COLD [16] as well as the use and enrich
relations in PLUSS [5] can be handled by the same operators (next*...). In general, browsing
activities become simpler, e.g. serendipity browsing is mainly a traversal through the several
viewpoints.

3.4. Tools and constraints

A development environment requires more than an efficient data organization. It must also
include the control of the user's activity, i.e. the triggering of tools. In parallel with data
browsing, the environment must enable an "activity browsing" to help the user to choose the
tool he can trigger according to the current development step. Therefore, tools are described
as partial functions that can be applied to nodes, graphs, links or attributes. They are defined
by a signature and an applicability predicate; for instance, the symbolic evaluator only works
on compiled specs; the tool description can be:

tools :: eval { (S:spec -> file) if S.compiled = true }
It is then possible to only propose the tools applicable at a given development step.
The database evolves after each tool activation which may lead to a temporary incoherent
state. In order to return to a coherent state, the data management part of the environment
frame provides ways to define constraints over the data and to maintain them. Various
mechanisms exist to maintain the constraints:
• The typing, due to the GDL declaration, ensures basic constraints on the creation and

destruction of entities. For example, such an operation is forbidden if it transgresses a
cardinality constraint.

• A language enables the expression of some functional dependencies between objects via
their attributes. For example, the maintenance of the compiled attribute of a spec is related
to the use link; to express that a spec can be compiled when the used spec are themselves
compiled we can state:

N:spec use M.spec => N.can-be-compiled = AND* (M.compiled)
{AND* iterates the conjunction for every instance of M linked to N by a use).

• To avoid collisions and to allow the accesses only to coherent parts of the database, tools
can obtain an exclusive access to the required sub-graph.

• Tools, themselves, are assumed to maintain some constraints. For instance, instead of
maintaining the compiled attribute of a spec by the expression of a functional dependency,
the spec editor can propagate the false value through the using specs (with the next*
request on the use link).

• Finally, the user can maintain constraints by hand.

4. ARCHITECTURE OF THE ENVIRONMENT
The structure of the environment is based on a customer-server model and has been designed
to ease the integration of new application-dependent tools. The fixed part of the environment,

486

USER-INTERFACE

Representation Language Protocole language
graphical appearance request definition

Graph Description Language

Data Description

Tools Definition

Constraints Definition SERVER

Figure 3 - Generation mechanism of the environment frame

(i.e. the application-independent structure), is parameterized by the GDL description. It is the
frame in which application-dependent tools are integrated. It fulfils three main functions: The
dialogue with the user, for navigation and driving purposes, is implemented by the user-
interface. The data management is implemented by a unique process: the Server. Finally
the communication between the tools, the user-interface and the Server is implemented by a
package of library functions. The user-interface and the Server can be seen as a shell
encapsulating the tools. The drawing of fig 4 displays a schematic view of a multi-users
distributed access to the environment.

The environment frame is generated from descriptions expressed with several languages
(fig. 3):
- the GDL declaration defines the data organization,

- the Representation Language (RL) declaration defines the graphical appearance of the
GDL-types instances,

- the constraints and the tool definitions are expressed in the same formalism as the GDL
declaration,

- the communication description is expressed with the Protocol Language (PL) [7].

4.1. The Server

Its main functions are:

- management of the data handled in the environment: creation/destruction/updating,
storage/retrieval, constraints propagation...,

- management of the schemes which structure and parameterize the environment,

- decoding and interpretation of the interface and tools requests,

- management of concurrent accesses.

487

USER-INTERFACE

window-manager

(communication)

x

x

>-<

>-<

Workstation B Workstation A Workstation C

Figure 4 - Architecture of the environment with distributed accesses

The Server has a layer structure and some layers are automatically generated from
descriptions. For instance, the top-level part of the request interpreter is generated by the
compilation of the communication description in PL (see Section 4.3). Basic storage/retrieval
functionalities are generated from the GDL declaration. Over these storage/retrieval functions,
there is an application-independent layer which enables the graph manipulations required to
implement the queries presented in Section 3.

Implementing the Server as a unique process gives several advantages:

- it simplifies data integrity handling and access control,

- it provides a uniform data access interface and facilitates tool integration,

- it provides an efficient tool coupling mechanism (the tools share the data representation) to
build tools combinators (like for example pipes in UNIX).

4.2. The user interface
This part is application-independent and is the privileged way to interact with the
environment. It is window and menu based, and provides graphical functionalities.
• Graphical functions provide graph display and edition. Thanks to them, the user can

update data stored by the Server and browse the result of a request. In addition, facilities
are available to apprehend large amount of data: graphical filtering and abbreviation,
graphical holophrasty, various algorithms of standard graph display, history of
commands...

488

• Alphanumerical edition capabilities are used to edit interactively small amounts of data,
like attributes or commands. The classical edition of files is provided by the integration of
specialized editors into the environment, following the tool integration mechanism.

• Command interpretation allows an interactive access to the Server.
• Display services are available for "non highly interactive" tools, i.e. basic standard

functions for tools which don't need too much sophisticated interaction.
All the functions related to the screen for displaying purposes are parameterized. Each user
can set parameters through declarations made in the Representation Language (RL). For
example, the icon associated with a node-type has a basic form that can be a square, a
circle..., in bold, in double pen... or even can be painted with an icon editor.

4.3. Tools integration and cooperation mechanism
Tools, like customers, get their resources from the environment through the user interface and
the Server. Updating and retrieving data, as well as interaction with the user, are performed
by request exchanges. Thanks to this architecture, the integration of tools is easy because the
interaction between them and the rest of the environment is only made by exchanging ASCII
messages. Furthermore, it allows distributed accesses to the centralized Server.
The messages are formally described in a Protocol Language [7] which defines the syntax of
all the possible requests. Each request is composed of the syntactic form of the sent and
received parameters and of all the possible errors. The sent and received parameters are
declared in terms of regular expressions on the basic types such as: string, digit... The
compilation of a source written in PL produces a package of functions allowing symbolic
manipulations of the requests.

5. EXISTING PROTOTYPE AND FUTURE DEVELOPMENT
The current state of the GDL enables, in the same description, the expression of both the data

Figure 5 - Hard copy obtained from the existing prototype

489

structuring and the related graphical representation. For the moment, it provides only one kind
of node expansion (viewpoint). The main purpose of this version was to point out a
convenient formalism for representing the inherent structure of various applications.
Demonstration examples (cf. fig. 5) have been implemented for several specification
languages: PLUSS [5] [10], COLD [15] [16], ERAE [14], ALGRES [8]. For these examples,
the implementation of the Server is simply build upon the UNIX file system.

The current version of the user interface relies on the UFO [1] C pre-processor for the internal
management of the displayed graph. NEIGE [25] and LUGE [26] are the graphical libraries
used for the screen management and the mouse interaction. The prototype runs on SUN 2/3
work-stations, under UNIX, with either black and white or color display.

The planned extensions are: the implementation of the entire GDL, the extension of the
graphical capabilities of the user interface, the implementation of constraints maintaining, and
the use of this environment to provide a powerful graphical environment for Slog [27].

Powerful and expressive models for software engineering databases, as well as real and
efficient management of constraints, are still going on researches inside METEOR and in
other projects (GRASPIN, [11], [17], [18]). From some points, our approach is comparable to
the approach followed in the design of PCTE [22] or CONCERTO [11]. This approach is
based on the concept of "shell" (common tool environment, "structure d'accueil",
environment frame). Our generation of the environment frame is easily made through high
level description languages. The implementation of the Server could be done using the OMS
of PCTE.

REFERENCES
[I] M. Beaudouin-Lafon, UFO User's Manuel, Preliminary draft, LRI (Bat 490) University Paris XI,

June 1986.
[2] G. Bernot and P. Pauthe, Using IDEAS - A Scenario, ESPRIT Project 432, Case studies, Draft,

Meteor/tlO/CGE-LRI/UIS.l, April 1987.
[3] J.A. Bergstra, J. Heering and P. Klint, ASF - An Algebraic Specification Formalism, Centre for

Mathematics and Computer Science, Report CS-R8705, January 1987.
[4] M. Bidoit, Experimentation of the ASSPEGIQUE Specification Environment, METEOR Report,

Task 11, November 1985.
[5] M. Bidoit, M.C. Gaudel and A. Mauboussin, How to Make Algebraic Specifications more

Understandable? An Experimentation with the PLUSS Specification Language, ESPRIT Project
432, METEOR/t2-tl0/CGE-LRI/UAS.l, March 87.

[6] L. Boug6, N. Choquet, L. Fribourg and M.C. Gaudel, Test Set Generation from Algebraic
Specifications using Logic Programming, Journal of System and Software, 1986.

[7] O. Bourdon, H. Chatelier and Y. Holvoet, Le Langage de Protocole (PL), Laboratoires de
Marcoussis CGE, Internal Report, September 1986.

[8] S. Ceri, S. Crespi Reghizzi and L. Lavazza, Extended Relational Algebra (ERA): Data Structures
and Operations, ESPRIT Project 432, METEOR/t2/TXT/l, May 1985.

[9] CGE-LRI-UoP team, A Proposed List of Components for a Specification Development
Environment, ESPRIT Project 432, Case studies, Draft, METEOR/tl l/CGE-LRI-UoP/SDE3,
November 1986.

[10] M.A. Choquer, M.C. Gaudel, Y. Holvoet and A. Mauboussin, A Concrete Syntax for PLUSS,
ESPRIT Project 432, METEOR/tlO/CGE-LRiyi, March 86.

[II] CNET Lanion, CONCERTO, Atelier de Logiciel, Journeys Concerto, Technical Presentation,
February 4-6, 1986, Palais des congres, 22700 Perros-Guirec, France.

490

[12] J. F. Cove and B. C. Walsh, A Taxonomy of browsing, Working Paper, University of Liverpool,
Department of Computer Science, Chadwick Building Liverpool L69 3BX, April 1985.

[13] A. Doucet and M.C. Gaudel, Bases de Donnees et Genie Logiciel: vers VIntegration des Outils
de Developpement de Logiciel, LRI, University of Paris XI, Journees Bases de Donnees de
l'AFCET, La Rochelle, September 30-October 1, 1986.

[14] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, A. Rifaut, E. Stephens and F. Williams, Model
Components for Requirements Engineering, Final report for METEOR Task 1, AT&T and Philips
Telecommunications (Brussels), Philips Research Laboratory (Brussels), C.O.P.S. Computers Ltd
(Dublin), September 1986.

[15] L.M.G. Feijs, J.H. Obbink and I. Hagelstein, A Process Reference Model for Requirements- and
Design Engineering, METEOR/t6/PRLB-PRLEE/l, Philips Research Laboratories Eindhoven and
Brussels, November 1986.

[16] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans and G.R. Renardel de Lavalette, Formal
Definition of the Design Language COLD-K, Philips Research Laboratories and Department of
Philosophy, University of Utrecht, April 1987.

[17] J. Heering, G. Kahn, P. Klint and B. Lang, Generation of Interactive Programming
Environments, CWI Amsterdam The Netherlands, INRIA Sophia-Antipolis & Roquencourt
France, ESPRTT85: RESULTS AND ACHIEVEMENTS, Elsevier Science Publishers B.V.
(North-Holland), © The Commission of the European Communities, 1986.

[18] H. Horgen, TOOL USE: An Advanced Support Environment for Method-driven Development and
Evolution of Packaged Software, Informatique Internationale S.A. Toulouse, ESPRIT'85:
RESULTS AND ACHIEVEMENTS, Elsevier Science Publishers B.V. (North-Holland), © The
Commission of the European Communities, 1986.

[19] S. Horwitz and T. Teitelbaum, Generating Editing Environments Based on Relations and
Attributes, ACM Transactions on Programming Languages and Systems, Vol.8, No.4, October
1986, Pages 577-608.

[20] H. Hussmann, Rapid Prototyping for Algebraic Specifications — RAP System User's Manual, 2nd
Edition, Universitat Passau, February 1987.

[21] P. Pauthe, A Survey on Databases for Software Engineering, ESPRIT Project 432,
METEOR/t7/CGE/SDSE, September 1986.

[22] PCTE Project Report, PCTE: A Basis for a Portable Common Tool Environment, ESPRIT'86:
RESULTS AND ACHIEVEMENTS, Elsevier Science Publishers B.V. (North-Holland), © The
Commission of the European Communities, 1987.

[23] M.H. Penedo and E.D. Stuckle, PMBD-A Project Master Database for Software Engineering
Environments, 8th. International Conference on Software Engineering, London, August 1985.

[24] P. Pin-Shan Chen, The Entity-Relationship Model — Towards a Unified View of Data,
Massachusetts Institute of Technology, ACM Transaction on Database Systems, Vol.1, No.l,
March 1976, Pages 9-36.

[25] P. Raymond, NEIGE: Un Noyau d'Environnement Interactif et Graphique Elementaire,
Laboratoires de Marcoussis CGE, Internal Report, January 1987.

[26] P. Raymond, LUGE: Une Librairie d'Utilitaires Graphiques Extensible, Laboratoires de
Marcoussis CGE, Internal Report, January 1987.

[27] Slog 1.1 User's Manual, Laboratoires de Marcoussis CGE, August 1986.

491

Project No. 390

Formalisation of Developments: an Algebraic Approach

Bernd Krieg-Briickner

FB3 Mathematik und Informatik, Universitat Bremen
Postfach 330 440, D 2800 Bremen 33, FR Germany

In the context of ESPRIT Project #390, PROSPECTRA (PROgram development by
SPECification and TRAnsformation), a uniform treatment of algebraic specification is
proposed to formalise data, programs, transformation rules, and program developments.

1. Introduction
Various authors have stressed the need for a formalisation of the software development process: the
need for an automatically generated transcript of a development (history) to allow replay upon re
development ("maintenance") when requirements have changed, containing goals of the
development, design decisions taken, and alternatives discarded but relevant for re-development [1].
A development is thus a formal object that does not only represent a documentation of the past but is
a plan for future developments. It can be used to abstract from a particular development to a class of
similar developments, a development method, incorporating a certain strategy. Approaches to
formalise development descriptions contain a kind of development program [1], regular expressions
over elementary steps [2], functional abstraction [3], and composition of logical inference rules [4].

In Transformational Development [5-7], the approach taken in the PROSPECTRA project [8,9], an
elementary development step is a program transformation, the application of a transformation rule
that is generally applicable; a particular development is then a sequence of rule applications. The
question is how to best formalise rules and application (or inference) strategies.

The approach taken in this paper is to regard transformation rules basically as equations in an algebra
of programs (chapters 2, 3), to derive basic transformation operations from these rules (chapter 4),
to allow composition and functional abstraction (chapters 5, 6), and to regard developments as
(compositions of) such transformation operations (chapter 7). Using all the results from program
development based on algebraic specifications we can then reason about the development of
transformation programs or developments in the same way as about programs: we can define
requirement specifications (development goals) and implement them by various design strategies,
and we can simplify ("optimise") a development or development method before it is first applied or
replayed.

2. The Algebra of Programs
2 . 1 . The Algebra of Data and the Algebra of Programs

In the PROSPECTRA project, loose algebraic specifications with partial functions and conditional
equations [10] are used to specify the properties of data and associated operations in PAnndA-S, the
PROSPECTRA Anna/Ada specification language [8,9]. For example, the fact that, for the mathematical
integers INT, (INT, *, 1) is a monoid could be specified as in (2.1-1).

Similarly, we can define the Abstract Syntax of a programming language such as PAnndA-S by an
algebraically specified Abstract Data Type: trees in the Abstract Syntax correspond to terms in this
algebra of (PAnndA-S) programs, non-terminals to sorts, tree constructor operations to constructor
operations, etc. Most constructor operations are free, except for all operations corresponding to List
or Sequence concatenation, see & in (2.2-1). In the case of STMT_SEQ, Empty corresponds to null;
in Ada and & would correspond to ; in the concrete syntax for Pascal-like languages; cf. [11].

492

(2.1-1) Example: Algebra of Data: Monoid (INT, *, 1)

axiom VX,Y,Z: INT =>
(X'vyz^x'rrz), r x = x, XM=X

(2.1-2) Example: Algebra of Programs: Monoid (STMT_SEQ, &, Empty)

axiom V R, S, T : STMT_SEQ =>
(R&S)&T = R&(S&T), Empty&R=R, R&Emptv=R

2.2 . Concrete and Abstract Syntax

Although we are interested in the algebra of programs, that is the abstract syntax, it is often more
convenient to use a notation enclosed in [J for phrases (program fragments with schema variables)
of the concrete syntax corresponding to appropriate terms (with variables) in the algebra of
programs, see (2.2-1). Variables correspond in the example, n-fold repetition of (possibly distinct)
actual parameter expressions E1 in [{E1, }n J corresponds to the list EL1 of expressions (simplified
parameter associations) of length n , etc. In this paper, we are not concerned with notational issues at
the concrete syntax level nor with the (non-trivial) translation of phrases from concrete to abstract
syntax. Also, the typing and universal quantification of variables in equational axioms is usually
omitted for brevity; it should be apparent from the context.

(2.2-1) Example: Correspondence between Concrete and Abstract Syntax: Procedure Call

[P{[E1,}n V {, E2))\ J - Call(P, EL 1 & Exp(V) & EL2))

2.3 . Algebraic Semantics

In the approach of the algebraic definition of the semantics of a programming language (cf. [12]), an
evaluation function or interpretation function from syntactic to semantic domains is axiomatised. The
equational axioms of such functions induce equivalence classes on (otherwise free) constructor
terms. In other words, we can prove that two (syntactic) terms are semantically equivalent, in a
context-free way or possibly subject to some syntactic or semantic pre-conditions. Such a proof can
of course also be made with respect to some other style of semantic definition for the language. Thus
we obtain a semantic algebra of programs in which transformation rules are identities as a quotient
algebra of the abstract syntatic algebra in which only identities for & exist

Note that the semantic specification may be intentionally loose, that is some semantic aspects such as
the order of evaluation of expressions in a call may be intentionally left unspecified. From an
algebraic point of view this means that several distinct semantic models exist for the loose semantic
specification. Usually, these form a lattice between the initial model on top (where all terms are
distinct that cannot be proven to equal) and the terminal model at the bottom (where all terms are the
same that cannot be proven to differ). In some cases, unique initial and terminal models may not
exist: if expressions may have side-effects, for example, several (quasi-terminal) models exist
according to particular sequentialisations of evaluation (see below). Each choice of model (each
choice of sequentialisation by a compiler) is admissable. (In Ada, a program is erroneous, if the
quasi-terminal semantic models for this program do not coincide.)

3. Transformation Rules
3 . 1 . Examples of Transformation Rules

Consider the examples below: (3.1-1) is actually a specialisation of a more general rule for the
(arbitrary) Introduction <=> Elimination of a Declaration. Rule (3.1-2) transforms function calls of a
particular kind into procedure calls. Rule (3.1-3) brings an assignment of a function call to a variable
into the form required by rule (3.1-2). Finally, rule (3.1-4) unnests expressions that might contain a
call to F such that rule (3.1-3) can be applied. We are assuming a (sub)language (of Ada) where
expression have no side-effects (see also section 3.5).

493

Note that, in a proper formulation for these rules, the context has to be taken into account, to ensure
that (3.1-2) is applied in the context of declarations for F and P as introduced by (3.1-1), that V or T
are properly declared, and that T (or V in (3.1-4)) do not occur in the right hand context unless
previously assigned to. For lack of space, we are ignoring these considerations here; see [13] for a
particular approach to a specification of context in an algebraic framework.

Assuming suitable context conditions (in particular for (3.1-2)), each rule is applicable by itself and
correct as an individual rule. In a combined transformation (or "development"), all these rules are
taken together (with suitable unification of F, n etc., and some additional context conditions omitted
for brevity) and applied exhaustively in reverse order; they will then transform the function F and all
its calls to the procedure P and F can be eliminated. Before we come to the issue of application
strategies etc. in chapter 6, let us consider some rules in more detail.

(3.1-1) Trafo Rule: Introduction <=> Elimination of Procedure Declaration

declare
{01}
function F({FP1;}n X: R {; FP2}) return R;

{02}
begin

{S}
end;
such that
• P does not occur in any of the D2, S
• P is not in conflict with other declarations

declare
{01}
function F({FP1;}" X: R {; FP2}) return R;
procedure P({FP1; }n X: In out R {; FP2});
{02}

begin
{S}

end;

(3.1-2) Trafo Rule: Assignment with Function Call <=> Procedure Call

V:=F({E1,}" V {, E2}); P({E1,}" V {,E2});

(3.1-3) Trafo Rule: Collateral « Sequential Evaluation of Expressions in Function Call

V:=F({E1,jn E {, E2});
such that
• V does not occur in any of the E1.E2

V:=F({E1,}n E {, E2});
such that
• V does occur in one of theE1, E2
• T does not occur in any of theEt, E, E2

V
V

T:
V

= E;
= F({E1,}" V {,E2});

= V; V := E;
= F«Ei [V byT] .) n V {. E2 [v b y T] }) ;

(3.1-4) Trafo Rule: Nested » Sequential Evaluation of Expressions in Statements

(W:=G({E1, } E{,E2});
| Q({E1, } E {,E2});
| If E then {S3} [else {S4}] end If;
j while E loop {S3} end loop;)
such that
• V does not occur in any of the E1, E, E2, S3, S4

V:=E;
(W:-G({E1,} V {,E2});
| Q({E1,} V {,E2});
| If V then {S3} [else {S4}] end If;
| while V loop {S3} V := E; end loop;)

3.2 . Bi-Directional Rules: Equations

The first and major kind of transformation rules we are interested in is the bi-directional
transformation rule, a pair of semantically equivalent terms (in the above sense), that is an equation

494

in the algebra of programs that is provable by deductive or inductive reasoning against the semantics.
All rules in this paper are of this kind (indicated by ») ; but see also section 3.5.

(3.21) is just a translation of the concrete syntax in (3.12) to terms in the algebra of programs, cf.
also (2.13); a similar translation for (3.11) would look very involved. (3.22) is an auxiliary rule;
applicability conditions have been formalised using auxiliary functions (see section 3.6) and make
the equation conditional. The condition —i IsVarf E) is not strictly necessary (as in most other cases
below) but restricts the application of the rule such that no trivial assignments (corresponding to
renamings of variables) are produced. (3.23) is a translation of (3.13). As stated above, the context
has to be taken into account to ensure that i OccurslnfV, S) etc. extend properly over the right hand
context.

(3.2-1) Trafo Rule: Assignment with Function Call <=> Procedure Call: as Equation

|AssignStmt(y, Call(F, EL1 & Exp(l/) & EL2)) = Call(P, EL1 & Exp(VQ & EL2)) I

(3.2-2) Trafo Rule: Multiple <=> Single Evaluation of Same Subexpression

Occursln(E.S) A , Qccu/s/nfV, S; *-,lsVar(E)
S = f V := E; SubstByln(E, V, S ; J

(3.2-3) Trafo Rule: Collateral « Sequential Evaluation in Assignment with Function Call

. OccurslnfV, EL1; A , OccurslnfV, EL2 ; A ■ lsVar(E) >
rV :=F (EL1 ,E , EL2);J= |" v := E; V := F(EL1, V, EL2); J,

Occu/s/nCV,rEL1,EL2j; A , Occursln(T,[ELI, E, EL2]) A , IsVar(E) >
r V : = F (E L 1 , E, EL2);J =
f T := V; V := E; V := F (SubstBylnfV', T, EL1), V, SubstByln(V, T, EL2)); J

3 .3 . Derivation of Transformation Rules

The first equation in (3.23) is generally applicable (cf. (3.14)), but is not sufficient for our goal,
namely that the call should have the particular form, even if V does occur in the other
subexpressions. Let us now derive the second equation of (3.23) from the first, using the generally
applicable rule (3.22) as a start, see (3.31). We apply the usual derivation steps of substitution,
application of an equational law, renaming of variables, e.g. V by T in the first equation of (3.23)
before it is applied as a law.

(3.3-1) Trafo Rule Derivation: Collateral « Sequential Evaluation for Function Call

OccurslnfV, E) A , Occursln(T, E) >
T V := E; J = T T := V; V := SubstByln(V, T, E) ; J

OccurslnfV J F(EL1, E, EL2) j ; A , OccurslnfJ ,\ ? (EL1, E, EL2) j ;
| "V:=F(EL1,E, EL2);J =
f T := V; V := SubstBylnf V, T, f F (EL1, E, EL2) j ; ; J

Occursln(V, [EL1, E, EL2 J ; A , Occursln(T, [EL1, E, EL2 J J
rV :=F(EL1 ,E , EL2);J =
f T := V; V := F (SubstBylnf V, T, f EL1, E, EL2 J)); J

Occursln(V, [EL1, EL2 J) A , OccurslnfJ, [EL1, E, EL2 J) >
rV :=F(EL1 ,E , EL2);J =
f T := V; V := F (SubstBylnf V, T, EL1), E, SubstBylnf V, T, EL2)) ; J

495

OccurslnfV, [EL1
rV :=F(EL1,E
| "T :=V;V:=E;

EL2J; A

:.EL2);J =
Occursln(J, TELLE,

V := F (SubstByln(V, T, EL1 ;, V

E L 2 j ; ^

SubstByln(V,T, EL2;);J

3.4. Sets of Transformation Rules

We may have already noticed in section 3.1 that each rule in a set of rules achieves a certain
(sub)goal (possibly only when applied exhaustively) that makes another rule applicable. We will
come back to this issue below. For the time being let us consider different sets of rules that achieve
the same effect

(3.41) is an analogous rule to (3.23) and arises, for example, during recursion removal when a tail
recursive call is transformed to a collateral assignment of actual parameter expressions to variables
corresponding to formal parameters. Collateral (or multiple) assignments do not exist in Ada, but we
could define them as intermediate notational extensions, to be eliminated into sequences of individual
assignments during the course of program development. We assume that V := V; (an identity
assignment) can be replaced by a nullstatement even if V is not initialised.

The first equation in (3.41) terminates the recursion by removing (a list of) redundant identity
assignments, the latter two are derived from (3.41).

(3.42) is a similar rule where the removal of identity assignments is reflected in the contraction of
the lists. In fact the second equation is a specialised case of the third for E equals V and removal of a
redundant identity assignment; such a specialisation, and appropriate guards, could also be
introduced in (3.41).

(3.43) is a simpleminded specialisation that forces a sequentialisation from left to right. This way,
it does not avoid redundant assignments and auxiliary ("temporary") variables.

The important observation is that all these (sets of) rules, when applied exhaustively, yield
semantically equivalent sequentialisations of the collateral assignment. With respect to some
efficiency metrics where minimisation of assignments and variable usage is a concern, however,
they behave quite differently. Moreover, the order of application of a general rule (rather than
simpleminded application from lefttoright) becomes of great importance. Each application strategy
yields a different syntactic (normal) form.

(3.4-1) Trafo Rule: Collateral <=» Sequential Assignment

r(NL):=(NL);Jrnull;J

Length(Nf\) = Length(EL1 ; A , Occursln(V, EL1; A . Occursln(V, EL2)
T (NL1, V, NL2) := (EL1, E, EL2); J =
f V := E; (NL1, V, NL2) := (EL1, V, EL2);J

Length(HL-\) ■= LengthfEU) A
Occursln(V, [EL1, EL2 J ; A , OccurslnfT, [EL1, E, EL2 J ; »

T (NL1, V, NL2) := (EL1, E, EL2); J

f T := V; V := E; (NL1, V, NL2) := (SubstBylnf V, T, EL1 ;, V, SubstByln(V, T, EL2 ;);J

(3.4-2) Trafo Rule: Collateral <=> Sequential Assignment

r (V) := (E) ;J rV :=E; j

Length(NL1 ; Length(EL1 ; A Length(NL1 ; + Length(NL2 ; > 0 »
[(NL1, V, NL2) := (EL1, V, EL2); J |"(NL1, NL2) := (EL1.EL2);]

496

Length(Nf\) = Lengthf EL1 ; A Length(NU) + Lengthf NL2) > 0 A
-. Occursln(V. EL1) A -, Occursln(V, EL2; -+

|"(NL1, V, NL2):=(EL1,E, EL2);J= rV :=E ; (NL1 , NL2):=(EL1, EL2);J

Length(NL1) = Lengthf EL1 ; A Length(NL1) + Lengthf NL2 ; > 0 A
Occursln(V, [EL1, EL2 J ; A -, Occursln(T, [EL1, E, EL2 J ; -»

T (NL1, V, NL2) := (EL1, E, EL2); J =
|"T := V; V := E; (NL1, NL2) := (SubstByln(V, T, EL1 ;, SubstByln(V, T, EL2));J

(3.4-3) Trafo Rule: Collateral <=» Sequential Assignment (Specialisation: Left to Right)

r (V) : = (E) ; j = r V : = E ; J .

Length(NL) > 0 A - , Occursln(T, EL; -»
f (V, NL) := (E, EL); J = f"T := V; V := E; (NL) := (SubstByln(V, T, EL ;);J

3.5. Uni-Directional Rules: Relations

If the evaluation of an expression may have side-effects, that is for a semantics with distinct quasi-
terminal models (see section 2.2 above), the rules (3.2-2) to (3.4-3) could not be bi-directional any
more. The equality would have to be replaced by a semantic inclusion relation in a model-oriented
sense. Thus a uni-directional transformation rule is a relation between semantic models such that
each model in the range is a robusdy correct implementation of some model in the domain. Again
this notion is taken from the theory of algebraic specification (cf. [10]) and formalises the intuitive
notion of correctness with respect to some implementation decision that narrows implementation
flexibility or chooses a particular one. These rules are of course not invertible (a decision cannot be
reversed) and, interpreted as rewrite rules, are not confluent in general. In this paper, we cannot go
into detail and restrict our attention to bi-directional rules although most considerations generalise.

4. Transformation Operations
4 .1 . Auxiliary Operations

We note a number of auxiliary functions and predicates in the above equations, such as SubstByln or
Occursln. They can be structurally defined as in (4.1-1) and must hold over subterms or over a larger
context of the actual rule application, see chapter 6 below. Such functions could be represented by
(derived or inherited) attributes in an implementation of transformation rules by attributed tree
transformations.

(4.1-1) Auxiliary Operation: Substitution in Expressions

-. Occurslnf E1, E2 ; -> SubstBylnf E1, T, E2 ; = E2 ,
SubstByln(E.T.E; = T,
Occursln(E, EL; -> SubstByln(E, T, [F(EL) J) = [F(SubstByln(E.T, EL;)J

SubstByln and Occursln would be similarly defined for other kinds of terms, for example Expression
Lists (see chapter 5 below).

4.2 . Transformation Operations: Endomorphisms

An elementary transformation operation can be constructed from (transformation rule(s), that is)
equation(s) in the semantic algebra in a straightforward way as a partial function in the abstract
syntactic algebra, see (4.2-1): it maps to a normal form in the quotient algebra obtained by dividing
by the equation(s). It embodies the effect of considering each equation as a rewrite rule from left to
right or from right to left, depending on the chosen normal form. Thus it achieves a normalisation in
the abstract syntactic algebra and corresponds to an identity in the semantic algebra.

497

(4.2-1) Trafo Operation: Assignment with Function Call to Procedure Call

|TrafoCall(AssignStmt(y, Call(F, EL1 & Exp(lQ & EL2))) = Call(P, EL1 & Exp(VQ & EL2) |

4.3 . Extension of the Domain

If we want to apply elementary transformations over a larger context, with some strategy such as
somewhere or everywhere (see chapter 6), we need to extend the domain of a partial function to
larger terms, as in (4.3-1) for TrafoCall. The first equation corresponds to the previous definition for
TrafoCall in a slightly different formulation. The second and third extend the definition to the identity
over STMT in all other cases.

(4.3-1) Trafo Operation: Extension to STMT (Monomorphic Specification)

EqStmt(S, AssignStmt(V, Call(F, EL1 & Exp(W) & EL2))) A EqName(V, W) -»
TrafoCall(S) = Call(P, EL 1 & Exp(V) & EL2),

EqStmt(S, AssignStmt(V, Call(F, EL1 & Exp(W) & EL2))) A - , EqName(V, W) -
TrafoCall(S) = S,

-. EqStmt(S, AssignStmt(V, Call(F, EL1 & Exp(W) & EL2))) ->
TrafoCall(S) = S

5. Development of Transformation Operations
5 .1 . Loose Specification

(5.1-1) Trafo Operation: Extension to STMT (Polymorphic Specification)

(TratoCall(AssignStmt(K Call(F, Exp(lQ & L))) = Call(P, Exp(W) &/.))) v (TrafoCall(S) = S)

Compared with (4.3-1), the compact definition of (5.1-1) is also semantically correct since TrafoCall
is an endomorphism and therefore all values in the equivalence class denoted by the original rule are
acceptable. Loose specifications allow several distinct (that is non-isomorphic) models. In this case
the v operator between equations has been used to allow an additional degree of freedom over
classical hom-clause specifications, analogous to non-determinacy. This version specifies a class of
functions (one being the "syntactic" identity in the term algebra); the more explicit definition of (4.3-
1) specifies a single function mapping to a canonical form: for each non-trivial application the
function call is actually changed to a procedure call.

Such a simple definition is often convenient at the start of the development of a transformation
operation to characterise its effect before turning to considerations of termination, efficiency etc.

5.2 . Requirement and Design Specifications

In general, we would like to start with a requirement specification of a transformation operation
before considering a particular design specification, possibly several design alternatives (cf. also
section 3.4). The same kind of reasoning as in program development can be applied. Any of the
designs is then either formally derived from or proved to be a (robustly) correct implementation of
the requirement specification (cf. [9,10]).

As an example, consider the extension of TrafoCall the effect of over STMT_SEQ. We can
characterise the desired effect as in (5.2-1): TrafoCall should be applied to every element of a
sequence (alternatively: to some arbitrary element). (5.2-2) and (5.2-3) show two divide and
conquer strategies for achieving this (cf.[14]), depending on the basic operations available on
STMT_SEQ, a partition or left linear structural decomposition strategy is applied. In fact, we can
abbreviate such strategies by functional abstraction using a functional as in (5.2-4), see section 6.2.

(5.2-1) Trafo Operation: Extension over STMT_SEQ: Requirement Specification

TrafoCallStmts (Empty) - Empty,
I > 0 A I < Length(SSeq) -> Select (TrafoCallStmts(SSeq), I) - TrafoCall (Select(SSeq, I))

498

(5.2-2) Trafo Operation: Extension over STMT_SEQ: Design Specification: Partition

TrafoCallStmts(Empty) = Empty,
TrafoCallStmts(SSeq1 & S & SSeq2) = TrafoCallStmts(SSeql) & TrafoCall(S) & TrafoCallStmts(SSeq2)

(5.2-3) Trafo Operation: Extension over STMT_SEQ: Design Specification: Linear Decompos.

TrafoCallStmts (Empty) = Empty,
TrafoCallStmts (Add(S.R)) = Add (TrafoCall(S), TrafoCallStmts(R))

(5.2-4) Trafo Operation: Extension over STMT_SEQ: Design Specification: Functional

|TrafoCallStmls(SSeq) = MapStmtSeq (TrafoCall)(SSeq)

6. Functionals
6.1 . Homomorphic Extension

Before we continue with development considerations, let us focus on this issue of functional
abstraction in more detail. Higher order functions allow a substantial reduction of re-development
effort (just as parameterised data type specifications), just as in program development (cf. [15]).

In fact, most of these functionals have the nature of homomorphic extension functionals (see [16]),
in this case the structural extension of the effect of a (local) transformation or predicate over larger
terms. Compare the definition of auxiliary operations and predicates using functionals in (6.1-1).
Everywhere and EveryWherePred would be similarly defined for other kinds of terms. Everywhere is
an endomorphic extension functional from terms to terms, and EveryWherePred is a homomorphic
extension functional from terms to BOOLEAN.

(6.1-1) Operation Functional: Extension over Expression Lists

SubstBylnf T1, T, T2) = EveryWhere(SubstBylnE(T\, J)) (12)

-,0ccursln(E-\,E2) -» SubstBylnE(EA.l) (E2) - E2,
SubstBylnE(E,T)(E) - T,
Occurslnf E, EL) -> SubstBylnE(E.l) ([F(EL) J) - [F(SubstBylnf E,T, EL))J

IsExrfE) -» EveryWhere(F)(E) - F (E) ,
EveryWhere(F) ([EL1, EL2 J) = f EveryWheref F) (EL1), EveryWhere(F) (EL2) J

Occursln(J-\,T2) = EveryWherePred(OccurslnE(T\)) (12)

OccurslnE(E)(E). TRUE, -, EqName(M,N2) -» OccurslnE(M)(N2) - FALSE,
OccurslnE(E) (\ F(EL) _p = OccurslnfE, EL ;

IsExpfE) -» EveryWherePred(Pred)(E) « Pred(E; ,
EveryWherePredf Pred; ([EL1, EL2 J) - EveryWherePredf Pred; (EL1 j A EveryWherePredf Pred; (EL2 J

6.2. Restricted Functionals

Similarly, we can abstract the homomorphic extension over statement sequences in (5.1-1) to (5.1-3)
to a functional. (6.2-1) shows the signature, an abstract requirement specification and a particular
design specification by partition.

It is an interesting observation that most definitions of such functionals have a restricted form: the
functional argument is unchanged in recursive calls. Functionals of this restricted form can be
transformed to Ada generics since they can be interpreted as more or less textual abbreviations;
instantiation is then explicit, see (6.2-2). A functional together with its functional parameters can
then always be considered as a new function symbol (corresponding to an implicit instantiation),

499

therefore the conformance to the theory of algebraic specification is evident in the restricted case. In
this paper, we will restrict ourselves to this case. In the presence of overloading, a functional that is
locally defined to a parameterised specification has the same effect as a polymorphic functional.

(6.2-1) Operation Functional: Extension over STMT_SEQ

function MapStmtSeq (G: function (S: STMT) return STMT)
return function (SSeq: STMT_SEQ) return STMT_SEQ;

axiom for all G: function (S: STMT) return STMT; SSeq, SSeql, SSeq2: STMT_SEQ; I: NATURAL =
MapStmtSeq (G) (Empty) = Empty,
I > 0 A I < Length(SSeq) ► Select (MapStmtSeq (G)(SSeq), I) = G (Select(SSeq, I));

MapStmtSeq(G)(Empty) = Empty,
MapStmtSeq(G)(SSeq1 & S & SSeq2) = MapStmtSeq(G)(SSeq1) & G(S) & MapStmtSeq(G)(SSeq2)

(6.2-2) Operation Functional: Extension over STMT_SEQ: as Ada Generic

generic
with function G (S: STMT) return STMT;

function MapStmtSeq (SSeq: STMT_SEQ) return STMT_SEQ;
axiom for all SSeq, SSeql, SSeq2: STMT_SEQ; I: NATURAL =>

MapStmtSeq (Empty) = Empty,
I > 0 A I < Length(SSeq) » Select (MapStmtSeq (SSeq), I) = G (Select(SSeq, I));

MapStmtSeq(Empty) = Empty,
MapStmtSeq(SSeq1 & S & SSeq2) = MapStmtSeq(SSeql) & G(S) & MapStmtSeq(SSeq2)

• Instantiation:
function TrafoCallStmts (SSeq: STMT_SEQ) return STMT_SEQ Is new MapStmtSeq (TrafoCall);

... TrafoCallStmts (SSeq)...

6.3. Transformals
In analogy to tacticals in [17], we might call transformation functionals transformals since they
embody application tactics or strategies. Compare the differences in the definition of the
homomorphic extension functionals SomeWhere and Everywhere; Fmust be a total function over a
subdomain, for example on simple statements. Note that the v operator between equations has been
used (cf. section 5.1) to indicate arbitrary choice between then or else part, for example. Thus the
function denoting a particular occurrence of an application of F is in the specified class of functions.
IterateWhile can be used to apply a transformation function Fas long as some condition C holds.
Similarly, IterateSomeWhile iterates a local transformation function Fas long as some local condition
C holds somewhere.

(6.3-1) Operation Functional: SomeWhere

IsSimpleStmt(Stmt) > SomeWhere (F) (Stmt) = F (Stmt),
(SomeWhere (F)([SSeql SSeq2]) = [SomeWhere (F) (SSeql) SSeq2]) v

{SomeWhere(F)([SSeql SSeq2]) =T SSeql SomeWhere (F) (SSeq2)\),
(SomeWhere (F)(T If B then SSeql [else SSeq2] end If; J) ~

r if B then SomeWhere (F) (SSeql) [else SSeq2] end if; J)
(SomeWhere (F)(T if B then SSeql else SSeq2 end If; j ;

TifB then SSeql else SomeWhere (F) (SSeq2) end If; J ;,
SomeWhere(F)([while B loop SSeq end loop; J)

f while B loop SomeWhere (F) (SSeq) end loop; J

500

(6.3-2) Operation Functional: Everywhere

IsSimpleStmt(Stmt) -> Everywhere (F) (Stmt) = F (Stmt),
Everywhere (F)([SSeql SSeq2]) = [Everywhere (F) (SSeql) Everywhere (F) (SSeq2) J
Everywhere (F)([If B then SSeql [else SSeq2] end If; J) =

r If B then Everywhere (F) (SSeql) [else Everywhere (F) (SSeq2)] end If; J ,
Everywhere (F)([while B loop SSeq end loop; J ; =

f while B loop Everywhere (F) (SSeq) end loop; J

(6.3-3) Operation Functional: Iterate

-. C(X) -» IterateWhile (F, C)(X) = K
C(X) -> IterateWhile (F, C) (X) = IterateWhile (F, C) (F(X)),

IterateSomeWhile (F, C) = IterateWhile (SomeWhere(F), SomeWherePred(Q)

7. Developments
7 .1 . Developments: Composite Transformations

Since we can regard every elementary program development step as a transformation, we may
conversely define a development to be a composition of transformations or term over transformation
operations (including application strategies for elementary transformation operations). This view is
independent of whether we regard a development to formalise a concrete development history (a term
without variables), possibly to be replayed, or a development method (a term with variables or a
functional abstraction) for future application.

7.2. Development Goals

We have already stated in chapter 3 that the application of some (set of) rule(s) often requires the
satisfaction of some pre-condition established by (exhaustive application of) some other (set of)
rule(s). Conversely, this condition can be considered to be a required post-condition of the first (set
of) rule(s), or a characteristic predicate for the respective transformation function. Let us call such a
condition a development goal: it is a requirement specification for a function yet to be designed.

If these conditions can be defined structurally (or "syntactically"), as we indeed hope will mostly be
the case, then they characterise certain normal forms. This leads to a substantial improvement in the
modularisation of sets of rules and separation of concerns, consequently ease of verification. Note
that intermediate conditions never need to be checked operationally as long as it can be proved that
they are established by previous application of other rules.

(7.2-1) shows the pre-conditions for rules (3.1-3) and (3.1-2) (or the corresponding rules in section
3.4), resp., and the precondition for finally eliminating the function declaration altogether

(7.2-1) Development Goals: Function to Procedure

NoNestedCall(F)(S) = EveryWherePred(NotlsNestedCall(F))(S),
EveryCallUpdateForm(F, n)(S) = EveryWherePred(lsCallUpdateForm(F, n))(S),
NoCalKFHS) = EveryWherePred(NotlsCall(F))(S)

7.3 . Composition of Developments

We can now formulate the definition for the individual transformation functions achieving sub-goals
of the development, and the overall function TFunctToProc as a functional composition.

501

(7.3-1) Development: Function to Procedure

ProperContextfF, n)(Scope) ->
TUnnestEveryCall(F)(Scope) = IterateSomeWhile (TUnnestCall(F), lsCall(F))(Scope),

NoNestedCall(F)(Scope) ->
TEveryCallUpdateFormfF, n)(Scope) =

IterateSomeWhile (TCallUpdateForm(F, n), NotlsCallUpdateForm(F, n))(Scope).
EveryCallUpdateForm(F, n)(Scope) -»

TEveryCallToProc(F, n, P)(Scope) = IterateSomeWhile (TCallToProc(F, n, P), lsCall(F))(Scope),
NoCall(F)(Scope) ->

TEIimFunctDecl(F)(Scope) = SomeWhere (TEIimDecl(F))(Scope)

ProperContextfF, n)(Scope) ->
TFunctToProc(F, n, P)(Scope) =

TESmFunctDecl(F)
TEveryCallToProcfF, n, P) TEveryCallUpdateFormfF. n) TUnnestEveryCall(F)

IntroProcDecKF, n, P) (Scope)

7.4 . Development Rules

We note that it makes no difference in (7.3-1) whether to introduce the procedure declaration before
or after normalisation of the function calls. This can been expressed by a re-ordering property as in
(7.4-1). Such properties or development rules allow us to express and to reason about design
alternatives or alternative development strategies and tosimplijy developments by considering them
as algebraic terms in the usual way, cf. (7.4-2).

Such reasoning leads to considerable simplification of the above development. For example, one
would want to simplify iterated application into bottom-up one-sweep (everywhere) application, or a
sequence of exhaustive individual application of one rule, then the other, to exhaustive application of
both rules combined, whenever possible. Due to lack of space, such simplifications cannot be
included here. The important observation is that the theoretical reasoning and practical technique for
the development of transformation functions (or "developments") here is the same as the established
one for programs.

(7.4-1) Development Rule: Reordering Property of Transformations

TEveryCallUpdateFormfF, n) TUnnestEveryCall(F) lntroProcDecl(F, n, P) (Scope) =
IntroProcDecKF, n, P) TEveryCallUpdateFormfF, n) TUnnestEveryCall(F) (Scope)

(7.4-2) Development Rule: Elimination of Iteration

C(X) A - , C(F(X)) -> IterateWhile (F, C) (X) = F(X)

8. Conclusion
It has been demonstrated that the methodology for program development based on the concept of
algebraic specification of data types and program transformation can be applied to the development
of transformation operations ("transformation programs"); in the algebra of programs, equations
correspond to bi-directional transformation rules. Starting from small elementary transformation
rules that are proved correct against the semantics of the programming language, we can apply the
usual equational and inductive reasoning to develop complex rules; we can reason about
development goals as requirement specifications for transformation operations and characterise them
as structural normal forms; we can implement them by various design strategies; we can optimise
them using algebraic properties; we can use composition and functional abstraction; in short, we can
develop correct, efficient, complex transformation operations from elementary algebraic properties.

Moreover, we can regard program development ("histories") as formal objetcs: as (compositions of)
such transformation operations. We can specify development goals, implement them using available
operations, simplify development terms, re-play developments by interpretation, and abstract from
concrete developments to development methods, that is formalised development tactics and
strategies. There is a close analogy to the development of efficient proof strategies for given

502

inference rules (transformation rules in the algebra of proofs). Perhaps the approach could also be
used to formalise rule and inference based expert systems.

Since every manipulation in a program development system can be regarded as a transformation of
some "program" (for example in the command language), the whole system interaction can be
formalised this way and the approach leads to a uniform treatment of programming language,
program manipulation and transformation language, and command language.

Acknowledgements
I wish to thank M. Broy, H. Ganzinger, B. Gersdorf, S. Kahrs, D. Plump, and Z. Qian for helpful
criticism and comments.

References
[I] Wile, D. S..: Program Developments: Formal Explanations of Implementations. Comm. ACM

26: 11(1983) 902-911. also in: Agresti, W. A. (ed.): New Paradigms for Software
Development. IEEE Computer Society Press / North Holland (1986) 239-248.

[2] Steinbriiggen, R„: Program Development using Transformational Expressions. Rep. TUM-
18206, Institut fur Informatik, TU Munchen, 1982.

[3] Feijs, L.M.G., Jonkers, H.B.M, Obbink, J.H., Koymans, C.P.J., Renardel de Lavalette,
G.R., Rodenburg, P.M.: A Survey of the Design Language Cold, in: Proc ESPRIT Conf. 86
(Results and Achievements). North Holland (1987) 631-644.

[4] Jahnichen, S., Hussain, F.A., Weber, M.: Program Development Using a Design Calculus, in:
Proc ESPRIT Conf. 86 (Results and Achievements). North Holland (1987) 645-658.

[5] Bauer, F.L., Berghammer, R., Broy, M., Dosch, W., Geiselbrechtinger, F., Gnatz, R.,
Hangel, E., Hesse, W., Krieg-Briickner, B., Laut, A., Matzner, T., Moller, B., Nickl, F.,
Partsch, H., Pepper, P., Samelson, K., Wirsing, M., Wossner, H.: The Munich Project CIP,
Vol. 1: The Wide Spectrum Language CIP-L. LNCS183,1985.

[6] Bauer, F. L., Wossner, H.: Algorithmic Language and Program Development. Springer 1982.
[7] Pepper, P.: A Simple Calculus of Program Transformations (inclusive of Induction). Rep.

TUM-I8409, Institut fur Informatik, TU Munchen, 1984.
[8] Krieg-Briickner, B., Hoffmann, B., Ganzinger, H., Broy, M., Wilhelm, R., MSncke, U.,

Weisgerber, B., McGettrick, AA.D., Campbell, I.G., Winterstein, G.: Program Development
by Specification and Transformation, in: Proc ESPRIT Conf. 86 (Results and Achievements).
North Holland (1987) 301-312.

[9] Krieg.Briickner, B.: Integration of Program Construction and Verification: the PROSPECTRA
Project, in: Habermann, N., Montanari, U. (eds.): Innovative Software Factories and Ada.
Proc. CRAI Int'l Spring Conf. '86. LNCS (to appear).

[10] Broy, M., Wirsing, M.: Partial Abstract Types. Acta Informatica 18 (1982) 47-64.
[II] Hoare, C.A.R.: Mathematics of Programing. BYTE (1986) 115-149.
[12] Broy, M., Pepper, P., Wirsing, M.: On the Algebraic Definition of Programming Languages.

ACM TOPLAS 9 (1987) 54-99.
[13] Qian, Z.: Structured Contextual Rewriting. Proc. Int'l Conf. on Rewriting Techniques and

Applications (Bordeaux). LNCS 256 (1987) 168-179.
[14] Smith, D.R.: Top-Down Synthesis of Divide-and-Conquer Algorithms. Artifical Intelligence

27.1(1985)43-95.
[15] Bird, R.S.: Transformational Programming and the Paragraph Problem. Science of Computer

Programming 6 (1986) 159-189.
[16] von Henke, F.W.: An Algebraic Approach to Data Types, Program Verification and Program

Synthesis, in: Mazurkiewicz, A. (ed.): Mathematical Foundations of Computer Science 1976.
LNCS 45 (1976) 330-336.

[17] Gordon, M., Milner, R., Wadsworth, Ch.: Edinburgh LCF: A Mechanised Logic of
Computation. LNCS 78 .

503

Project No. 125

T E R M REWRITING SYSTEMS IN THE GRASPIN

E N V I R O N M E N T USED FOR THE VERIFICATION OF

SOFTWARE D E V E L O P M E N T S T E P S

B. DEHMl.H-R. FONI02,H.GERLACH3,W. SOMMER3,R.TOBIASCHl
1 Siemens AG.Zentrale Forschung und Entwicklung,
Otto-Hahn-Ring 6, D-8000 Munchen 83
2 Gesellschaft fiir Mathematik und Datenverarbeitung,
Insti tut fur Systemtechnik, Postfach 1240, D-5205 Sankt Augustin 1
3 Universitat Kaiserslautern.Fachbereich Informatik
Postfach 3049, D-6750 Kaiserslautern

Abstract
The GRASPIN validation and verification scenario was designed in order
to make existing techniques and methods applicable to the working
software engineer.We present two methods MISOP (Method for the Check
of Important Specification Object Properties) and MCAI (Method for the
check of the Correctness of an Algebraic Implementation) using term
rewriting techniques for the verification of software development steps.
Ver i f ica t ion m e a n s he re to e n s u r e t y p e - p r o t e c t i o n , o p e r a t i o n -
completeness, and Rl-correctness as defined by Ehrig et al.. A modified
Knuth-Bendix-Algorithm is used for confluence and consistency checks.
For proving termination of term rewriting systems we have implemented
the recursive path ordering. Totality checks are performed by Kounalis
test. A rough outlook is given about the future work dealing with the
application of rewrite techniques in the context of Petri nets.

1. INTRODUCTION

The GRASPIN validation and verification scenario was designed in order to make
existing techniques and methods from research area applicable to the working
software engineer . I t is character ized by two parad igms of modern software
development technology:
• Every step in the development of a software product should be equipped with a set

of criteria that allows to check the quality of the step; if mathematically rigorous
methods are applied the notion verification is used otherwise we call it validation.

• Since currently established validation and verification techniques are connected to
massive data (formula) manipulat ion, a software development system should
provide appropriate supporting tools in order to unburden the user and to make the
methods practically applicable.

The existing prototype of the GRASPIN workstation supports various validation and
verification techniques. Obviously, not every technique or method is applicable at
every stage of the software development process. GRASPIN distinguishes different
stages requirement definition and analysis (REQ), formal specification (SPEC), and
programming (PROG). A second distinction concerns the transition between these

504

stages. Finally relat ions between objects man ipu la t ed wi thin one s tage are
considered. Each of these 'problem domains' has specific preconditions in the degree of
available mathematical formalism and aims at specific goals in the application of
validation and verification methods . The workstation supports these individual
requirements (for more details see [1]).
(Semi-) Formal specification is used to reach be t te r u n d e r s t a n d i n g of system
functionality and behaviour. On the one hand precision is needed for fur ther
refinements towards a programming language. On the other hand clear functionality
makes communication with customers easier. Powerful and user-friendly editing
facilities are a necessary assistance for offering such kind of specifications to the user.
The result - well structured, reusable and extensible, precise specifications - is
valuable for its own. But, in addition to this advantages formal specification is an
important basis for quality assurance approaches. Mainly highly reliable, secure
systems require high quality in particular on software programs. For such systems it
is of a common understanding that rigorous verification methods are needed. That
means documents established during the development process are to be checked or
proved as soon as possible. Defined properties representing the required quality must
be verified. Using formal specification gives the possibility to do it and to do it early in
the life cycle of program development.
In this paper we deal with verification of development steps based on term rewriting
systems. In GRASPIN the specification objects are defined in the language SEGRAS3

[2] which combines the specification methods of algebraic specifications with those of
high level Petri nets. Here we consider mainly the algebraic part of SEGRAS called
SPEC.
First we give a rough overview of GRASPIN development methodology [3] in order to
facilitate the embedding of the two methods MISOP and MCAI. For each method we
provide parts of the computer protocol of example sessions in the annex.
The outlook is focussed on the ongoing work concerning nonsequential systems
specified with Petri nets.
The system is available on a SIEMENS Al-machine under INTERLISP-D.

2. THE GRASPIN APPROACH OF SOFTWARE DEVELOPMENT AND VERIFICATION

In order to make large and complex software products more reliable and to reduce the
costs of software debugging there should be appropriate techniques and tools assisting
the programmer during the software production process. While validation methods
are more informal and human assisted, the application of formal specification
techniques and verification methods which are based on mathemat ica l theories
increases the quality of software. Especially the theory of algebraic specification
methods and the concept of abstract data types have been well elaborated in the past
and they have been successfully applied in development of complex software systems.
Early fundamental papers concerned with this field of research are published by Zilles
[4], Guttag[5], and the ADJ group [6].
According to this, systems are specified in GRASPIN using the rigorous formalism
SPEC (the algebraic part of SEGRAS) to express the structure and properties of the
intended systems. Objects are considered that introduce data and functions in a highly
representation-independent fashion. This allows to concentrate on the problem-
specific questions and to disregard environment-specific ones. The SPEC language is
supplied with a formal semantics and includes notions and concepts for hierarchical
structuring and implementation of objects. Since the specification, programming, and
verification steps of the software production are separated, it is difficult to prove
automatically tha t the programs perform the specified tasks . Therefore each
development step in GRASPIN has to be confirmed by a validation or even a

505

verification step by applying a verification method to an algebraic specification or an
algebraic implementation.

The features of SPEC allow software design according to the principles of stepwise
refinement and verification while developing, which means that different levels with
varying degree of abstraction are established. The most abstract level describes the
overall system structure. This description abstracts from most details and especially
from implementation and representation features. The abstract level is gradual ly
refined. On the other hand there will be a more concrete level describing the basic
features that will be provided for the overall design task. Within the most concrete
level there will usually be a subset of the data types tha t are provided by the
implementation language. At this level it is also possible to include user defined and
verified data types. Executable versions of these data types will be available in a basic
l ibrary . Each level is a lgebra ica l ly specified and consists of a h ie ra rchy of
specifications. S ta r t ing with some basic specifications, more complex ones a re
constructed on top of already existing ones.

Besides the horizontal s t ructure , which is constructed completely wi th in one
abstraction level, there is the vertical implementation structure, which corresponds to
the refinements mentioned above. An abstract level is refined to a level where more
concrete details are visible. The final goal of software development is to implement the
most abstract level in terms of the most concrete ones and to verify the resulting
implementation. This overall implementation and verification task is defined in our
setting as the composition of corresponding tasks for every refinement step. We have
to be aware tha t this procedure is not always feasible. But if certain conditions are
satisfied, then the feasibility is ensured. So, if we concentrate our attention to the
correctness of each single step and if we assume that some conditions (described below)
hold, then we will end up with a correct overall implementation.

Let us consider a single implementation step. An abstract specification SPUp shall be
implemented in terms of the more concrete specification SPi0w This algebraic
implementation can be done completely in the algebraic world with all its advantages.
There exists a well known procedure [7] where intermediate levels - the type
implementation and the operation implementation - are constructed. The advantage is
the very systematic and precise way implementations are constructed and verified.
Verification in this approach means to ensure type-protection, OP-completeness, and
Rl-correctness (see chapter 4). The satisfaction of these properties can be reduced to
consistency and completeness checks, which are performed by the compound
verification methods MISOP (Method for the check of Important Specification Object
Properties) and MCAI (Method for the check of the Correctness of an Algebraic
Implementation) which are based on Rewrite Rule techniques.

3. SPEC O B J E C T S AND THE VERIFICATION METHOD MISOP

In our approach an abstract data type is syntactically described by an algebraic
specification or SPEC object and its semantics is given by a special algebra. It consists
of six clauses:

spec introduces the name of the specification;
uses lists the names of the specifications used by this specification; all

symbols of the types, constructors, and defines clauses of used
specifications are visible in this specification;

types lists the names of sets; the types, constructors, and defines clause
constitute the signature I, of a specification; an algebra which
consists of a set of values corresponding to each type name and a
function corresponding to each function name of E is called S-
algebra;

506

constructors names and arities of functions; terms built from these symbols
generate the value domains of the canonical term algebra which is
a special H-algebra;®

defines names and arities of functions which are equationally defined in
the "homes" clause;

homes equations built from the names of all visible functions; they
describe the behavior of the functions listed in the "defines"
clause;

The following sample specification STK describes the abstract data type stack which
stores natural numbers:

spec
uses
types
constructors

defines
homes

STK
BOOLEAN NATURAL
STACK
MT :
PUSH: STACK NAT
POP:STACK
POP(MT)
POP(PUSH(s,n))

-> STACK
-> STACK
->NAT
= MT
= s

From the mathematical point of view, the signature £ denotes a class of algebras (S-
algebras), which consists of:

• a set of values corresponding to each element of the types clause

• and a funct ion c o r r e s p o n d i n g to each func t ion d e c l a r a t i o n of t h e
constructors a n d defines c l a u s e .

E-algebras which satisfy the equations of the "homes" clause of a specification are
called SP£C-algebras. Not all E-algebras own this property. For example in the term
algebra TSTK, whose value domains are generated by the terms built from the function
symbols of the specification STK, the STACK-terms MT and POP(MT) denote
different values, because the two terms are not syntactically identical. But for each
specification there is another E-algebra, the quotient term algebra QTAv;, which is
obtained from the term algebra by factorizing the terms according to equations and
corresponding definition of its functions.
There are four important properties, which justify to take QTA£ as the semantics of
an abstract data type, syntactically described by an algebraic specification:

1. QTAv; is generated by its functions because it is a quotient of terms built from S.
2. QTAv; satisfies the equations; so QTA^; is a SPEC-algebra.
3. QTAv; is the only E-algebra (up to isomorphism) with the properties one and two.
4. QTAv; is initial, which means that there is a unique homomorphism from QTAv;

to each SPEC-algebra,
Following to the approach of the ADJ group we finally define that an abstract data
type is syntactically determined by an algebraic specification and semantically
defined by the class of SPEC-algebras isomorphic to QTAv.

Up to now we did not consider the meaning of correctness of an algebraic specification
SPEC. If there exists a well known mathematical model A like the algebra of boolean
values or natural numbers corresponding to an intended specification of an abstract
data type, we could say that SPEC is correct w.r.t. A, if QTASPEC is isomorphic to A. We
have to construct a suitable model by our own and then to prove that a specification is
correct w.r.t. this model.

As stated above, the quotient term algebra QTASPEC corresponding to a specification
SPEC is generated by the function symbols of the s ignature . In QTASPEC each
equivalence class of terms corresponds to a value in an arbi t rary SPEC-algebra.

507

Instead of handl ing with equivalence classes i t would be nicer to deal wi th
representatives of these classes. A suitable subset of these canonical terms has to
contain exactly one term out of each equivalence class and it mus t satisfy the
following two conditions:

- for each term of TSPEC there must be an equivalent canonical term and

- two canonical terms are equivalent if and only if they are identical.

The E-algebra generated in this way is called the canonical term algebra. It is a SPEC-
algebra and it is isomorphic to QTASPEC-

According to this, dividing the set of function symbols of a signature in two groups
leads to a way how the problem mentioned above can be solved. The former group
(constructors) contains the symbols which construct the canonical term algebra. The
second group (defines) contains the symbols which correspond to functions which
operate on the values established by the constructors. Only the functions of the second
group must be equationally defined. Then, the task of proving the correctness of a
specification SPEC is to show, t ha t QTASPEC and CSPEC induced by SPEC are
isomorphic. This is true, if the equations of SPEC do not induce an equivalence class of
QTASPEC which contains more than one constructor term.

Often, this proof task can be performed automatically by use of rewrite techniques,
because the elements of CSPEC define normalized forms for all terms built from the
signature of SPEC. The knowledge, how a term can be rewritten to its normalized
form, can be gained from the equations and some further information. If there is a
possibility induced by the equations of SPEC to rewrite a term to more than one
normalized form, then QTASPEC a n £ i CSPEC are proven to be not isomorphic and hence
SPEC is not correct in our sense.

Finally we summarize the important questions which must be examined to show that
SPEC fulfills the correctness criterion:

1 .Completeness, Confluence, Termination
Is it always possible to rewrite terms, to which an equation of SPEC is applicable,
to a normalized form in a finite number of rewrite steps ?
If not : Is it possible to generate automatically a finite set of new equations
satisfying this requirement ?

2.Consistency
A positive answer to question one leads to :

Is the normalized form unique ?
If not: QTASPEC &nd CSPEC are not isomorphic.

3,Totality
Provided that the second answer is positive :
Is it possible to rewrite an arbitrary term built from the signature of SPEC to its
normalized form ? This is true if the functions specified by the defines clause of
SPEC are totally defined.

If yes : QTASPEC and CSPEC <*re isomorphic.

In GRASPIN the compound verification method MISOP is applied to SPEC objects to
give answers to these questions. Moreover, MISOP tries to complete the set of
equations. Generally it can not be decided whether a finite set of equations exists
satisfying this requirement. So provers can not always succeed in this task.

MISOP has access to the common GRASPIN data base. It fetches the necessary
information from there and the computed results are stored there. Especially in the
case that a specification can be proven to be correct, MISOP generates an executable

508

rule system which will be used by MISOP itself and by other tools (f.e. MCAI ,
REDUCE see Annex) operating in GRASPIN.

The confluence-check, consistency-check, and completion procedure is based on a
modified Knuth-Bendix-Algorithm (KBA). This version of the KBA performs a
confluence test for ground confluence which is stronger than the classical confluence
test. This allows us to prove the ground confluence of term rewriting systems where
the classical KBA does not terminate. The latter has recently been applied in theories
where only the confluence on ground terms of the equational theory is of interest, as in
our application scenario. It tr ies to generate a term rewrit ing system which is
confluent on arbitrary terms. This often leads to cases where it does not terminate
because it generates an infinite rule system, even though this infinite system contains
a finite ground confluent system. For more details see [8].

A fundamenta l sub task performed by MISOP while proving confluence and
termination is to rewrite terms to i ts normalized form. This requires a directed
proceeding. For this reason, completion procedures operate on the basis of a
hierarchical ordering on operation symbols defined by the user. This order ing
determines which of the two possible rewrite prescriptions induced by an equation
must be taken to reduce a term towards its normalized form. On this way equations
become rules. For proving the termination of term rewriting systems, we have chosen
the recursive path ordering (RPO). This ordering seems to be the most appropriate
ordering for applications in abstract data types. There are mainly three reasons for
taking this ordering:

1. The RPO extends an ordering on function symbols (precedence) to an ordering on
terms. In the context of abstract data types the definition of a function symbol
usually bases on previously defined function symbols. In our approach a function
symbol f introduced in a signature is greater by definition than all symbols
gl,--->gn, which are visible via the uses clause. By the RPO a ground term t which
contains a function symbol f is greater than an arbitrary term t', if t' consists
only of symbols which are smaller than f. Also, a ground term t is greater than a
ground term t' if the greatest function symbol f of t and t' is contained in both
terms but the arguments of fin t are greater than the arguments of fin t \

2. The weight of the argument position of a function symbol f in t can be defined by
its status which can be one of multiset status, left or right. The multiset status
determines that every argument position has the same weight, for the left s tatus
the left most position has the greatest and the right most position has the least
weight, for the right status the meaning is accordingly defined.

3. Two terms can be compared relatively efficiently.

The RPO works for many examples but in cases where cyclic rules occur the user is
prompted to direct manually.

For checking the totality of the specified functions the Kounalis test [9] has been
implemented. The input for this procedure are a confluent and te rminat ing term
rewriting system and a set of constructors with their arity. It checks whether every
ground term is equivalent to a constructor term. If one of the functions is not totally
defined, MISOP presents a list of irreducible terms of the form f(ti,...,tn) where f is a
defined function symbol and ti,...,tn are constructor terms. In order to totalize f, the
user could supply the homes clause of the specification with equations of the form
f(ti,...,tn) = t m for every listed term where t m is a constructor term. This test works for
arbitrary specifications, if they can be transformed into confluent and terminating
term rewriting systems.

509

4. S T E P O B J E C T S AND THE VERIFICATION METHOD MCAI

According to the software development philosophy of GRASPIN, systems are specified
algebraically by use of SPEC objects. These objects which are on a high level of
abstraction are implemented by SPEC objects which are intuitively on a more concrete
level, and so on. This mechanism establishes a chain of implementation steps which
ends off with an algebraic specification which is on a very low level of abstraction.

A first systematic treatment of algebraic implementations was given in [7]. A clear
s e p a r a t i o n b e t w e e n s y n t a c t i c a l , s e m a n t i c a l , and c o r r e c t n e s s a s p e c t s of
implementations was achieved. On the syntactical level two steps were introduced:
type implementation and operation implementation. In this approach the semantics of
an implementation step is systematically divided into the steps restriction and
identification. In order to clarify the notion of algebraic implementat ion let us
introduce the following notation:

- SPUP denotes a specification on an abstract level,
- SPLOW denotes a specification on a concrete, less abstract level.

The first step to implement an abstract specification in terms of a concrete one is
called type implementation. Syntactically this step is constituted by an algebraic
specification TYPE IMPL which is semantically an extension of SPLOW- This condition
requires t ha t SPLOW is a par t of TYPE I M P L and t h a t the reduct of T Y P E I M P L
corresponding to SPLOW is isomorphic to SPLOW- In more detail TYPEIMPL consists of
SPLOW. the renamed sorts of SPLT, the constructors, which generate the new types
needed for the implementation task, and optionally function symbols of the new types,
which have to be specified by equations.

The goal of this step is to set up the correct data representations to be capable of
implementing S P L T later on. A second aim is to rename types to avoid name conflicts.
For the construction of the appropr ia te da ta represen ta t ions the usua l type
constructors, known from programming languages like records, arrays, etc., might be
chosen.

The purpose of the second step, called operations implementation^ to realize the
functions denoted by S P L T by functions denoted by SPLOW- Formally the renamed
function symbols of S P L T are added to TYPE|MPL together with equations, describing
the behavior of the corresponding functions in terms of TYPEIMPL-

Unti l now, only the syntactical aspects of an implementation step have been
presented, so now we have to look at the semantics of them. After having extended the
lower level data type by data and functions to perform the activities of the upper level
data type, we are now going to forget al l da ta and functions which are not
corresponding to types and functions induced by SPup in a first restriction step, called
FORGET. Because of the possibility, tha t there still remain data which will never
appear during applications of upper level functions, we have to forget all these data,
not reachable by upper level function applications, in a second restriction step, called
REACH. More formally, these two steps can be characterized as follows:

• result(FORGET) can be looked as a E-algebra corresponding to the signature of
SPU P

As a consequence, there exists a unique homomorphism r : Tsp^p - > result(FORGET)

• The reachable data can be characterized by result(RE ACH) = r(TspUP)

The restriction steps did not take the equations of S P L T into account. This is finally
done in the identification step by considering the congruence relation, which is
induced by the equations of OPIMPL. in which all function symbols are renamed by
their corresponding function symbols of SPUP- Let IDIMPL be a quotient,which is

510

constituted by REACH factorized according to this congruence relation. Thereby the
homomorphism r is transformed into a homomorphism between the corresponding
quotient term algebras : r ' : Tspb-P - > IDIMPL-

After having analyzed the semantics of an algebraic implementation in more detail,
the question arises: When is an algebraic implementation correct?
Fundamentally we require that all constructive steps do not disturb the original
abstract data types. In the case of type implementation this requirement is called type
protection. A s imi la r r equ i r emen t mus t be imposed onto the step operation
implementation. This must be an enrichment of type implementation. Normally the
equations, tha t are introduced by the operation implementation step, will define the
new functions explicitly and will thus not raise inconsistencies. A problem in this
context is, tha t computations performed by the new functions are not reducible to
computations performed by functions and type implementation. This requirement is
called OP-completeness. Whenever the new operations are totally defined, this
requirement is automatically satisfied. But in general , the operations might be
implicitly defined and hence the same checks as in type protection become necessary.

But what do we require beyond this? Simply asking for satisfaction of equations of
S P U P in O P I M P L would be too strong. A closer look at this criterion shows, that most
practical implementations would not satisfy this requirement. The reason why is, that
in most practical applications an abstract data is represented by more than one data in
the concrete level. A solution of this problem is to identify firstly the data on the lower
level according to the equations in the upper level. This has been done in the
identification step above. Secondly, we have to require that distinct data in the upper
level must be represented by distinct data in the lower level. This notion of correctness
of algebraic implementations is called Rl-correctness. In this context R stands for the
restriction step and I for the identification step.

In GRASPIN the compound verification method MCAI is applied to step objects, which
define algebraic implementation steps, in order to prove their correctness. MCAI is
based on the same verification techniques as MISOP and in addition it uses the tools
SEEC (Syntactical Extension Enr ichment Checker) and HPC (Homomorphism
Property Checker). SEEC tr ies to show by use of syntactical criterions, tha t a
specification is an enrichment respectively an extension of another specification. HPC
tries to show, that a specification HOM, which maps turns of T O P I M P L to terms of TspU P
together with an algebraic implementation step induce a homomorphism between
QTAopIMPi and Tsp u p . Again HOM is based on rewrite techniques. The algorithm
MCAI works as follows:

a) type protection check: Is TYPEiMPL an extension of SPLOW ?
a l) application of SEEC

- SEEC succeeds: branch to b
- SEEC fails:
a l l) Induces TYPEIMPL a confluent, terminating, consistent rule system

?
- Success: branch to b
- Failure: branch to failure-exit

b) OP-completeness check: Is OPIMPL an enrichment of TYPEIMPL ?
bl) application of SEEC

- SEEC succeeds: branch to c
- SEEC fails:
b l l) Induces OPIMPL a confluent, terminating, consistent rule system ?

- Success: branch to c
- Failure: branch to failure-exit

511

c) RI.correctness check: Is ID I M PL consistently specified w.r.t. OPJMPL ?
cl) application of SEEC

- SEEC succeeds: branch to success-exit
- SEEC fails:
e l l) Induces I D I M P L a confluent, terminating, consistent rule system ?

- Success: branch to success-exit
- Failure: application of HPC to HOM

- Success: branch to success-exit
- Failure: branch to failure-exit

failure-exit) The algebraic implementation could not be proven to be correct,
success-exit) The algebraic implementation could be proven to be correct.

An example for the MCAI method is presented in the annex.

5. OUTLOOK

As an interesting question, and an area of current and future research in GRASPIN,
we ask for a suitable concept to m a k e algebraic methods , such as a lgebra ic
specifications, ADT's, term-rewriting and the like, applicable to describe and analyze
asynchronous and concurrent processes. Such processes are usually described by Petri
nets, a formalism, whose expressive power has steadily increased throughout the
years. Different approaches, treating different levels of" Petri nets, are pursued to
describe the corresponding nets by objects of the semigraphical specification language
SEGRAS respectively by the SPEC-subset of SEGRAS mentioned above, to derive a
term rewriting system that can be used as an effective means to check properties of the
underlying system specified, such as lifeness, deadlockfreeness, fairness, reachability
and/or proper termination.

As a first level, Predicate/Event nets are considered. To work with such nets means for
example to construct firing rules, to simulate or analyze such nets. Analyzing nets
implies proving the existence or nonexistence of forward or backward conflicts,
detecting deadlocks or to test the reachabil i ty of m a r k i n g s . In the GRASPIN
environment nets appear as graphs yielding a scheme defined with respect to a partial
abstract data type, the data that are produced, consumed or manipulated are terms of
the data type in question. S- and T-elements, which represent the components of the
nets, are introduced as partial functions, the program steps have to be synthesized on
one hand of firing rules, defined by the topological environment of the transitions, and
on the other hand from the variable substitutions which are attached as labels to the
arcs. The fact that tokens can actually lie on S-elements is expressed by subfunctions
of these S-elements which are just defined for the actual tokens or data respectively.
These subfunctions can be extended or restricted, they can thus be considered as
functional terms created and manipulated by generation and cancellation operations,
using the empty and the generation operations as constructors. The marking of nets
are then functions mapping the S-element on the actual functional terms. In a nearby
and constructive way the firing rules for the T-elements can then be described using
these operations.

The rewrite system, which is provided for the GRASPIN environment, deals only with
totally defined operations and unconditional equations. Thus partial operations as
discussed above have to be excluded or to be extended to total opera t ions by
introducing error elements for the sorts in question. Moreover conditional equations
have to be replaced by introducing appropriate if-then-else operators as well as a
specification BOOL yielding an ini t ial two valued model for the booleans. The
markings , which represents ac tua l s t a tes , can be considered as t e rms of the
specification. By unification methods of the rewrite system the firing rules for the
markings are transformed into rewrite rules between these terms; by this method the

512

behaviour of the net can be described completely by abstract data types together with
a set of rules, hence allowing the application of the usual rewrite methods and criteria
of rewriting.
The second level considered, the Place/Transition nets, is of less expressive power.
Here, the data to be manipulated are essentially restricted to the set of na tu ra l
numbers. These nets can be translated in a straight forward manner into an algebraic
specification yielding a term-rewriting set, whose usefulness, also with regards to
efficiency and feasibility, has yet to be examined.

There are reasons to be hopeful that an algebraic treatment, in the sense indicated
above, is possible at least for low-level Petri nets; however, questions arising when
dealing with high-level Petri nets are yet to be answered.

NOTES AND REFERENCES

» SEGRAS is a registered trademark of GMD

© The reason for the distinction of constructor and defined functions is the
automatization of correctness proofs. The prover derives contradic t ions in
equational specifications from syntactical comparisons of constructor terms.

[1] Dehm.B. et al : Description of V&V Methods, GRASPIN Technical Paper SIE20/2,
Sankt Augustin: GMD/Olivetti/Siemens, 1985

[2] Kramer,B.: SEGRAS The GRASPIN Specification Language Pre l iminary Reference
Manual.GRASPIN Technical Paper SIE20/2,Sankt Augustin: GMD/Olivetti/Siemens, 1986

[3] Dehm,B.,Haensse,Th.: The GRASPIN Approach to Software Validation and Verification, in
ESPRIT '86: Results and Achievements (North-Holland), 1987

[4] Zilles, S.N.: Algebraic specification of data types. Project MAC Progress Report 11, MIT 1974,28-52

[5] Guttag, J. V.: The specification and application to progamming languages of abstract data types.
Ph.D. Thesis, University of Toronto, 1975

[6] Gougen, J.A., Thatcher, J.W., Wagner, E.G.: An initial approach to the specification, correctness,
and implementationof abstract data types,IBM Research Report RC 6487, 1976

[7| Ehrig, H., Kreowski, H . J . , Padawitz, P.: Algebraische Implement ierung Abs t rak te r
DatentypenBericht-Nr. 79-3, Technische Universitat Berlin

[8] Gobel, R.: Ground Confluence SEKI-REPORT SR-86-18 University of Kaiserslautern, 1987

[91 Kounalis, E.: Completeness in data type specifications In theProc. EUROCAL 85 Springer Lecture
Notes Linz 1985

[lOJSommer, W.:Description of the current state of theVerification Module (VM) of the GRASPIN
workstation .University of Kaiserslautern, 1987

513

ANNEX

The SHOW command of the RRLab gives an overview over the specification hierarchy
of the example HOM1STACK (see first window below).
The STACKModule is implemented via LISTModule. HOM1STACK links the
specification STACK with the abstract implementation (see EDIT window below).

j a O S £ EXPAWO

mmimmwimmmmmmtmi,
i u * STAO. iTisU Olj

[(**5 |rtST*4"r ■ STa i t t l STi ^TAO. iTMi
(CMS)
(EQK ((MiTAU (S T t f r 0 1 . i t)) i-. (5 T « (. « r i J

((HSTtfK (STtfrOl.PUSH s n)>
<■-. <STtf* PVH (HCTAO :> i>]

F I N D

STTUS
AiBvT.I'.'TE

SAVE

For HOM1 STACK we are going to apply MISOP. A SERVICE command customizes the
information put on the session protocol.

MISOP
Method for the checking of Important SPEC Object Properties.

Application of the RRLab.

Checking specification HOM1-STACK
Computing the transitive precedence closure of operations
used by specification HOM1-STACK

done.
New rule generated:
HOM1-STACK[1]: H-STACK(MT) -> MT

514

New critical overlappings:
The rules:
H0M1-STACK[1]: H-STACK(MT) -> MT
and:
STACK-01[1]: MT-> l(NIL)
generate at position (1) a critical pair.
The term:
H-STACK(MT)
can be reduced via the first rule to:
MT
and via the second rule to :
H-STACKO(NIL))

New rule generated:
HOM1-STACK[1], STACK-0111] = > HOM1-STACK[2]: H-STACK(I(NIL)) -> MT
New rule generated:
H0M1-STACK[3]: H-STACK(l(C(a,P(b)))) -> PUSH(H-STACK(b).a)

New critical overlappings:
The rules:
H0M1-STACK[3]: H-STACK(l(C(a1,P(b1))))~> PUSH(H-STACK(b1),a1)
and:
STACK-T1[1]: P(l(a 1)) -> a1
generate at position (1 1 2) a critical pair.
The term: H-STACK(l(C(a 1,P(l(b 1)))))
can be reduced via the first rule to :
PUSH(H-STACK(l(b 1)),a 1)
and via the second rule to :
H-STACK(l(C(a1,b1)))

New rule generated:
HOM1-STACK[3], STACK-T1[1] = >
H0M1-STACKI4J: H-STACK(l(C(a,b))) --> PUSH(H-STACK(l(b)),a)

Removed rules:
HOM1-STACK[3]: PUSH(H-STACK(l(P(b))),a) -> PUSH(H-STACK(b),a)

New rule generated:
HOM1-STACK[5]: PUSH(H-STACK(l(P(a))).b) -> PUSH(H-STACK(a),b)

New critical overlappings:
The rules:
H0M1-STACK[5]:PUSH(H-STACK(l(P(a1))),b1)~>PUSH(H-STACK(a1),b1)
and:
STACK-T1[1]: P(l(a1)) -> a1
generate at position (1 1 1) a critical pair.
The term : PUSH(H-STACK(l(P(l(a 1)))).a 1)
can be reduced via the first rule to :
PUSH(H-STACK(l(a 1)),a 1)
and via the second rule to :
PUSH(H-STACK(l(a 1)),a 1)

The system is confluent and terminating!

Specification H0M1-STACK is consistent.
The resulting rule system has been saved.

515

Checking the totality of operations :

Checking the left hand side of rule :
HOM1-STACK[5]: PUSH(H-STACK(l(P(a))),b) -->
The rule defines a constructor operation.

PUSH(H-STACK(a).b)

MT

Checking the left hand side of rule : HOM1-STACK[1]: H-STACK(MT) -> MT
The rule doesn't contribute to the definition of a total rule system.

Checking the left hand side of rule :
H0M1-STACK[1], STACK-01[1] = > HOM1-STACK[2]: H-STACK(I(NIL)) ->
The rule contributes to the definiton of a total rule system.

Checking the left hand side of rule :
HOM1-STACK[3], STACK-T1[1] = >
HOM1-STACK[4]: H-STACK(l(C(a,b))) > PUSH(H-STACK(l(b)),a)
The rule contributes to the definiton of a total rule system.

The following rules do not contribute to a total operation definition :
HOM1-STACK[1]:H-STACK(MT) -> MT
HOM1-STACK[S]:PUSH(H-STACK(l(P(a))),b) -> PUSH(H-STACK(a),b)
In the following they are treated as inductive lemmata.
Checking totality of HOM1-STACK.H-STACK.... done.
Operation HOM1-STACK.H-STACK is totally defined.

All operations are totally defined.

The "STATUS" command of EDIT window gives us an overview about the stored
Ml SOP results:

Rewr i te Ru le l abora to ry VERSION 3.0

Status repor t f o r specification HOM1STACK :

CREATED : 31Jul87 1 0 : 5 3 : 0 5

PARSED : 31Jul87 1 0 : 5 3 : 3 9

COMPLETED : YES

CONFLUENT : YES

The fo l lowing rule system has been g e n e r a t e d :
HOMl5TilC|.(5]:PUSH|HSTACK|l|P|i]|]>]

> PUSH|HSlACK|,J,b|
HOM1;TtCr|l];H.S1ACK|MT]

> MT
HOM1 •iT»CK[l],ST4CK01(11 >
HOM1 ;TiCk[2): HSTACK|I|NIL]|

■> M l
HOM1.;T»CK[3|,5TACi:Tl[lJ = >
HOMl5T4CK|41:H$1ACK(l|C|»,b|ll
■•> PUSHIHSTACK|l|bl).a]

TERMINATING : YES

TOTAL : Y E S

CONSISTENT : YES

516

As example for MCAI we are going to check the implementat ion step STACK1.
The step object "STACK1" (see below) provides the abstract implementat ion chain
and the def ined morphisms for sorts and operat ions.

Edit Step : 5TACK1 Created: 3-Dec-8614:39:32
((STEP STACK1)

(USE)

(A-IMPL (STACK STACK-01 STAO.-T1 LIST))

(MORPHISM (SORTS-MAPPING (STACK.STK STACK-Tl.STK))
(OPS-MAPPING (STACK.MT STACK-01.MT)

(STACK.POP STACK-01.P0P)
(STACK.PUSH STACK-01.PUSH)
(STACK.TOP STACK-01.TOP)))

(C-IMPL XXX)
)

MCAI
Method for the checking of the Correctness of an Algebraic Implementation step.

Checking step STACK1

Type protection check:
Is specification STACK-T1 a syntactical extension or enrichment of LIST ?
Application ofSEEC... No success.

Do the equations of STACK-T1 induce a confluent, terminating, total and
consistent Rewrite Rule System ?

Application ofCTTCC...

CTTCC result: The equations of STACK-T1 induce a confluent, terminating, total
and

consistent Rewrite Rule System.

Op-completeness check:
Is STACK-01 completely specified w.r.t. STACK-T1 ?
Specification STACK-01 is a syntactical enrichment of specification STACK-T1.
Application ofSEEC... Success.

Rl-correctness check:
Is IDIMPL-STACK1 (that is STACK-01 together with the adapted equations of

STACK)
consistently specified w.r.t. STACK?
Application ofSEEC... No success.

517

NOTE: The SEEC cannot be be successful! at this point, because the syntactical
extensionlenrichment property is (at the moment) defined only between those
specifications, that are in a USE-relation.

Do the equations of IDIMPL-STACK1 induce a confluent, terminating and
consistent Rewrite Rule System ?

Constructing IDIMPL-STACK1... done.
Application ofCTTCC...

Computing the transitive precedence closure of operations
used by specification IDIMPL-STACK1

done.

New rule generated:
IDIMPL-STACK1[1]: POP(MT) -> MT

New critical overlappings:
The rules:
IDIMPL-STACKW]: POP(MT) -> MT
and:
STACK-01[1]: MT-> l(NIL)
generate at position (1) a critical pair.
The term: POP(MT)
can be reduced via the first rule to : MT
and via the second rule to : POP(l(NIL))

New rule generated:
IDIMPL-STACK1[2]: l(P(a)) -> a

New critical overlappings:
The rules:
IDIMPL-STACK1[2]: l(P(a1))-> a1
and:
5TACK-T1[1]: P(l(a1)) -> a1
generate at position (1) a critical pair.
The term: l(P(l(a1)))
can be reduced via the first rule to : I(a1)
and via the second rule to: l(a 1)

The system is confluent and terminating!
Removing IDIMPL-STACK1...

CTTCC result: The equations of IDIMPL-STACK1 induce a confluent, terminating
and consistent Rewrite Rule System.

Our last example will be the execution of terms invoked by the REDUCE command.
The following term

(if (and (eq (pred(succ(succ n)))(succ n))(TRUE))(succ n)(0))
should be reduced .It means that
(pred(succ(succn)) = (succn) ATRUE) = TRUE =»(succn)
or that
(pred(succ (succn)) = (succn) ATRUE) = FALSE =»(0)
holds.

518

In our example we only use rules of the specification BOOL and NAT (see below).

Edit : BOOL C r e a t e d : 1SJan87 1 5 :
^(SPEC BOOL)

(USE)
(SORTS b o o l)
(OPNS (t r u e :

(f a l s e :
(not : bool
(and : bool bool
(or : bool bool
(i f : bool bool

(CONS t r u e f a l s e)
(EONS ((n o t (t r u e))

((n o t (f a l s e))
((and (t r u e) x)
((and (f a l s e) x)
((a n d x (t r u e))
((a n d :< (f a l s e))
((o r (t r u e) x)
((o r (f a l s e) x)
((o r < (t r u e))
((o r x (f a l s e))
((i f (t r u e) a b)
((i f (f a l s e) a b)

bool

< :
•;:
'.-->
'—>
<>
<>
<>
<>
<>
\-->
(— >

5 7 : 0 0

 > b o o l)
:■ b o o l)
— > b o o l)
--> b o o l)
■.< b o o l)
--'- b o o l))

(f a l s e))
(t r u e))

•')
(f a l s e))

•<)
(f a l s e))
(t r u e))

')
(t r u e))

»)
M
b]

§

EDIT OPTIONS
FIND "

| STATUS
JBS1 IT'JTE i JMDO

SAVE ABORT
E X P A N D ;

0 1 ,

Edit: NAT Created: 12Feb87 15:09:19

A (SPEC
(USE
(SORT
;0PN5

;COMS
(EONS

Nat)
bool)
j Nat)
(0 :

(Succ
fP red
(EC :
iIF :
9 Succ
((P i ec

> Nat)
: Nat

: Nat

Nat Nat
300L Nat

)
(0)) >'

Nat)
Nat'.

 ' BOOL)
Nat ■• N

 («))
((Pred (Succ n)) ■:;• n)
i(EQ (0) (0)) *.; (TRUE))
((EQ (0) (Succ n)) •.. (FALSE))
i(EQ (Succ n) (6)') <:■ (FALSE))
((EQ (Succ n) (Succ m)) :> (EO
((IF (TRUE) n m) ,;■ n)
((IF (FALSE) n in) ■:< m]

519

The userdefined preordering on operation symbols of NAT, and the reports on
STATUS and REDUCTION are given in the following windows.

Turn on (.re pr IU. irnj >J

pro!w: . | . , ! . .a l i J l l . ie .
ol >| ■a.ili..al..i.n MAT .

0 i i. j ie.iiei i l . j i , SUCC
SUCC i i . j i t . l e i [I,.11 0
PBED i . j . e . i e i i l . j i . SUCC
EO i . i . e ' i i enh j i , SllC.C
IF l i j . e . i e n h . ,) SUCC

IJ)J.').'J|l.'.l.'.l.!.!JIHM.t,'l,.'.!.'.|.IUJHl

Qik

| P (C D |

JITTxil

I
.Jii.****_ BWTBiyW

MOVENi";C.t

RewrlteRrieUboraton VERSION 3.0

Statu: import lot t p e i t n j r i o n N A I ;

CREATED : 1 2 F e b 8 7 1 5 : 0 9 : 1 9

PAWED : 1 2 E e b 8 7 1 6 : 5 2 : 4 0

COMPLETED : Y E S

COIlfLULHl Y E S

T l reM low i rK) lu lev /s tem has beena^ne ia led ;

, EQ(b>
(JAT|u) *<1ltUE.a b>
 > n

U.M|4|. lQ(tJ.HKC.»)

N M | J | PHt£0(SUCC(a))
 > a

N* 1111 PKtO(0)
 > 0

HAI|3|. fQ(U.O)
» IRUf

NAT[5| lQ(*OCl{..).n)
 > r A I st

UAl i r j . IT(rAd.SC.jt)

:> tl

TERMINATING Y E S

TOlA I : Y L S

CONSISTENT Y E S

. .P . O i l EH.
M l ' X P PRINT

EDIT
BEAD

PEDUCt
SERVICE

M«IJU^L \.h.»\
STOP

20

RrwrheRuletabcratorv VERSION 3.0

Execution re(::it ••» the REDUCE■.vmmirid .

Select the fiam>* ot 'he iprnticunrin i t 'he lop ot the rule ;y.'erri

He : Only the rules ot the r.icr uhy ot ;p.. ■ t ichor , , belo*'
NATjrc u..CJin leduUiuti j ' e p i .
Ejt.h operation lydibul nuiit be pre l l ' t d by the ri.irn*
ot ihe conesputnlirig ipciitie.iiion
To stop the reduction process type m 'fc' c.r C
Nu type thoUn. j ..ill be p7rl.1t me I h c h i e ».e . e J I» IKH

Enter the term o

(nat. if (bog I .and(nat .ei{(nat.firt.
,
iJ(nat .succfnai .SUI.L n)))(ni t .^ucc n))

(tool.true))(nat.3ucc n)<nat.B))

hedutliullby Mile .
BO'.<L|4J: AND(i.IBUE)

H(tQ(I»RE[XSU(C(SUCC(l'l))).SUCCil'J)).SUCC{M).0)

deduction by rule :

M<EQ(iUCC(N),SU<:aN)).bUCUrO),rj)

hedu'huii 1/ Mile :
MM l|c): LQ<5UCC(ay>Cf4W)

 ■> £QO b)
lo term
tf<EC5(rjri),5ucc(M).o)

he duct luii i 'upped. l eun ;
H(ANl)(EQ(PrU:D(SUC<(SUC((ly»).5UCC(IJ»,7RUE).5UCa").0)

ii..:edi.) lerr.i : :

lf<EQ(W N).5UCC(W).(tt

i .Of ' i ' LtLt I t
UISOP PRIfJT

t D l f
READ

PEDUi . t
SERVICE

MANUAL MCA1
SHOW STOP

521

Project No. 1072c

TOWARDS RELIABLE COMPUTING

J. Kok and D. T. Winter

Centrum voor Wiskunde en Informatica,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

M. J. Erl and G.S.Hodgson

Numerical Algorithms Group Ltd, NAG Central Office, Mayfield House,
256 Banbury Road, Oxford, 0X2 7DE, England

I. INTRODUCTION

Floating-point operations are characterised by the rounding (or truncating) of the result to the finite
precision of the mantissa of the floating-point representation.
Whilst these floating-point operations may be accurate to 1/2 or 1 in the least significant bit of the
mantissa, it is the accumulation of such rounding errors after a large number of operations which can
be unpredictable. Even more serious is the danger of cancellation with floating-point addition or sub
traction (10.0**15 + 1.0 - 10.0**15 may well yield zero in floating-point arithmetic).
These dangers can be avoided by the use of a fixed-point accumulator to hold intermediate results in a
series of calculations and then rounding once only at the end of the calculation. An accurate scalar
product, which is an integral part of many vector and matrix operations, can thus be calculated with
full accuracy.
This form of accurate arithmetic was first proposed by Kulisch and Miranker [6] and its realisation in
Ada1 by Klatte, Ullrich and Wolff von Gudenberg [5]. As part of the ESPRIT project DIAMOND [4]
this embedding in Ada has been refined with particular regard to its efficient realisation and transpor
tability across a range of Ada compilation systems.
The operations provided are the usual arithmetic primitives

+,-,*,/ ,

together with an accurate scalar product. These operations are provided in real arithmetic, complex ar
ithmetic and for real and complex intervals.
For the experienced programmer access is also provided to the fixed-point accumulator, together with
directed foundings (above, below or to the nearest value).

1 Ada is a registered trademark of the US Department of Defense AJPO

522

With these accurate operations embedded in Ada, it is possible to develop reliable numerical libraries
in Ada whose accuracy is guaranteed. The DIAMOND project is investigating the development of
such packages in the areas of:

a) solution of linear equations and inversion,
b) calculation of eigenvalues and eigenvectors,
c) zeros of polynomials,
d) analysis of sparse systems,
e) analysis of systems of non-linear equations,
f) numerical integration.

We consider the embedding in two parts:
a) the user interface,
b) the primitive underlying operations.

In the next Section we will discuss the accurate floating-point facilities offered to the user, as they
have been designed and implemented in Ada, while in the subsequent Sections we will concentrate on
the primitive operations.

2. THE ADA USER INTERFACE FOR SCIENTIFIC COMPUTATION

Section 2.1 gives a survey of the accurate arithmetic to be implemented, and sections 2.2 and 2.3 ex
plain how the activity takes benefit of the use of the language Ada and describe the achieved result.

2.1. ACCURATE ARITHMETIC

In early programming languages a precise definition of the floating-point operations was absent.
Floating-point arithmetic was provided by the manufacturers in many different, and even peculiar
ways, along with the representation of floating-point numbers. Not well-specified were areas like ac
curacy of operations, representation boundaries, and overflow and underflow. It was probably as
sumed that users were familiar with the properties of the floating-point arithmetic they employed, and
that they would take appropriate measures for the unstable cases where the inaccuracies of the arith
metic would spoil the results of their computations. Experience over the past decades has taught that
only few users are willing to pay such attention to obtaining known error bounds for the results of
computations and to programming computations in such a way that the error bounds are acceptable.

With the adoption of the IEEE Standard 754 for binary floating-point arithmetic [1] it should not be a
problem anymore to obtain hardware with the desirable floating-point arithmetic characteristics.
However, this standard is concerned with the required accuracy of only the basic operations
(+. - , *, /). stating that for these operations round-off errors should not exceed the value of the least
significant bit of the result (the standard further addresses the subjects of minimal precision of the
floating-point representations, boundaries with overflow and underflow behaviour, and choices for the
rounding modes). But this leaves unsolved the problem of the growth of errors for complicated
floating-point computations and the derivation of known error bounds for their results. Clear and

523

easy-to-understand examples with an unacceptable growth of the rounding errors can be found, e.g., in
[8].
In the mathematical theory developed by Kulisch & Miranker (see, e.g., [6], [7], [8]) it is described
how the available floating-point arithmetic can be supplemented to provide reliable tools for the
scientific computing community. Mathematical computations are defined (apart from integer arith
metic) with numbers taken from either the mathematical set of real numbers (R) or that of complex
numbers (C), and with internals: real intervals that consist of two boundaries (INF and SUP) which are
real numbers, and complex inten-als whose boundaries are two complex numbers (the sets are called
/R and IC). Further, for these 4 number spaces the set of all vectors and the set of all matrices are
defined, yielding the additional spaces (with V & M for vector and matrix, respectively) VR, MR, IVR,
/MR, VC, MC, IVC, IMC.

The shortcoming of computer arithmetic now lies in the fact that floating-point operations take place
in subsets of these 12 spaces only, i.e. in finite subsets consisting of machine-representable numbers
only (number in the general sense). For the names of these 12 subsets we replace R and C by R and C,
and the relations are now shown in table 1 below.

mathematical space set of machine representations

R
VR
MR

IR
IVR
IMR

C
VC
MC

IC
IVC
IMC

Table 1.

Computations taking place in the spaces of machine-representations are obviously required to approxi
mate the corresponding ideal computations as well as possible. This is solved by requiring accurate
arithmetic for the normal, i.e. scalar operations (+ , - , * , /) , and also for several operations involving

it

vectors and matrices, in particular the inner product £v,*w, of two vectors v and w (also occurring in

vector-matrix and matrix-matrix multiplications).

R
VR
MR

/R
IVR
IMR

C
VC
MC

IC
IVC
IMC

z>
Z>

Z>

=>
z>
z>

z>
=5
3

Z>

z>
z>

524

For these operations accurate rounding of the exact result to the nearest representable number (by the
mapping □) , and rounding downward (by V) and upward (by A) must be provided for the R and C
spaces, with rounding outward (by 0) for computations involving intervals.

This set of accurate operations was first available in the Pascal extension PascalSC [3] developed in
Karlsruhe. The present paper describes the embedding of accurate arithmetic in the modem program

ming language Ada [2].

2.2. USING ADA FOR IMPLEMENTING ACCURATE ARITHMETIC

For the embedding of accurate arithmetic Ada was considered very suitable because of its design cri

teria of abstraction, portability and readability, and because of the international standardisation activi

ties which have accompanied its introduction. The Ada language features for producing components
of large software libraries can conveniently be used for designing and implementing operators for
basic arithmetic satisfying requirements of general usefulness, flexibility, ease of use, and transporta

bility, while allowing efficient execution as much as possible.

With Ada there is no urgency to deviate from the language definition, since the necessary features are
readily available. Further, the validation procedure for Ada compilers and environments guarantees a
close (though not perfect) conformance of compilers to the language definition, which enables truly
portable programming. This makes Ada a suitable vehicle for implementing the embedding of accu

rate arithmetic.

2.3. THE USER INTERFACE

For the toplevel package of accurate arithmetic facilities, the DIAMOND project objective is to satis

fy the natural requirements of programmers of mathematical computations.

Such users want to obtain operators which enable them to program expressions that resemble very
much the original mathematical formulae, even for mathematical spaces of complex numbers or inter

vals, and for linear spaces thereof. Obviously, this practice is allowed in Ada through operator de

clarations and the overloading principle, although the introduction of new symbols for operators is not
allowed. The primary requirement to accommodate mathematicallyoriented users is therefore readily
satisfied.

However, these users may also want to control the rounding mode (i.e. choosing the rounding direc

tion) for the basic arithmetic operations on real values. Since some distinction between different
operations is necessary and Ada does not allow the introduction of new symbols for new operators,
functions (instead of operator declarations) are provided in particular for the floatingpoint and com

plex types.

Another requirement, which can be met easily, is the possibility to cope with a userdefined choice of
the floatingpoint type underlying all number spaces, viz. through the declaration

type REAL is digits N { range A .. B);

The Ada solution for this requirement serves the portability goal as well.

525

II is a natural requirement that data structure details will be hidden. This is applied to the data struc
tures needed for temporarily storing results of higher accuracy (for the user these are private types).
For the mathematical data types this is not required, but it was decided that the types for intervals and
complex intervals should also be private to prohibit the construction of illegal representations for
values of these types. The data structures for temporarily storing results of higher accuracy are actual
ly made limited private, to prohibit the use of the "=" operator which might give a misleading result.

The project result is a set of Ada packages with a clear separation between the facilities offered to the
user and the (exchangeable) bodies containing technical bits.

The user facilities are presented in a generic package, GENERIC_SCIENTIFIC_C0MPUTATI0N, which
has the following Ada skeleton:

generic

type FLOAT_TYPE is digits o ;

type C0MPLEX_TYPE is private;

— Several additional generic parameters

package GENERIC_SCr£NTIFIC_COMPUTATION is

package REAL .ARITHMETIC is

end REAL.ARITHMETIC;

package COMPLEX_ARITHMETIC is

end COMPLEX.ARITHMETIC;

package uNTERVAL.ARITHMETIC is

end INTERVAL_ARITHMETIC;

package COMPLEX_INTERVAL_ARJTHMETIC is

end COMPLEX_INTERVAL_ARrrHMETIC;

end GENERIC.SCIENTinC_COMPUTATION;

The subpackages relate to the 4 number spaces (see Table 1), and they contain the accurate operations
with the different rounding modes together with extra facilities for temporarily computing in higher
precision.

26

Particular attention has been paid to:

- general usefulness, like providing all necessary operations, but also the flexibility for using the fa
cilities, and portability,

- Readability: structure of the package, completeness of the definitions, and hiding of irrelevant de
tails,

- Requirements arising from the package implementation task, where aspects of efficiency and feasa-
bility influence the specification.

3. REQUIREMENTS OF THE PRIMITIVE ACCURATE OPERATIONS

The package GENERIc_scffiNTIFIc_COMPUTATION (G_s_c) gives a modular design for the user inter
face to the embedding of accurate arithmetic with four subpackages for real, complex, real interval and
complex interval arithmetic. It uses as an auxiliary the package GENERIC_ACCURATE_ARITHMETIC
(G_A_A) which defines the primitive accurate arithmetic types and operations, that is the declarations
of higher accuracy types and operations on such types; most aspects of the implementation of such
types can be isolated in the private part of G_A_A.

For example the type DOT.PRECISION used to represent a fixed-point accumulator is private; the user
is therefore not aware of the details of its representation, but must access the accumulator using the
visible operations which we provide.

The types and operations defined in G_A_A are used to implement the subpackage
GENERIc_sciENTinc.coMPUTATlON.REAL.ARITHMEnc; it is then possible to implement the other
subpackages for complex and interval arithmetic in terms of reals, or more directly (and efficiently)
using the operations of G_A_A itself.

The task of implementing the primitive accurate arithmetic operations in G_A_A is neither simple nor
straightforward. Our desire is to provide a portable implementation whilst not sacrificing efficiency.
These are sometimes conflicting aims.

Because G_A_A is written as a separate package, we cannot prohibit users accessing G_A_A directly.
Indeed the sophisticated user may wish to use G . A . A on its own in order to construct alternative forms
of G_s_c or to enhance its functionality in some areas. Provided G_A_A is sufficiently big
(functionality-wise) and small enough (storage-wise) it can be used as a stand-alone entity.

Both of the packages G.s_c and G_A_A are generic so that different precisions of arithmetic can be
provided. One obvious generic parameter is the user's type FLOAT_TYPE used to instantiate G_s_C
and passed further to G_A_A; or directly to G_A_A. Since there will be no need for simultaneous use of
G_S_C and G_A_A there is no danger of instantiating with different floating-point types.

Environmental parameters are provided in the Ada language through attributes. For each predefined
floating-point type FLOAT_TYPE the attributes

MACHINE .MANTISSA, MACHINE-RAD IX, MACHINE_EMAX, MACHTNE_EMIN
are sufficient to establish the framework for the accurate arithmetic:

527

- availability of higher precision floating-point types to perform double_precision arithmetic

- possible fixed-point types suitable for DOT_PRECISION (only one is guaranteed)

- characteristics of integer types (when (almost always) fixed point types are not suitable for the im
plementation)

and based on those:

- the length of the long accumulator

- conversion rules between a user's floating-point types and their internal representation (used by the
accurate operators).

Also available is the attribute MACHINE .ROUNDS to determine the suitability of real "+","-","*" and "/"
for their accurate counterparts ADD, SUBTRACT, MULTIPLY and DIVIDE.

We thus have a portable implementation of the primitive operations which adjusts automatically to the
different hardware environments.

4. SCALAR PRODUCT

4.1. LONG ACCUMULATOR

The long accumulator is the fundamental extended precision type (D0T_PRECISI0N) used in G_A_A.
We are free to choose the internal representation for the D0T_PRECISI0N type because it is declared as
private; details of its representation are not therefore available to users. Our choice is between three
forms of representation:

type DOT_PRECISION is — using fixed-point type
delta 10**(-2*(REAL ' EMAX+REAL ' DIGITS))
range -10**(2*(REAL 'EMAX+REAL 'DIGITS))

.. 10**(2*(REAL 'EMAX+REAL 'DIGITS)); Klatte [5]

type DOT.PRECISION is — using floating-point type
record LS: LONG.STORAGE;

START, FINISH : INTEGER ;
end record;
— where —
— dmin = 2 * ('machine_emin/'machine_mantissa-l)
— dmax = 2 * 'machine_emax/'machine_mantissa+l

type LONG.STORAGE is
array(DMIN..DMAX+GUARD_ELEMENTS) of real;

type DOT_PRECISION is — using integer type
record

28

START : INTEGER := ENVTRONMENT.ACCU.END ;
FINISH: INTEGER := ENVIRONMENT.ACCU_FIRST;
VALUE : INTEGER_VECTOR:=(others=>0);

end record;
— where for example —
INTEGER, VECTOR is array

(ENVTRONMENT.ACCU_FIRST..ENVIRONMENT.ACCU_END) of INTEGER;
In all cases the size of the type is determined by attributes, although in the last case (the integer
representation) the calculation needs to be done in an auxiliary package ENVIRONMENT to satisfy
language restrictions.

We believe the last form is likely to be most suitable for the largest number of machines, although the
other representations can be substituted in special cases without the user being aware of the chosen
representation.

The scalar product is the fundamental operation of the accurate arithmetic. It can be simply expressed
in terms of two subprograms: DOT_ADD to accumulate the product in extended precision and ROUNDS
to convert back to floating-point form.

function "*"(v,w : in VECTOR_TYPE)return FLOAT_TYPE is
c : DOT.PRECISION;
DOWN,UP,NEAR : FLOAT.TYPE;

begin
DOT_ADD(C, V, W);
ROUNDS (C, DOWN.UP.NEAR);
return NEAR;

end "*";

where VECTOR_TYPE is an array of FLOAT.TYPE (both are generic parameters of G_A_A).

This scalar product specification does not reveal to the user the existence of an intermediary
DOT_PRECISION accumulator. However, it is expected that the user will have (limited) access to this
maximal-accuracy type (mainly via the procedure DOT_ADD); and so he must be able to determine all
3 ROUNDingS after any attempt to change the contents of c.

We go a step deeper and provide (in G_A_A) the body of the procedure for the addition of a scalar pro
duct to an accumulator:

procedure DOT.ADD(C : in out DOT.PRECISION;
V,W : in VECTOR_TYPE) is

SHIFT : constant INTEGER := W ' FIRST-V 'FIRST;
begin

if (V ' LENGTH /= W ' LENGTH) then
raise INDEX.ERROR;

else
for I in v 'RANGE loop

ADD_PROD(C, V(I), W(SMFT+I));
end loop;

end if;
end DOT_ADD;

529

A possible way of implementing ADD_PROD when a satisfactory hardware implemented
DOUBLE.REAL is available is as follows:

procedure ADD_PROD(C : in out D0T_PRECISI0N;
S,T : in FLOAT_TYPE) is

begin
ADD(C, S * T)
— ! —double precision result of single precision arguments

end ADD.PROD;

In the absence of a hardware implemented DOUBLE_REAL, the conversion to and from the artificial in
termediate storage is too wasteful. Therefore, we prefer the following and more general implementa
tion:

procedure ADD_PROD(c : in out DOT.PRECISION;
S,T : in FLOAT_TYPE) is

S_INT,T_INT : INTERNAL.REAL;
begin

if s/=0.0 and T/=0.0 then
CONVERT(S, S.INT);
CONVERT(T, T.INT);
INTERNAL_ADD_PROD(C, S_INT, T_INT);

end if;
end ADD_PROD;

This simplification has (together with the use of integer rather then real arithmetic) greatly contributed
to the overall performance of the package.

INTERNAL_REAL is some private type, e.g. if a satisfactory floating-point DOUBLE_REAL is available,
then the following declaration may do:

type INTERNAL_REAL is new DOUBLE_REAL;

More likely if INTERNAL.REAL is to be portably and efficiently implemented in Ada, and because we
have chosen integer cells for the accumulator, then integers seem appropriate containers for the
mantissa also. Therefore, we would recommend the following:

type FNTERNAL.REAL is
record

EXP : INTEGER;
SGN : BOOLEAN;
MANTISA : LONG_VECTOR;

end record;

— where —
type LONG_VECTOR is array(l..ENVIRONMENT.LONG)of INTEGER;

although the separation of the sign is not strictly needed.

The name LONG has been used to indicate that some SHORT objects may be convenient in some cases
for increased efficiency.

530

4.2. ROUNDINGS ON DOT_PRECISION OBJECTS

Since large exponent ranges imply greater accumulator lengths, a pair of pointers (START, FINISH) to
the part of accumulators which is actually used has been provided. It saves us from initialising the
whole of accumulator and examining its total length in the search for relevant information.

Three directed roundings are provided - UP, DOWN, and to the NEARest. Taking into account that the
process to establish a particular rounding of ACCU.VALUE does not differ greatly from the other two
roundings, it is most efficient to do all three at the same time. Also, an interval (DOWN.UP) enclosing
the accumulator contents is often sought. Therefore it appears reasonable to declare ROUNDS as fol
lows:

procedure ROUNDS(c : in out DOT.PRECISION;
DOWN,
UP-
NEAR : out FLOAT_TYPE);

By choosing the mode of C to be in out we allow implementations which change the contents of
DOT.PRECISION objects but not the numerical value (e.g getting rid of leading and trailing zeros).

The actual implementation of ROUNDS is hindered by:
- the length of FLOAT.TYPE 'MACHINE.MANTISSA
- the length of accumulator
- the need to carefully avoid underflow
- the need to search (sometimes much further) than FLOAT_TYPE 'MANTISSA_LENGTH in

order to determine downwardly and upwardly directed roundings.

It is relatively the most expensive operation and the obvious candidate for assembler when efficiency
is critical; especially taking into account that later it will be used for scalar operations as well.

The above specification of the rounding process makes it very easy to implement 3 distinct and user
friendly functions in the user interface package G_s_c: ROUND.NEAR, ROUND.UP, ROUND.DOWN.

As an example we demonstrate the case of rounding downwards:

function ROUND_DOWN(C:DOT_PRECISION) return FLOAT_TYPE is
DOWN.UPJMEAR : FLOAT_TYPE;
C.COPY : DOT.PRECISION;

begin
COPY (C, C.COPY);
ROUNDS(C_COPY, DOWN,UP,NEAR);
return DOWN;

end ROUND.DOWN;

Because functions in Ada may only have in parameters, we must take an internal copy of the accumu
lator. To produce a copy of the in parameter C, we employ an (inlined) procedure COPY instead of as
signment *:=' (although its body may be implemented as assignment) to enable DOT.PRECISION to be
declared as a limited type. This is to allow an implementation of the accumulator in which the same
numerical value may have different representations (e.g. one of them has trailing zeros). In order to do
that predefined equality must be invalidated by means of a limited type declaration, for otherwise the
wrong result may be returned.

531

Whether re-defined "=" will be made available to end-users depends on the functional requirements of
G_S_C; but it must be visible lo implemenlors of interval arithmetic in order to correctly deliver (at
least) the body of interval scalar product; since it can happen that different extended-precision
numbers have the same floating-point rounding.

We provide it in more general form:

type COMPARISON is (LESS,EQUAL,GREATER);

— and then —

procedure COMPARE(C,Z : in out DOT.PRECISION;
RES : out COMPARISON);

so that comparisons on floating-point numbers may be (accurately) redefined.

4.3. GENERICENVIRONMENTENQUIRIES

The calculation of constants to define the accurate environment (e.g. the size of the accumulator) is
straightforward but requires some complicated expressions to determine their values. Such expressions
are not permitted in the declarative part of an Ada package; we therefore calculate such constants in a
separate auxiliary package GENERIC_ENVTRONMENT_ENQUIRIES.

For efficiency we also precalculate some useful expressions derived from such constants (for example,
pointers to the used part of an accumulator for each possible exponent value). This once and for all
precalculation of global constants contributes to efficiency; although at the expense of large arrays
when the exponent range is huge.

5. EFFICIENCY CONSIDERATIONS

Real scalar operations could all be implemented in terms of the scalar product as follows:

s * T = (s) * (T) —vectors of length 1

S+T = (s , T) * (l , l) —vectors of length 2

s - T = (S , T) * (l , - l) — vectors of length 2

Apart from division (which is usually the most tricky part anyway), it seems that (at least in principle),
there are no problems with implementing accurate scalar operations.

There is an immediate attraction to the above approach. The efficiency of the whole package depends
on a single subprogram, which could be written in assembler or provided in hardware if Ada code
should prove inadequate for certain applications. The cut between Ada and hardware/assembler has
never been so simple!

However, in order to provide an efficient but portable product, we will slightly deviate from this sim
ple concept.

The obvious move would be to do a single conversion of 1.0 (and -1.0) to the INTERNAL.REAL
representation, once and for all.

Secondly, if the software INTERNAL.REAL is very compatible with the accumulator structure (and it
should be) to allow an efficient INTERNAL.ADD_PROD; then it may happen that it is not too friendly

532

with respect to addition/subtraction. Simply speaking, multiplication requires mat tne mantissa of a
factor is more thinly spread through several integers so that the partial products do not overflow. That
is not the case with addition, and we may very well use an extra auxiliary type:

type DENSELY-PACKED is
record

EXP : INTEGER;
SGN : BOOLEAN;
MANTISA : SHORT.VECTOR;

end record;

— where —
type SHORT_VECTOR is array(l..ENVTRONMENT.SHORT)

of INTEGER;

Not only is the declaration almost identical to that of INTERNAL.REAL, but so is the conversion
CONVERT.SHORT to this SHORTer internal representation of floating-point numbers.

Thirdly, in order to calculate:

r(s & T) — & stands for any arithmetic operation

for the rounding r and scalars S,T it is sufficient to calculate an approximation s_T such that:

r (s&T) = r (S .T)

Therefore, when adding (subtracting) a relatively small T to a larger S we may actually add only the
relevant part of T'MANTISSA; or just mark that there is some positive/negative tail behind
s ' MANTISSA.

5.1. INTERNAL TYPES

A close look at complex multiplication or division will reveal that there are floating-point objects
which are converted to INTERNAL_REAL more then once:

function "/" (s, T : C0MPLEX_TYPE) return COMPLEX.TYPE is
RE.PART, IM_PART : DOUBLE_REAL;
R2 : DOUBLE_REAL;

begin
R2:= T.RE * T.RE + T.IM * T.IM;
RE.PART := (S.RE * T.RE + S.IM * T.IM) / R2;
IM_PART := (S.IM * T.RE - S.RE * T.IM) / R2;
return (ROUND.NEAR (RE.PART), ROUND.NEAR (IM.PART));

end "/";
In this pseudo-Ada notation for the division algorithm both arguments T.RE, T.IM will be converted 4
times instead of just once, while each of S.RE, S.IM will be handled twice!
An even more interesting situation occurs when doing matrix*matrix and matrix*vector multiplica
tion. Consider the case of a software-implemented scalar product used naively to implement a matrix
multiplication A*B: vector components are bound to be converted to some internal representation.
Alas! Each component of matrix A will be converted B 'LENGTH(2) times instead of once. Each com
ponent of matrix B will be converted A 'LENGTH(l) times instead of once. The possible saving in the

533

case Of A'LENGTH(1)=A'LENGTH(2)= B'LENGTH(2)=100 is 2*100**2*(100-1) = 1 980 000
conversions!

Since conversion is certainly not the only operation, we conservatively estimate the increase in
efficiency is up to 40% for any sizable array'LENGTH. In practice, it can be even better.

The above idea for minimising conversions requires only a storage-conscious algorithm that does not
convert both matrices at the same time. For example to multiply two matrices A and B, we can convert
B column by column and store in internal workspace; the matrix A can be converted a row at a time
when needed.

More modestly, one could convert only the rows of A, one at a time, but not the columns of B.

Even in the presence of above facilities, situations like interval defect iteration:

fori in 1..N loop
X := Z + B*(E*X);

end loop;
where E is a constant INTERVAL, X and Z are INTERVAL.VECTORS and B is a constant
INTERVAL_MATRIX, deserve some attention. Otherwise, it may happen that B (and E) will be converted
to their internal representation N limes.

We can explicitly introduce internal types which define internal representations for vectors and ma
trices:

type INTERNAL_VECTOR is
array(INTEGER range o) o f INTERNAL.REAL;

INTERNAL_MATRIX is
array(INTEGER range o , INTEGER range o) o f INTERNAL_REAL;

and can provide operations for such internal vector and matrix types. With such internal types it is
then possible to write higher level subprograms using the internal types explicitly within their bodies,
thereby minimising the ni~nber of conversions to internal form.

For example in the solution of a linear system of equations Ax = b, the access to operations on the
internal representation reduces the number of conversions from N*(N+l)*(8*N-7)/12+ N**2 to
N**2 + 2*N - 1, where N is the order of the system.

6. CONCLUSION

We have demonstrated that high precision accurate arithmetic as designed by Kulisch & Miranker can
be implemented in a portable yet efficient manner using the Ada language.

Usable, readable modules are produced that provide the operations belonging to this design related to
the different number spaces for which the accurate arithmetic is valid. This allows the use of these fa
cilities for large scientific applications including accuracy-critical calculations. In this task the Ada
language appears to be a useful tool.

Care has been taken that the designed facilities are compatible with other available general Ada
software, so users can take benefit of several Ada utilities without loss of efficiency.

The project results accommodate both regular users who require the safe, modular and user-friendly
environment provided by the package GENERIc_sciENTIFIc_coMPin'ATION, and expert users who

534

require the flexibility to extend and tailor (to their specialist needs) the efficient primitive operations
(whose implementation is private) provided by the package GENERIC_ACCURATE_ARITHMETIC.

Finally, the implementation can be tailored to the particular hardware environment in an automatic
way without the user needing to be aware of the private details of the implementation. Indeed by en
suring the user cannot use low level details of the implementation, we can use such features in an
efficient and sophisticated way in the safe knowledge that such features cannot be abused by a naive
user. No matter what implementation we choose at the lower level (closest to the machine level), the
user specification remains the same.

REFERENCES

[1] ANSI/IEEE Std 754-1985. IEEE Standard for Binary Floating-Point Arithmetic. July 1985.

[2] ANSI/MIL-STD 1815 A. Reference manual for the Ada programming language, January 1983.

[3] Bohlender, G., Rail, L.B., Ullrich, C , and Wolff von Gudenberg, J. Pascal-SC, Bibliogra-
phisches Institut, Mannheim, 1986.

[4] DIAMOND Project Development and Integration of Accurate Mathematical Operations in Nu
merical Data processing, ESPRIT Project 1072.

[5] Klatte, R., Ullrich, C.P., and Wolff von Gudenberg, J. Arithmetic specification for scientific
computation in Ada, IEEE Transactions on Computers, Vol. c-34.11, Nov 1985,996-1005.

[6] Kuliscb, U.W. and Miranker, W.L. Computer arithmetic in theory and practice. Academic
Press, 1981.

[7] Kulisch, U.W. and Miranker, W.L. (eds.) A new approach to scientific computation. Proceed
ings of the "IBM Symposium" in August 1982, Academic Press, 1983.

[8] Kulisch, U.W. and Miranker, W.L. (eds.) The arithmetic of the digital computer: a new ap
proach, SIAM Review, Vol.28.1, March 1986.

535

Project No. 1072

A PROCEDURE FOR THE EVALUATION OF ARITHMETIC EXPRESSIONS WITH
GUARANTEED HIGH ACCURACY*

Authors:

H.C. Fischer
Universitat Karlsruhe, Institut fiir Angewandte Mathematik
Kaisers tra/3e 12
7500 Karlsruhe, W. Germany

R. Haggenmuller
Siemens AG Hiinchen, Geschaftsbereich Datentechnik
Otto-Hahn-Ring 6
8000 MUnchen 83. W. Germany

G. Schumacher
Universitat Karlsruhe, Institut fiir Angewandte Mathematik
Kaisers tra/3e 12
7500 Karlsruhe, W. Germany

The mathematical theory of computer arithmetic developed by
U. Kulisch and W. Miranker provides a sound base for solving
many numerical problems with guaranteed high accuracy.
In this paper it is used to develop a procedure for the evaluation
of arithmetic expressions. The expressions are transformed into
systems of nonlinear equations which are solved by a residue
correction procedure. During the solution process the quality of
the computed result is controlled with help of enclosing intervals.

0. Introduction

In the FORTRAN-libraries ARITHMOS (Siemens AG) [10] and ACRITH (IBM) [9]
routines are contained providing guaranteed bounds for the value of an
arithmetic expression defined by + , - , - , / and powers with constant integer
exponents.

Within the framework of the ESPRIT-project DIAMOND [4] the authors developed a
formula evaluation program in the PASCAL extension PASCAL-SC [2], which has a
functionality enlarged by the following points:

1. variable integer exponents;
2. evaluation of expressions containing standard functions;
3. treatment of tolerance-afflicted data, i.e.

input of interval values for the variables.

Before going into technical details, we briefly like to outline what kind of
problems we are confronted with and which instruments we use to solve them.

* This paper is part of work in the ESPRIT-project DIAMOND, project no. 1072.

536

The floating-point arithmetic. usually used in scientific computation,
confronts us with an apparently paradox situation. On the one hand, most of
the computers available on the market today do floating-point basic operations
with high accuracy, on the other hand, however, results from scientific
computations may differ seriously from the actual value. Two examples may
illustrate this:

30 30
The expression x"" + 777 - x , evaluated at the place x = 10, has the
value 777. Nevertheless almost all floating-point-computers give as
result the value 0.

4 4 2
The evaluation of the expression 9x - y + 2y for the values x = 10864
and y = 18817 gives, on a computer with a 13-digit-decimal arithmetic,
the value 58978. But the true value is 1 [8].

The appearing effects (rounding errors and their propagation) arise at the
transition of the real numbers IR (in which the formula is defined) to their
subset S, the machine numbers. To get the situation under control, we use a
computer arithmetic, which was developed by a group of mathematicians under
the direction of Kulisch und Miranker [6].

This theory is essentially based on the so-called 15 basic operations:

El

A

V

H

A

V

H

A

V

0

A

V

m

W

These are the four basic operations +, -, •, / and the scalar product *, each
with three different roundings □ , A , V (near, up, down). It is

a O b := 0(a o b),
V a.b £ S, V o € {+. -,-./}. V O e {D.A.V},

i.e. the result on the machine is defined as the rounded value of the exact
result. This seemingly trivial claim has been achieved so far only on few
computers (in hardware). The new IEEE-standard for floating-point operations
at least guarantees the bordered part of the basic operations. The scalar
product operations, however, are absolutely necessary for matrix-vector
operations, as well as the accuracy improvement methods for numeric procedures
still dealt with in the following. Therefore, in addition, for two vectors a
and b over S it is:

a ® b := 0(a * b) , V O £ {□. A, V} . (1)
The described computer arithmetic on its own, however, is not sufficient to
get fully rid of the above-mentioned difficulties. It makes it possible to do
interval computation [1] and offers the possibility to compute bounds for the
solution, but if the diameter of the interval for the solution is too large,
the result may be worthless. The described arithmetic, however, can be applied
in such a way that even complicated problems can be solved with high accuracy.
We will prove this in the case of the formula evaluation program.

537

1. The transition from an arithmetic expression to a system of nonlinear
equations

The transition from an arithmetic expression to a system of nonlinear
equations shall be demonstrated by the following example.
Let f be the expression

f = (a + b) n • (c - d) / e .

Usually the following intermediate results occur with the evaluation of this
expression:

= a + b
n

= z 1
c - d

= z. / e . 4

with f = z_. Hence the computation of f corresponds with the solution of the
system of nonlinear equations

z - a - b = 0

= 0
= 0
= 0
= 0.

The general case is treated analogously: The expression is transformed into
the postfix form and for every operator an intermediate result is introduced.

2. Solving special systems of equations

Now we have to deal with the solution of systems of equations of the following
kind:

*1 (Z1>
g 2 (z r z2)

= 0
= 0

(2)
g n (z r . . . z j = 0

where g : D1 x • • • x D -* R. D C K. i=l,
write D:= D1 D The quantities z

j=l,..,i. Shortening, we also
correspond in our previous 1 The quantities z i

presentation with the intermediate results appearing within the evaluation of
a formula. The whole system is to be solved by successive forward-solving
which exactly amounts the "normal" evaluation of a formula. Furthermore in our
context the partial derivatives with respect to z. exist for all g . If now

538

Z......Z are computed approximations (possibly differing extremely from the
actual solution z-,..,z). then in the following a possibility is described
how to get inclusions for the defects

Az : = z - z , i=l.... ,n (3)

We use the following abbreviating notation:
For x.y e D . gfc from (2). i £ {1 k} and f € x. U y,
we define

^(gk.x.y) ^ g ^ x._r yt yk)
(4)

Si(gk.x.y.C) == gf- gk(xr .. .x^.C.y^j yk)

Instead of r1(g,,x,y) we write briefly r(g,,y). If ^ — g , is independent of
2^. we replace sk(gk,x,y.C) by sk(gk.x).
We now want to expand the k-th equation of (2) according to the mean value

~ ~ ~ j theorem at point z = (z.. , .. . z) ; with (3) and (4) we get in a first step

g^Zj....^) = rk(gk.z.z) + sk(gk,z.z.fk).Azk

and finally after k steps

gk(zl 2k> = r(gk'z) + .fj Bi^ — — y -j z.z.f .)*Az..

Since z.,..,z. is the exact solution of (2), the left side of this expressic
disappears. For Az, we get the formula

k-1
2
j=l

provided that

Azk = (_r(sk-z) " ^s.{sk.2.,2.l[.)'Az.) / sk(gk.z.z.Ck) (5)

S
k(gk-Z-Z-Ck) * 0.

For k = 1 (5) looks like this:

Azj = -r(grz) / s1(g1.z.z.f1) (6)

If Sjfg^z.z, fj) = -TT— g,(f.) is independent of Zj, then (6) is an appropriate
formula for the computation of an inclusion [Az..] of Az, .

By means of induction it is easy to show that with inclusions [Az,],..,[Az, ,]
for Az1>..,Azk_1 the inclusion [Az^l of AZĵ can be computed with formula (5).

539

s. (g, ,z,z,f,) has to be independent of z, (i.e. g, is at most linear in z k).
For each f. the whole interval z. U z. is substituted; in doing so we take
advantage of the already existing information

z, € z, + [Az.] , i=l k-1.
i i L iJ

We thus obtain the inclusion formula

A z k € ^ : = [~T^ ~

for that

k-1 „. „ „ -i
2 Sj(gk. z+[Az]. z. Z j U (Z J + C A Z J])) - ^]] / sk(gk. z+[Az]) (7)

The quality of an inclusion computed according to this formula heavily depends
on the accurate calculation of the residue term r(g, ,z). The necessary
accuracy can be easily achieved with help of the scalar product.
The assumption that 5 — g, does not depend on z, is always fullfilled fc
kind of equations which occur with appropriate transformation of a formula
into a system of equations.
In all concrete cases occurring within the evaluation of arithmetic
expressions, formula (7) is in comparison to the general case of a much easier
shape. Since the formulae can be easily derived form (7) we only give one
example:
Addition

g k(z 1...^.z k)^z k^ (z1 + Zj) . i < j <k
[A z k] = _ z k + z i + z j + [A z i] + [A z j]

3. An algorithm for the evaluation of an arithmetic expression

As indicated in chapter 2, the idea of the computation of bounds for the value
of a formula is essentially based on two steps:
(a) Computation of an approximation for all intermediate results z,

(k=l....n);
(b) Computation of inclusions [Az,] for the defects Az, (k=l,..,n).

If the quality of the result z + [Az] is not sufficient the midpoint
m([Az,]) of [Az,] (k=l...,n) will be used to improve the approximation z, to

z k+m([Az k]). (8)

Then one starts again with (b).
The improvement of the approximation, however, is not done by adding z, and

540
m([Az,]) expllcltely, but by storing z, and m([Az,]) in a correction vector.

After the first step we set: z£ -=z, , z£ .=m([Az,]) and [Az£]
:
=[Az,].

In the r-th correction step the approximation z, now looks like

v (s)

V * v •
s=0

Of course this has to be taken into account in the formula of chapter 2. The
formula for the computation of the r-th correction, for example as far as the
multiplication of two intermediate results is concerned, can be read like
this:

ti
r)
v o

r-1 , * r-1 r-1 , ,
■ 2 z[s

>+ 2 2 z s>z
s=0 s=0 t=0

r-1
5

t}
] <e> o(

1
i 'zi

8)
)^[^

(r)
] ^

s=0

[o(2 z ^) <S> [Az.(r)]l<J>[Az.(r)].

By O r (reJR) we denote the smallest interval with bounds from S, which
contains r, by ^ and ^ the interval addition and multiplication.
Obviously the residue term may be interpreted as a scalar product, i.e. as a
sum of products. Therefore we can use the scalar product (1). This is also
possible in the other cases.
For standard functions and interval parameters a slightly different approach
is necessary. The interested reader is refered to an article in SIEMENS
Reports on Research and Development [5]. There the treatment of interval input
by a subdivision method [7] is described in some detail.

The algorithm looks like this:

1. Compute approximations z£ ' of all
results [k=l....n);

2. Iteration
r := 0;
repeat
r := r+1;
if r > 1 then z£

r_1
):=m([z£

r-1
)

frl
Compute inclusions [z> '] (k=l..

to the

[y
(r)

]

until

formula from chapter 2;
r-1

= 0 (2 z
(J)

) <$> [z (r)
]:

j=o
 n n

(d([zn
r)
]) < s 1 [y(r)

]

intermediate

]) (k=l....n);

.,n) according

{formula
value}
1)

{d(A) denotes the diameter of interval A}
or ([y(

r
>] = [yC"-1)])

or (underflow and r £ 10) :

Algorithm 1

541

The first termination criterion applies to the case that the desired accuracy
has been achieved. Proceeding on the assumption that 6=B , with B being the
basis for the number presentation and t the mantissa of the machine, a result
is expected whose upper and lower bounds differ only in the last digit [3].
The second criterion is used for small-tolerances-afflicted input data. It may
occur that the diameters of these intervals do no longer render possible a
further improvement of the result.
At last, the third criterion is necessary if during computation an underflow
takes place. This may indicate that an intermediate result needs more digits
than those given by the actual floating-point numbers. If this is the case the
termination should not take place until 10 corrections have been tried. 10 is
a useful value for a domain of exponents reaching from -99 to +99.

With a view to briefing, we do not go into further details such as overflow
handling or avoiding divisions by zero. It may be enough, to mention here that
these exceptions are dealt with by recursive application of the formula
evaluation procedure to the critical argument.

4. Concluding Remarks

The requirement of getting models which approximate reality in a better way
has as consequence the tying up of complicated formulae. Symbolic manipulation
even makes it possible to create formulae which cannot be mastered manually.
But how is it possible to handle such formulae if we have no reliable
procedures at hand which relieve the scientist or engineer from control of the
computed results? There is no doubt that the introduced formula evaluation
program is such a procedure. Unlike other instruments with similar
characteristics - e.g. symbolic manipulation - our introduced procedure tries
to obtain the desired information by means of a correction technique on a
floating-point basis with an expenditure that is as minimal as possible.
Besides, the applied technique can be enlarged naturally to expressions of
another kind, e.g. matrix-vector expressions.

An operational area for a formula evaluation program that may not be neglected
is of course the solution of systems of nonlinear equations. Just near
solutions (zeros) it is unavoidable that certain cancellation effects occur.
Problems similar to those mentioned at the beginning of this paper in the
trivial examples are inevitable and cannot be understood as easily as it could
be done there.

References

[1] Alefeld, G. und Herzberger, J.: Einfiihrung in die Intervallrechnung,
Bibliographisches Institut, Mannheim, 1970

[2] Bohlender, G. , Rail. L.B., Ullrich. Ch. und Wolff von Gudenberg, J.:
PASCAL-SC, Bibliographisches Institut, Mannheim. 1986

[3] Bb'hm, H. : Berechnung von Polynomnullstellen und Auswertung arithmetischer
Ausdriicke mit garantierter maximaler Genauigkeit, Dissertation,
Universitat Karlsruhe, 1983

[4] Fischer, H.C., Haggenmuller. R., Schumacher, G.: Evaluation of Arithmetic
Expressions. DIAMOND. Deliverable D2a-1, Doc. No.: 03/2a-l/l/K02.f

542

[5] Fischer, H.C., Haggenmüller, R., Schumacher, G.: Evaluation of Arithmetic
Expressions with Guaranteed High Accuracy, to appear in Siemens
Forschungs- und Entwicklungsberichte, September 1987

[6] Kulisch, U. und Miranker, W.L.: Computer arithmetic in theory and
practice. Academic Press, New York, 1981

[7] Ratschek, H. und Rokne, J.: Computer methods for the range of functions,
Ellis Horwood. Chichester, 1984

[8] Rump, S.M.: How reliable are results of computers, Jahrbuch Uberblicke
Mathematik 1983, Bibliographisches Institut, Mannheim, pp. 163-168

[9] ACRITH: IBM High-Accuracy Arithmetic Subroutine Library: Program
Description and User's Guide, 1986

[10] ARITHMOS (BS 2000): Benutzerhandbuch, SIEMENS Softwareprodukt VI.OA,
1986

543

Project No. 410

ESTELLE AND LOTOS SOFTWARE ENVIRONMENTS

FOR THE DESIGN OF OPEN DISTRD3UTED SYSTEMS

Michel Diaz*, Chris Vissers**, Stanisiaw Budkowski'"

' LAAS du CNRS " University of TWENTE " * BULL - DSAS
7, avenue du Colonel Roche Dept. Informatics 68, route de Versailles
31077 TOULOUSE CEDEX 7500 AE ENSCHEDE 78430 LOUVECIENNES
France The Netherlands France

ABSTRACT : The objectives of the ESPRIT-SEDOS ST 410
project are to assess, define and develop formal techniques and
related tools for the design of hierarchies of software in complex
distributed systems. The selected approach is based on the
development of two formal techniques, ESTELLE and LOTOS,
which are being developed within ISO, because of the resulting
impacts and interests. Shortly after the ESPRIT Technical Week
of 1987 the SEDOS project will come to an end. This paper
describes the main results of the project in the light of its
original objectives.

I. INTRODUCTION

The implementation of complex computer and local networks implies to
design sophisticated communicating software. Defining and realizing the
needed protocols proves to be quite difficult because the designer is, in the
general case, faced to a rather sophisticated hierarchy of software layers and
it follows that using formal description techniques provides a good and strong
support for managing the corresponding complexity.

Formal Description Techniques have also been recognized of importance and
adopted by the OSI environment as being indispensable for unambiguous,
concise, and clear specification of the generally complex functions defined in
services and protocols. Furthermore, Formal Description Techniques provide
the basis for analysing specifications with respect to their correctness,
completeness and consistency, and for checking the conformance of
implementations with respect to specifications [27].

A short description of the SEDOS Project (Software Environment for the
Design of Open distributed Systems) will be given first, before describing its
main results.

H. OVERVIEW OF SEDOS

The SEDOS Project has been dedicated to the support of the Formal
Description Techniques (FDTs) ESTELLE and LOTOS that are developed
within ISO for the description of OSI protocols and services.

OSI standards for protocols and services are characterized by two major
factors: their substantial functional complexity, and the requirement that they

544

have to be specified independently of any implementation constraints (in
order to allow the freedom of all possible implementations). These
characteristics impose unprecedented requirements to the definition of FDTs
with respect to power of expression and level of abstraction.

SEDOS aimed to assess, define, and partially develop the ESTELLE and
LOTOS formal techniques and related software support tools for the design of
services and protocols in distributed architectures. The architectures are
supposed to be in conformance with the OSI layering principle, as this is
recognized as the only way to successfully realise complex distributed
systems.
The global objectives of the project were :
- to advance the definition of the two ISO FDTs, ESTELLE and LOTOS, to a

level where the above stated requirements can be guaranteed; this includes
contributions and participations to ISO and national member bodies;

- to demonstrate their adequateness by providing complete formal
descriptions of real and complex OSI protocols and services, and

- to start with the development of software tools that aim at the support of
the protocol design cycle from specification to implementation.

a) Modelling
Many description models have been developed, more or less formal and close
to protocol reality, in particular based on: extended state machines [6] and
Petri nets [13-18], dedicated languages [3-19], ISO Formal Description
Techniques TC97 SC21 WG1 FDT: ESTELLE [20], LOTOS [21]. ESTELLE is
based on extended state machines communicating through FIFOs and LOTOS
is based on temporal ordering of events.
In SEDOS, ESTELLE and LOTOS have been selected because of their
interests: their main specificities are given in [15] and their formal syntax and
semantics are described in ISO DIS 9074 [20] and DIS 8807 [21].

b) Tools
It appears that formal description techniques are of the utmost importance
when dealing with complex systems; for design efficiency, it appears quite
necessary to derive from FDTs support tools.
These tools are meant to help the designer efficiently in:
- formally expressing the specification of protocols and services in

distributed architectures,
- verifying services and protocols by formal methods,
- implementing specifications by means of an FDT simulator and compiler,
- deriving preliminary test scenarios from specifications.

c) SEDOS
Such a set of techniques and tools has been investigated in SEDOS through
the cooperation of eleven organizations of six countries (LAAS du CNRS,
University of TWENTE, ICL, BULL, ADI, University of CATANIA, Politecnico of
MILANO, INRIA, HMI, Politecnico of MADRID, Technical University of
BERLIN). Other projects are being developed, but their scopes are much
narrow than SEDOS one. Started in November 1984, for 3 years, the general
description of the SEDOS objectives, interests and overall organization
appears in [14].

c) General comments
At the end of the Project, it can be observed that the global objectives will be
achieved:

545

i) ESTELLE and LOTOS are now in the stage of Draft International
Standards. International Standards are expected around the middle of
1988. Without hesitation it can be stated that the contribution of SEDOS
in this development has been paramount.

ii) The progression of ESTELLE and LOTOS has been accompanied by
extensive trial specifications of OSI protocols and services, in particular
for the standards of the Transport and Session layers.

iii) A set of prototype tools have been developed for verification and
simulation. The simulators for ESTELLE and LOTOS will be
demonstrated during the ESPRIT week.

It may be emphasized that the trial specifications served several purposes of
which two are worth to be mentioned here:
First, the expressive power and abstraction level of an FDT can only be
adequately assessed on basis of real world experience, i.e. experience with
the complete description of complex OSI standards. This work indeed has
led to significant improvements to the definition of the FDTs as will be
explained in the separate sections about ESTELLE and LOTOS.
Second, it has been demonstrated to the target user community, which
generally is unfamiliar with FDTs and not per definition in favour of its
application, what effects can be expected from the application of FDTs.

In this respect it can be observed that within the ISO Member Bodies there is
not yet enough knowledge and expertise to review a formal description of a
standard and confirm that such a description faithfully reflects the standard.
For that reason ISO proposes a progressive introduction of the application of
FDT to their standards in three phases. In the first phase the natural language
description of the standard will prevail as the authoritative description of the
standard and the formal description will be published separately as ISO
Technical Report type 2. In the second phase the formal description will be
attached to the standard as a non binding annex. Only in the third phase,
when enough knowledge and expertise is available in the Member Bodies the
formal description can replace the natural language description as the
authoritative description. Meanwhile ISO will work on the development of
educational material in order to spread the knoweldge and experience with
FDTs in the Member Bodies.

Whereas the slow penetration of FDTs into the OSI area may seem rather
discouraging, it also gives a clear picture of the advanced position of SEDOS
and Europe in the development and application of FDTs.

The development of software tools for the support of the protocol design
cycle proved to be a difficult but challenging effort. The fact that the
definition of the FDTs were also under development while the tools were
developed did not make this job particularly easier.

For each of the FDTs a set of prototype tools will become available but the
selected approaches in both techniques differ in major respects due to the
different models underlying these two FDTs. The ESTELLE technique is less
abstract in nature and the tools naturally aim more directly at the
implementation phase. The LOTOS technique is more abstract in nature and
the first set of tools naturally aim at the architectural specification phase. This
difference and its consequences will appear in what follows.

The two following sections present the main results which have been
achieved for ESTELLE and LOTOS and gives a particular attention to
specifications and tools.

546

HI. ESTELLE

ESTELLE is one of the description techniques which all are to serve as means
to remove ambiguities from ISO protocol standards in which a combination of
a natural language, state tables, etc. has been traditionally used. But an
unambiguous formal specification still may be far from any implementation.
There is a vital need for specifications of distributed systems in general, and
communication protocols in particular which, being unambiguous and
formalized, would at the same time indicate how implementations may be
derived from them. We are convinced that this is precisely where the
principal field of application for ESTELLE is situated. The semantics for
ESTELLE have been formally defined, justifying the claim that ESTELLE is a
Formal Description Technique.

ESTELLE has benefited from experiments in using previous description
techniques and in with CCITT which defined SDL (Specification and
Description Language) with which ESTELLE has some notions in common.

HI. 1. ESTELLE definition and principal features

A distributed system specified in ESTELLE is viewed as a collection of
communicating components called in this paper tasks. Each task has a
number of input/output access points called interaction points. A task will be
represented graphically as an rectangle with points on its boundary.

The internal behavior of a task is described in terms of a nondeterministic
communicating state automaton (a transition system) whose transition actions
are given in the form of Pascal statements.

The tasks may be nested. This hierarchical (tree) structure may be depicted
as in (Figure l.a.) or as in (Figure l.b.). The parent/children relationship is
represented by edges or nested boxes. The root of the tree (the enclosing
box) is the main task representing the specified system.

Besides the hierarchical task structure a communication structure exists
within a specified system. The elements of this structure can be represented
(Figure 2) by line segments which bind tasks' interaction points.

Two communication mechanisms are used in ESTELLE in order to enable
cooperation between tasks:
- message exchange,
- restricted way of sharing variables.

The tasks may exchange messages, called interactions. A task can send an
interaction to another task through a previously established communication
link between two interaction points of the tasks. An interaction received by a
task at its interaction point is appended to an unbounded FIFO queue
associated to this interaction point.

Some variables can be shared between a task and its parent task. These
variables have to be declared as exported by the children task. This is the only
way variables may be shared. The simultaneous access to these variables is
excluded because the execution of the parent's actions has always priority (so
called parent/chrildren priority principle of ESTELLE).

Two kinds of parallelism between tasks can be expressed in ESTELLE:
- asynchronous parallelism,
- synchronous parallelism.

547

A
B

D

E

F

C
G

H

FIGURE 1

b)

B
- ■ 4

i

1

.3
D

<

E

I

'5

F
 C

<

' 8
|

^

►L

2

c
G

,9
.11

W

15
•

12

14
16

— •

H

— i
13
10

FIGURE 2

548

The asynchronous parallelism is authorized only between subsystems, or more
precisely, between actions of different tasks belonging to the different
subsystems. The synchronous parallelism is authorized only within a
subsystem, or more precisely, between actions of different tasks belonging to
the same subsystem.

Intuitively speaking, each subsystem runs by its own "computation steps". A
computation step begins by a selection of one or a set of transitions (actions)
among those "ready-to-fire", or "offered-to-fire" by the subsystem's tasks (at
most one transition per task). Then these transitions are executed (in
parallel) and, when all of them completed, the next computation step begins.
That way the relative speed of tasks within a subsystem may be, in general,
controlled (synchronized). That is why it is said that the parallelism within a
subsystem has a synchronous character.

The subsystems, although they may exchange messages, run asynchronously
in that their computation steps are completely independent from each other.
The relative speed of evolution of subsystems are not at all controlled
(synchronized).

In order to describe the behavior of the complete system specified in
ESTELLE, the operational style (operational semantics) has been chosen.

The operational ESTELLE semantics considerably aids in specifying
associated tools such as a simulator, a debugger and a compiler. It also
reenforce a belief of the mutual compatibility of these tools, even If they are
designed by different teams.

The global behavior of a system specified in ESTELLE is defined by the set of
all possible sequences of, so called, "global situations" generated from the
initial situation. Two consecutive global situations correspond to the
execution of a transition, i.e., transitions are consider atomic in that,
conceptually, one cannot observe intermediate results of their execution.

The ESTELLE semantics describe the way these sequences are generated,
i.e., the way the system's transitions (transitions of its tasks) may be
interleaved to properly model the synchronous parallelism within subsystems
combined with the asynchronous parallelism between them.

The notion of time does not appear explicitly in ESTELLE. This is a
consequence of the retained hypothesis that execution times of actions is not
known. This knowledge is considered implementation dependent. However,
to interpret properly "delays" (i.e., dynamic values assigned to some
transitions which indicate a number of time units execution of these
transitions must be delayed) a independent time process is assumed to exist.
The computation model of ESTELLE outlined above is dependent on this time
process only in that a relationship between progress of time and computation
is defined and the "delay-timers" are observed in order to decide whether a
transition can or can not be fired.

The formulated constraints specify a class of acceptable time processes. In
each implementation or for simulation purpose any element of this class may
be chosen.

m.2. ESTELLE specifications

Several ESTELLE descriptions of OSI protocols and services have been
produced within the SEDOS Project. The following descriptions have a good

549

level of maturity as they reached a quite stable status and were parsed by the
ESTELLE compiler developed within SEDOS:
- description of the ISO Network service;
- description of the ISO Transport service;
- description of classes 0 and 2 of the ISO Transport protocol; an ESTELLE

description of all the classes of the Transport protocol is being produced
within ISO;

- description of the ISO Session service; contrary to the descriptions of the
Network and Transport services which describe the end-to-end service
behavior, this description expresses only the possible Session service
primitive sequence at some particular Session Service Access Point;

- description of the ISO Session protocol; this description is complete as it
supports all the fonctional units defined in the Session International
Standard; the symetric synchronization mechanism, which currently has
the draft addendum status, is not supported.

Among the other ESTELLE descriptions being currently produced or revised
within SEDOS which did not yet reach the same level of maturity as the
previous ones, one may underline:
- description of the ISO Presentation service; the overall architecture of the

description as well as the specification of the connection establishment
phase have been completed;

- description of the ISO Presentation protocol; the description is complete,
but not yet parsed by the ESTELLE compiler;

- description of the FTAM protocol; the INITIATOR description has been
completed and parsed, whereas the RESPONDER description is being
currently written; this description follows the SPAG Al 11 profile
recommendations and assumes a CASE/PRESENTATION lower layer
service.

m.3. Tools

A considerable effort is presently being made in developing tools for
ESTELLE. In fact, such tools are developed within two European projects (in
the ESPRIT program), namely SEDOS and the SEDOS-ESTELLE-
DEMONSTRATOR (July 1986 - June 1989). Prototype tools such as a syntax
driven EDITOR, a COMPILER, a SIMULATOR a VERIFIER and a DEBUGGER
are the outcome of the SEDOS project; they are available either on SPS7 (a
BULL microcomputer) or on SUN workstation; then, these tools serve as basis
for an integrated and industrialized ESTELLE Work Station within the
ESPRIT SEDOS-ESTELLE-DEMONSTRATOR project. Other bu t less
important efforts in developing ESTELLE tools are also conducted in USA
(National Bureau of Standards, Protocol Development Corporation), in Canada
(University of Montreal, University of British Columbia) and in Japan.

The SEDOS-ESTELLE EDITOR is interactive and syntax driven. It is based on
a meta-editor called MENTOR (produced at INRIA). The purpose of the editor
is to provide help to build, modify, and beautify ESTELLE specifications. It
takes as input (from a terminal or a file) an ESTELLE source text, parses the
text and outputs error messages. If the text is syntactically correct, it builds
an internal tree-form representation. The latter may then be unparsed to a
nicely indented ESTELLE text. The basic MENTOR commands have been
enhanced with a set of macro-commands tailored specially for ESTELLE.

The ESTELLE COMPILER is composed of two parts: the translator and a code
generator. The translator takes as input the ESTELLE source text, detects
syntax errors, and checks the static semantics. The translator output is an

550

Intermediate Form, composed of the Symbol Table, the Transition Table and
a tree-form representation of transition blocks. The translator is generated
using an automatic translator generator tool called SYNTAX (produced at
INRIA). This Intermediate Form may then be taken as input by a code
generator in order to produce code in C, ML or any other code for execution
or interpretation. The C code thus generated may then be executed, once an
operating system environment is created by a hand written C code.

An ESTELLE SIMULATOR, ESTIM, has been written in ML (a metalanguage
developed by INRIA). ESTIM is an interpreter which allows to simulate
ESTELLE specifications. It is based on an extended coloured Time Petri Net
model. ESTIM takes as input the ML code generated by the compiler and
interprets this ML code; this consists in interpreting the ESTELLE
operations and the firing of transitions. The selection of transitions may be
made by the user or randomly by ESTIM. ESTIM also provides an interactive
access to display elements of the global state and modify them when
adequate.

Specification of an ESTELLE DEBUGGER has been written. This specification
is composed of three parts: the Debugger Scheme, the Command Interpreter,
and the Error Processing. The Debugger Scheme describes the algorithms of
the simulator in the debugger (based on the inductive operational definition
of ESTELLE semantics) and the handling of Time parameters. The commands
of the debugger help the user to navigate in the tree of module instances,
allow the display of variables and the modification of those that are
permissible; if desired, the user may also make choices to resolve
non-determinism.

Additional effort (outside SEDOS) is being made by BULL. The outcome (to be
available by the end of 1987) will cover: a new version of the compiler tool
with useful extensions, e.g. the handling of "qualifying comments" and a
preliminary version of the debugger tool.

IV. LOTOS

VI. 1. LOTOS definition

The development of LOTOS (Language Of Temporal Ordering Specification)
has been strongly guided by architectural principles, notably those that
underly the OSI Reference Model and Standards . In particular the
requirement that the FDT should allow that standards be specified in an
implementation Independent way has played a determinant role. This
requirement has been fulfilled by four basic language design choices:
- the interaction concept,
- the temporal ordering principle,
- process abstraction, and
- the use of abstract data types.

The interaction concept is an advanced concept that replaces the traditional
concepts of input and output. An interaction can be considered as a common
activity of two or more processes in which information is established to which
these processes can refer. Since the activity can be anything the interaction
concept allows not only to model the traditional input and output of
information (so called "value passing"), but also arbitrary forms of synchroniza
tion based on data values ("value checking"), and the non-deterministic
generation of information ("value generation"). These forms of interaction,
which syntactically and semantically are based on the same concept, have

551

proven to be all of extreme practicality in the development of specifications.
Moreover they have provided insight In architecture accordingly.

The temporal ordering principle is used to define the externally observable
behaviour of a process by the temporal ordering of its interactions with its
environment. In so doing the semantics of the process definition by no way
depends on the internal organization of the process itself, and so refrains
from implementation orientedness. LOTOS specifies a process by a "behaviour
expression" that defines an ordering of "events", an event being an atomic
instance of interaction. LOTOS provides a set of temporal ordering
"operators" that allow to combine and structure behaviour expressions in
different ways and so can be used to express important architectural
concepts. The algebraic nature of the language is brought out by the
availability of set of transformation rules that allow to transform a behaviour
expression in another with the same observational behaviour. The semantics
of the language are defined similarly to that of Milner's CCS [23].

The concept of process abstraction roughly corresponds to the procedure
concept in conventional programming languages. This concept allows to
define a formal process with formal interaction points ("event gates") and
formal parameters. Together with the possibility to use process instantiation
recursively it provides a powerfull and indispensable specification structuring
principle.

The use of abstract data types (ADTs) provides the complementary approach
in achieving implementation independence. It allows to represent, for
example, a set of connection endpoint identifiers in a completely abstract way
rather than by way of a particular concrete data structure say, an array of
integers. The LOTOS approach is based on an equational specification of data
types with an initial algebra semantics and adopted much from ACT ONE [16].
The work on ADTs has also led to a collaboration with the CCITT Study Group
X Working Party 3, and produced a common semantical kernel for LOTOS
ADTs and the ADT part of SDL (CCITTs FDT) [10].

During its development several improvements have been applied to LOTOS.
Suggestions predominantly came from the development of trial specifications
in SEDOS (see next section). The development of the language itself, and thus
the careful evaluation of proposed language improvements was however
carried out in the framework of the study of verification methods and tools.
We mention one language improvement that appeared to be of exceptional
use, viz. the introduction of the possibility that more than two processes can
engage in an event. This possibility opened the horizon for the introduction of
the "constraint oriented specification style" (see next section), which allowed
dramatic improvements in the quality, conciseness and ease of verification of
specifications.

Another language improvement tha t is currently considered is the
development of a graphical representation of LOTOS. This work again done in
collaboration between ISO and CCITT involves many SEDOS experts.

As a final remark it should be noted that LOTOS is not restricted to the
specification of OSI standards, but is developed as a general purpose
specification technique and so is applicable to system specification in general.
It should also be understood that LOTOS is capable of expressing behaviour at
different levels of abstract ion, and so can be used to describe
implementations. Further indications on the future of LOTOS can be found in
[9].

552

IV.2. LOTOS Specification

In the project the development of LOTOS specifications was mainly focussed
on specifications of OSI Standards. This development has been guided by a
number of principles:
- experience should be obtained with the description of a wide range of OSI

standards,
- this wide range of standards should be described in a stylistically consistent

way,
- the service and the protocol descriptions should be such that it is made as

easy as possible to verify that the protocol provides the required service.

Experience with the description of a wide range of OSI standards was found
necessary to check LOTOS and improve its definition (see IV. 1.) on basis of
proper evidence, but also to have realistic evidence about what size and
complexity can be expected for specifications of these standards. In this line
LOTOS has been applied to: HDLC, the IEEE LAN service. Connection-less
Internetting Protocol, Network Service, Transport Protocol, Transport
Service, Session Protocol, Session Service, Presentation Protocol and
Transaction Processing Service. In addition descriptions were made of parts
of FTAM, MTS of X.400, and a complete Flow Control by Latency Protocol.

This experience has shown that the complete description of a full size
standard is a quite difficult and resource demanding task [24]. This is because
the description on one hand has to deal with every aspect of the standard
including all classes, functional units, options (these possibly classified as
mandatory, conditional, etc) -all this in an implementation Independent way!-
and on the other hand has to preserve a clear and natural structure of the
description. Given the fact that a specification can be structured in an infinite
number of different ways, it can be understood that the many different
functions of a standard, aggravated with the manifold and intertwined
relat ionships between these functions, very much complicate the
specification effort. One net result of this work was precisely that of
disclosing an entirely new area of research, which can best be termed as that
of "specification style".

For the above reasons it was decided to forward only the Formal Descriptions
(FDs) located in the intermediate layers of the Reference Model, i.e. Network
Service, Transport Protocol and Service, and Session Protocol and Service, to
the appropriate ISO working groups, and to support these working groups to
establish complete FDs in order to produce ISO Technical Reports. This work
has also contributed to the quality of the informally described standards by
reporting deficiencies that were detected on basis of the formal specification
effort.

A consistent specification style over all layers of the OSI Reference Model was
found necessary to avoid that a reader, e.g. an implementer, is unnecessarily
burdened with different ways of expressing the same functionality. To achieve
this goal several measures were taken. We mention two of them:
An interesting measure which appeared quite helpful was the development of
an "interlayer standard" for the description of the Service Access Points and
Service Primitives, preserving in particular a consistent definition style for all
the abstract data types involved.

Another valuable measure was the adoption of the same specification style for
all descriptions. Among the many different styles which have been exercised,
such as "monolithic" or "resource oriented", it appeared that a "constraint

553

oriented" style very well suits the nature of OSI standards. This style allows to
define the "abstract interface", i.e. the constraints on the ordering of Service
Primitives at one Service Access Point, as a separate process. Since the
abstract interfaces are identical for the service and the protocol, it allows the
specifier to focus on the differences in these descriptions and to model these
descriptions such that it can be more easily verified that the protocol
provides the service and makes a correct use of the underlying service.

At this place it is worthwile note that LOTOS has also been applied to other
fields of technology, in particular to the development of Computer Integrated
Manufacturing architectures [4].

IV.4. LOTOS tools

Since LOTOS is a quite new and avanced technique, its tool developments
could not build on experience available from elsewhere. Therefore the
following approach was adopted:
- any tool development should be preceded by the development of a sound

formal theory that must underly the tool,
- the feasibility of the tool should be investigated before attention is given to

the efficiency of the tool,
- all tool developments should be placed in the framework of a consistent

"toolkit" architecture.

Given the fact that the LOTOS tool developments started from scratch, these
conditions certainly could not be met for all projected tool developments. It
can be observed, however, that the project provided more and better results
than was originally expected.

In line with the above approach, and given the fact that LOTOS is in first
instance a formal description language, the first generation of tools to be
tackled should support the specification phase of the design process. In this
context some experimental tools were developed early in the project:
MELO (Mentor LOTOS Editor): a structure editor with a built-in LOTOS
syntax. It is built on the Mentor system originally produced by INRIA and now
distributed by SEMA.
BELASI (Behavioural Language Simulator): a simulation tool written in
C-Prolog. It implements the dynamic semantics of LOTOS and allows
simulation of a specification by single-stepping through a LOTOS behaviour
tree. The ADT aspect is rudimentarily supported.
STAR+ : a simulation tool similar to BELASI, however less developed. It is
derived from STAR, a simulation tool for CSP, and implemented in Lispkit.

Further developments of this first generation of tools resulted in an
integrated toolset [22] which is written entirely in the 'C programming
language and is hosted on BSD 4.2 UNIX (Figure 3).

EDITOR: the output of this tool is an ASCII textfile containing standard
LOTOS text. The editing phase currently relies on any general purpose Unix
editor for registration and modification of a specification. The MELO
prototype is not thought to be suitable for other than research.

FRONT-END: The Front-End is a collection of tools which perform the
following functions:
- validation of correct syntax conforming to ISO DP8807 section 6.
-validation of correct static semantics conforming to ISO DP8807 section

7.2.

554

INFORMAL SPECIFICATION

FRONT
END

SIMULATOR

ED I TOR

ASCI I TEXT FILE (LOTOS)

SYNTAX CHECKER
SCLOTOS

•TOKEN STREAM

TREE BUI LDER
LA STB

COLOURED ABSTRACT
'SYNTAX TREE (AST)

STATIC ANALYSER
L ISA

COLOURED AST WITH FLATTENED
TYPES & PROCESSES

COMPLIER TOOLS
L IW

PRETTY PR INTER
PPLOTOS

CROSS REFERENCE
LXREF

FIGURE 3

555

- insertion of Abstract Data Type (ADT) definitions from a standard ADT
library,

- flattening of LOTOS ADTs as described in ISO DP8807 section 7.3.4.1.,
- construction of an intermediate representation of the specification In the

form of a coloured Abstract Syntax Tree.

The input to the Front-End is the standard LOTOS text produced by the
Editor. The output conforms to a standard Interface for the remaining tools in
the toolset. At this interface the basic properties of the specification have
been checked and the specifications has undergone a transformation so that
it contains only a single flattened LOTOS data type. The components in the
Front-End are SCLOTOS, LASTB and LISA:
SCLOTOS (Syntax Checker LOTOS) is built on the Yacc system distributed
with UNIX. The accepted syntax covers the full specification of ISO DP8807,
section 6, plus minor extensions that can be switched off.
LASTB (LOTOS Abstract Syntax Tree Builder) accepts a syntactically correct
LOTOS text and outputs a coloured abstract syntax tree used as a common
representation for the rest of the toolset. LASTB is based on EL PRADO, a
methodology and library to handle attributed abstract syntax trees.
LISA (LOTOS Integrated Static Analyser) performs the combined functions of
static semantics checking, ADT library insertion, and ADT flattening.

SIMULATOR: The functionality of the simulator is a further extension of the
BELASI tool [17] and performs the following functions:
- generation of an ADT Term Rewrite System,
- evaluation of an ADT Term Rewrite System,
- communication tree walker,
- menu computation and selection,
- term analysis and display,
- state information display.

This tool (and its front ends) is in a quite advanced stage and will be
demonstrated during the ESPRIT Technical Week.

COMPILER: The compiler is a collection of tools which are, by preference,
referred to as the LOTOS Implementation Workbench, or LIW. The collection
currently consists of:
- an interactive computer aided source to source transformer which

performs the translation of a high level specification to a more machine
oriented done,

- a simpllfier that performs source to source transformation to simplify the
input to the actual compiler,

- an abstract data type compiler that generates a rewrite system to produce
normal forms and an equality test,

- a temporal ordering compiler that handles processes that are translated
Into co-routine like pieces of C-code that interact with a kernel, or run
time support system, to implement the multlway synchronization semantics
of LOTOS.

Although important progress has been made, allowing to thoroughly assess
the approach taken, the compiler development is still in an early stage of
development.

PPLOTOS: PPLOTOS (Pretty Printer for LOTOS) is a schema driven pretty
printing system for the display of Abstract Syntax trees compatible with EL
PRADO or LASTB. The output is LOTOS text which may be displayed or filed.
LXREF: LXREF (LOTOS Cross Reference Generator) is an early prototype tool
that correlates identifier occurrences over a LOTOS text.

556

Other implementation support tools
The above described toolset a lready inc ludes e lements of tools t h a t suppor t
the implementa t ion phase of the design process , notably the compiler.

Compiler, t es te r and verifier are considered a s a second generat ion of tools
which predominant ly suppor t the implementat ion phase . The development of
these tools requi res the development of more theory a n d models to clearly
identify the formal re la t ionsh ip of a n implementa t ion to i ts specification.
Early resul t s are available in [7].
VERIFIER
Early work in th i s a rea concen t ra ted on the s tudy of verification models ,
a lgor i thms a n d m e c h a n i s m s for LOTOS and the specification of prototype
verification tools. Reports a re available t h a t summar ize the possibilities and
l imita t ions of several verification a p p r o a c h e s . Curren t ly a se t of prototype
verifiers for pa r t s of LOTOS are implemented or available. It is expected tha t
all prototypes are available by the end of the project, including:
- a verifier for observat ional equivalence writ ten in Q u i n t u s Prolog on a S u n

worksta t ion: th is work is completed.
- a PROLOG prototype for checking the pers i s tency of ADT specifications:

th i s work is in progress .
- t h e deve lopment of a tool (TILT) t h a t t r a n s l a t e s LOTOS in a labelled

t rans i t ion sys tem which may subsequen t ly be i npu t to CESAR and ECRIN
tools: th is work is in progress .

TESTER
Also for the development of t es t tools the effort first concen t ra ted on the
development of a s o u n d theore t ica l ba s i s for tes t ing . A se t of theoret ical
resu l t s a re now available [8] and early work on prototype specification and
implementa t ion is in progress , in par t icu lar the derivation of tes t sequences
from specifications us ing the functional language Twentel which is available
unde r VAX Unix and MS-DOS.

V. CONCLUSION

This p a p e r h a s given some of t h e r e su l t s of t h e ESPRIT-SEDOS project,
which include:
- the development of the ISO FDTs ESTELLE and LOTOS,
- their application to the specification of real and complex ISO protocols,
- t he development of prototype tools for suppor t ing these FDT based design

of distr ibuted sys tems.
The r eade r s m u s t refer to t h e bibl iography [25] for more explana t ions and
examples .

ACKNOWLEDGEMENTS
The succes s of the SEDOS project is due to the combined effort of many
experts tha t actively contr ibuted to the project.
The a u t h o r s would like to express their s incere t h a n k s to all pa r t i c ipan t s
involved in t h e SEDOS project: first to the t a sk m a n a g e r s , for their high
quality leadership and their day to day responsabil i ty for the progress of the
work, J .P . Ansa r t (B), J . P . Cour t ia t (Bl), P. Azema (B2), V. Char t (B3), A.
Tocher (CI), J . Q u e m a d a (CI), E. Br inksma (C2), A. Marshal l (C3), R. Neely
(C3); a n d second to all t he SEDOS pa r t i c ipan t s of the LAAS-CNRS, the
Universi ty of TWENTE, ADI, ICL, BULL, t h e Universi ty of CATANIA, the
Polytechnics of MILANO and MADRID, HMI and the Technical University of
BERLIN.

557

BIBLIOGRAPHY

[I] J.P. Ansart, V. Chart, D. Simon, "From formal description to automated
implementation using PDIL", Protocol Specification, Testing and
Verification, III, North-Holland, 1983, H. Rudin - C. West Editors.

[2] J.P. Ansart et al, "Software tools for ESTELLE", Sixth Int. Workshop on
Protocol Specification, Testing and Verification, Montreal, J u n e
10-13,1986.

[3] J.M. Ayache, J.P. Courtiat, "LC/1, A specification and implementation
language for protocols". Protocol Specification, Testing and Verification,
III, North-Holland, 1983, H. Rudin - C , West Editors.

[4] F. Biemans, P. Blonk, "On the formal specification and verification of CIM
architectures using LOTOS", Computers in Industry 7. 1986, pp.491-504.

[5] T.P. Blumer, D.P. Sidhu, "Mechanical verification and automatic
implementation of communication protocols", IEEE T on Software Eng.,
vol.SE-12, n°8, August 1986.

[6] G.V. Bochmann "Finite state description of communication protocols",
Conf. Computer Network Protocols, Liege, 1978, also in Computer
Networks 2, 1978, pp.361-372.

[7] E. Brinksma, G. Scollo, "Formal notions of implementation and
conformance in LOTOS", Twente Univ., Memorandum INF-86-13, Dec.
1986.

[8] E. Brinksma. G. Scollo, C. Steenbergen, "LOTOS specifications, their
implementations and their tests", Proc. 6th IFIP WG6.1 Workshop on
Protocol Specification, Testing and Verification, Montreal, June 1986.
North Holland, pp.349-360.

[9] E. Brinksma, G. Scollo, C.A. Vissers, "Experience with and future of
LOTOS as a specification language". Proceedings of the Third CCITT SDL
Forum, the Hague, Netherlands, 6-10 April 1987, North-Holland.

[10] CCITT/SGX/3-1, "Recommendation Z104, Functional specification and
description language", June 1986.

[II] J.P. Courtiat. P. Demblnski. R. Groz. C. Jard, "ESTELLE : un langage pour
les algorithmes distribues et les protocoles". Techniques et Sciences
Informatiques. vol.6. n°2. 1987.

[12] P. Dembinski. S. Budkowski, "Defining delays in a time-independent
model for ESTELLE", Report FDT 7581, Agence de l'Informatlque, 1985.

[13] M. Diaz, "Modeling and analysis of communication and cooperation
protocols using Petri net based models". Tutorial paper. Computer
Networks, vol.6, n°6. December 1982.

558

[14] M. Diaz, Ch. Vissers, J.P. Ansart. "SEDOS, Software environment for the
design of open distributed systems", ESPRIT Week, Brussels, September
1985.

[15] M. Diaz, J.P. Courtiat, P. Dembinski, E. Brinksma. "Formal description
techniques in SEDOS", ESPRIT 1986, North Holland, DGXIII Editors.
1987.

[16] H. Ehrig, B. Mahr, "Fundamentals of algebraic specification", Springer
Verlag, Berlin 1985.

[17] P. Van Eijk, "A comparison of behavioural language simulators", Proc. 6th
IFIP WG6.1 Workshop on Protocol Specification, Testing and
Verification, Montreal, June 1986, North-Holland, pp.85-96.

[18] H.J. Genrich, K. Lautenbach, "The analysis of distributed systems by
means of predicate/transition nets", Lect. Notes in Computer Sciences,
vol.70. Springer Verlag, 1979, pp.123-146.

[19] D.I. Good, R.M. Cohen, " Verifiable communications processing in
GYPSY", Proc. of COMPCON 78, IEEE, September 1978.

[20] ISO-DIS9074, ISO/TC97/SC21/WG1-FDT/SG-B, "ESTELLE, a formal
description technique based on an extended state transition model",
December 1986.

[21] ISO-DIS8807, ISO/TC97/SC21/WG1-FDT/SC-C, "LOTOS, a formal
description technique based on the temporal ordering of observational
behaviour", December 1986.

[22] A. Marshall, "A prototype integrated toolset for LOTOS", C3 Progress
Report, ESPRIT/SEDOS/C3/15, STC Tech. Ltd., Newcastle-under-Lyne,
England, April 1987.

[23] R. Milner, "CCS, a calculus of communicating systems", LNCS 92,
Springer-Verlag, 1980.

[24] G. Scollo, C.A. Vissers, A. di Stefano, "LOTOS in practice", Proc. IFIP 86,
10th World Congress, Dublin, Sept. 1986, pp.869-875.

[25] SEDOS Project, "SEDOS publications and reports", November 1984 to
October 1987.

[26] F.D. Smith, C H . West, "Technologies for network architecture and
implementation", IBM J. of Res. and Develop., vol.27, n°l , January 1983.

[27] C.A. Vissers, "Standardization of formal description techniques for
communication protocols", in H.J. Kugler (ed), Proc. IFIP Congress 1986,
Dublin, September 1986, pp.329-333, North-Holland. 1986.

[28] Ch. Vissers, L. Logrippo, 'The importance of the concept of service", 5th
Int. Workshop on Protocol Specification, Testing and Verification,
Toulouse, North-Holland, M. Diaz Editor, 1986.

559

Project No. 881

A NEW LANGUAGE TO DESCRIBE ANALOG CIRCUITS *

C. van Reeuwijk and M.G. Middelhoek.
Delft University of Technology.

ABSTRACT
At the moment there are some circuit description

languages in use (e.g. the SPICE input language), but
they have been designed with a special purpose in mind
and therefore lack scope. In the recently developed
functional programming languages computational problems
are described by the relations that must hold. The
functional description method is preeminently suitable
for the description of circuits; it allows the creation
of a very clear circuit description language that can
be manipulated by computer. As an illustration we will
discuss two experimental circuit description languages.
We will also describe the possible applications of such
a language.

Introduction.

At the moment there are large areas in analog circuit design
where little formal theory is available. In these areas design
must be based on informal knowledge like experience of designers
and rules of the thumb. For a better understanding of analog
circuit design it is necessary to develop more formal theory, as
is done at the moment at Delft University of Technology. To help
the promotion of te new theory it is tried to incorporate the
knowledge in computer algorithms. The final goal of this
development is a silicon compiler for analog circuits.

An important requirement for further development of the theory is
a good notation to describe circuits. As will be shown in this
paper, existing notations like schematic drawings are inadequate,
and need to be replaced by more advanced notations.

To a large extent the comments on analog circuit design also
apply to digital circuit design, although in this area theory is
further developed. The notation described in this paper is also
suitable for the description of digital circuits.
* This research was done for Esprit project 881 (FORFUN),
and is partly funded by the European Community.

560

2. Existing notations for circuit description.

The most frequently used notation is the schematic drawing, for
example Figure 1.

Figure 1.

An example of a schematic drawing:
current amplifier.

the signal path of a

Apart from its obvious advantages (well known, good standardiza
tion) there are some important disadvantages: first, much impor
tant information is left out: the hierarchy of the circuit, the
function of the various blocks, the interconnection pattern that
is used. Also, important remarks about the details of the cir
cuit are difficult to include in the description. All this
information must be inferred by the reader, requiring much
knowledge of electronic circuits, or must be given in a companion
description text, which is awkward.

Next to schematic drawings there are a few textual notations in
use to describe circuits. Unfortunately these languages are only
intended for a special purpose, and are therefore unsuitable for
general circuit description. A typical example of such a
language is the input language of SPICE. An other common disad
vantage of current circuit description languages is that they are
inspired by imperative languages like Pascal or C. This is
unfortunate since these circuit description languages end up
describing a way to build the circuit, and not its static struc
ture. Finally, most of these languages often have an incon
venient and vaguely defined syntax. Again SPICE is an example.

561

3,. New languages.

A recent development in programming languages (that is, languages
that describe computations) is the emergence of declarative
languages. Contrary to imperative languages they do not describe
computations as a list of commands that must be executed in a
given order, but as a set of relations that must hold. It is
left to the language implementation to determine the way the
problem must be solved. At present, theory is not sufficiently
developed to allow the description of arbitrary relations in
these descriptions. Therefore, all current languages impose res
trictions on the class of relations that are allowed. For exam
ple, in Prolog the relations are restricted to the predicates of
predicate calculus (see [C181]).

An important class of declarative languages is that of functional
languages, where the relations must be described as functions.
This restriction ensures that a more robust implementation is
possible. Examples of functional languages are Hope and Miranda.
These functional languages are based on the theoretical concept
of lambda-calculus (see e.g.[Ba81]). For logic programming
languages a slight generalization of lambda-calculus is neces
sary. In [B086] a proposal for such a generalization is given,
it is called "beta-calculus".

The concept of declarative languages is very suitable for circuit
descriptions since it allows one to describe exactly what is
necessary - the relations between the components. Both the nota
tions based on lambda-calculus and beta-calculus are useful;
lambda-calculus for circuits where one wants to suggest direction
of information flow (e.g. an amplifier), beta-calculus for cir
cuits where one does not want do that (e.g an impedance network).
Development of suitable languages and language implementations is
still underway, but as an illustration it is useful to discuss
two prototype languages, FUN and SYMNET.
4. FUN.

The development of FUN (FUNctional circuit description language)
was inspired by the proposals of Boute [Bo84] and the article of
Backus [Ba78] on FP. FUN uses the language constructs of FP to
describe analog electronic circuits, their devices and intercon
nections. The devices are represented by objects, while the
interconnections are represented by functions that map devices to
devices. There is a standard set of interconnection functions
available, and it is possible to define new interconnection func
tions. This can be done by combining existing functions (which
is simple), or by defining an entirely new interconnection func
tion (which is difficult but possible). The following circuit
description can serve as an example of this method. It describes
the structure of the current amplifier of Figure 1:

562

A current amplifier, consisting of two twoports an active
part and a feedback loop, connected by the
interconnection function "piso". The interconnection
function "piso" connects two twoports with inputs
parallel, and outputs in series,
def current_amplifier =

piso : <active_part, feedback_loop>
The active part consists of thee stages,
def active_part =

three_stage : <J1, Tl, <T1, Tl>>
Cascade of a common-source stage, a common-base stage,
and a differential-pair stage with its output terminals
inverted.
def three_stage =

/case"[cs'l, cb~2, outinv'diffst"3]
A current divider with its inputport and outputport
interchanged.
def feedback_loop =

rev'idiv : <par:<Rl, Cl>, par:<R2, C2>>

This example clearly illustrates the advantages of FUN, when com
pared to conventional circuit description languages:

- There is a close match between such language constructs as the
interconnection functions parallel (par) and series (ser) and
the structural concepts to be expressed. It resembles the way
designers talk about circuits.

The readability of the functional circuit description can sur
pass that of schematics, because of its better ability to
express the hierarchy of a circuit.

The language has very interesting formal properties, which are
based on its reduction semantics: an expression can be succes
sively reduced to simpler expressions to yield a final "normal
form expression". This means that reasoning about a circuit
description can proceed by expression transformation.

These properties show that a functional language is suitable as a
framework for a circuit description language. However, FUN also
has its drawbacks. The main problem is that in FUN it is diffi
cult to define new interconnection functions and that it is
impossible to define a standard set that is suitable for a major
ity of cases. This problem is even more important for non-
hierarchical circuits, since each of them would require a special
interconnection function.

563

SYMNET.

Based on the experiences with FUN and new theoretical results
from Boute [B086] an other prototype language was developed: SYM
NET (for SYMbolic Network language). In SYMNET the idea to base
the language on FP is abandoned, and more traditional functional
languages are taken as example. The main advantage of SYMNET is
that in this language it is much easier to define arbitrary new
interconnection functions.

The simplest way to describe the language is to give an example.
The definitions below describe the most abstract levels of the
current amplifier of Figure 1.

// A current amplifier, consisting of an active part and a
// reversed feedback loop, connected with inputs parallel,
// and outputs in series,
def current_amplifier in =

piso active (rev feedback) in;
// the active part is a nullor
def active in =

nullor in;
// The feedback loop is a two-port with the given Laplace
// transform,
def feedback in =

laplace_twoport "p/((p-1)*(p-1))" in;
// The implementation of the piso combinator. It defines a
// two-port consisting of two twoports given as parameters
// that are connected with their inputs in parallel, and
// their outputs in series.
def piso A B < in, <out+, out- > >
{

A < in, < out+, i > >;
B < in, < i, out- > >;

I
// A new name for the type of a twoport
typedef twoport = < < pin, pin >, < pin, pin > >;
// the piso is given two twoports as parameters and defines
// a twoport
type piso : twoport->twoport->twoport;

The comments in this description should explain the purpose of
the various definitions. Note the wealth of information that can
be given:

564

Hierarchy.
The interconnection patterns used.
Structure of the component terminals.
Direction of data flow, and the fact that there is a
data flow.

6.. Applications.

The circuit descriptions of FUN and Symnet are general enough to
allow many interpretations. It is simple to convert them to
input cards for SPICE, but it is also possible to generate net-
lists (lists of components and interconnection wires) from which
the layout of the circuit can be generated.

Regarding the many possible interpretations Boute [Bo84] has pro
posed to describe these interpretations as functions in a func
tional language. Such a semantic function or meaning function
takes a circuit description as input and returns a description in
a different domain of interpretation as result.

When the domain of interpretation is also the domain of circuit
descriptions the semantic function is called a transformation
function. Such transformation functions are useful to describe
synthesis routines for automated circuit design.
7. Prospects.

The ideas described in this paper are currently subject of ESPRIT
Project FORFUN. The final goal of this project is a design
environment wherein both analog and digital circuits are
described with the declarative notation outlined in this paper.
The design environment will support circuit analysis, layout
design etc. with appropriate meaning functions. The environment
will allow easy definition of new meaning functions by providing
a suitable functional language to define them in. The synthesis
algorithms for analog circuits that are currently developed at
Delft University of Technology (e.g. the noise optimization algo
rithms of Stoffels [St86]) will be incorporated in the environ
ment as transformation functions.

8. Conclusion.

Although we do not have the illusion that these languages will
replace schematic drawings as the main notation for circuit
descriptions, we are confident that there is a wide area of
applications. Current research suggests that these languages are
suitable for human design of structured circuit and for automated
design. The same concepts may be applied to other areas, ranging
from layout design to the design of mechanical systems.

565

References

Ba78. J. Backus, "Can Programming be liberated from the von Neu
mann style? - A functional style and its algebra of pro
grams," Comm. of the ACM Vol. 21 pp. 613-641 (Aug. 1978).

Ba81. H. Barendregt, The lambda calculus, its syntax and seman
tics. North Holland, Amsterdam (1981).

Bo84. R.T. Boute, System Semantics Applied to Digital and Analog
Circuits, University of Nijmegen, Department of Computer
Science, Nijmegen (1984).

Bo86. R.T. Boute, Syntactic constructs for the Description of
bidirectional systems. University of Nijmegen, Department of
Computer Science, Nijmegen (1986).

C181. W.F. Clocksin and C.S. Mellish, Programming in Prolog,
Springer-Verlag, Berlin (1981).

St86. H. Stoffels and E.H. Nordholt, "Automated noise optimiza
tion in amplifiers," Proc. of symp. on Circuits and systems,
pp. 1139-1141 IEEE, (May 5 1986).

566

Project No. 1033
A COMPOSITIONAL METHOD FOR THE DESIGN AND PROOF OF
ASYNCHRONOUS PROCESSES

R. J. Cunninghamf, A. Nonnengartft. A. Szalasf

Asynchronous processes arise naturally in real time
environments where there is human-computer interaction, but
formalisms for describing asynchronous processes and the
ways of reasoning about them are not well understood.
Abstract programming systems which assume asynchrony
display a variety of of message-passing and stream
architectures in which a process receives input through a
mail-box or set of channels. These systems can be contrasted
with programming systems like CSP and Ada which use the
primitive notion of a rendevous to provide a synchronous basis
for communication. In this paper we develop a compositional
proof theory for the safety properties of asynchronous systems.

t Department of Computing, Imperial College of Science and Technology
f t FB Informatik, University of Kaiserslautern.

567

1. INTRODUCTION

Asynchronous processes arise naturally in real time environments
where there is human-computer interaction, but formalisms for
describing asynchronous processes and the ways of reasoning about
them are not well understood. Programming systems which assume
asynchrony display a variety of of message-passing and stream
architectures in which a process receives input through a mail-box or
set of channels. These systems can be contrasted with programming
systems like CSP [6] and Ada, which use the primitive notion of a
rendezvous [8] to provide a synchronous basis for communication. In
this paper we develop a compositional proof theory for the safety
properties of asynchronous systems. The advantage of the
compositional style is that there is a potential for application in a
design procedure which produces correct parallel programs from
correctly designed parts.

Our work arises in the context of an Esprit project to provide a formal
basis for asychronous computer system architectures and uses the
architecture of the prime contractor as motivation. This was developed
by Hemdal [4] and takes local asynchrony to the extreme. There are no
shared variables between processes, processes may exist indefinitely,
and the abstract style of programming which is encouraged is to
introduce as many processes ' as is warranted for conceptual
partitioning of the task. A system is usually constructed as a fixed
collection of processes linked by certain directed communication
channels. Our interest in this paper is the development of a suitably
formal basis for constructing such a system. We suggest a proof
system for the composition of asychronous processes which is
compatible with Hemdal's style, although not restricted to it. Indeed, it
leads us towards a more uniform generalisation of such architectures
than is at present available.

The underlying intuition of an elementary process which we use here is
that of a non-deterministic sequential state machine with a finite set
of control states but potentially infinite data states. The input and
output for this machine are communication channels to other processes.
A conventional sequential program is a deterministic example of a
single process, one in which each control state corresponds to a node of
its flow chart and the subsequent state-changing action is selected
deterministically. Dijkstra's guarded commands [3] can be used to
describe a well-structured non-deterministic sequential process. We
do not restrict ourselves at the outset to well-structured sequential
processes because different styles are possible and concrete
realisations of abstract asynchronous processes trade performance for

568

simplicity of structure. Additional complexity of the reasoning should
be reflected in the rules of composition.

The traditional formal treatment of programs by intermediate
assertions in an applied first order logic can be translated into
assertions about the data at control states in the state-machine notion
of a process. In order to consider the construction of processes we
treat suitably labelled fragments of a potential control-flow graph as
elementary processes, annotate them to identify the essential
elements, and express different forms of combination by formal
operators. An annotated graph thus becomes a formal process of our
logical system. The usual formulae of multi-sorted first-order
predicate logic are assumed. In effect, a formal process becomes a
special sort in an applied logic of processes.

For the purposes of this paper we introduce a series of operators for
process composition with a fairly primitive graphical style. Then we
give a collection of proof rules which are applicable to a reasonably
large class of processes. Some related work is mentioned briefly later.

2. A SYNTAX OF PROCESSES

Below we define the syntax of processes, together with some notions
useful in the next sections of our paper. In particular we define:

- graph(p) denoting a graph representing p,
- var(p) denoting the set of variables of process p,
- nodes(p) denoting the set of nodes of p,
- init(p)e nodes(p) denoting the initial node of p,
- term(p)cnodes(p) denoting the set of terminal nodes of p,
- --_ denoting a binary relation on nodes(p).

2.1. Let G be an open formula (sometimes called guard) and A an atomic
action (skip, substitution, send t to q, receive x). Then

graph(p) = \Z^^(Z)
is a graph of process p consisting of the transition leading from m to n
and executing G|A. In such a case:

569

 var(p) is the set of all variables appearing in A and G,
 nodes(p) = {m,n},
 init(p) = m,
 term(p) = {n},.
~p={(n,n), (m,m)}

2.2. If p and r are processes such that nodes(p)nnodes(r)=0 then p+r and
p;r are processes such that:

 graph(p+r) = graph(p)ugraph(r) = graph(p;r),
 var(p+r) = var(p)uvar(r) = var(p;r),
 nodes(p+r) = nodes(p)unodes(r) = nodes(p;r),
 init(p+r) = init(p) = init(p;r),
 term(p+r)=term(p)uterm(r); term(p;r)=term(r),
■ ~p+r = ~p

 u ~r <»{(init(p),init(r))}
_ ~p;r = ~p

 u ~r u{(k,init(r)) | keterm(p)}

2.3. if p,r s are process identifiers then the sequence
P = E

p .
r = E

r
 s = E

s
of equations defines processes p,r s, where Et (t=p,r s) is an
expression obtained by application of + and ; to atomic processes
and/or processes p,r,...,t such that t does not appear as the leftmost
component of Et (e.g. the leftmost component of r;p is r). In such a case
for t=p,r s,

 graph(t) = graph(Et),
 var(t) = var(Et),
 nodes(t) = nodes(Et),
 init(t) = init(Et),

 term(t) = term(Et) {init(t)},

~t = ~E t

where by graph(Ej) we mean the graph defined by expression Et in which
t is replaced by a single node of the following form:

\ i n i U E t))

570

2.4. If p,r s are processes such that for all t-| , t 2 s {p,r s}, t -] ^ ,

nodes (t 1) n n o d e s (t 2) = 0 and var(t-|) n v a r (t 2) = 0 , then p||r||...||s is a
program in which:

- graph(p||r||...||s)=graph(p)ugraph(r)...ugraph(s),
- var(p||r||...||s)=var(p)uvar(r)u...uvar(s),
- nodes(p||r||...||s)=nodes(p)unodes(r)u...unodes(s),
- init(p||r||...||s) e {init(p), init(r) init(s)},
- term(p||r||...| |s)=term(p)uterm(r)u..uterm(s),

-~p||r||...||s = ~ p u ~ r u - u ~ s -

We assume a priority order +;|| on operators with + binding most and ||
binding least, so that p+q+r || s+t || u means ((p+q)+r)||(r+s+t)||u.

Note that some context conditions are necessary, e.g. if a process does
not appear in a context containing || then neither send nor receive can
appear in actions, etc.

Let p be a process (program). By =_ we shall mean the least equivalence

relation on nodes(p) containing ~ p . An intuitive meaning of n=_m is "n

and m denote the same node of p".

By a transition graph of p we mean the graph obtained from graph(p) by
identifying all equivalent nodes (w.r.t. =_).

The following example shows an informal meaning of these notions.

Example:

If processes p, r and s are such that:

graph(p)

graph(r>

graph(s)

571

then graph(p+r) (as well as graph(p;r)) takes the form:

graph(p+r)=

transition graphs of p+r and p;r take the forms:

>\^yj^CZ^Tyj-u^Z)

\ m) * » (n , u) ° » (v)

If t is defined by the equation
t = p;t

then

) = \ ^ > ^ 0 CZ3 graph(t)=

and, since n=tm, the transition graph of t takes the form:

K)
Note that an instance of + (;) may serve the purpose of
non-deterministic choice (sequential composition) in the Dijkstra
guarded command style. The operator || is intended for the parallel
composition of processes. The possibility of defining processes by
equations allows to define loops in graphs. It also serves the purpose of
modularization.

3. AN OPERATIONAL SEMANTICS

For the purpose of exposition let us introduce the data type QUEUES of
natural numbers. This data type is two-sorted, the defined sort Qu and

572

the natural numbers co. We assume the following operations:

empty: -» Qu,
insert: c o x Q j -> Qu,
delete: Qu-{empty} -> Qu,
front: Qu-{empty} -» co.

The model of data type QUEUES assumed in our paper is the standard
one. Thus the operations satisfy the following properties that can be
used in reasoning about programs:

Q1. VeVq(q*empty -> delete(insert(e,q))=insert(e,delete(q))),
Q2. Ve(e=front(insert(e,empty))),
Q3. VeVq(q*empty -* front(insert(e,q))=front(q)),
Q4. VeVq(insert(e,q)*empty),
Q5. Ve(empty=delete(insert(e,empty))).

The data type QUEUES is introduced in order to fix a semantics for the
inter-process communication mechanism. Nevertheless, the proof
system we give in this paper is independent of a concrete data type. In
order to work with multisets or stacks, one has only to give new
axioms instead of Q1-Q5. The situation is analogous to that in classical
first-order logic, where one can have different theories by considering
different sets of specific axioms.

For the sake of simplicity we assume that the only individual data
elements which can appear in processes are natural numbers and that
the messages are simply natural numbers. In order to deal with
different types of messages, one can introduce other sorts into data
type QUEUES. We further asssume that with each process there is
associated a "system" variable Q representing a queue of messages. By
a set of computations of a process we understand the set of (possibly
infinite) sequences of valuations labelled by nodes. The set is defined
inductively as follows.

3.1. Sequential Computations

1. Let p be a process represented by the following transition graph:

graph(p) - ^X^-^-CD

573

and let v be a valuation of local variables of p, i.e. v: var(p)»co. As
usual, v can be extended to terms and formulae. The computation of p
with v as an initial valuation of variables and Q as initial value of the
message queue is defined as follows:

(i) if v(G)=false then the only computation of p is the
oneelement sequence comprised of the tuple <m,v,Q>;
(ii) if v(G)=true and A is the skip instruction then the only
computation of p is the sequence (<m,v,Q>,<n,v,Q>),
(iii) if v(G) = true and A is a substitution of the form
x.|

 x
k

: = t
1 '•••■t

k
 t n e n t n e o n

'
v computation of p is the sequence

(<m,v,Q>,<n,v',Q>)1 where v' differs from v at most on the variables
*1 xk, and v'^Jvft.,),.., V(xk)v(tk).

Note that because of the syntactic restrictions A cannot be of the form
either receive x from r or send t to r

2. Assume p is defined by an expression. Then the set of computations
of p is the least set of sequences satisfying the following conditions:

(i) the first element of any sequence takes the form <k,v,Q> where
k=init(p);
(ii) if an element in a sequence is of the form <n,v',Q> then its
successor, if it exists, takes the form <m,v",Q> provided that the
transition graph of p contains a transition from n to m such that
its Boolean guard is true and v" is obtained from v' according to
case 1 above.

3.2. Parallel Computations

If P is a program of the form p||r||...||s, then any computation of P
consists of elements of the form:

<mpmr...ms,vpvr...vs,QpQr...Qs>
where m p ,m r ms describe the control flow of processes p,r,...,s,
vp,v r,...,vs are valuations of local variables of p,r s, and Qp ,Q r Qs

are queues of messages waiting for receipt. We adopt the usual model
of interleaving actions. Thus the set of computations of P is the least
set containing sequences satisfying the following conditions:

(i) the first element of any sequence takes the form
<npnr...ns,vpvr...vs,QpQr...Qs>,

574

where np=init(p), nr=init(r) ns=init(s), vp ,v r vg are initial
valuations of variables of p,r s and Qp,Q r,...,Qs represent the
initial contents of respective queues,

(ii) if the element <mp...mt...ms,vp...vt...vs,Qp...Qu...Qt...Qs> appears
in a sequence, then its successor (if it exists) is of the form:

<mp...mt
,...ms,vp...vt'...vs,Qp...Qu'...Qt

,...Qk>
provided that the transition graph of t contains a transition with
true guard, leading from mt to mt' such that:
- if the action performed during the transition is a substitution or
skip, then vt' is obtained as in 1(ii) with QU'=QU, Qt'=Qt;

- if the action performed during the transition is of the form
send e to u then vt'=vt, Qt'=Qt, and Qu'=insert(vt(e),Qu);
- if the action performed during the transition is of the form
receive x, and Qt*empty then vt' differs from vt at most on x, and
vt'(x)=front(Qt), QU'=QU, and Qt'=delete(Qt).
A transition in which action is of the form receive x cannot be
chosen when the respective queue is empty.

Note that in the above we do not consider delays of messages. The
proof system we give, however, is sound even if one allows such
delays.

4. THE PROOF SYSTEM

4.1. Syntax of the Logic

1. The usual syntax rules for classical first-order formulae augmented
with additional syntax rule that if n is a node of a process, then at n
is a formula,

2. If p is a program, A is a classical first-order formula and B is a
formula of the form defined in 1 then {A}p{B} is a formula.

An intuitive meaning of {A}p{B} is the following:

"if p initially satisfies A then p always satisfies B"

4.2. Semantics of the Logic

We define the satisfaction relation t= as follows. Let P=p||r||...||s be a

575

program, let n p ,n r n s be nodes of p,r s, respectively, and let
C=(CQ,C^,...) be a computation of P with valuations in data domain D:

(i) if A is a classical first-order formula, then D.CjNA in the usual
sense when values of variables of P are given by C:,

(ii) if A is of the form at n, then D,C:I= A iff c,- is of the form
<npnr...ns,...> where ne{np,nr,...,ns},

(iii) DI={A}P{B} iff for any computation c of P such that D.CQNA,

D.CJNB for any jeco,

(iv) if F is a set of classical first-order formulae, then FN{A}P{B}
if for any model D of F, DN{A}P{B}.

4.3. Proof Rules

(I) h {A}p{a/init(p)->A},

(E) {A}p{afn->B} h {A}p{a/ m-»B}, where n=pm,

(N) I- {A}p{ar m -> GAA},
where p contains only a transition leading to m and executing
G|skip,

(S) {A}p{af nAG ^ Btx^t-i xk/tk]} I- {A}p{af m->B},
where p contains only a transition leading from n to m and
executing G | x1 xk:= t1 tk,

(MS){A}r{af n A G->B[Q/insert(e,Q)]} h {A}r{ar m->B},
where Q is the variable representing the queue of messages sent to
p, and r contains only a transition leading from n to m and
executing G | send e to p,

(MR){A}p{(af n A G A Q#empty) -> B[x/front(Q), GVdelete(Q)]}
I- {A}p{afm->B},

where Q is the variable representing the queue of messages sent to
p, and p contains a single transition leading from n to m
and executing G | receive x,

576

(R;)
(') A n e t e r m (p) { A } p { a f n ^ B } , {B}r{afm->C} I- {A}p;r{af m->C},
where menodes(r) .
(ii) {A}p{ark->B} I- {A}p;r{afk->B}, where ke nodes(p)

(R+) {A}p{a/n->B}, {A}r{afn->B} I- {A}p+r{af n->B},

(R=)
{A}graph(Ep){ar n->B},{A}graph(Ep){Ak= in j t(p)aJ k->A}

I- {A}p{af n->B}
where p is defined by equation p=Ep(p),

(RID
{A}p{B}, {A}r{B} {A}s{B} I- {A}p||r||...||s{B},

(G) {A }p {A n 6 n o d e s (p) a /n^B} h {A}p{B},

(L)
(i) B^C, {A}p{B} I- {A}p{C},
(ii) C^A, {A}p{B} h {C}p{B},
(iii) {A}p{B}, {A}p{C} 1- {A}P {BAC}.

Let us now briefly discuss the soundness of the proof system. We want
to show that for any set F of classical first-order formulae, Fh{A}P{B}
implies FN{A}P{B}.

As usually, it suffices to show that for any model M of F, and any rule R
of the proof system, if the premises of R are true in M, then also the
conclusion of R is true in M.

The soundness of rules (I), (E), (N), (S), (R;), (R+), (G) and (L) should be
obvious.

The soundness of (MS) and (MR) follows immediately from the
definition of operational semantics, where we assumed that sending
(receiving) a message depends on inserting (deleting) the message into
(from) the respective queue.

The soundness of (R=) follows from the fact that all nodes in an
annotated graph which are to be identified with the initial node of p
have to satisfy the initial condition.

577

The soundness of (R||) follows from the fact that we assumed
interleaving as the underlying model of concurrency. Namely, in the
view of (G), the premises of (R||) assure that the formula B is preserved
by any transition of p, r s. Thus it is preserved by any sequence of
transitions of p, r,..., s.

5. A SIMPLE EXAMPLE

Let us consider a simple example of two processes, each with an initial
set of items, which communicate to arrange that one process has the
smaller items, the other the larger ones.

In the figure below by Init and Inv we abbreviate the following
formulae:

Init <-»

Inv <-»

Small.Q=Large.Q=empty A S=S0 A L=L0 A
LOnSO=0 A Oe SO A Oe LO A |S0|>0 A |L0|>0

LnS = 0 A SuLcSOuLO A
Vze Large.Q ze L A ze S A ze SOuLO A
Vze Small.Q ze L A ze S A ze SOuLO A

Vz1 e Small.Q Vz2e L z1 <z2 A
x<min(L) A xe Small.Q A ye Large.Q,

where x and y are local variables of Small and Large, respectively.

The program can be described e.g. by the following expression:

S = (Sl,,s2);(s2',s3);(s3,,s4);(s4',s5); [(s5',s6) + [(s5",s7);S]]
Small = (sO.sl); S
L = (t1',t2); [[(t2',t3);(t3',t5);L] + (t2",t4)]
Large = (t0,t1); L

where (si.sj) and (tl.tm) denote respective transitions shown on the
figure below.

Note that the figure illustrates the transition graph of the program as
well as an annotated graph.

578

Small: Large:

{Inv AISHSOI)

true I mx,S> max(S), S-(max(S)}

^ J L j I n v A | S N S O | - I A mx$S)

true | send mx to Large

(Inv A I S H S 0 | - 1 }
true I receive x

(^ s4j(inyA |sHS0|-1>

true | S:= S| u (x> ^ _ X (| n v A IsNsol)

ts)=x I send 0 to Large

^ to J(inu)

true I skip

{Inv ALNLOI)

A LHLOl)

S I t3
t4
TTnv A ILOHLI- 1}

true | nm,L:- mln(L), L-{mln(L)}

/—\(lnv A LHLOl A mn iU

I) — t r u e I send mn to Small

'(Inv AISHSOI)

<(S)>x | skip

We are going to prove that for any formula Aj labeling a node nj in
Small||Large,

{Init} Small || Large {at n^Aj}.
First we show that

{Init} Small || Large {Inv}.

By rule (R||) it suffices to show

{Init} Small {Inv} and {Init} Large {Inv}.

579

By rule (G) it reduces to proof that for any node Sj in Small (Large),

{Init} Small {afej->lnv}.

Now the proof can be carried out by using provided rules.

In order to prove remaining formulae (e.g. {lnit}Small{ar s6 -> |S|=|S0|})
one can apply respective rules (e.g. to prove {lnit}Small{af s6 ->
|S|=|S0|} it suffices to show that {lnit}Small{af s5 -> (lnvA|S|=|S0|)} and
to apply rule (MS)).

Note that from the above we can deduce that
{Init} Small || Large

{at s6Aaft3 -»(LuS=L0uS0 A LnS=0 A Vz1eSVz2eL Z1<Z2)}.

6. CONCLUSIONS AND RELATED WORK

Many authors gave proof systems that enable us to prove properties of
concurrent processes (cf. e.g. [1,7,9] or the surveys [2,9]). A proof
system given in [9] is maybe the one most closely related to that given
in our paper. Misra and Chandy present a proof system for networks of
processes communicating by message passing. They specify processes
by pairs of assertions. The notation r|h|s means that s holds initially in
process h and the holding of r at all times prior to some message
implies that s holds at all times prior to and following that
communication. We think, however, that the pairs of assertions we use
are more natural and easier to use. In fact, the assertions we use
generalize the well-known assertions of Hoare [5]. Moreover, in [9] the
authors model networks of processes using CSP-like notation. The
model of processes we have investigated is fully asynchronous and
needs no CSP-like (thus synchronous) primitives.

Our work has to be seen as an ongoing development of formal methods
for asynchronous systems in the FORMAST project.

580

REFERENCES

[1] Apt, K.R., Francez, N. and de Roever, W.P., A Proof System for
Communicating Sequential Processes, ACM TOPLAS, 2, 3, (1980),
359-385.

[2] Barringer, H. A Survey of Verification Techniques for Parallel
Programs (LNCS 191, Springer-Verlag, 1985)

[3] Dijkstra, E.W., A Discipline of Programming (Prentice-Hall Inc.,
1976)

[4] Hemdal, G.A.H. and Coombs, C, Softchip Technology: A New System
Architecture for Telecommunication Processing and Other Real Time
Systems, 6th Int. SETSS Conference, Eindhoven,1986 (IEE Publication)

[5] Hoare, C.A.R., An Axiomatic Basis for Computer Programming,
Communications ACM, 12, (1969), 576-580.

[6] Hoare, C.A.R., Communicating Sequential Processes, Communications
ACM, 21, 8, (1978), 666-667.

[7] Levin, G.M. and Gries, D, A Proof Technique for Communicating
Sequential Processes, Acta Informatica, 15, (1981), 281-302.

[8] Milner, R, A Calculus of Communicating Systems (LNCS 92,
Springer-Verlag, 1980)

[9] Misra, J. and Chandy, K.M., Proofs of Networks of Processes, IEEE
TOSE, SE-7, 4, (1981), 417-426.

[10] de Roever, W.P., The Quest for Compositionality: A Survey of
Assertion Based Proof Systems for Concurrent Programs: Part 1:
Concurrency Based on Shared Variables, Proc IFIP Work. Conf. on the
Role of Abstract Models in in Information Processing, E.J. Neuhold and
G. Chroust (eds.), (North-Holland, 1985), 181-206.

III. ADVANCED INFORMATION PROCESSING

Paper presented in the Plenary Sessions:

Phase 2 of the Reconfigurable Transputer Project
- P 1085 583

Parallel Sessions

1. Knowledge Engineering 593

2. Systems Architecture and Design 701

3. Signal Processing, Natural Languages 811

4. Expert Systems 891

5. Documents Architecture,
Storage and Retrieval (Part I) 1005

583

Project No. 1085

PHASE 2 OF THE RECCNFIGURABLE TRANSPUTER PROJECT - P1085

J G Harp
Royal Signals and Radar Establishment
St Andrews Road, Malvern, Worcs. England

Abstract

ESPRIT p r o j e c t P1085 has t h e o b j e c t i v e of d e v e l o p i n g a h igh
performance multiprocessor computer with supporting software and a
range of a p p l i c a t i o n s t o demonstra te i t s performance. This paper
d i s c u s s e s t h e p r o g r e s s made a t t h e mid-po in t of t h e p r o j e c t i n
m e e t i n g t h i s o b j e c t i v e . P r o t o t y p e m a c h i n e s b a s e d on a
r e c o n f i g u r a b l e a r c h i t e c t u r e have been b u i l t and a r e desc r ibed .
Software t o o l s have been def ined and a r e be ing implemented.
A p p l i c a t i o n s have been d e v e l o p e d u s i n g Occam and t h e h i g h
performance being achieved i s presented.

1. INTRODUCTION

Assuming t h a t b i o l o g i c a l systems go t i t r i g h t a few m i l l i o n y e a r s ago
witii p a r a l l e l processing, then highly p a r a l l e l Mul t ip le Ins t ruc t ion Mul t ip le
Data (MIMD) a r c h i t e c t u r e s appear t o have s ign i f i can t advantages over other
a rch i tec tures . MIMD machines have the po t en t i a l of high performance with the
f l e x i b i l i t y t o s u i t a wide range of a p p l i c a t i o n s bu t w i th t h e known
d i f f i c u l t i e s i n c o n t r o l and programming. ESPRIT p r o j e c t P1085 has t h e
objec t ive of developing a MIMD multiprocessor machine with supporting software
t o demonst ra te t h a t h igh performance can be ach ieved o v e r a wide range of
appl ica t ions .

Project P1085 i s seeking a low cost so lu t ion t o the high computational
demands of s c i e n t i f i c and eng inee r ing a p p l i c a t i o n s by d e v e l o p i n g a VLSI
processor which w i l l be r ep l i ca t ed t o form a h ighly p a r a l l e l computer. The
p r o c e s s o r be ing deve loped i s a second g e n e r a t i o n t r a n s p u t e r wi th on-ch ip
f loa t ing point processor. High performance i s being achieved by using la rge
numbers of t r a n s p u t e r s . In o r d e r t o op t imi se communications for t h e wides t
range of appl ica t ions , the philosophy of the P1085 arch i tec ture i s based en a
reconfigurable interconnection s t a t e g y t o g i v e a Reconf igurab le Transpute r
P rocessor . The machine i s modular based on nodes of t r a n s p u t e r s wi th t h e
interconnections (or l inks) between t ransputers being v i a software con t ro l l ed
switches. Single nodes of t y p i c a l l y 18 t ransputers can be used as powerful
workstations o r nodes may be connected together, again reconfigurably, t o give
machines with supercomputer performance.

Operating systems, high l e v e l languages and support software are being
developed and implemented t o ease the programming burden and software t o allow
both hardware and sof tware t o be debugged i s i n an advanced s t a t e of
development.

Signif icant progress i s being made in demonstrating t h a t high performance
can be ach ieved i n a p p l i c a t i o n s rang ing from t h e h igh da t a r a t e s of s i g n a l
processing, through pa t t e rn recognition t o general appl ica t ions in science and
engineering.

[This work i s p a r t i a l l y supported by CEC under contract P1085]

584

In the fol lowing sections we describe the progress at the mid-point of
the project in developing hardware, software and applications and the early
results being achieved.

2. HARDWARE

P1085 i s developing a modular, h ierarchical archi tecture based on
reconfigurable nodes of t ransputers . Network topology, both within and
between nodes, i s determined by VLSI switches controlled by transputers; thus
the topology of the a r c h i t e c t u r e can be opt imised for any s p e c i f i c
application. This architecture allows the communication between processors to
be configured to match the bandwidth requirement of the application.
Additionally, the topology can be configured to match the algorithm reducing
the programming burden. A more deta i led philosophy of the archi tecture i s
given in [1].

Each node (or supernode as i t i s ca l l ed) consis ts of 16 worker
transputers as shown schematically in figure 1. Each worker transputer will
be a T800 device which integrates a 32 bi t CPU, a 64 bi t floating point unit,
four standard transputer communication l inks , 4Kbytes of RAM, a memory
interface and peripheral interface on a s ingle chip fabricated using a 1.5
micron CMOS process.

The four l inks of each worker transputer are connected to a 72x72 VLSI
switch which i s controlled by a further transputer which also has i t s links
connected to the switch. The 72x72 switch i s implemented in two NEC ICs, each
functionally equivalent to a 72x36 cross-bar switch. Each T800 has 256 Kbytes
of external memory and the node has an addit ional t ransputer with a large
amount of memory (16 Mbytes) which can be used for s toring and d is t r ibut ing
data and code. There i s an option of incorporating a Winchester disk,
controlled by a M212 transputer into the node.

* = TRANSPUTER OR SUPERNODE.
Figure 1 RTP Schematic

585

A program running on the control transputer can set up any interconection
network, in a re-arrangable non-blocking mode, for a l l links within the node.
Thus within the node, using one 72x72 switch, any pa i r of l inks can be
connected. For machines consisting of more than one node, two 72x72 switches
are used to allow any l ink to be connected outside the node. An addit ional
in te rnode switch i s used t o implement a 3 - s tage Clos network for
reconfiguration between nodes. Thus in figure 1, the components designated as
worker transputers can equally well represent nodes, giving a hierarchical
machine. The a b i l i t y to implement any 4-connected network over the whole
machine frees the programmer from having to consider the node s t ructure ,
though he may wish to do so in order to simplify programming.

An important feature within the node i s a control bus which enables any
transputer t o communicate with the control transputer independently of the
l inks . This f a c i l i t y has been incorporated for synchronisation and for
debugging programs. Again, the control bus i s h ierarchica l allowing the
control transputers to communicate with each other and with a host computer.

A computer with the power of RTP can 'consume' or generate vas t amounts
of data and we are developing a Fast I/O node to enable high speed input and
output of data. The Fast I/O node (figure 2) consis ts of e s sen t i a l l y ,
sequencers and link adaptors. Data i s fed to or from the peripherals (radar,
TV camera or imager) into sequencers implemented as FIFO memories controlled
by a chain of programmable counters offering a flexible method of segmenting
and routing the data. The data i s connected to the RTP through 64 l ink
adapters v ia a t ransputer cont ro l led switch giving a consistent system
architecture. Data can be routed from the fast I/O node to any processors in
the machine and from the programmers viewpoint the Fast I/O node appears as
any other node in the system.

SWITCH

LINK
GROUPS

FORMATTER

PERIPHERAL

Figure 2 Fast I/O Node Schematic

586

In general there are three modes of operation of any switched system;
static, quasi-static and dynamic. In, static switching, programs are written
for a fixed topology that matches the algorithm. The program is compiled and
configured producing a configuration table. The switches are set using data
from the configuration table and the program is down loaded and executed.
Static mode switching may be used to partition the machine into independant
units to allow simultaneous access for multiple users.

In quasi-static switching, the machine configuration can be changed at
pre-determined synchronisation points. For example, in image processing, the
topology is first configured to allow the image to be input at maximum data
rate. Once data is distributed over the processors, the machine may be
configured to a two-dimensional array (or mesh) for low level image processing
operations such as convolution and segmentation. After completion of low
level operations, all communication ceases and the the machine is configured
into a tree, say, for high level pattern recognition.

In dynamic switching, any link can be connected to any other link at any
time provided that there is no communication on the links being switched.
Dynamic switching allows dynamic load balancing and fault tolerance and offers
potential benefits for efficient implementation of some high level languages.

The RTP architecture supports all three switching modes and is currently
being used statically and quasi-statically. There are potential problems in
dynamic switching such as bottlenecks in the switch controller, overheads in
synchronisation and software control. Full exploitation of dynamic switching
is beyond the current resources of P1085 and is not being pursued in detail.

3 SOFTWARE

If the architecture is successful then the software has to support a wide
spectrum of users from the sophisticated programmer who wishes to obtain
maximum performance from the machine to the naive user with little experience
of parallel architectures and who does not necessarily wish to know details of
the hardware. Here we have a conflict in that we are making a general purpose
machine for a range of applications varying from those that require maximum
performance at the expense of increased programmer effort, to users with
limited expertise but who are willing to accept lower hardware performance and
efficiency. We are attempting to satisfy the spectrum spanned by these
extremes by developing software based on the Occam model of computation.
Within tiiis model, hardware features such as the switch and control bus can be
hidden from the naive user

The RTP software is based on a three layer model. Layer 1 is the system
utility software and includes cccam-2 and a modified Transputer Development
System. The basic modules are a system environment package which maintains a
small data base of system components and systems status (eg number and types
of nodes, memory and switch setting) and an interface between the nodes and a
host. There are modules for controlling the switch and the bus, hardware
checking and error handlers.

Layer 2 software is the higher level support and operating system tools
which will extract communication graphs from an occam program, extract switch
settings from the graphs, and configure the machine topology. Research topics
in layer 2 include automatic allocation of processes to processors and the
control of process migration. An advanced communications kernel will allow
the programmer the freedom to use as many links per processor as he requires
with links greater than four being mapped onto soft channels using a message
switching protocol.

587

The l a y e r 3 s o f t w a r e i s t h e h i g h l e v e l p r o g r a m m i n g s t a g e and i n c l u d e s
p a r a l l e l P r o l o g , and r e a l - t i m e and s e t t h e o r e t i c l anguages .

4 APPLICATIONS

A p p l i c a t i o n s a r e b e i n g d e v e l o p e d i n t h e f i e l d s o f s i g n a l and image
p r o c e s s i n g , image s y n t h e s i s , s c i e n c e and e n g i n e e r i n g , c o m p u t e r a i d e d d e s i g n
and computer a i d e d manufac ture . The a p p l i c a t i o n s a r e chosen t o t e s t t h e power
and f l e x i b i l i t y o f t h e RTP a r c h i t e c t u r e . They v a r y i n d a t a t h r o u g h p u t
r e q u i r e m e n t s , d a t a s t o r a g e r equ i remen t , number c runch ing demand and i n t e r f a c e s
w i t h b o t h p e r i p h e r a l s and o p e r a t o r s . For example, s i g n a l p r o c e s s i n g demands
r e g u l a r o p e r a t i o n s on h i g h bandwidth s t r u c t u r e d d a t a whereas t h e emphasis i n
s c i e n t i f i c a p p l i c a t i o n s (s u c h a s l a t t i c e g a u g e t h e o r y) i s on h i g h a c c u r a c y
f l o a t i n g p o i n t c o m p u t a t i o n . The CAD a p p l i c a t i o n i s c o n c e n t r a t i n g on l o g i c
s i m u l a t i o n o f VLSI c i r c u i t s and demands a good u s e r i n t e r f a c e and l a r g e
a m o u n t s o f memory. I n t h e CAM a p p l i c a t i o n , t h e RTP a r c h i t e c t u r e h a s t o b e
i n t e r f a c e d t o l o c a l a r e a ne tworks .

5 RESULTS AND ACHIEVEMENTS

A f t e r 18 m o n t h s o f t h e 3 y e a r p r o j e c t we h a v e made p r o g r e s s i n
a r c h i t e c t u r e deve lopment , so f tware and a p p l i c a t i o n s .

5.1 Hardware

A key component of the architecture is the switch circuit. This
component has been designed and fabricated on a 14000 gate-array IC. NEC have
supplied the first 50 engineering samples which have been tested and shown to
meet the specification. Prototype supemodes, RTP-1 and RTP-2, incorporating
switch ICs have been constructed and used by the applications programmers.
The RTP-1 version (shown in figure 3) is implemented as 5 circuit boards and
consists of a transputer controlled frame store, two boards each containing 8
transputers (T414s) with each transputer having 128 Kbytes of external RAM, a
switch and controller board and a display board. RTP-2 is similar but has 16
transputers each with 256 Kbytes of RAM on 4 PCBs. RTP-1 and RTP-2 do not
have a control bus.

Figure 3 RTP-1

588

First samples of the T800 have been supplied to the consortium and the
following performance figures have been achieved :

operation

add
subtract
multiply
divide

A more realistic measure of performance is the Whetstone benchmark and the
performance of the T800 is compared with other processors below:

single length

350 ns
350 ns
650 ns
950 ns

double length

350 ns
350 ns
1050 ns
1700 ns

processor

Intel 80286/80287
linos T414-20
NS 32332-32081
MC 68020/68881
ATT 320000/32100
Fairchild clipper
T800-20

8 MHz

15 MHz
16/12 MHz

33 MHz

Whetstones/sec
single length

300K
663K
728K
755K
1000K
2220K
4000K

The T800 has more memory and higher link speed than the T414 transputers.
On-chip memory is increased to 4 Kbytes and an overlapped acknowledgement
protocol achieves a data rate of 1.8 Mbytes per second in one direction on a
link, or 2.4 Mbytes per second overall rate when the link carries data in both
directions simultaneously. Graphics support is provided in the T800 by the
incorporation of a two-dimensional block move.

Initial samples of the T800 had bugs and "preventative programming" had
to be used. Ccmnercial devices are expected by September and it is intended
to demonstrate applications running on RTP with T800 transputers at this
conference.

5.2 Software

A t e s t and exerciser harness has been wri t ten and i s being used to
develop system u t i l i t y modules. In i t ia l versions of the switch and control
bus modules have been written. A major component of the baseline software i s
the systems environment package whose functionality and interfaces are being
refined. A family of operating system too l s have been defined during the
study phase indicating tha t i t i s possible to ease the programmers task. A
f i l e server has been implemented to interface the t ransputer resident
development system to a host running under Unix,

As a f i r s t step in developing a Prolog compiler, a macro assembler (AST)
has been wri t ten for the transputer. AST has been used to produce a Prolog
compiler and a s ingle transputer version of Prolog i s now being tes ted and
documented.

No matter how good the operating system, program development on a
para l le l machine i s more difficult than on a serial machine. When debugging a
crashed program which i s d is t r ibuted over a number of processors the
programmer has to to be able to access information stored in each processing
element and then analyse tha t information. Task 12 i s developing an
interactive debugging system. Two methods of retrieving information are being
developed; one based on an Analyse worm and one based on the control bus. The

589

analyse worm i s essentially based on a bootstrapping program which can relay
information on the s t a t e of any processor v ia l inks to the host. Using the
control bus has the advantage of being able to access deadlocked transputers
as i t i s independent of the links.

A p i l o t post-mortem debug system based on the analyse worm has been
produced and used successfully in a r e s t r i c t ed hardware environment on a
number of occam programs. Following a program crash i t i s possible to
determine the the s t a t e of execution within the occam source on individual
transputers. The user interface wil l show the current occam instruction on
ha l t ing , access selected var iab les , t race through procedures and access
the hardware s t a t e . In the next phase an advanced user interface w i l l be
developed together with software to access the s t a t e of the array v ia the
control bus and tools to allow 'breakpoint and continue'.

5.3 Applications

Al l s ix appl icat ions work packages have completed a study phase,
developed representative algorithms and implemented those algorithms on arrays
of transputers. In every case, parallelism has been identified and exploited.

From the appl icat ions, a methodology i s being developed to aid in
d i s t r ibu t ing programs onto p a r a l l e l archi tectures [2]. We use three broad
classes of parallelism:
i) Event Para l le l i sm where each processor executes the same program on a

different , but complete, data set and where only a minimum amount of
communication i s necessary,

i i) Geometric Parallelism where each processor executes a similar program but
on a subset of the data. Communication i s increased as each processor
may require access to data stored in other processors,

i i i) Algorithmic Parallelism where each processor executes a segment of the
algorithm and where the data tends to flow through pipel ines of
processors.

Algorithmic pa ra l l e l i sm appears a natural mapping but care i s required in
determining control and communication; i t i s very easy to get i t very wrong
with consequent low efficiencies. Geometric parallelism i s generally easy to
code and tends to give high efficiency but requires more memory to store the
replicated code.

We can use this classification as an aid to identifying parallelism in an
algorithm and for configuring the topology to optimise efficiency. Applying
these methods to the solut ion of Laplace's equation gives the following
timings:

method
Sequential on 1 T414
Geometric on 4 T414s
Algorithmic on 4 T414s
Hybrid on 16 T414s

time
143 ms
37 ms
64 ms
17 ms

efficiency
-
96%
56%
52%

Mean memory/processor
15K
7K
5K
2K

The hybrid approach combines the advantages of geometric and algorithmic
methods, and in pract ice some form of hybrid approach w i l l probably be used
on large multi-node machines. The sequential algorithm was implemented in
occam on a 68000 based machine and executed in 2.57s.

Algorithms for logic simulation for VLSI circuits being developed in the
CAD a p p l i c a t i o n can e x p l o i t a combination of event and algorithmic
parallelism. Here we are developing a logic simulator called Lucky-Log which
uses an event-driven simulation [3]. Lucky-Log i s based on a set of
interconnected units where each unit consists of three tranputers; two Event
Computing Transputers and an event manager transputer. Each unit operates on

590

an event list and comunicates the results to a display manager transputer.
Thus each supemode can implement 5 simulation units and a display manager.

Luck-Log is being implemented on T414 transputers and the following
results have been measured and predicted for T800 transputers:

3 x (T414 + 2 Mbyte DRAM) 5000 EPS
3 x (T800 + 2 Mbyte DRAM) 10000 EPS
Supernode 75000 EPS

where 1 EPS is defined as search the event list, compute all gate outputs and
then update the event list. (HILO on a VAX780 runs at 1500 EPS).

Algorithms for low level image processing map naturally in a geometric
fashion onto two-dimensional arrays of transputers. Each processor operates on
a rectangular sub-image and communicates overlapping regions to each of its
neighbours after each operation. We have implemented a range of functions for
filtering, convolution, segmentation, histogramming etc. [4]. We have
demonstrated that 16 transputers can filter, edge detect and segment a 128x128
image in 80ms and that performance improves linearly as the number of
processors is increased.

Space limitations do not allow a description of all P1085 applications
and the results described above are typical.

6. CONCLUSIONS

At the mid point of the project we have defined an architecture and built
prototype machines. Initial samples of the T800 floating point transputer
have been supplied to the project and a performance 3 times higher than the
original target specification has been achieved.

Much of the software activity began as research topics. We have
identified operating system tools and methodologies to improve programmer
productivity and seme of these tools will be implemented in the next phase.
The work on debugging techniques has been particularly successful and has
produced software which is now being incorporated into a commercial product.
However, software systems for highly parallel architectures are still in their
infancy and much more research is required.

A range of applications have been programmed in Occam and run on networks
of transputers. High efficiencies have been measured demonstrating that it is
possible to program MIMD machines and that high performance can be achieved in
diverse applications. An initial, but important, conclusion is that
reconfiguration makes the machine easier to program.

During the remainder of the project machines will be manufactured and
supplied to the partners for applications development and for software
research. It remains to be seen if the encouraging performance that has been
attained on a few tens of processors can be achieved on a few hundred
processors.

591

7. ACKNOWLEDGEMENTS

The work reported on here has been performed by the P1085 consortium as a
whole and the author is merely a mouthpiece. The results have been achieved
by a lot of dedicated and intensive work by experts too numerous to mention.
The author gratefully acknowledges all members of the project for their
contributions.

8. REFERENCES

1. Harp JG, Jesshope CR, Muntean T, Whitby-Strevens C.
"Phase 1 of the development and application of a low cost high performance
multiprocessor machine".
ESPRIT 86:Results and Achievements, Elsevier Science, 1987, 551-562
2. Pritchard DJ, Askew CR, Carpenter DB, Glendinning I,
Hey AJG, Nicole DN. : "Practical Parallelism using Transputer Arrays"
Proc PARLE Conf., Eindoven, 1987
3. Werner J, Beresford R
"A system engineers guide to simulators"
VLSI Design, Feb 1984, 27-31

4. Harp JG, Palmer KJ, Webber HC
"Image Processing on the Recanfigurable Transputer Processor"
Proc 8th OUG Technical Meeting, To be published.

9. P1085 PARTNERS

Royal Signals and Radar Establishment
St. Andrews Rd, Malvern, Worcs. UK

Apsis
Chemin du Vieux-Chene, Zirst 38240, France

Inmos Ltd
1000 Aztec West, Almondsbury, Bristol, UK

Laboratoire Genie Informatique (IMAG)
University of Grenoble, BF68, 34402 Grenoble, France

Telmat SA
ZI Route s'Issenheim, F-68360 Soultz, France

The University
Southampton, UK

Thom-EMI Central Research Labs
Dawley Road, Hayes, Middlesex, UK

Copyright (C) Controller HMSO London 1987

593

P r o j e c t No. 530

STATUS AND EVOLUTION OF THE EPSILON SYSTEM

Giorgio Levi , Mario Modesti"1", Jacques Kouloumdjian§
$

Dipartimento di Informatica
Universita di Pisa - Corso Italia, 40-56100 Pisa - Italy
Tel.+39 50 510246

+ Systems & Management SpA
Vicolo S.Pierino, 4-56100 Pisa - Italy
Tel. +39 50 598084 (598035), Tx. 320629 SEM MI

§ Universite" Claude Bernard de Lyon
Laboratoire informatique IUT 1
43, Bd du 11 nov 1918,69622 ViUeurbanne CEDEX
Tel: 78 94 88 57

1. The EPSILON prototype

Epsilon /Coscia86,87/ is a prototype of a knowledge base management system developed
within ESPRIT Project 530. Epsilon is built on top of commercial PROLOG and Relational Data
Base Management systems, running on standard UNIX environments. The main concepts
underlying the Epsilon approach are:

1. the extension of PROLOG with theories (multiple worlds),
2. the definition of a transparent interface from PROLOG to Relational Data Base Management

Systems
3. the use of metaprogramming as the basic technique to define new inference engines and

tools,
4. the use of partial evaluation techniques as a systematic method to "compile" metaprograms,
5. the definition of a graphical user interface on a personal computer.

This paper gives an overview of the current status concerning points 1, 3 and 4.
Data bases can be integrated in the KBMS according to an interpretive or a compilative

approach. In the first case, the PROLOG interpreter interacts with a component, which translates
conjunctions of edb-predicates into complex queries to the DBMS. In the compilative approach
/Coscia86/, logic programs are first translated into relational algebra expressions and then further
optimized. We are only interested here in stressing that Data Bases are viewed by the user through
the uniform theory mechanism.

The user interface is defined on a Macintosh, which takes care of all the graphical operations
without affecting the performance of the host UNIX machine and provides user-friendly features
(such as windows and menus) and nice knowledge editing facilities.

2. Adding theories to PROLOG

The theory is the basic component of the Epsilon knowledge base. Theories are similar to
worlds in MULTILOG /Kauffmann86a,86b/ and to unit worlds and instances in MANDALA
/Furukawa84/.

594

Namely, they are composed of a chunk of knowledge, associated to a specific inference
machine (theory processor).

A theory corresponds to a chunk of knowledge contained in a file and is associated to a
window in the graphical user interface. The theory processor contains operations to query the
theory, to update and search the theory, to load/unload the theory, considered
as an atomic separate object. The theory processor can also contain tools (debugger, tracer,
explanator, query-the-user). Epsilon provides two primitive theory processors (or classes): the first
one handles the language PROLOG extended with the theory feature, while the second one handles
Data Base theories. As we will discuss later, new classes (theory processors) can be defined.

Adding theories to standard PROLOG allows to define a structure on the PROLOG
workspace and provides a renaming mechanism which guarantees that each theory contains objects
whose names differ from object names occurring in other theories. This mechanism is currently
simulated on top of a commercial PROLOG compiler.

The kernel of Epsilon maintains a Knowledge Base Dictionary, which contains a description
of the existing theories (in particular, their classes). Theories can communicate by making a
reference to the generic operations for querying and updating theories. The kernel uses the
Knowledge Base Dictionary to select the operations of the proper inference engine.

Let us consider the simple example in Figure 1, where the theory dbrules has class Prolog
and the theory stores has class Data Base, as shown by the Knowledge Base Dictionary (KBinfo).
The window corresponding to the Data Base theory does not contain the Data Base tuples, but
contains the (PROLOG representation of the) Data Base Dictionary. The PROLOG relations defined
in dbrules are essentially views on the data base, defined by an explicit reference to the query
operation call(Goal,Theory). The kernel will translate the generic invocation of call into an
invocation of the specific query operation in the Data Base theory processor.

6 Theory Edit View Special TOOIBOH
ymmmwwmmmmwtiimiimiim

KB Info
theory < dbruIes,pro Iog >.
too Is_for<dbrules,[trace,compile]

theory(stores,database).

dbrules
in_selI ing<fl) :-
cal I <stock<B,C,FI,D,E,F>,stores),

specifi(^customer(fi,B,C,D,E,F> :-
cal K<stock<G,H,F, l,J,E),

items(K,L,G,M,D,N),
orders<L,C,fl,0,P,Q,R,S,T,U),
customer <R,U,U,X,V,Z,fl1,B,B1,C1>>,
stores).

o

l£k
stores

cus tomer<cus tomer_num:ser ia l , fname:char<15) , lname:char< ^

cus tomerxx (cus tomer_num:se r i a l , I name:char<15)) .

i tems< i tem_num:smal I i n t , o rde r_num: i n t e g e r , stock_num: CTi<

i temsxx<order_num: i n t e g e r , t o t a l _ p r i c e : m o n e y) .

manufact(manu^code:char<3),manu_name:char<15)) .

orders <order_num:ser i a I , o r d e r _ d a t e : d a t e , c u s tomer_num:i n

o rdersxx < order_num:ser i a I ,cus tomer_num:i n t e g e r) .

s t o c k (s t o c k _ n u m : s m a l I i n t , m a n u _ c o d e : c h a r < 3) , d e s c r i p t i o n : !

Figure 1. Two theories and the Dictionary.

3. Defining new classes (theory processors) by metaprograms

Inference engines are handled as first-class citizens in Epsilon, since new inference engines

595

can be defined inside theories. A knowledge base is then composed by homogeneous objects
(theories) that can indifferently be either user (object level) theories or theory processors for other
theories. If a theory T has class C, there exists a theory named C containing the inference engine of
T. It is therefore possible to build in a cleaner and natural way knowledge bases relying on specific
domain knowledge and multiple layers of general (control) knowledge, and to extend in a simple and
efficient way the features of the system without modifying the kernel.

A theory defining an inference engine for a class of theories must define the programs for
querying (call) and for updating (assert and retract). Moreover, an engine can define tools.

Metaprogramming is used to define the various inference machines. The power of
metaprogrogramming in logic languages is shown by the structure of the well-known three-lines
metainterpreter /Sterling84/.

1. solve(true):-!.
2. solve((Ql,Q2)):-!, solve(Ql), solve(Q2).
3. solve(Q):- clause(Q,Body), solve(Body).

The definition is so simple and short, because most of the job is done by the underlying "true"
object level interpreter. The metainterpreter does not explicitely define the two computationally most
complex procedures, i.e. backtracking and unification. Backtracking is, in fact, implicit in clause 3,
since the atom clause(Q,Body) is backtrackable. Unification, on the other hand, corresponds directly
to the object level unification.

The definition of "enhanced" metainterpreters becomes attractive, because it allows to define
new functionalities without modifying the program (the object level knowledge) and the basic
interpreter. Enhanced metainterpreters can embed new control strategies, extend the logic language
with new useful constructs (for instance, knowledge structure, or uncertainties) and the related
inference rules (inheritance or approximate reasoning), or define analysis tools, to provide typical
expert systems (explanation, query-the-user, etc.), or interactive monitoring (debugger, tracer, etc.)
capabilities.

One of the main features of the metaprogramming approach is its ability to extend the
language, the inference machine and the environment, without modifying the basic building blocks,
i.e. the PROLOG interpreter and compiler. The extensions defined as (PROLOG) metaprograms are
easy to define and portable, as is the case for tools in LISP environments. Their performance is
anyway rather poor, if compared to what could be obtained by an ad-hoc implementation of the new
language/environment, which, however, is a very expensive solution, and, in addition, is not
necessarily open to further extensions and modifications. Metaprogramming is, instead, easy, more
flexible and clean, since the knowledge (the rules in the possibly extended language) and the
inference engine (the metainterpreter) are separate and easy to understand, and all the extensions in
the inference engine are clearly defined at the meta-level.

The real drawback of metaprogramming is performance. There exists, however, an interesting
technique (partial evaluation of metainterpreters), which allows to combine the low cost and the high
flexibility of metaprogramming with performance. This technique will be discussed in Section 7.

4. Defining new features by links in the Knowledge Base

A new inference engine conceptually defines a new knowledge representation language. The
new language features can either affect the object level description language (as is the case, for
instance, of clauses extended with uncertainties and of PROLOG extended with coroutining) or be
represented at the meta-level, as relations among theories. We will mainly discuss the last case,
which is realized in Epsilon defining links between theories and by representing them in the
Knowledge Base Dictionary.

Some links define "new" inference rules for a theory. In such a case, the inference rule must
be embedded in the query metainterpreters of the theory processors. We will discuss an example in
the next section.

Other links define constraints on the theory updating and are supported by those components
of the inference engine which handle the theory updating. This is the case of the constraint link. If
a theory Tj has its integrity constraints in theory T2, any update operation on Tj will cause an

596

invocation of a suitable component in the inference engine of T2, which supports the language used
to express the integrity constraints.

Other links are finally related to the Knowledge Base Management. This is the case of the
primitive version link, directly related to the tools for program transformation and optimization
provided by Epsilon. Examples are the partial evaluator of metaprograms and the transformation
tools used in data base access optimization. The application of a transformation tool P to a theory T
generates a derived theory T', which is linked by a version link to T.

Consider the example shown in Figure 2, where T3 is obtained by partially evaluating the
knowledge in Tl, under the metainterpreter demo, belonging to the inference engine of Tl. T3 is
linked to Tl by the link version(demo). The semantics of such a link is twofold. When a call of
demo applied to some predicate in Tl is found, it is converted into the corresponding call in T3.
Moreover, when Tl is updated, T3 must be kept consistent with Tl updatings.

Figure 2. The version link in a partial evaluation of metaprograms.

In the current Epsilon prototype we have defined some non primitive classes. The most
interesting is a class which defines various inheritance mechanisms, based on the definition of links
between theories in the Knowledge Base Dictionary.

5. Inheritance rules and inheritance links

Default communication mechanisms between theories Tj and T2 are achieved by defining an
inheritance link from T2 to Tj . This link is interpreted by the query handler of Tj as follows. If a
subgoal cannot be solved in Tj , it is solved in T2. Multiple inheritance is possible. In the case
shown in Figure 3 (where the two theories share the same inference engine), the result is inheritance
of the "object level" knowledge (i.e., the clauses of T2 are available in Tj). The case in Figure 4,
where the subgoal is solved by the inference engine of T2, is typical of the interaction between
theories having different inference engines.

597

Figure 3. Inheritance of "object level" knowledge.

inherit

Figure 4. Inheritance through a different inference engine.

As an example, we can consider the case where Tj is a logic program and T2 is the set of
tuples in a database. The database is visible to the logic program, through a specific inference
engine, i.e. the data base query processor.

6. An example with links: The 3 wisemen problem

The inference engine used in the example (the theory engine) contains the metaprogram
(query-metainterpreter) scall (in Figure 5). scall defines a language which is essentially PROLOG
(including cut), extended with the above discussed inheritance rules.based on the links clsinher and
clsisa. If Tl inherits from T2 through the link clsinher, then queries failed in Tl can be solved in
T2. If Tl inherits from T2 through the link clsisa, then queries failed in Tl can be solved (in Tl)
using clauses of T2. The language used in all the examples is the PROLOG variant used in our
project, where PROLOG primitives have generally the prefix "sm".

598

engine
seal l<R,B> :- proquery<fl,B).
proqueryC!,fl> :- !.
proquery(<R,B>,C> :- !, solve_body<<fl,B>,D,E,C>,

<smidentical(D,cut>, !, proquery<E,C>
; smsucceed).

proquery(fl,B> :- smogsyspred<fl>, !, smcalKA).
proquery<fl,B> :- smclause<R,C,B),solue_body<C,D,E,

<smidentical <D,cut>, !, proquery<E,B>
; smsucceed >.

proquery<fl,B> :-fol loujl ink<B,C,fl>,
smclause<fl,D,C>, proquery<D,B>.

proquery<fl,B> :- existlinkCB,C,clsinher>,
smfunctor<fl,D,E), smnot<smthpreds(B,D,E)>,
seal K f l , C > .

so Iue_body<! ,cu t ,smsucceed, f l> : - ! .
so l ve_body<< ! , f)) , c u t , R , B > : - ! .
so lve_body<<R,B),C,D,E> : - ! , proquery<R,E>,

so Iue_body<B,C,D, E >.
so lve_body(R,nocut ,smsucceed,B) : - proquery<f) ,B>.
f o l louil ink<f l ,B ,C) : - e x i s t l i n k < f l , B , c l s i s a) ,

smno t<smc I ause<C, D, F))) .
f o l loiul ink< f l ,B ,C) : - e x i s t l i n k < f l , D , c l s i s a) ,

smno t<smc lause<C,E , f l)) , f o l I ow l ink<D,B,C>.

f^

B) ,

O

Figure 5. The query metainterpreter of the inference engine engine.

The problem. Each wiseman has a hat. At least one hat is white. Each wiseman can see the
other wisemen hat and, when asked if he knows whether his own hat is white, will answer either
yes or no. Wisemen are supposed to be perfect reasoners, i.e. the knowledge about the answer of a
wiseman can be used by the other wisemen.

The structure of our solution is shown in Figure 6. The general knowledge, shared by all the
wisemen, is in the theory wiseman. The specific knowledge of each wiseman is contained in a
view theory. Each wiseman is represented by a theory which inherits the knowledge in wiseman
(link clsisa) and in the corresponding view (link clsinher). Each wiseman can also communicate
knowledge to the other wisemen views.

clsinher clsinher

.viewl ^ ^ y i e w 2 P > — v i e w l ^ P
Figure 6. The knowledge base for the 3 wisemen problem.

The knowledge in the theory wiseman is shown in Figure 7. The theory knows about the
3 wisemen (next), their views (view), and contains essentially two rules. The first one (defining
white) is the decision procedure in the yes case (i.e., the other hats are not white). The second rule
communicates the don't know answer to the other wisemen, by adding new rules in their views.

The new rules are derived from the failure of currently existing rules.

599

Consider now the initial state shown in Figure 8, where all the hats are white. Each wiseman
can be asked by issuing the query answer(X) in the corresponding theory. For example, the query
for asking wiseman 1, wiseman2 and wiseman3 one after the other, is

scall(answer(X), wiseman l),scall(answer(Y),wiseman2),
scall(answer(Z),wiseman3).

that will return X=no, Y=no, Z=yes. The resulting state for the theories is that shown in Figure 9,
where the view theories contain also the new rules, inferred from the failures.

wiseman
answer(yes) :-i_am(fl),tuhi te(R>, ! .
answer<no> :-i-jam(fl),next(F),B),next.(B,C),

uieiu(B,D), vieui(C,E>,
smassertz((whi te:-smnot<uihi te (C))) ,D) ,
smassertz((uihi te(C):-smnot(uihi te (B))) ,E) , smfai I .

ansuier<no) :-i-jam<A>, u iew(fl,B),propagate(R,B >.
uihite(R) : - nexUfl ,B),next(B,C), view(n\D),

smcal I (smnotduhi te(B)),D),smcal I (smnoUwhi te(C)),D)
propagate(fl,B) :-smclause(whi te(f l) ,C,B), in fer (C) , smfai I .
propagate(fl,B).
infer(smsucceed) : - ! .
in fer (smnotduhi te(A>)> .-uieui(fl,B),smassertz(u)hi te(f l) ,B>,
in fe r ((f l ,B)) : - perm((fl,B),C), infer 1(C).
in fer 1((smnot(uihi te (f l)) ,B)) : - vieuKR,C),

smassertz((u/hi te (f l) : -B) ,C) .
perm((R,B),(f l ,B)).
perm((f l ,B),(B,f i)>.
nextdu i seman 1, w i seman2).
nex t (ID i seman2, w iseman3).
next(uiiseman3,wi seman 1).
v i ew(w i seman1,v i ew1>.
v i ew(w i seman2,v i eui2).
v i ew (w i seman3, v i eui3).

o

o m
Figure 7. The theory wiseman.

vmxmemmmmxmmmmmK
D = ujisernanl n I
i^am(uii seman 1).

uieiul

U)iseman2 iuiseman3
i^am(uiseman2). £> j | i^am(uiiseman3). l£>

o

uieiii3
whi te(uiiseman2). <(y
uihi te(wiseman3)

whi te(uiiseman2). <Q̂
whi te(wiseman1)

o

Figure 8. An initial state for the 3 wisemen problem.

600

uieujl
wh i te(w i seman2 >.
uihi te (w i seman3).
white(wiseman1> :-

smnot<uihi te<wiseman3>>

uietu2
iuhi te(ui i seman 1 >.
wh i te(ui i seman3).
white<uiseman2> : -

smno t < wh i te < w i seman3

o
>>

u<h i te(wiseman2).
whi te<UJiseman 1 >.
white<wiseman3> :-

smnot<whi te<wiseman2>).
wh i te < w i seman3) : —

smnot<mh i teCiu i seman 1)).
whi te(wiseman3>.

K>

Figure 9. The final state for the 3 wisemen problem.

7. Met a programming and partial evaluation

Partial evaluation is based on Kleene's S-m-n Theorem: Given a function / = lxj...xn.e
and k (k<n) specific (constant) values a^.-.^ajj, we can effectively compute a function/=
lxk+l- ,xn.e' , such that

/ (a 1 , . . . , a k ,x k + 1 , . . . ,x n)= / (x k + 1 , . . . ,x n) .

f is a specialization of/, hopefully more efficient than/for those specific input values. The essential
aspects of partial evaluation are

• forward and backward data structure propagation.
• opening of procedure calls (unfolding).
• evaluation of builtins, whenever possible.

The improvements in the program resulting from partial evaluation are essentially due to the
lower number of procedure calls and to specialization for the "input" partial values.

Logic languages are naturally handled by partial evaluation, since the basic mechanisms
(reduction and forward-backward data structure propagation) are already in the standard interpreter
(resolution and unification). Unification directly supports forward and backward data structure
propagation and input values are not forced to be constant values but can be partially determined data
structures (i.e., terms containing logical variables).

The first attempt to apply partial evaluation to logic based Knowledge Base Management
Systems was in the area of data base query optimization /Venken84/. Partial evaluation techniques
were recently applied to metaprograms in the framework of PROLOG /Takeuchi86a, Gallagher86/,
Flat Concurrent Prolog /Takeuchi86b, Safra86/ and of a functional language /Jones85/. It has been
used to effectively derive an efficient compiler-compiler /Jones85/ and to define the various virtual
machines of LOGIX /Safra86/. Our interest is verifying the feasibility of combining partial

601

evaluation with metainterpreters, used to define language extensions or tools. The same approach is
being pursued at ICOT /Takeuchi86a/.

In partial evaluation of metaprograms, the partial input values are procedure calls. The partial
evaluation of the metaprogram M applied to a call of the procedure P generates a specialization of M,
which can be viewed as a new version of P. The new definition of P is a completely new procedure
P', embodying some of the features relevant to M. This allows to replace a metacall to P (by means
of M) by a direct call to P', since the direct execution of P' is equivalent to the execution of P
through the metainterpreter M.

If M is the pure metainterpreter (without new inference rules or extended features), P' is
equivalent to P. If the metainterpreter M contains additional inference rules (and the corresponding
additional features), partial evaluation compiles the new features in the procedure P. For example,

• If M is the explanation metainterpreter, the procedure P' is a version of P, providing the
explanation feature, when executed by the standard interpreter.
• If M is a debugger metainterpreter, P' is the version of P "instrumented" to allow the
debugging with the standard execution.
• If M is a "query-the-user" metainterpreter, P' is the version of P which queries the user when
executed by the standard interpreter.
• If the "new" language contains structuring concepts, such as theories and relations on theories,
supported by metainterpreters embodying the corresponding inference rules, the language can be
compiled to the original unstructured language.

In summary, the key aspects which makes partial evaluation interesting in the case of
metaprograms are metacall translation to direct calls and "compile-time" evaluation of static
knowledge. Partial evaluation allows then to combine the flexibility of metaprogramming with
efficiency.

The Epsilon prototype contains a partial evaluator for full PROLOG extended with theories,
specifically designed to act as a compiler for metaprograms. The "compilation" of one
metainterpreter (inference engine) layer can better be understood by making reference to Figure 2,
which shows that the theory T3 resulting from the partial evaluation of T^ has the same class (M2)
of the class (M j) of T j .The partial evaluator will not be described here (a technical description can
be found in /Ghelfo86, Levi87/), since we are mainly interested in discussing its impact on the
performance of inference engines defined by metaprograms. Let us only mention the fact that it
embodies special features to efficiently handle metacalls and that it uses theories to store intermediate
results, thus providing a richer analysis capability and a consequent richer set of equivalence
preserving optimizing transformations. For example, this mechanism makes the treatment of "cut"
quite easy.

8. An example of inference engine "compilation"

Let us consider the theory bibrules (in Figure 10), whose inference engine (the theory
engine) contains the metaprogram (query-metainterpreter) scall (in Figure 5).

A call to the partial evaluator of the form compile(bibrules,scall,callrules) creates in the
theory callrules the result of the partial evaluation of the goals

scall(brother(X,Y),bibrules),
scall(grand_mother(X,Y),bibrules),
scall(parent(X,Y), bibrules),
scall(uncle(X,Y),bibrules).

602

bibrules
brother(FI,B) :-

mother(C,fl),
mother(C,B),
father(D,fl),
father(D,B),
smno t i den t i ca I (Fl, B)

grand_mother(R,B) :-
mother(fl,C),
parent(C,B).

parent(FI,B) :-
mother(A,B).

parent(FI,B) :-
father(fi,B).

uncle<R,B) :-
father(C,B),
brother<fl,C).
bibfacts

father(abraham, isaac).
fa ther(i saac,esau).
fa ther < j acob,reuben >.
fa ther(j acob,s i mon >.
mother(sarah,isaac).
no ther(rebecca,j acob).
mother(rebecca,esau).

seal I (brother(fl,B),bibrules) :-
seal I (mother(C,R), bibfacts)
seal I <mother<C,B),bibfacts)
seal Kfather-CD,R),bibfacts)
seal Kfather-CD,B),bibfacts)
smnotidentical(R,B).

seal I(grand_mother(fl,B), bibrules) :
seal I <mother<FI,C),bibfacts)
(seal I(mother<C,B),bibfacts
seal Kfather<C,B),bibfacts

seal I (parent(fl,B),-bibrules) :-
(seal I (motjjer(fl,B), bibfacts
seal I (father(fl,B),bibfacts

seal I(uncie(fl,B>,bibrules) :-
seal I (father(C,B),bibfacts)
seal I (mo ther(D,fl),bibfacts)
seal I (mother(D,C),bibfacts)
seal I (father(E,R),bibfacts)
seal I (father(E,C),bibfacts)
smnotidentical(fl,C).

Figure 10. Two theories and the result of partial evaluation.

Links are also used to define which parts of the knowledge base are intended to be visible to
partial evaluation. A program (theory) can then be made parametric with respect to some of the
theories it uses or inherits.This is relevant to the optimization of incomplete knowledge, which can
be encapsulated into a theory T*, which may be made visible to a theory T, by defining a suitable
link interpreted by the inference engine of T. Such a link, however, is not visible to the partial
evaluator, which, when applied to T, cannot evaluate all the references to T*. Thus the partial
evaluation of T is independent from the current content of T*.

In our example, the theory bibfacts can be inherited from bibrules (link clsinher). If we
make bibfacts not visible to partial evaluation, the result of compile(bibru!es, scall,
callrules) is that shown in the theory callrules in Figure 10. Programs in callrules are much
more efficient than the application of the metainterpreter scall to the original programs in bibrules.
For example, computing all the answers to the query parent(X,Y) in bibrules requires 138
logical inferences, while the same task in callrules requires 72 logical inferences only. All the
metainterpreter components which can be "statically" evaluated disappear from the "compiled
program". Note also that the metalevel simulation of the standard PROLOG interpreter (first 4
clauses of proquery) is not needed. In particular, since the main functor of the first argument of
scall is known, all the accesses to clauses in bibrules can statically be solved and the only
metacalls are those to the invisible theory bibfacts.

9. Another example: Forward chaining

The metaprogram contained in the inference engine engine in Figure 11 defines a procedure
forw, which, given a new fact Fact, generates all its consequences in the theory Th and puts them
in the theory ThRes.The procedure forw defines the following algorithm. For each clause in the
theory (smthpreds(Th,P,N) is a backtrackable operation defined on a theory Th which returns the
name P and the arity N of each predicate defined in Th), whose body contains an atom which is
unifiable with Fact, if all the other atoms in the body can be solved in Th, asserts the instantiated

603

again the metainterpreter of Figure 5.
For example, let us consider the theories shown in the Figure 10. By evaluating

forw(father(isaac,jacob),bibrules,brut) we obtain the theory brut in Figure 11.
The algorithm is very inefficient, because there exists no fast method to access the relevant

clauses. All the considerations already made about the partial evaluation of the metainterpreter scall
apply to forw too. In this case, however, the optimization on clause access is dramatic and allows
to statically generate the "forward chaining" version of all the relevant clauses. As usual, the links
between theories must explicitely be made visible to the partial evaluator. Let us consider the case
where the link between bibrules and bibfacts is not visible.

engine
foruKf i ,B,C> : -

smthpreds<B,D,E) ,
smfunc tor<F, D, E) ,
fo rwc lause<F,G, f i ,B> ,
sea l KG,B>,
smnot<smc1ause<F,smsucceed, C)) ,
smassertz<F,C>,
for iu<F,B,C>,
s m f a i 1 .

fo ruKf i ,B ,C>.
forwc lause<f l ,B,C,D> : -

smclause<f l ,E,D>,
i s i n<C ,E ,B> .

i s i n (f l , B , C > : -
i s i nbody <smsucceed,

i s i nbody (f l ,B ,B ,R> .
i s i nbody (n \ (B ,C> ,B ,D> : -

and<fl,C,D>.
is inbody<f l ,<B,C>,D,E> : -

and<f l ,B,F>,
i s inbody<F,C,D,E>.

and < smsucceed, R, R >.
ar,d<ift,B'>,C,(.f[,D->-> : -

and<B,C,D>.
and<f l ,B,(R,B>> : -

s m n o t i d e n t i c a l (R , s n

B,R,C) .

^ ^^™

1-
p

P tZ

ix*™l?
\

^ ? s ? ^ ^

%i^J>!&

. M.
I D ^ ^ ^ S brut ^^^m
bro the r < j acob,esau >.
b ro then < esau , j acob >.
unc1eCesau,reuben) .
unc1e(esau,s i mon).
p a r e n t (i s a a c , j acob) .
grand_mo t h e r < s a r a h , j

i succeed) . O

acob >.

Figure 11. The metaprogram forw and the result of its application to bibrules.

The theory tat in Figure 12 contains the result of the partial evaluation of
forw(father(X,Y),bibrules,Z). Note that forw has been dramatically simplified and the only
metacalls are those related to the invisible theory bibfacts . The result of the partial evaluation is
therefore parametric with respect to the content of bibfacts, since we partially evaluate forw only
with respect to the general knowledge contained in the theory bibrules.

If bibfacts is made visible to the partial evaluation of forw(father(X,Y),bibrules,Z),
we obtain the more efficient version (not containing any call to scall), contained in the theory
frulfacts in Figure 13. frulfacts now depends both on bibrules and on bibfacts, and must be
updated whenever one of the two theories is updated. Let us conclude with some experimental
performance results. The query forw(father(isaac,jacob),bibrules,brut), if executed in
engine, requires 2567 logical inferences. The same query requires 459 logical inferences in tat
(partial evaluation with respect to bibrules only) and 22 logical inferences only in frulfacts (where
partial evaluation considers bibfacts too).

604

forw(father<A,B),bibrules,C) :- (seal I <mother<D,B),bibfacts)
seal I <mother<D,E),bibfacts), seal I <father<A,E),bibfacts
smnot identical <B,E),
smnotCsmc I ause<brother<B,E), smsucceed, O) ,
smasser tz < bro ther < B,E),C),

(seal Kfather<E,F) ,b ibfacts>,
smnotCsmc I auseCunc I e(B,F), smsucceed, O) ,
smasser tz<unc I e(B,F),C), smfail; smsucceed), smfai

seal I <mother<G,H),bibfacts),scal I (mother<G,B),bibfacts)
seal Kfather<A,H),bibfacts), smnotidenticaI <H,B),
smnotCsmcIause<brother(H,B),smsucceed,C)),
smasser tz(brother<H,B),C),

(seal Kfather<B, I >,bibfacts),
smnotCsmcIause<uncIe<H, I), smsucceed, C>),
smassertz(uncIe<H, I),C), smfai I;smsucceed), smfai

smnot<smcIause(parent(A,B),smsucceed, C>>,
smassertz<parent(A,B>,C),

(seal KmotherCJ, A),bibfacts),
smnot<smcIause<grand_mother(J,B),smsucceed, C)),
smassertz<grand_mother(J,B),C), smfail ;smsucceed

smfaiI;
seal Kmother<K,L),bibfacts>, seal I <mother(K, A),bibfacts
seal l< father <n,L),bibfacts), seal Kfather<M,fl),bibfacts
smnotidentical<L,fl),smnotCsmcIause<uncIe(L,B),smsucceed
smassertz(uncle<L,B),C),smfai I;
smsucceed).

c
), -

),
),
, C))

c

Figure 12. The result of the partial evaluation of forw(father(X,Y),bibru!es,Z).

frulfacts
forwCfather< isaac, jacob),bibrules, A) :-

smnotCsmcIause<brother(jacob,esau>,smsucceed,fl)>,
smassertz<brother<jacob,esau),fl),smfai I .

foruK father< isaac, Jacob),bibruIes,fi) :-
smno t < smcIause (bro ther < esau, j acob),smsucceed,A >>,
smassertz<brother(esau,Jacob),fl>,
< smnot<smcIauseCuncIe<esau,reuben>,smsucceed,fl)

smasser tz < uncIe < esau,reuben),fl),sm fa iI
; smnot<smcIauseCuncIe<esau,s i mon),smsucceed,fl))

smasser tz < uncIe < esau,si mon),fl),smfai I
; smsucceed),smfai I .

foru<father<fl,B),bibrules,C) :-
smno t(smcIause < paren t(fl,B),smsucceed,C >),
smassertz<parent<fl,B),C),
form 16<parent<A, B),bi bru I es,C), smfai I .

f orw< father<fl,B),b i bruIes,C).
forur16<parent< isaac, A),bibrules,B) :-

smnot<smcIause<grand_mother<sarah,fl),smsucceed,B))
smassertz(grand_mother(sarah,A),B),smfaiI.

forw16 < paren t(j acob,fl),b i bruIes,B > :-
smnot<smcIause<grand_mother(rebecca,A),smsucceed, B
smassertz(grand_mother<rebecca,fl),B),smfaiI.

f or u< 16 < par en t < esau, A) , b i br u I es, B) : -
smnot<smcIause<grand_mother(rebecca,fl),smsucceed,B
smassertz(grand_mother<rebecca,A),B), smfaiI.

f orui 16<parent< A, B >, b i bru I es, C).

o

>>,

))

Pi

Figure 13. The partial evaluation of forw(father(X,Y),bibruIes,Z) (bibfacts visible).

605

10. Theories and Data Bases

In connection with data bases, the theory feature is used to represent
• data base theories, which stand for sets of tuples stored in an external data base.
• data dictionaries, i.e. the metalevel descriptions of data base theories, which contain the
knowledge about what is contained in data base theories. A data dictionary is linked to its data
base theory by a specific link.
• integrity constraints.
• the results of queries to the data base inference engine. The result of a query to a data base is a
logic program representation of the answers, stored in a suitable theory.

Let us first consider the naive one-tuple-at-a-time interpretive solution, in the case shown in
Figure 4, where Tj contains a logic program, T2 is a data base theory, Mj is the logic program
inference engine and M2 is the data base processor. Note that no metaknowledge on the data base is
required (apart from verification purposes), since T j directly inherits from the data base. If the query
processor in Mj cannot solve a subquery in Tj , it activates the data base query processor on T2,
which will get all the relevant tuples from Tj and return the answers in a logic theory T3. The query
processor in Mj will then try to solve the query in T3.

Figure 14. The uniform view of several data base theories.

In the general case, the knowledge base will contain several data base theories. In such a case,

606

it is certainly convenient to use the metaknowledge about the different data bases to efficiently find
the relevant data base. This can be achieved by inheriting from the logic program a single theory M
(the logic program view of all the data bases), which contains such a metaknowledge. As shown in
Figure 14, M is linked to the data bases (and possibly to the corresponding data dictionaries).

The above solution allows to optimize the data base access, by grouping the queries to the
same data base and by performing joins on different data bases within the communication (data base)
processor.

11. Implementation of the communication between the kernel and data bases

The whole communication process is detailed in the following:

handler

Partial

Evaluator

P + G

partial evaluation +
activant generation

Stepl and step2

^ ,
^

P"

Communication

Processor

Database

Processor

1

relational algebra
translation

optimization

r

I *
translation to

SQL

Step3

Step4

Is

query handling
by the DBMS

/ PF (Pr oloj

StepS

; Fact)

Prolog

Processor

Prolog
final

evaluator

T
Step6

answer of the (G, P)

Figure 15

607

The communication betweeen the kernel machine and DBMSs in the EPSILON prototype is
made through a piece of software called the communication processor (C.P.).

The major features of the C.P. are :

• The existence of specific language, which is mainly based on the relational algebra. The
aim of this language is twofold:

0 First of all, it insures the correct transfer of the semantics of the Processor-calls to
dbcalls (see report P530-6). In that sense, it is only a translation medium between the
kernel and DBMSs. The semantic overlap on the DBMS languages has to be as large
as possible.

0 But it is also a means to express data transformations to be made by the C.P.: for
example, join operations on data coming from distinct data bases or treatment of
closed queries, that is queries without variables which are to be handled in a special
way by the C.P.

• The use of optimization techniques throughout the communication process since the drawback
of the generality of the architecture is its lacks of efficiency if implemented without care.
Optimizations are introduced at the processor-call generation level (use of partial evaluation
techniques, of semantic constraints on data), at the dbcall generation level (reordering or
simplification of the relational operator trees representing the queries).

In order to minimize the inference engine's calls to Databases, partial evaluation techniques
have been used to gather elementary calls into global calls and to have a maximal instantiation of calls
(VENKEN 84).

The communication is illustrated by the linear graph given in figure 15.

• The STEPl which is a partial evaluator uses the source program P and a goal G as input
(P is a full Prolog program, with recursive predicates, builtins and functions).

In our case, the partial evaluator will:

01 collect and delay edb-predicates to be sent to database system which is the
same purpose as in compiled approaches. This point is very important to solve the
first problem.

02 instantiate the variables in the edb-predicates as much possible, that is to
solve the last problem.

03 evaluate the builtins whenever possible. That is, in the system, user is
allowed to use a large number of primitives in his program.

Evaluating builtins whenever possible is an important optimization issue in this technique.
The result of the partial evaluation is still a program P' in logic, but the edb-predicates in

user's program have been collected. The variables in the edb-predicates have been partially
instantiated, and several primitives have been evaluated. That is, the source program has been
optimized.

• The STEP2 is the activant generator which uses the program P', that is the result of
STEPl, as input. The activant generator separates the input program P' into two, the program
P" where the conjunction of edb-predicates are changed to activants (a collection of dbcalls),
and a set of activants.

• The STEP3 is the activant translation which only uses the set of activants as input.

In this step, the set of activants is translated into a program written in an intermediate language,
relational algebra language. Some optimizations work can be done in this step.

608

• In the STEP4, the program is then transformed into a program called PDB program written
in a database system language (after reordering of the relational expression).

• The STEP5 is a general database system which uses PDB program as input. Then a DB
result translator will translate the result of DB system into a set of facts in Prolog form. Then,
the set will be loaded to the work-space of Prolog.

• The STEP6 is done by the Prolog interpreter which uses the facts loaded from the
database system and the program P" generated by partial evaluation and activant generation
(STEP1 and STEP2), as input. In a further stage, final evaluation could be meta-controlled to
process synchronization between bankfeeding mechanisms and inference processing.

12. Generation of the activants

The task of the activants generator is to group the dbcalls and to rename the dbcall-groups by
so called "activants" predicates. The activants are the predicates which refer to facts brought from the
external data base to the inference engine work bases via the communication processor.

Let us consider the program obtained at the exit of the partial evaluator.

Program (Venken's example')

prg(_x,violette):
prgCxjan) :
prg(_x,stanis):
prg(_x,henry):
prg(_x,_y) :
prg(_x,_y) :

F(_x,anna).
F(_x,violette).
F(_x,violette).
F(_x,henriette).
F(_x,_z) & FCz,_y).
F(_x,_y).

An activant is defined for each db-call group.
The result is:
prg(_x,violette) : al(_x).
prg(_xjan) : a2(_x).
prg(_x,stanis) : a2(_x).
prg(_x,henry) : a3(_x).
prg(_x,_y) : a4(_x,_y).
prg(_x,_y) : a5(_x,_y).

With the definitions of activants:
alLx)
a2(_x)
a3(_x)
a4Cx)
a5(_x)

F(_x,anna).
F(_x,violette).
FCx.henriette).
F(_x_z) & FLz,_y).
F(_x,_y).

Note that this solution allows to process every selection operation by the database
management system, which is much more efficient than PROLOG for this purpose. Facts returned
from the Data Base systems will be put in various work bases, decreasing the work of inference
engine at unification time.

13. Translation from Prolog to relational algebra

Once generated, activants have to be translated into the pivot language of the communication
processor, that is into R-Algebra.

609

Several hypothesis are set upon the rules to be translated:

• predicates are relational or comparison predicates (= > < = > = <) .
• the function names are instantiated.
• predicates are function free, that is their parameters are constants or variables.
• there is no constant in the head of clause.
• variables of the head have a single occurrence in the head:

(p(_x>_x) is forbidden).
• all the variables in the head have at least one occurrence in the queue.

The translation is then done in two steps:

First step is a "flat translation" using Ceri's method /CERI-85/.
Second step is a re-structuration of the relational-algebra tree, regrouping relations of the same
database in the same subtrees, and including comparison predicates.

Example:

p(_x): rC_x, _y) & <(_y, b) & s(_x, a) & t(_y, _z).
R and T are in database 1.
S is in database 2.
from step one: P = I I , sigma ind(1)=ind(3)jnd(2Hnd(5).md(4)=vai(a)RxSxT

by adding <(_y, b):
P = Xlj Sigma in^i^mdpjjndCaHjidtSXin^^alCaXincKa^alCb) R X S X T

by grouping relations of the same database:
P = n 3 Sigma i„d(3>=ind(5),ind(4)==iiid(5),ind(l)==val(a).ind(4)<val(b) (T X R) X S
note that the index have changed because of the reordering,

by generating joins:
P = n 3 sigma ind(6)=vai(a),ind(1)<val(b) join([3=l], join([Kb], T, R), S)
note once more the re-ordered index.

In conclusion, the Relational expression is ready to be optimized and then translated or even
directly translated.

14. Database query generation

One specific task of the C.P. is the translation of relational algebra expressions (which are
equivalent to the set of activants) to database manipulation languages, in our case SQL.

Translating relational algebra expression to SQL queries is rather easy.

15. Conclusions

In the near future, the Epsilon prototype will include other features that are currently
investigated by all the partners in the Epsilon Project (Bense KG, C.R.I.S.S., University of
Dortmund, University C. Bernard of Lyon, University of Pisa and Systems & Management). These
include more inference engines and tools, a general-purpose integrity constraint verification
mechanism and a more powerful graphical interface. Two more important related activities are the
experimental application of the Epsilon approach to some test problems and the design of a
distributed version of the current prototype.

610

16. References

/Ceri-85/: S. Ceri, G. Gottlob, L. Lavazza "Transformation and optimization of logic
queries: the algebraic approach".Internal report- Politecnico di Milano.

/Coscia86/ P. Coscia, S. Djennaoui, P. Franceschi, J. Kouloumdjian, G. Levi, L.
Lei, G.-H. Moll, I. de Saint Victor, G. Sardu, C. Simonelli and L. Torre, The
Epsilon Knowledge Base Management System: Architecture and Data Base access optimization,
Workshop on Integration of Logic Programming and Data Bases (Venezia, December 1986).

/Coscia87/ P. Coscia, P. Franceschi, G. Levi, G.Sardu and L. Torre, Object level
reflection of inference rules by partial evaluation, to appear in Mela-level architectures and
reflection, D. Nardi and P. Maes, eds. (North-Holland 1987).

/Furukawa84/ K. Furukawa, A. Takeuchi, S. Kunifuji, H. Yasukawa, M. Ohki and
K. Ueda, Mandala: A logic based knowledge programming system, Proc. Int'l Conf. on Fifth
Generation Computer Systems (1984), 613-622.

/Gallagher86/ J. Gallagher, Transforming logic programs by specializing interpreters, Proc.
ECAI86.

/Gardarin-84/: G. Gardarin "Bases de donnees : les systemes et lews langages".
Ed. EYROLLES 1984.

/Ghelfo86/ S. Ghelfo and G. Levi, A partial evaluator for metaprograms in a multiple theories
logic language. Epsilon Project Report (October 1986).

/Jones85/ N.D. Jones, P. Sestoft and H. Sondergaard, An experiment in partial
evaluation: The generation of a compiler-compiler. First Int'l Conf. on Rewriting Techniques
and Applications. LNCS 202 (1985). 124-140.

/Kauffman86a/ H. Kauffmann and A. Grumbach, Representing and manipulating
knowledge within "worlds". Proc. First Int'l Conf. on Expert Data Base Systems. L.
Kershberg, Ed. (1986), 61-73.

/Kauffman86b/ H. Kauffmann and A. Grumbach, MULTILOG: MULTIple worlds in
LOGic programming, Report (1986).

/Levi87/ G. Levi and G. Sardu, Partial evaluation of metaprograms in a "multiple worlds"
logic language, submitted to the Workshop on Partial and Mixed Computation (Denmark,
October 1987).

/LIJK-86/: Li Lei, J. Kouloudjian "An implementation of a partial evaluation system".
Internal report -University of Lyon (1986).

/Safra86/ S. Safra and E. Shapiro, Meta-interpreters for real, Information Processing-86.
H.-J. Kugler, Ed. (Elsevier Science Publishers B.V., 1986).

/Smith-75/: J. M. Smith, P.V. Chang "Optimizating the performence of a relational algebra
database interface". Con. A.C.M. V18 ,N°10, pp 568-579.

/Sterling84/ L. Sterling, Expert system = Knowledge + Meta-interpreter, Tech. Rep.CS84-17,
Weizmann Institute of Science, Rehovot, Israel (1984).

/Takeuchi86a/ A. Takeuchi and K. Furukawa, Partial evaluation of PROLOG programs and
its application to metaprogramming, Information Processing-86. H.-J. Kugler, Ed. (Elsevier
Science Publishers B.V., 1986), 415-420.

/Takeuchi86b/ A. Takeuchi, Affinity between meta interpreters and partial evaluation,
Information Processing-86. H.-J. Kugler, Ed. (Elsevier Science Publishers B.V., 1986).

/Ullman-80/: J.D. Ullmann "Principles of database systems". Computer science press -1980.
/Venken84/ R. Venken, A PROLOG meta-interpreter for partial evaluation and its application to

source-to-source transformation and query optimization. Proc. ECAI-84: Advances in Artificial
Intelligence (T. O'Shea, Ed.), North-Holland 1984, 91-100.

611

Project No. 1106

INTRODUCTION TO PROLOG m

Alain COLMERAUER

Groupe Intelligence Artificielle, Unite de recherche Associee au CNRS 816, Faculte des
Sciences de Luminy, 70 route Leon Lachamp, Case 901, 13288 Marseille Cedex 9,
France.

Abstract. The Prolog III programming language extends Prolog by redefining the
fundamental process at its heart; unification. Prolog III integrates into this mechanism,
refined processing of trees and lists, number processing, and processing of complete
prepositional calculus. We present the specifications and the logico-mathematical
model for this new langauge, in which we replace the notion of unification by the more
appropriate concept of constraint resolution. The capabilities thus acquired by the
language are illustrated by various examples.

INTRODUCTION

Prolog was initially designed to process natural languages [3]. Its use to solve problems in
increasingly varied areas has brought out its qualities, but have also made clear its limits. Some of
these limitations have been by-passed using more and more efficient implementations and ever
richer environments. The fact remains that the core of Prolog, Alan Robinson's unification
algorithm [8], has not changed over 15 years, and is becoming less and less significant compared
with an ever-increasing number of external procedures. The best examples of such procedures are
number processing. These external procedures are unfortunately difficult to use. To call them,
one must be sure that certain parameters are known, and this clashes with the general Prolog
philosophy in which it is possible anywhere and at any time to talk about an unknown object x.

I therefore decided to fundamentally reshape Prolog by integrating the following features at the
unification level: (1) refined manipulation of trees, including infinite ones, and lists processing,
(2) complete processing of Boolean algebra, ie prepositional calculus, (3) numerical processing
including addition, substraction, multiplication by a constant and the relations <, <;, >, >, (4)
general processing of the relation *. As was the case when we described Prolog II [4], which
already integrated infinite trees and the relation *, this reshaping consists of the replacement of the
unification concept by the concept of constraints resolution in a specific domain equipped with
precise operations and relations.

The aim of this article is therefore to describe the foundations of a new language named Prolog
III, and to illustrate its capabilities with some examples. Of course Prolog III is more than an

612

exercise in thought. A prototype for its interpreter has already begun to run and has been used to
test the examples given here. This prototype was produced jointly by GIA - our laboratory -, and
the company ProloglA. Important support was provided both by the National Research Center of
Telecommunications (contract 86 IB 027) and by the European Community, within the
framework of an ESPRIT project (P1219, 1106) in which the other partners are Mercedes, Bosch
and GIT.

THE POSSIBLE VALUES OF A VARIABLE

In standard programming languages, each variable is given a value. When a program is run,
these values are modified successively by means of assignment instructions, and final values are
obtained for the different variables. In Prolog III, a variable represents an unknown value, and
when a program is run, its aim is not to modify this value, but to determine it. So a variable
behaves like an unknown quantity in a mathematical equation, like x for example in x = (l/2)x+l.
The main difference is that x will represent something rather more complex than a number: a tree.
These trees will be made up of nodes labelled by:

(1) identifiers,
(2) the double sign o ,

(3) boolean values,
(4) rational numbers,

(5) characters.

Here is one

NameMarriedWeight

<> ///W
'D* V 'p' I I 1*1

755/10

The boolean values are denoted by 1 and 0 and rational numbers are represented by fractions.
The number of branches emanating from each tree node is finite, and these branches are ordered
from left to right. However a branch can be infinite. A tree consisting of only one node is a leaf,

613

and no difference will be made between a leaf and the label it carries. Therefore, boolean values
and rational numbers will be considered as special types of trees. A tree whose initial node is the
sign <> is a list and is used to represent the finite sequences of trees which constitutes its
immediate sons. Thus the leaf labelled o represents the empty list.

KNOWN CONSTANTS

To represent our trees we will have at our disposal (1) variables, which will always be written
in italics to distinguish them from identifiers, (2) constants, used to name certain types of trees,
and (3) operations for constructing trees from other trees. A tree will therefore be represented by a
formula which includes these three elements: variables, constants and operations. This formula,
considered as a syntactical object, will be called a term. The known constants are:
(1) identifiers such as,

Peter, LightMeal, calculus 12,
(2) the empty list,

(3) the boolean values

(4) positive or zero integers, such as,

(5) characters such as,

(6) non-empty strings, such as the string

which is the tree

0 , 1 ,

0, 1,2 ,1987,

'a', B\ %', '<•,

"Oh boy"

It should be noted that the only numerical constants are positive or zero integers. Other rational
numbers will be represented using positive integers, the operation of division and the operation of
changes of sign which we will introduce later. It is pointless to introduce a specific constant for
the empty string, since such a string is the same as the empty list o .

614

KNOWN OPERATIONS

We can now proceed to enumerate the known operations. An operation will simply be a
mapping from a subset of tree tuples into the set of trees. We will suppose that all the tuples in this
subset are of the same length, this length being the arity of the operation. An operation of arity n
can be schematized by a formula having the form

al...an -> f(av..an),
where f(av..a„) designates the notation used to represent the tree which results from applying this
operation on the tuple al...an. We have three types of operation at our disposal: boolean
operations, arithmetical operations, and operations to construct complex trees.

Boolean operations are only defined if the operands are boolean values, in other words, leaves
labelled by boolean values. There are four of them:
(1) the not,

d\ -» ->fli,
(2) the and,

(3) the (non exclusive) or,
0^2 —> fliva2.

(4) the operation which produces 1 if the two operands are equal and 0 if they are not,
aia2 ~~* fll=fl2-

The arithmetical operations are only defined if the operands are rational numbers, in other
words leaves labelled by fractions (or integers), and in the case of division, only if the second
operand is not 0. There are six of them:
(1) the neutral operation,

a\ -»+fli.
(2) change of sign,

(3) addition,

(4) subtraction,

(5) multiplication,

(6) division,

a\a2 ~~* a l + a 2>

flla2 ~* a\~a2'

a\a2 -* a l x a 2 -

a l f l 2 ~* 0.\l0-2-

There will be a linearity restriction on the terms involving these operations: in a multiplication

615

only one of the two operands can contain variables, and in a division, the second operand must
not contain variables. For the sake of convenience, we write axa2 instead of aixa2 as long as this
creates no confusion.

The construction operations make it possible to construct trees which are not necessarily
reduced to a leaf. There are four types:
(1) list constructions, for all values n such as n > 1,

ax...an -> <a1,...,a„>,
(2) tree constructions, for all values n such as n ^ 2 ,

axa2...an -> a1(a2,...,aB),

(3) general tree construction,
axa2 -» a i f a j ,

(4) list concatenation,
a\al ~* a\'a1-

List constructions are defined whatever the trees at are. Tree constructions are only defined if the
tree ax is a leaf. General construction of a tree is only defined if tree ax is a leaf and tree a2 is a
list. Concatenation is only defined if the two trees a\ and a2 are lists.The exact functioning of all
these operations is summarized in the diagram below:

<d\ <V = <>

M a 2 «n) = al

«2 an

"y<
°21 a2q «21 ' ' ' A' !2q

< > • O = < >

a l i " ' " ' f l l p fl21 Q2q a H fllP "21 fl2q

The following equalities can be noted:
<a1,...,a„> = <>(«!,...,a„),

a1(a2,...,an) = ax[<a2,...,an>]
and also, when a is a list,

616

o[a] = a,
o • a = a • <> = a.

It can also be seen that in order to represent a list whose first element is e, and the remainder of
which is x, we write

<e>-x
and that

e[x]
designates absolutely any tree, where the label for its initial node is e and the list of its sons,
which can be empty, is x.

As with division and multiplication, we place an important constraint on list concatenation: in
a concatenation, if the operand on the left is a variable x, then the length n of the list x must be
known and explicidy specified by a constraint of the form x:n which we will introduce in the next
section. In regard to this restriction, it should be borne in mind that concatenation is an associative
operation, and that here we make no difference between (X'y)'Z and x-(y-z).

With the help of the constants and the operations we have introduced, we can represent our
first example of a tree equally well using either of the following two terms:

NameMarriedWeight(<,D,,,u,,,p,,,o','n,,,t,>, 1, 755/10),
NameMarriedWeightC'Dupont", 1, 75+5/10).

KNOWN RELATIONS

A certai.i number of binary and unary relations are known. Binary relations enable you to
express the following constraints on trees:

a1=a2, trees d\ and a2 are equal,
ai * a2, trees aj and a2 are different,
a\ => ai> aees a\ a nd o-i are booleans and if ax equals 1 then a2 equals 1,
flj < a2, trees at and a2 are numbers and aj is stricdy less than a2,
«! > a2, trees ax and a2 are numbers and ax is strictly greater than a2,
ax < a2, trees a.\ and a2 are numbers and a^ is less than or equal to a2,
aj > a2, trees a-^ and a2 are numbers and ax is greater than or equal to a2.

The terms "booleans" and "numbers" that we use here refer to leaves labeled by boolean values
and leaves labeled by rational numbers.

617

Unary relations enable you to express the following constraints:
a : fact, the initial node of tree a is labelled by an identifier,
a : list, tree a is a list,
a : n, tree a is a list of known length n,
a : string, tree a is a string,
a : leaf, tree a is a leaf,
a : id, tree a is a leaf labelled by an identifier,
a : bool, tree a is a leaf labelled by a boolean,
a : num, tree a is a leaf labelled by a rational number,
a : char, tree a is a leaf labelled by a character.

It should be noted that we did not really need the relations list, leaf, bool and num, since if
we want to constrain x to represent a list, a leaf, a boolean leaf or a numerical leaf, this can be
done by simply replacing one of its occurrencies by the following terms:

o-x, x[o], —i—cc, +x.
This is because the operations we use here include restrictions on the nature of their operands and
thus create implicit typing of the variable x.

SYSTEMS OF CONSTRAINTS

Constraints are used to construct systems of constraints, that is finite sets of constraints which
must all be satisified at the same time. The first thing Prolog in enables you to do is solve these
systems. For example, to find out the number x of pigeons and the number y of rabbits required
to have a total of 12 heads and 34 legs, all you need to do is write the query

{x > 0, y > 0, x+y = 12, 2x+4y = 34) ?
and the machine will answer

U = 7,y = 5):
To compute a list z of 10 elements that will produce the same result no matter wether <1,2,3> is
concatenated to its the left or <2,3,1> is concatenated to its right, you merely need to write the
query

{ z: 10, <l,2,3>.z = z«<2,3,I>)?
The answer is

{z= <1,2,3,1,2,3,1,2,3,1>)
We can also solve both problems at the same time, by asking

[x> 0,y > 0, z: 10, trio(;t+;y,2x+4y,<l,2,3>-z) = trio(12,34, z-<2,3,l>)}?
where "trio" is any identifier. The answer is

[x = 7, y = 5, z = <1,2,3,1,2,3,1,2,3,1>}.

618

So the heart of a Prolog HI interpreter will consist of a general algorithm for the resolution of
system of constraints. This algorithm will be used to decide whether a system is solvable, that is,
whether it is possible to attribute values to its variables so that all the constraints are satisfied. If
the system is solvable, this algorithm will be also used to simplify it, so that its solutions, that is
the values of its variables become apparent. These values may be unique, as in the previous
examples, but can also be multiple, as they are in the following three simplified systems:

{0<x,x>?>IA,x* 1/2), [y=>z}, [u = father(v)}.
If there are no limits on these values, the simplified system will be the empty system denoted by
(}. The constraints resolution algorithm replaces the unification algorithm used in a standard
Prolog. Because of this, it must be very efficient and so reliable that it becomes a black box for
the programmer. These are the two factors which dictated our choice of known operations,
known relations and our restrictions on multiplication, division and concatenation.

On this subject, we can note that in Prolog in a constraint does not represent a boolean value.
It may or may not be satisfied by certain values of variables. Therefore it is not possible to write
(x<2)v(;c>l). Moreover, our signs -., A,V, = are neither connectors nor relations, but
operations. To write (X<2)A(X>1), we will write (x<2^c>l}, and to assert xvy we will write
[xvy=l]. However we can write [x=>y) since => has been defined as a relation. We can also
note that in Prolog III there is no unary relation which makes it possible to constrain a rational
number to be an integer.

THE MEANING OF A PROGRAM FOR THE PROGRAMMER

We can now explain in general terms what a Prolog III program is. Basically it consists of a
recursive definition of a subset of trees. Each element in this subset is called a fact, and
represents a proposition which is considered true by the programmer. An example of such a
proposition could be "Dupont is married and weighs 75,5 kg", which could be represented by our
first example of a tree. The set of facts defined by a program is usually infinite and in a way
constitutes an enormous hidden database. The execution of a program aims to reveal certain parts
of this database.

Strictly speaking, the program is a set of rules: the facts that the programmer wants to define
obey these rules. Each rule has the form

f0-»»!...:„, S
where n can be zero, where the f,'s are terms, and where S is a system of constraints which may
be absent (in which case it is considerd to be the empty system). Here is such a set of rules; this is
our first example of a Prolog HI program:

619

LightMeal(a, m,d)->
Appetizer(a, i) Main(m, J) Dessert(rf, k),
{i>0,j>0,k>0, i+j+k < 10};

Main(m, j) -»Meat(m, j);
Main(m, i) -» Fish(m, i);

Appetizer(radishes, 1) -»;
Appetizer(pâté, 6) ->;

Meat(beef, 5) -»;
Meat(pork, 7) -»;

Fish(sole, 2) -»;
Fish(tuna, 4) -»;

Dessert(fruit, 2) -»;
Dessert(icecream, 6) -».

It is an improvement on a program which is perhaps too well-known [4], but which remains an
efficient pedagogical tool: the calculation of the components of a meal having a caloric content
below a certain amount Note the fact that each food type has a specific caloric value.

The variables which appear in the rules are of course quantified universally, in other words
each rule r0-»fi—f„ ,5 is simply an abbreviated way of writing all the instantiated rules

a0=>a1...a„

obtained by giving the variables all possible values which satisfy system S and which transform
the terms tt into well-defined trees at. Here are a few fragments of the instantiated rules for the

above program:

LightMeal(pâté\sole,fruit) =>
Appetizer(pate,6) Main(sole,2) Dessert(fruit,2);

Main(sole,2) => Fish(sole,2);

Appetizer(pâté\6) =»;

620

Fish(sole,2).

Dessert(fruit,2):

Naturally, the process of instantiating rules is purely a mental process on the part of the
programmer. The machine will not work in this way, on the contrary, when it uses the rules it
will try to keep them as general as possible. However, the instantiated rules do not make use of
variables or constraints, but only trees. Their meaning is therefore much clearer.

Each instantiated rule a0 => av..an can be interpreted in two ways:
(1) as a rewrite rule: any occurrence of the tree a0 in a sequence of trees can be replaced by the
sequence of trees ax...an (when n = 0 this has the same effect as the deletion of a0from the

sequence);
(2) as a logical property of a subset E of trees: if all the trees a^ and ... and an belong to the sub
set E then the tree a0 also belongs to E (when n = 0 this property is reduced to: the tree a0

belongs to E).

As we have seen, a program represents the accumulated set of instantiated rules which
originate from all its rules. Depending on which of the two above interpretations we use, the facts
defined by this program
(1) are the trees which can be deleted by a finite number of rewritings.
(2) form the smallest subset of trees (in the sense of inclusion) which satisfies all the logical
properties.

When it is shown that these two definitions are equivalent it is natural to hesitate as to which
direction the arrow should take in a rule. We prefer the arrow to go from left to right since this
corresponds more closely to the method used by the machine. The fragments of the set of
instantiated rules from the previous program make it possible to delete the tree

LightMeal(pat6,sole,fruit)
successively by

LightMeal(pat6,sole,fruit) =»
Appetizer(pate\6) Main(sole,2) Dessert(fruit,2) =>

Main(sole,2) Dessert(fruit,2) =»
Fish(sole,2) Dessert(fruit,2) =>

Dessert(fruit,2) =>.
This tree is therefore a fact defined by the program. If we now treat these fragments of

621

instantiated rules as logical properties, we conclude successively that the three sets below are
made up of facts defined by the program.

{Appetizer(pâté,6), Fish(sole,2), Dessert(fruit,2)},
{Main(sole,2)},

{LightMeal(pat6,sole,fruit)}.

MEANING OF A PROGRAM FOR THE MACHINE

We have now described the implicit information that is contained in a Prolog HI program, but
we have not yet explained how such a program is executed. The aim of the program's execution is
to solve the following problem: given a sequence of terms fi...f„ and a system S of constraints,
find the values of the variables which transform all the terms f; into facts defined by the program,
while satisfying all the constraints of S. This problem is submitted to the machine by writing the
query

tv..tn,Sl
Two special cases are of particular interest. (1) If the sequence ti„.tn is empty then the query
reduces itself to a request to solve the system S. We have already given some examples of such
queries. (2) If the system S is empty (or absent) and the sequence of terms consists of only one
term, the request can be restated as: what are the values of the variables which transform this term
into a fact defined by the program. So if we now use the preceding example program, the query

LightMeal(a, m, d)l
will enable us to obtain all the sets of values for a, m, and d which consitute a light meal. In this
case, the replies will be the following simplified systems:

{a=radishes, m=beef, <2=fruit},
{a=radishes, m=pork, d=fruit},
{a=radishes, m=sole, d=fruit),

{a=radishes, m=sole, d=icecream},
{a=radishes, m=tuna, <i=fruit),

{a=pâté, m=sole, d=fruit).

We can explain the method used to calculate the replies to a given query by using an abstract
machine. This is a nondeterministic machine whose function is described by these three forumlæ:

(1) (W, t0t1...tn,S),
(2) sQ -*«!.... sm,R
(3) (W, sl...smt1...tn,SuRu{s0=t0}).

Formula (1) represents the state of the machine at any given moment. W is a set of variables
whose values we want to establish, ty..tn is a sequence of terms which we are trying to delete

and S is a system of constraints which has to be satisfied. Formula (2) represents the rule in the

622

program that we are going to use to change the state of the machine. If necessary we rename some
variables of formula (2), so that none of them occur in formula (1). Formula (3) is the new state
of the machine after rule (2) has been applied. It is possible to progress to this new state only if
the system of constraints in formula (3) has at least one solution in which each term of formula (3)
is a well defined tree.

To describe the actual functioning of the Prolog III machine, we can say that it starts from an
initial state (W, t0...tn JS), where W is the set of variables which appear in the query t0...tnJS and

calculates all the states that can be arrived at by repeating the above process. Each time we arrive at
a state where the sequence of terms is empty, we simplify the system of constraints with which it
is associated and provide this as an answer. This final simplification can also be carried out on all
the constraints systems as they are produced.

Let us now reconsider our first example program, and apply this process to the query
LightMeal(a^!,d)?

The initial state of the machine is
({a,m,d), LightMeal(a,m,d), {}).

By applying the rule
LightMeal(a', m', d") -> Appetizer(a', /) Main(/n',y) Dessert(d', k),

{i > 0,;' > 0, k > 0, i+j+k < 10}
we progress to the state

{{a,m,d}, Appetizer(a',0 Main(m',/) Dessert(d',/fc),
{/>0,y>0, k>0, i+j+k<l0, LightMeal(a,m,d)=LightMeal(a>',d')})

which simplifies to
([a.m.d], Appetizerfa',/) Main(m'j) Dessert(d',fc),
{i>0,j>0, k>0, i+j+k<10, a=a", m=m', d=d'}),

then to
{{a,m,d}, Appetizer(a,/) Main(m,/) Dessert(d,£), [i>Q,j>Q, k>Q, i+j+k<\0}).

By applying the rule
Appetizer(pate, 6) -»

and simplifying the result, we progress to the state
({a,m,d}, MainCm,/) Dessert(<U), [a=pat6,j>0, k>0,j+k<4)).

By applying the rule
Main(/n', i) -> Fish(m', i)

with a little simplification, we progress to
({a,m,d), Fish(m',i) Dessert(d,£), {a=pate\./>0, k>0,j+k<4, m=m',j=i}),

which then simplifies again to
({a,m,d}, Fish(mJ) Dessert(d,/fc), {a=pSt6,^0, k>0,j+k<4)).

By applying the rule

623

Fish(sole, 2) ->
we obtain

{{a,m,d}, Dessert(d,fc), { a=pate\ m=sole, k£0, k<2})
Finally, by applying the rule

Dessert(fruit, 2) -»
we obtain

{{a,m,d}, , {a=pate, »j=sole, d=fruit}).
We can conclude that the system

{a=pat6, m=sole, d=fruit}
constitutes one of the replies to the query.

To obtain the other replies, we proceed in the same way, but using the other rules. I should
point out that there are a thousand ways of simplifying constraints and checking whether they are
solvable. So it should not be assumed that the machine, which uses very general algorithms,
makes the same simplifications as those that are shown above. But this is completely invisible for
the programmer and thus of no importance.

Now we can go on to illustrate what Prolog IE is capable of, with the help of other examples.

BANKING CALCULATION

In this example, the task set is the calculation of a series of successive instalments which have
to be made to repay capital borrowed from a bank. We will assume that the same time period
elapses between two instalments, and that during this period the interest imposed by the bank is
10%. The set of facts defined by the program will be the set of trees of the form

InstalmentsCapitalfcc)
where x is the list of instalments necessary to repay capital c with an interest rate of 10% between
two instalments. The program itself can be summarized by two rules

InstalmentsCapital(o, 0) -»;
InstalmentsCapital(<j>-x, c) -> InstalmentsCapitalfc (l+10/100)c-i);

The first rule expresses the fact that it is not necessary to pay instalments to repay zero capital.
The second rule expresses the fact that the sequence of n+1 instalments to repay capital c consists
of an instalment i and a sequence x of n instalments to repay capital c increased by 10% interest,
but the whole reduced by instalment i.

624

This program can be used in different ways. One of the most surprising is to ask what value
of i is required to have the sequence of instalments <i,2i,3i> repay 1000$. All you need to do is
write the query

InstalmentsCapital(<i, 2i, 3i>, 1000)?
to obtain the reply

{1 = 207 + 413/641}.

Here is an abbreviated trace of this calculation. Starting from the initial state
((!"}, InstalmentsCapital(<i,2i,3i>)1000)) {}),

we apply the rule
InstalmentsCapital(</">-;t, c) -»InstalmentsCapitalQt, (l+10/100)c-j")

and progress to the state
({i},InstalmentsCapital(x,(l+10/100)c-i"),
(InstalmentsCapital(<i,2i,3i>,1000) = InstalmentsCapital(<i">a,c))),

which simplifies to
({/'), InstalmentsCapital(;t,(ll/10)c-!"), {»"=«',*=<2i",3»>, c=1000}),

then to
((;'), InstalmentsCapital(<2i,3i>,H00-("), {})•

The reader can verify that when the same rule is applied twice on this state, we obtain successively
the states

({i}, InstalmentsCapital(<3j>,1210-(31/10)i), {}),
((»}, InstalmentsCapital(o,1331-(641/100)i), {}).

By applying the following rule to the last state
InstalmentsCapital(o,0) -»

We finally obtain
({/), ,{1331-(641/100)z=0})

which simplifies to
({/}, , {(=207+413/641)).

THE ART OF REASONING

The second problem makes use of Boolean algebra, and was provided by George Boole [2]
himself. The aim is to show that "something has always existed" using the following 5 premisses:
(1) Something is.
(2) If something is, either something always was, or the things that now are have risen out of
nothing.
(3) If something is, either it exists in the necessity of its own nature, or it exists by the will of
another being.

625

(4) If it exists by the will of its own nature, something always was.
(5) If it exists by the the will of another being, then the hypothesis, that the things which now are
have risen out of nothing, is false.

The set of facts defined by the program will be the set of trees having the form:
ValueOfSomethingHasAlwaysExisted(£>)

where x designates a possible truth value for the proposition "something has always existed".
We now introduce 5 boolean variables which are the possible truth values of the 5 propositions:
a: Something is.
b: Something always was.
c: The things which now are have risen from nothing.
d: It exists in the necessity of its own nature (i.e; the something spoken of above).
e: It exists by the will of another Being.

The program consists of the only rule

ValueOfSomethingHasAlwaysExisted(£>) ->,

{fl = l,
a => (&VC)A- I (6AC) ,

a => (dve)A-i(iiAe),

d=>b,
e =>-ic};

To solve the problem we write the query
ValueOfSomethingHasAlwaysExisted(;c)?

and we obtain the only reply

U = D.

Here is an abbreviated trace of the calculation of this reply. The initial state is
([x], ValueOfSomethingHasAlwaysExisted(x), {}).

By applying the one rule, we progress to the state
({*}, , [x=b, a = l,a=> (ftvc)A-i(feAc), a => (dve)/\—,(d/\e), d=> b,e => —ic}).

By eliminating the variables b and a we obtain
((x), , [(XVC)A—I(XAC) = 1, (dve)A-i(dAe) = 1, d =>x, e => -ic}),

that is
([x], ,{c =—a, e =—id, d => x, e =>—ic}).

By eliminating the variables c and e we obtain
(UJ, ,{d=>x,^d=>x})

which simplifies to

626

Remember that the machine will not make the same simplifications as those we present for
pedagogical reasons. It will use different ones, certainly more complicated, but they will also be
more systematic (see end of article).

FAULT DETECTION

Here is a more complex problem, again related to Boolean algebra. It has been proposed in
[7]. This time, we are aiming to detect one or more defective components in an adding circuit
which calculates the binary sum of three bits X\, x2, x-$ in the form of a binary number composed
of two bits: yiy2. As you can see below, the circuit is made up of 5 components numbered from 1
to 5: two and gates (marked And), one or gate (marked Or) and two exclusive or gates (marked
Xor). We have also added three variables ut, u2, u3 to represent the output from gates 1, 2 and 4.

x
l

X-,

1
And

" l

JCj »
4

Xor

2
And

1
"o

u%

Or

5
Xor

—y\

—yi

We also introduce 5 more boolean variables p-t to indicate that "gate number i has broken down".

If we adopt the hypothesis that at most one of the five components has broken down, the program
connecting the values *,■,)>,• and/?, is

Circuit(<xl^c2^:3>, <yl,y2>, <pl,p2,p3,p4,p5>) >
AtMostOneTrue(<p I,p2,p3p4j)5>)
(1/7I => (ul = ;C1AA:3),

—p2 => (M2 = X2AU3),

—ip3 => (yl = ulvu2),
.p4 =>(«3=i(xl^x3)),
-p5 =>(y2 = -^(x2=u3)));

AtMostOneTrue(P) > OrOnAtMostOneTrue^^);

OrOnAtMostOneTrue (o , 0) >;
OrOnAtMostOneTrue (<p>-P, pvq) > OrOnAtMostOneTrue (P, a), [pAq = 0);

627

If the state of the circuit leads us to write the query
Circuital, 1, 0>, <0,1>, <pl, p2, p3, pA, p5>)?

the diagnosis is that component number 4 has broken down:
{pl=0, p2 = 0, p 3 = 0 , p 4 = l ,p5 = 0}.

If the state of the circuit leads us to write the query
Circuital, 0,1>, <0, 0>, <p\,pl, p3, pA, p5>)?

the diagnosis is that either component number 1 or component number 3 has broken down:
{plvp3 = l,p\Ap3 = 0,p2 = 0, pA = 0,p5 = 0).

TREE MANIPULATIONS

Our last example illustrates Prolog Ill's capacity for refined tree manipulations without having
to make use of external functions. The problem posed is the calculation of the list of leaves of a
finite tree. Here is the program without any explanations.

LeavesOf(rree, leaves) -» PlusLeavesOfTree(<>, tree, leaves);

PlusLeavesOfTree(/eave.r, label[<>], <label[o]>-leaves) -»;
PlusLeavesOfTree(/eaves, label[list], leaves') ->

PlusLeavesOfList(/eave.y, list, leaves'),
[list* <>};

PlusLeavesOfList(/eave.y, o , leaves) ->;
PlusLeavesOfList(/eavei , <tree>-list, leaves") -»

PlusLeavesOfTree(/eave.y, tree, leaves')
PlusLeavesOfList(/eavei', list, leaves");

The query
LeavesOf(weights("Joe",< 80,kilos>,l)./eave^)?

should produce the following reply
[leaves = <T, 'o', 'e', 80, kilos, 1>).

PRACTICAL REALISATION

I should like to finish this article with some information on our very first prototype for the
Prolog HI interpreter. It is written in C, apart from certain parts of the environment (by Pascal

628

Bouvier), which are written in Prolog II. In due course, these parts will be written directly in
Prolog HI. The most remarkable feature is the size of the constraint resolution program: 50 times
bigger than a standard unification program!

The core of the Prolog III interpreter, designed by Touraivane is essentially a non
deterministic machine with two stacks whose elements are pushed and popped synchronously. In
the first stack we create all the structures which represent the states through which we pass. In the
second stack we store address-value pairs to record all the modifications we have made in the first
stack, so as to be able to make the necessary restorations for "backtracking". A general garbarge
collector removes from time to time the useless parts of the two stacks, while preserving their
topographies. The core also solves most of the equations and constraints of type *. The
algorithms used are basically extensions of those used in Prolog II and described in [5]. These
extensions deal mainly with lists and numerical variables which are not constrained to be positive.

The core of the interpreter calls on two modules: one for the processing of Boolean algebra,
the other for the processing of numerical constraints of type £. The module for Boolean algebra
has been designed by Jean-Marc Bo'i and Fr6denc Benhamou. The algorithms used are essentially
those of Pierre Siegel [9]. On the one hand they check if a system of constraints can be satisfied,
and on the other they simplify a system into a system which only makes use of a given subset of
variables.

The arithmetical module, written by Michel Henrion, processes variables which are
constrained to be non-negative (these variables are introduced to remove the constraints of type
>). Fundamentally, it consists of the programming of George Dantzig's Simplex algorithm [6]. A
subtle process deals with "degeneracies", that is with the appearance of unexpected zeros [1]. To
this has been added a non trivial process to deal with the remaining constraints of type *. The
module also includes basic subprograms for carrying out operations of addition and mutliplication
with infinite precision, (that is, using fractions whose numerator and denominator can have
variable length).

THE FUTURE

A commercial product such as a Prolog HI interpreter or compiler should be available in two
years time. As our examples have shown, its applications will be varied, and our experience of
Prolog tells us that most of them will be surprising. However I see two dominant areas of
interest. The presence of linear inequalities makes it possible to solve traditional problems
encountered in operational research: minimization of costs, planning etc, but with much greater
flexibility. The presence of complete Boolean algebra makes it possible to improve the

629

formulation of reasoning rules for expert systems. It is no longer necessary to limit their
reasoning models to the scheme "if that and that, then this". Logical uncertainties like "this or that
is true", and logical negations like "this is not true" can now be used. In fact, we should soon be
in a position to know more about the possible applications for Prolog III. The next stage in our
ESPRIT project is to use our interpreter prototype to program the PROMOTEX system for diagnosis
of car engine breakdowns.

ACKNOLEDGEMENTS

I would like to thank the CEA and the Association AMEDIA for their financial help in this
project. I also thank DEC which by donating an "External Research Grant" enabled us to acquire
useful computer equipments. Finally I would like to thank the members of the Ministry for
Research and Higher Education, who have supported research efforts connected with the project,
within the framework of their Joint Research Programs "Tools for Artificial Intelligence" and
"Artificial Intelligence".

REFERENCES

[1] Balinski Michel L. and Ralph E. Gomory, A Mutual Primal-Dual Simplex Method, Recenf
Advances in Mathematical Programming, Edited by R. Graves and P. Wolfe, McGraw-
Hill, 1963.

[2] Boole George, The Laws of Thought, Dover Publication Inc., 1958.
[3] Colmerauer Alain, Henry Kanoui, Robert Pasero and Philippe Roussel, Un systime de

communication homme-machine en franqais. Research report, Groupe Intelligence
Artificielle, University Aix-Marseille n, 1973.

[4] Colmerauer Alain, Prolog in 10 figures, Communication of the ACM, Volume 28, Number
12 , December 1985, 1296-1310.

[5] Colmerauer Alain, Equations and Inequations on Finite and Infinite Trees, Invited lecture,
Proceedings of the International Conference on Fifth Generation Computer Systems,
Tokyo, November 1984, 85-99.

[6] Dantzig Georges B., Linear Programming and Extensions, Princeton University Press 1963.
[7] Genesereth Michael R. and Matthew L. Ginsberg, Logic Programming, Communications of

the ACM, Volume 28, Number 9, September 1985, 933-941.
[8] Robinson Alan, A machine-oriented logic based on the resolution principle, Journal of the

ACM, 12 December 1965.
[9] Siegel Pierre, Representation et utilisation de la connaissances en calcul propositinnel,

Doctoral Thesis, Faculty des Sciences de Luminy, University Aix-Marseille JJ, July 1987.

630

Project No. 1063

AN EXPERIMENTAL PROTOCOL FOR THE ACQUISITION OF EXAMPLES
FOR LEARNING

Jim Blythe, David Needhara

GEC Research, West Hanningfield Rd., Chelmsford CM2 8HN, England.

Patrick Corsi

Cognitech, 167 rue du Chevaleret 75013 Paris, France.

The INSTIL project addresses the automation of knowledge acquisition
for expert systems using techniques of machine learning. The
important research contributions of this project lie in its approach
to 'noise' in the input data to the learning system. This approach is
based on the integration of three learning algorithms, each with a
fundamentally different basis, that have been previously implemented
and developed by the partners. The different strengths of these
algorithms are able to complement each other.

Over the course of the project, the system is being tested in the
field of plant pathology, although the range of application extends to
that of classification expert systems. We present the test field as a
case study in the use of the INSTIL system, focussing on the protocol
used for gathering examples. These examples can be usefully described
by non-experts, reducing the cost of knowledge acquisition and
combatting one type of noise. We also characterise the problem
domains for which the INSTIL system is well suited.

We generalise the experience of the case study to suggest key points
for a protocol for knowledge acquisition in machine learning. This
takes various aspects of noise into account, and allows the final
representation language to be oriented towards the targeted users of
the system, as well as the experts.

1. INTRODUCTION

The INSTIL project aims to build a learning system adapted for use in real-life
environments. To that end, the system should be developed in conjunction with
domain of expertise. The domain of plant disease diagnosis was chosen at the
beginning of the project because of two main observations:

• Some machine learning and KBS implementations already existed in this field
at the time (eg Soja [Michalski & Chilausky 81]) and more were on the way
(eg Wheat Counsellor by ICI), and

• an expert system on tomato plant pathology had already been developed by
INRA (Institut National de Recherche Agronomique, France) and Cognitech,
thus allowing the project to be evaluated by direct comparison with an
existing system at the conclusion of the project.

One problem that is still to be overcome in applying learning systems in such a
domain is that of noise, which we take to mean incorrect or incomplete data in
the training examples. Dealing with noise is the major work of the INSTIL
project. The approach taken is based on the integration of three existing
learning systems, all of which have been developed and used by the partners, and

631

which have different strengths and weaknesses [Sraallman 85]. From them, we can
produce a system for rule induction that combines a powerful representation with
low sensitivity to noise.

However, we do not rely solely on the rule induction phase for dealing with
noise in the process of learning. While a great deal of effort has recently
been put in to the problems that noise causes for the machine learning task
[Quinlan 86], [Niblett 87], most of this work has focussed on the rule
construction phase, concentrating on making it less sensitive to individual
examples that may be erroneous. Principal techniques involved in this task have
been pruning [Briemann et al. 84] or truncation [Mozetic 86] of the rule base
to make it less sensitive to detail.

Set of
examples

FIGURE 1

The overall process of constructing a knowledge base by machine learning.

We view the treatment of noise as a process that should affect every stage of
the learning process, as shown in figure 1. A particularly important phase is
that of example acquisition, which is the subject of this paper. We present the
methodology that the project has developed for conducting knowledge acquisition
in a noisy domain, and provide a case study in the domain of tomato pathology.
This phase was carried-out between April and June 1987.

The idea of treating noise at the acquisition stage is not based on eliminating
all noise from the examples: that would undermine the capability of the
induction module to respond to the noise that is present in the domain both at
consult time and learn time [Quinlan 86]. Our study aims rather at classifying
the noise that will be present by source and effect, to maximise the information
available to the learning system, and at reducing the noise that is only present
during the acquisition phase.

1.1. Rationale for the acquisition of training examples

In the next section we develop some of the background necessary to construct a
simple model of the process of example acquisition. Central to this work is the
desire to produce guidelines for gathering examples that can help to combat
noise in a domain that is subject to it. This will be necessary to ensure that
the final system is well applicable to a range of problem domains. It is also
essential in order to deal with noise in a coordinated way. To do this, we
investigate the types of noise that can particularly affect the process of
knowledge acquisition, and develop a simple model of the process.

One manifestation of the noise inherent in a domain is that different people
would describe the same event differently, even if they use the same description
language. For example, the threshold at which red becomes orange is not a

632

universal standard, nor is it clear when a leaf's edge stops being smooth to
become jagged. This phenomenon seems to be strongly linked with the 'skill'
level of the observer, since an expert can see much more detail in his domain
than a novice.

This observation leads us to a major principle of our approach to knowledge
acquisition: that examples should be described by a number of people,
preferably of the same level of skill in the domain as the targeted end user.
This is in contrast to the classical expert systems approach, where the skilled
knowledge engineer derives the system from a few experts.

The work of diagnosis must of course be done by an expert, in order to capture
his or her knowledge. Thus the scene is set for a number of active agents of
differing skills and tasks in the knowledge acquisition phase. We next analyse
the degree to which the different types of noise identified affect each agent.

Finally, we take into account the different types and sources of examples that
may be used for rule induction. It is estimated that it would take seven years
to see an example of every type of tomato disease that can occur in France.
Thus a reasonable system must make use of examples taken from different sources,
e.g. photographs and the memories of experts. These must be treated in
different ways as described below, although this is mainly a problem for the
learning system, and is outside the scope of this paper.

In section 3, we present some of our experiences of knowledge acquisition in the
tomato plant domain. This is compared with the ideas developed in section 2.
In the final section, we present partial results of the study, and discuss how
the lessons learned might be generalised to apply to other domains.

2. THE ACQUISITION METHODOLOGY

2.1. Types of noise to be treated

We now come to look more closely at the kinds of noise that are present during
the task. We are not concerned in this paper with their treatment after the
acquisition phase is completed, or with other types of noise that may then
arise. The reader is referred to [Kodratoff et al. 86] for the previous work
on which this section is based. The consortium pinpointed 11 types of noise
that have an impact on this phase, which are as follows. The number of + signs
indicates increasing importance.

Nl. A faulty description language:
Frequently a learning system fails because the description language for
examples has not been rich enough to express the differences between them.
The use of a pilot phase (see below), and the analysis of some examples by
an expert help to alleviate this problem.

N2 Descriptors that are costly to check: +
Very often, descriptors are costly to check since:
(a) they necessitate killing the plant or require a lot of plants, or
(b) when a sample is not complete (consists only of parts of plants) it

would cost time to obtain certain measurements.

N3. Descriptors hard to notice: +++
Very often, these descriptors are the most pertinent ones. They are also
the ones the experts like to use for showing off (!). The eyes of the
experts are accustomed to finding them, but not those of a technician; the
expert can see signs that are hardly visible, and can recognise signs under
a wide range of polymorphy.

633

N4. High level concepts similar and/or blurry: ++
Some diseases express similar symptoms under particular conditions. The
expert himself is sometimes obliged to do laboratory tests. In fact,
descriptors needed to differentiate such concepts are often costly or hard
to notice.

N5. Randomness of natural phenomena: ++
Few natural domains are without some variation of features across the
sample space. Any acquisition method will be at the mercy of factors
beyond our control - this is one reason to make the operation as large as
possible.

N6. Variation of tolerance of tests: +
May happen, particularly with accuracy of measurements (length of a plant).

N7. Mistake in providing a value: +
This will certainly be the case with non-naive users or plant specialists
who may allow their views to be influenced by what they expect to see. As
origins, we can mention (a) lack of attention, and (b) prejudiced view,
when naive users make mistakes, they can often be corrected in the early
stages of the experiments. The risk is decreased by on-line help and the
spelling checker provided by an interactive questionnaire.

N8. Leaving out a descriptor: +++
This is inherent in the domain, because an example is often incomplete.
Beyond noting that a descriptor cannot be evaluated, we feel it is not
appropriate to treat this type of noise during the acquisition phase, since
choosing 'good' examples will lead to a bias that is not present when the
system is in use. This problem is handled during the learning phase, where
the system chooses the more 'reliable' descriptors.

N9. Wrong class attributed to an example: ++
This case probably has the same origin as N7, that is, prejudiced view.

N10. Bad examples with too many symptoms: ++
That could happen because normal (not diseased) plants present
imperfections that could be described by a non-specialist of the plant. It
might happen also when a plant has multiple diseases where one (or more)
diseases are not diagnosed.

Nil. Bad or incomplete example space: +++
A law of the domain. In general, a set of training examples that span the
problem domain may take several years to produce. This fact of plant
pathology makes it very likely that, in the long run, a learning apprentice
system capable of adapting while being used will be appropriate for the
domain [Mitchell et al. 85].

In the next sections we develop the possible solutions we propose to minimise
the effects of these types of noise. We stress again that treatment must occur
throughout the learning process, and some types are more easily treated during
the induction phase.

2.2. A typology of the domain actors.

This section is based both on the ideas mentioned in section 1, and on our
practical experience. We differentiate three categories of personnel involved
at some specific points during the search and collection of the examples. They
are:

• The Farmer (F) is in charge of growing and curing the tomato plants. He
often asks the Technician (see below) for help.

634

• The Technician (T) is knowledgeable about the tomato field, but sometimes
has to ask the expert's help for a difficult diagnosis. We should
distinguish here between the "naive" technician (NT), who is an occasional
user but not trained or accustomed to the questionnaire, and the
"non-naive" technician (NNT) who knows the questionnaire well in some form
or another.

• The Expert (E) is the agreed reference for expertise in the application
field. He is the one whose task is to validate the results at each step of
the data flow. His diagnoses shall always be kept as a major reference as
far as all future performance and validation tests are concerned.

The types of noise described in section 2.1 have an impact on each category of
user in the ways described below.

• The Technician: N3, N7, N8 and N10. These probably depend on the
technician's level of knowledge about the tomato. We may distinguish
between the two types of technician:

Naive Technician: makes mistakes in answers
N3: he is not familiar with the descriptors in the questionnaire.
N7: he will probably generate less of this noise, because of the close

attention he must pay to complete the questionnaire.

Non-naive Technician: presents bias about knowledge
N3: he will probably generate less of this, because he is used to

thinking in terms of our descriptors.

• The Expert gives incomplete description of the world
N9: the source of noise we expect is the incomplete diagnosis.
N4: probably comes from N5 or N2, or from a lack of laboratory tests.

2.3 Different types of 'example' to be used in a learning system.

There are two major types of examples that will be collected and used in a
system - 'real' ones, that come from the field and are diagnosed by the expert,
and 'synthetic' ones that must be used to supplement the base of training
examples to provide an adequate coverage of information.

There are three subtypes in the category of real examples:

• Those cases which would normally come from the field to Technical Centres
to be diagnosed. The example is described after reception and before
diagnosis by an expert. Their acquisition is completely passive.

• Those cases that come to be known to technicians and must be collected.
This is a slightly more active form of acquisition.

• Those cases that would otherwise remain unknown to the technicians. By
introducing our work force into the field, under the guidance of
technicians and other personnel, an active search can bring results. This
is the most time-consuming process.

A mixture of the passive and active methods of receiving examples should be used
in such a domain as this, if possible, to overcome any bias that may be
introduced by using only one form of acquisition.

The 'synthetic' examples can be split into those taken from photographs, where
certain descriptors often have to be guessed, those taken from written records
of previous seasons, either on-line or not, and those that come from an expert's
memory. In the work done so far, only photographs have been used as synthetic

635

examples.

It is important to remember that the synthetic examples have in some sense been
singled out and kept as "case studies", often used for teaching purposes. In
general, they are either proto-typical members of their class or highly
atypical, kept for their strangeness. These factors are important in the design
of a learning system capable of accepting both types of example, but do not
concern us here, except to note it is important to differentiate them.

"̂v«». Items
Examples^^-^^

Natural
examples

Expert
memory

Descriptive
papers

Photographs

Interest

Actual farmers
problem

Completeness

Case library

Case library

Inconvenience

- Non complete
- Weather dependant
- Statistically bad
Idealised examples

Other representation

Partial representation

Nl

N8,

N8,

N8,

Noise

to Nil

NIB

N2

N3

FIGURE 2
The types of examples.

3. A CASE STUDY IN THE TOMATO PLANT DOMAIN

As mentioned in section 1, the acquisition phase was completed in early Summer
1987. In France, INRA is widely recognised as the best organisation for
conducting large-scale experiments in plant pathology. They provided the
experts with whom Cognitech built the original TOM expert system, and also
provide help in our current work. Within INRA.. Avignon is of prime importance
for research on tomato pathology involving top-level experts, trained
technicians and several surrounding sites for growing tomato plants. For this
reason we chose Avignon as our area for example acquisition.

Any individual case study of example acquisition will have slightly different
circumstances, leading to a slightly different organisation of domain actors and
a slightly different protocol. In this section, we describe the organisation of
people in Avignon, and their interaction. In order to handle a large flow of
examples, an automated questionnaire has been developed by Cognitech, providing
a structured way to store examples, with help facilities about the description
space. We briefly discuss this system and we also look at how the acquisition
phase can be controlled and calibrated using a pilot phase.

3.1. Domain actors

The classes of people active in Avignon are the three mentioned in section 2.2.
At the start of the acquisition phase, there were good relations already
established between INRA and the farmers of the area. We introduced some people
into the area as technicians, to collect examples actively for us, and they
worked through these established relations. We note the following specific
problems in the current domain:

636

• There is some loss of information between the farmer and the expert,
because of a typical reluctance to call an expert in. We therefore lose a
few examples that way.

• There is the possibility of information loss due to the presence of various
hierarchy levels and some :old communications habits within the rural
community, which the filler of the questionnaire may not always be
accustomed to. This loss he has to detect.

• Finally, it seems better to describe the tomato at the site where it grows
(when possible), in order to avoid forgetting some aspects or if an
unavailable piece of information comes to be needed.

3.2. The Questionnaire

The questionnaire in use in Avignon is a software tool for knowledge acquisition
that structures and formats the examples as they are entered in full screen
mode. It was developed in Common Lisp on a SUN-3 and ported to a BULL
DPS8/Multics system at INRA. Consultations of the questionnaire are made
through TRANSPAC, the French public network.

The questionnaire contains a tree structure of menus, which match the hierarchy
of objects in the domain knowledge. It allows the user to make comments about
any descriptor, as well as enter the objects and values that are processed.
When requested, it provides on-line help facilities and can give default values
for descriptors. In order to help noise elimination at later stages, the
questionnaire also makes a note of the date, time and user's identity. The
diagnosis is entered separately from the questionnaire.

3.3. The control of the acquisition phase

We found it useful to carry out the acquisition process for two weeks before we
began to accept the results, in order to remove the possibility of noise
introduced by lack of familiarity with the system. We view this period, the
'pilot phase', as the control and tuning of the acquisition phase, which may
serve these purposes:

• validation of the collection of the examples.

• calibration of the parameters of noise (costs, defaults etc.), to estimate
the noise produced during the acquisition phase.

• the establishment of links with workers in the field and experts.

• eventually, the trace of this event enables us to propose a methodology of
data acquisition for an INSTIL environment to generate a complete database.

The examples produced during this period were examined both by experts and
technicians. Likely areas of vulnerability to noise were brought to light, and
in addition several improvements to the description language being used were
made, where it had been found to be inadequate. We note here that this control
period inevitably introduced some bias in the tomato domain, because it took
place at the start of the season, and all the plants were young, but we do not
see how this could have been avoided without spending an entire season as a
control phase.

637

4. RESULTS AND CONCLUSIONS

We are able to provide the final results of the acquisition phase covering the
pilot phase and another two-and-a-half months of data collection. From our
initial experience we make some suggestions about what a more general knowledge
acquisition phase for an inductively generated knowledge based system might be
like.

4.1. The diseases covered within the crop season.

During the acquisition phase we obtained 203 exploitable real examples and 105
exploitable synthetic examples (from photographs). They together provided 77
different diagnoses (46 simple diseases and 31 mixed diseases), covering most of
the known diseases. Other examples were collected, but rated as unexploitable
for various reasons (communications failure, lack of descriptors, etc).

The following table gives the diseases most commonly observed and diagnosed by
the expert. The frequency numbers include also occurrences of the diseases in
combination with others.

DISEASE

Botrytis
FOL
Phytotoxicite
Corky-root
Probleme alimentaire
Moelle noire
Verticilliose
Cladosporiose
Alternariose
Argenture
Carence en fer
Corynebacterium
Intumescences
Moucheture

FREQUENCY

34
22
22
21
21
17
14
12
11
11
11
11
10
10

4.2. A proposed methodology for example acquisition

Some of our experiences with the test domain are individual to that domain, but
many can be generalised to form a set of guidelines for the task of example
acquisition. We now summarise the work presented here by way of considering
these guidelines.

• Domain actors
In most domains, the target users will have a different way of describing
the domain from the experts. This can be a problem in classical expert
systems. We propose that examples should be described by people of the
same skill level as the end users, working in the "field" with those users.
The examples should be classified by the expert, however.

• Documentation
The examples gathered should be carefully documented, in case they are
later questioned by a learning system. In particular, it is useful to save
the date and the questionnaire filler's identity. This is best done by
questionnaire software that can also provide help about the description
language.

638

• Pilot phase
It will often be an advantage to spend a small percentage of the total time
available in a 'dry run' or pilot phase. This allows the users to get
familiar with the system, the experts to calibrate various types of noise
that may be introduced, and provides an opportunity for the questionnaire
to be modified if necessary. This phase should preferably involve some
test runs with the learning system to examine the knowledge being formed.

This project has looked extensively at the possibility of using machine learning
techniques to generate commercial expert systems. Most of the research work in
this field uses examples bases that are easy to acquire, such as are provided by
medical records [Quinlan 86], [Bratko et al. 87], [Michalski et al 86]. We
have investigated the case where such bases are not so readily available.

We find that the task of acquisition can, indeed should, be shared between a
number of technicians, rather than a few experts. Moreover, the presence of
end-users in the acquisition process helps ensure that the domain language used
in the final system is oriented as far as possible towards the end-user as well
as the expert. It also seems a quicker and cheaper process than conventional
knowledge elicitation for expert systems. Finally, the process of actively
creating the example base allows us to introduce noise handling techniques into
every stage of the rule induction process.

ACKNOWLEDGEMENTS

We are grateful to the INRA institute for providing the necessary human and
material resources for the collection of examples. Special thanks to Christine
Piaton and Noel Conruyt, students in agriculture, and to M. Dominique Blancard,
expert in tomato plant pathology at INRA - Avignon. We also acknowledge the
contributions to this work from Michel Manago and his colleagues at the
Laboratoire de Recherche en Informatique, Universite de Paris-Sud, our partners
in INSTIL, ESPRIT project P1063.

REFERENCES

Briemann et al. 84, Briemann, Friedman, Olshen & Stone, Classification and
Regression Trees, Wadsworth Press, 1984.

Kodratoff et al. 86, Kodratoff, Y. , Manago, M. , Blythe, J., Smallman, C ,
Andro, T., "The Integration of Numeric and Symbolic Techniques in Learning",
presented at the AAAI Workshop on Knowledge Acquisition, Banff, Canada, 1986

Mozetic, I. 86, "Knowledge Extraction through Learning from Examples", in
Machine Learning: A Guide to Current Reasearch, Mitchell, Carbonell, Michalski,
eds., Kluwer Academic Publishers, Boston, MA.

Michalski & Chilausky 81, "Knowledge Acquisition by Encoding Expert Rules versus
Computer Induction From Examples: A Case Study Involving Soybean Pathology", in
Fuzzy Reasoning and its applications.

Michalski et al. 86, Michalski, R., Mozetic, I., Hong, J., Lavrac, N., "The
AQ15 Inductive Learning System: An Overview and Experiments", Intelligent
Systems Group, Dept. of Comp. Sci., University of Illinois.

Mitchell et al. 85, Mitchell, T., Mahadevan, S., Steinberg, L.,"LEAP: A
Learning Apprentice for VLSI Design", in Proceedings of IJCAI-85, Los Angeles,
August 1985.

639

Niblett 87, "Constructing Decision Trees in Noisy Domains", in Progress in
Machine Learning, I. Bratko & N. Lavrac eds., Sigma Press 1987.

Quinlan 86, "The Effect of Noise on Concept Learning", in Machine Learning,
volume 2, Michalski, Carbonell & Mitchell, eds., Morgan Kauffman 1986.

Smallman 85, Technical Annexe for ESPRIT project 1063: The Integration of
Numeric and Symbolic Concepts in Learning, 1985.

640

Project No. 1133

A PRODUCTION RULE LANGUAGE FOR DATABASES EXTENDED
TOWARDS THE SUPPORT OF COMPLEX DOMAINS *.

♦Gerald Kieman, Christophe de Maindreville, Eric Simon

INRIA Rocquencourt BP 105
78153 Le Chesnay Cedex, France
*MASI Laboratory
University of PARIS VI

This paper presents (i) the integration of a production rule language in a DBMS and (ii)
the support of complex domains within rules using a special purpose LISP language
interpreter with a loose coupling strategy. A RDL1 production rule consists of a
conditional part which is a relational calculus expression and of an action part which is a
sequence of deletions and insertions in the database relations. This language is compiled
in a new execution model based on Predicate Transition Network which permits an .
integration of the rule language in the DBMS. Abstract data types (ADT) are defined by
the set of operations that can be performed on a domain data structure (DDS). Complex
domains are ADT with operator inheritance based on a hierarchical "ISA" relationship
between domains. All complex domains are represented as LISP structures. User
defined operators are stored in function base. Efficient retrieval can be ensured using a
clustering method which takes into consideration frequently applied functions.

1. INTRODUCTION

Existing Database Management Systems (DBMS) are inadequate for many new potential
applications. Such applications have been studied in the Esprit Project 1133 and include a software
engineering environment and an intelligent training system for helicoptersfl]. The initial results [2]
point to the need for including in the DBMS efficient handling of new domain types and more
intentional knowledge defined in a flexible and modular way. New domain types may include sets,
lists, trees, graphs, graphics,... with associated operators. Intentional knowledge requires general
production rules not restricted to a Horn clause form and that support multiple actions including
updates. Furthermore, the applications call for a tight integration of the rules with the DBMS instead

* This research has been done in the framework of the ESPRIT Project IS IDE 1133.

641

of a loose or tight coupling. Recursive rules appear to be an application issue only under two
conditions : (i) the rules must be general enough to support operations such as a student's
evaluation in the training system or pattern matching in a software engineering environment and (ii)
the recursive rules must not be too complex (for instance they remain linear i.e., the recursive
predicate in a rule appears only once in the antecedent part of the rule). Under these two conditions,
the intelligent training system is a typical application requiring many recursive rules. Another
important issue is the need for similar performances when accessing either extentional or intentional
knowledge.

From these initial considerations, the project researches two main problems. The first one concerns
the design of a new knowledge representation formalism which supports the concepts of rule and
object and permits an efficient integration with a relational DBMS (RDBMS). The second one is,
assuming that massive amount of physical main memory will be available on forthcoming
computers, to propose an efficient implementation of an extended algebraic machine for the
knowledge representation level. This paper focuses on the first problem and a few ideas on the
second problem are presented at the end of the paper.

The first research problem has been divided in two parts : how to integrate general rules with an
RDBMS and how to implement complex domain definition and manipulation in an RDBMS. We
first started with a study of the state of the art and then two propositions emerged. The first
proposition led to the design of an original production rule language called RDL1. Using this'
language, two kinds of database relations are handled : base (also called extentional) relations
whose tuples have been entered explicitly by the user and derived (also called intentional) relations
whose tuples are either explicitly given or obtained dynamically with rules. A production rule in
RDL1 consists of a conditional part which is a tuple relational calculus expression and a consequent
part which is a sequence of insertions and deletions of tuples in (derived or base) database relations.
More precisely, they are two elementary actions, denoted"+" and "-". The update action "+" takes a
ground fact as argument and maps a database state into another state which contains this fact. Thus
the action "+" inserts a tuple into a (derived or base) relation. On the contrary, the action "-" takes a
fact and deletes it from a (derived or base) relation. Complex update actions can be specified in
terms of these two primitive actions. Parametrized and multiple updates are defined using variables
as arguments of actions. Finally, all these updates can be rewritten into a sequence called an action.
Then, we provided a compilation technique for transforming the rules into a new execution model
based on Predicate Transition Networks, called a Production Compilation Network (PCN). This
model is not only a static graphical representation of the connections that exist between rules and
predicates but also a tool used to dynamically control the execution of a rule program. In particular,
a PCN serves as a basis for a tight integration between RDL1 and the relational DBMS.

The second proposition is the "on the side" extension of an RDBMS with a special purpose LISP
language interpreter designed as an integrated DBMS processor. This type of solution was
introduced for the INGRES system in [3], [4, 5] and can be contrasted to an "on the top" approach

642

as described in [6,7,8] where an interface is created to simulate a new or extended data model. Our
approach uses the rich typing capability offered by abstract data types (ADT). Abstract data types
are defined by a domain data structure (DDS) with its associated operators and are implemented as
LISP functions. Complex domains are ADTs with operator inheritance based on a hierarchical "IS
A" relationship between domains. All complex domains are represented as LISP structures. New
user defined functions are then stored in the database. The user can reference new complex
domains when creating new relations. He can also define new functions for these domains and use
them in an extended version of SQL. Complex domains can appear in any part of a relational query
(projection, restriction, join). For example, the new complex domain DIMENSIONS can be
created. Consider the relation RECTANGLE (NO:integer, DESCRIPTION:texte,
STDES:dimensions). The surface operator, defined for domain DIMENSIONS returns the surface
value for rectangles. The SURFACE operator can also be implemented for other domains. The
system will automatically choose the correct operator depending on the domain type. Efficient
retrieval can be implemented using a clustering method which takes into consideration frequently
applied functions. Moreover, intelligent filtering can be performed. For instance, tuples can be
clustered according to the surface value of rectangles for efficient retrieval with queries applying a
restriction based on this characteristic.

A first attempt at combining the two previous proposals has been investigated and the results are
reported in this paper. Our approach is extending the rule based language in such a way that rules
operate over relations defined with complex domains. The paper is thus organized as follows apart
from this introduction. Section 2 presents the concept of complex domains and the language used to
define these domains. The next section is devoted to the RDL1 rule language extended with
complex domains. Section 4 presents a functional architecture of the proposed system and surveys
query optimization techniques used to evaluate rule programs. Section 5 provides a qualitative
analysis of the proposition herein presented. We outline the main limitations of this approach with
respect to the goals assigned by the study of the potential applications. Performance issues related to
the proposed approach are briefly discussed. Finally, future research perspectives are envisioned
from this intermediate stage. Section 6 is the conclusion of the paper.

2. FDL1: A FUNCTIONAL DOMAIN DEFINITION LANGUAGE.

2.1 Complex domains as abstract data types

The objective in extending a relational DBMS to a generalized one is to satisfy the requirements of
new applications. The objects represented in these applications lose too much of their semantics
when normalized. Most of the literature on generalized databases deals with the issue of complex
object modelling. In programming languages, complex objects are defined as the potential behaviors
of an object [9]. In database systems, complex object modelling is capturing the structure of an
object in its totality or in its parts as represented in the tuples of normalized relations[10].

643

A complex domain can be defined in three steps: 1) the description of the domain data structure
(DDS), 2) the definition of the associated operators, and 3) operator inheritance. The current notion
of abstract data type (ADT) [3], [11] corresponds to the first two steps. New DDS capabilities
should include hierarchical structures, sets, lists, ... Domains should be organized into a "ISA"
hierarchy for operators inheritance. Futhermore, it should be possible to implement operators using
previously defined ones. In "on the side" extensions of relational DBMS, a programming language
is used to code new user-defined operators and domains. A user-defined operator can be applied on
a per tuple basis (calculation) or it can be applied on a set of tuples (aggregate). The procedures
(also called user programs) which implement the operators and domains are registered with the
DBMS. When user-defined domains and operators are referenced in queries, the DBMS runs the
appropriate procedure to resolve the query. An ADT is thus user-implemented and user-defined.
The only knowledge that the DBMS has about the ADT is its name and the names of the operators
which manipulate it. The knowledge about the ADT semantics is locked within the user code.
When a query is processed, the task the DBMS has to accomplish is recognizing whether a domain
or operator is user-defined or standard (i.e., predefined domains such as integer, real, text). If the
domain or operator is user-defined, the system has to retrieve the code which implements it, link it
with the DBMS program, run the user program and pass parameters between the DBMS program
and the user program. Current implementations of ADT differ on (i) whether or not new operators
can be defined for standard domains, (ii) the choice of programming language used to implement
user-defined domains, (iii) whether the programming language is compiled or interpreted and (iv)
physical access methods for ADT.

For instance, ADT-INGRES uses a compiled version of the C programming language to implement
ADT. Due to the compiled environment, errors arising from user programs cannot be easily
handled. User code is stored in sequential files and must be dynamically or statically linked to the
DBMS program. In an interpreted version of the same language, linking would only require loading
the user code into the interpreter. When registering a new domain or operator with ADT-INGRES,
the user supplies the name of the operator, the number of bytes needed for both the internal
representation and the external representation, and the name of the sequential file where the code is
stored. In the case of operators, operator parameters and their types must be given. Because of the
need for specifying the size of the physical representations of an ADT, it is difficult to implement
type generators such as sets and lists which can be of variable size. A similar implementation of
ADT can be found in [11]. In this one, in addition to calculations and aggregates there is another
category of operators which are defined as transformation operators. These operators take a relation
as input and return a relation as a result.

We defined a similar implementation strategy as ADT-INGRES but with different implementation
choices. In our system, an object oriented version of the LISP language [12] is used to implement
user-defined domains and operators. The environment is interpreted. All user code is stored in
specific database relations called the function base. No secondary sequential files are used. User

644

domains are described using a hierarchical "IS A" relationship between domains for operator
inheritance. The LISP language provides easy implementation for type generators such as sets, lists
and trees. Special LISP functions are registered to verify domain values.

2.2 Syntactic definition of complex domains

The FDL1 language is used for the definition and manipulation of complex domains. Complex
domains can only be manipulated through functions. It is thus necessary for the language to adhere
to the functional approach. This is what motivated the choice of LISP. The functional approach
meets the objective of being a general solution therefore, addressing a set of problems related to data
representation and manipulation. The LISP processor is an entry point from which complex
domains are registered with the DBMS. The interpreted environment ensures better control over
programming errors in user-defined complex domains which might cause the DBMS program to
terminate abnormally in a compiled environment For example, a division by zero in a user function
would be detected by the interpreter and control would be transferred to the DBMS program. This is
much harder to accomplish if the user function is compiled. Also, compiled code must be statically
or dynamically linked to the DBMS program to be run which presents an added difficulty.

LISP was initially designed as a type free language. This feature is not compatible with the
consistency requirements of a DBMS. The type notion and type hierarchy notion were hence added
to the language environment. The latter is for function inheritance among types. The type notion"
transposed to the DBMS environment describes DDS and their associated operators. Operator
inheritance from generic domains is possible through the transposition of the type hierarchy. The
Define Domain function (DD) is used to create a new complex domain. The general syntax of the
DD function is the following:

(DD <generic domainxdomain name> (<domain param>)(<domain definition>))

The "domain name" is the name of the new complex domain that is being defined by the DD
function. The "generic domain" and its ancestors are the complex domains from which this domain
will inherit operators. The "domain param" is an argument to which specific values will be
individually bound and verified as belonging to this domain. The "domain definition" contains the
predicates that the value represented by the "domain param" must verify to qualify as a particular
occurrence of this domain. The DD function is thus a boolean function.

Example:
Rectangular shapes can be represented by the DIMENSIONS function:
(DD LISP DIMENSIONS (X)
(and (listp x)
(numberp (car x))
(numberp (car (cdr x)))

645

(null(cdr(cdrx)))))

A value must be a list of two numbers to qualify as an occurrence of DIMENSIONS.
DIMENSIONS is declared as a specialization of LISP. Therefore, all the basis LISP functions can
be applied to attributes of complex domain DIMENSIONS. Besides being the name of the
language, LISP is also the name of a complex domain. Associated to the LISP complex domain are
all the basic LISP functions.[]

Operators for complex domains can be defined using the DE or the DF function. Contrary to the
DD function, the DE and the DF functions are standard LISP functions, although their syntax has
been modified in our version of the interpreter. The general syntax of these two functions is the
same. We will simply state it for the DE function :

(DE <result t y p o <function name> (<domain name> (o rg list>) [<domain name>(<arg list>)]*)
(<function definition^)

The "function name" is the name of the new function being defined by the DE or the DF
function. The "result type" specifies the name of a simple or complex domain which represents the
type of value returned by the function. The "domain name" is the type of the values in the "arg
list". The "arg list" represents the function parameters. Thus, the function parameters can be from
different domains. The "function definition" is the body of the function and contains the code'
which implements the function.

Example:
The following function defines the surface value for argument X of complex domain
DIMENSIONS. The value returned by the function is from the predefined domain of integers.

(DE INTEGER SURFACE (DIMENSIONS (X))
(* (car x) (car (cdr x))))

The SQUARE function returns the BOOLEAN value TRUE if the argument X of domain
DIMENSIONS is a square, otherwise FALSE.

(DE BOOLEAN SQUARE (DIMENSIONS (X))
(= (car x) (car (cdr x))))

The LENGTH and WIDTH functions for arguments of complex domain DIMENSIONS return an
INTEGER value corresponding respectively to the length and width of a rectangle.

(DE INTEGER LENGTH (DIMENSIONS (X))
(car x))

646

(DE INTEGER WIDTH (DIMENSIONS (X))
(car (cdr x)))

To use complex domains in queries, the complex domains have to have been previously registered
with the DBMS. Registering a complex domain simply implies storing its corresponding functions
in the function base, the DBMS takes care of the rest. The function base is used to store
user-defined functions and is accessed from within the LISP environment using special LISP
functions to register, modify or delete specific entries. In an assertional language environment, the
user can use complex domains in any clause of a query (projection, selection, join, aggregates). A
function F applied to an attribute A of a relation R will be written using dot notation as R.A.F. An
extended version of SQL based on these ideas was presented in [13].

3. THE PRODUCTION RULE LANGUAGE

The purpose of this section is to present an overview of the production rule language we use. The
reader interested by a more detailed and formal definition of the rule language RDL1 is referred to
[14, 15].

3.1. A tuple relational calculus

We first recall the basic notions of relational databases. A relational schema R is a finite set of
attributes {Aj,.. . , A n) . Let dom (Aj) be the domain of values of attribute Aj. Note that the
domains Aj can be defined as complex domains through the FDL1 language. A constant tuple t =
(cj, . . . , cn) over a relational schema R is a mapping from R into dom (Aj) u dom (A2) U.... U
dom (An) such that for each i in {1, ..., n) Cj e dom (Aj). We denote by dom (R) the set of all
possible constant tuples over R. An instance of a relational schema R, (sometimes called a relation),
is a finite set of constant tuples over R. A database schema is a finite set of relational schemas.
Finally, an instance I over a database schema S is a total function from S such that for each R in
S, I(R) is an instance over R.

We use an extended version of the relational calculus of [16] based on a multi-sort logic where
terms are typed. This relational calculus has two types of predicate symbols : The relational
predicates (unary predicates) are those for which an interpretation corresponds to the instances of
the relational schemas and allow the user to define the type of a tuple variable which ranges over a
relation. For example, RECTANGLES is a relational predicate name. The non relational predicates
correspond to the usual comparison ones (EQUAL_TO, GREATHER_THAN,...).

A formula is composed of a first part which indicates the type of some tuple variables (the range
definition part) and of a second part conjunctively connected to the former (called a sub-formula)
which states a condition that must be satisfied by the tuple variables. For example, RECTANGLES

647

(x) indicates that x is a tuple variable ranging over the tuples of the relation RECTANGLES.
Particular cases arise when the sub-formula is the predicate TRUE or when it does not contain any
variable. In the following, we impose that our formulae meet the range restricted property [17]
initially defined for closed formulae and that we extended to opened formulae.

We come now to the interpretation of a formula. Let D be the finite sef. of sorts composed by all the
domains of attributes defined over a database schema S and by the domain of each relational
schema. Thus, D = {dom (Aj), dom (A2), ... , dom (Rl), dom (R2),....}. A database DB is the
set of instances of all the relational predicates. We call DB an interpretation. Thus, DB = (I (Rj), I
(R2),... }. Then, a formula is evaluated in the standard way.

3.2.The rule language.

A rule in RDL1 is not a logical formula put in a clausal form but is more in the spirit of productions
in languages such as OPS5 [18] or other forward chaining rule based languages. The general form
of a rule is the sentence: Condition —> Action. A condition over a database schema S is a formula
of the relational calculus. There are two elementary actions, denoted"+" and"-". The update action
"+" takes a ground fact (i.e., a constant tuple) and maps a database state into another state which
contains this fact. Thus, the action "+" inserts a constant tuple in a relation. For instance, +
ANCESTOR (Asc = Bill, Desc = Marie) is a positive action. On the contrary, the action "-" takes a
fact and deletes it from a relation. For instance, - ANCESTOR (Asc = Bill, Desc = Marie) is a
negative action. Complex update actions can be specified in terms of a sequence of these two
primitive actions. For instance, + ANCESTOR (Asc = Bill, Desc = Marie) - ANCESTOR (Asc =
John, Desc = Peter) is a complex action composed with two elementary actions. Parametrized and
multiple updates are defined using variables as arguments of actions. For example, + ANCESTOR
(Asc = x.Father, Desc = x.Child) is a parametrized action, where x is a tuple variable ranging on a
relation having the same domain as the ANCESTOR relation.

We impose the rules to be strongly safe rules as defined in [19].
Examples:
PARENTS (x) -> + ANCESTOR (x) is a rule.
PARENTS (x) —» + ANCESTOR (y) is np! a rule because y does not appear in the condition part.
EMPLOYEE (x) AND x.Name = Jules -» - EMPLOYEE (Name = Jules, Dept. = toys),

+ EMPLOYEE (Name = Jules, Dept = sports) is a rule.

A finite set of rules defines a rule program .

The semantics given to a rule defines a mapping over the database instances. Intuitively, given a
database state I, this mapping is the set of immediate consequences of I using the rule that is the set
of database states that are reachable by applying the rule only once. We shall now provide the
details of the mapping. First, an elementary action takes a database state and maps it to another state

648

as follows : Given a database state I, an action + R (t), where R is a relational schema and t is a
constant tuple, maps I to J such that:

J(R) = I (R) u (t) andJ(T) = I(T)foreachTsuchthatT?tR.
The action - R (t) maps I to J such that:

J (R) = I (R) - {t} and J (T) = I (T) for each T such that T * R

Example:

The semantics of the elementary action + ANCESTOR (Asc = Bill, Desc = Marie) implies adding
the constant tuple (Asc = Bill, Desc = Marie) into the ANCESTOR relation and all the other
relations remain unchanged.

The semantics of a general action is now given. We assume that all the variables contained in the
action have been previously instantiated.

Given a database state I, the instantiated action A = Aj A2 ... An maps from a state I to a state J
such that for each relational predicate name R appearing in A :

J (R) = [(I (R) u I (R+)) -1 (R-)] u [I (R) n I (R+) n I (R")]
where I (R+) is the set of all the constant tuples t appearing in the elementary actions "+ R (t)" and
I (R~) is the set of all the constant tuples t appearing in the elementary actions "- R (t)".

A feature of the language is that the interpretation of the action part of a rule is not performed as a
sequential execution of insertions and deletions. Rather, a valued action is seen as an atomic
database update. This property has several consequences. First, it guarantees that the order of
insertions and deletions in the action part is irrelevant. Second, it nullifies an action which inserts
and deletes the same constant tuple.

Examples:

Let P {A} be a relational schema, then
P (x) AND x.A = a -> + P (A = a) - P (A = a) has no effect on P
P (x) AND x.A = a -» + P (A = a) - P (A = a) + P (A = a) + P (A = a) has no effect on P.
P (x) AND x.A = a -> + P (A = b) - P (A = b) has no effect on P.
P (x) AND x.A = a -» + P (A = b) - P (x) changes the value of attribute A from a to b.

Finally, the semantics of a general rule is : for one condition of the rule which is interpreted to true
when all the variables of the condition are replaced by constant tuples, execute the corresponding
instantiated action over the database.

For one rule a stable state is reached when either (i) every instantiated condition of the rule takes a

649

false value or (ii) when the instantiated condition is true no new database state can be produced
using the instantiated action. When a rule reaches a stable state for any initial database state, the rule
is said to admit afixpoint. If the rule admits a fixpoint and reaches a unique stable state then the rule
is said to be determinist. This notion of stable state is easily generalized for a set of rules.

Examples:

Let R {int: integer} and S {A : integer, B : integer} be two relational schemas.
R (x) —» + R (Int = x.Int + 1) has a infinite stable state,
R (x) and NOT Q (x) -» + Q (Int = x.Int) has a finite stable state,
S (x) -» + S (A = x.B, B = x.A) - S (x) has not a stable state,
R (x) and R (y) -» - R (x) - R (y) + R (Int = x.Int + y.Int) has a finite stable state.

The semantics of a rule program is now defined as repeating the following procedure until a stable
state is reached: (i) compute all the rules that can be fired i.e., whose condition takes a true value
for a particular instantiation of its free variables, (ii) choose one instantiated rule among this set of
firable rules and execute it, and (iii) return to step (i). Remark that the notion of stable state of an
RDL1 program corresponds to the notion of model (or fixpoint) in logic programming. Starting
from this definition, it is clear that an RDL1 program might not have a unique stable state or even
one stable state. Syntaxic restrictions are presented in [14] which give sufficient conditions for a
RDL1 program to have a unique stable state. In this case, a program is said to be determinist.

When a set of rules is declared, it is analyzed and compiled into an internal execution model. During
this analysis, the system keeps all the possibilities opened for ordering the rules. Thus, the
execution strategy is not pre-compiled. The system decides at run time only in which order the
firable rules computed at the step (i) of the above procedure have to be fired. This point will be
further discussed in the next section.

We conclude the presentation of the language with some examples of rule programs. Each program
is introduced under the form of a rule module. A module takes input relations which are either base
or derived relations and produces as output target relations which are defined using a set of
rules.Temporary relations can also be used to compute intermediate results in a module.

Examples :

Consider the following problem about Rectangles (see section 2). Assume that for each rectangle in
the RECTANGLES relation, we wish to write an RDL1 program to compute the derived relation
RECT_PLUS = {N° : integer, Colour : text, Sides: Dimensions, is_greater_than:
Set_of_rectangles} which represents for a rectangle, the set of rectangles which have individual
surface value less than the surface value of this rectangle. The surface and GT (abbreviating greater
than) operators and the set_of_rectangles complex domain have been previously defined for

650

rectangles. The following RDL1 program computes the RECT_PLUS relation.

MODULE: RECTANGLES;
target:
RECT_PLUS (N° : integer, Colour : text, Side: Dimension, is_greater_than: Set_of_rectangles)
begin
RECTANGLES (x) -*+ RECT.PLUS (x, is_greater_than = 0) ,
RECTANGLES (x) AND RECT_PLUS (y) AND (x.Sides.Surface < y.Sides.Surface)

->- RECT_PLUS (y) + RECT_PLUS (y, y. is_greater_than.union (x.N°))
end.

The second example defines a target relation ANCESTOR from the PARENT (Father, Mother,
Child) relation. With this standard flat schema, if a couple of persons has more than one child, the
tuples will have to be repeated a number of times equal to the number of children had by couple.
For example, let us consider the following instance of the PARENT relation :

Father

Peter
Peter
Philippe
Philippe

Mother

Mary
Mary
Louise
Louise

Child

Louis
John
Mary
Anne

This problem can be overcome if attribute Child is changed to a complex domain representing the
set of children of a couple. Hence the new relation becomes:

Father

Peter
Philippe

Mother

Mary
Louise

Children

(Louis, John}
(Mary, Anne)

The rule module which solves this new ancestor problem is the following:

MODULE ANCESTOR;
target
ANCESTOR (Father: text, Mother : text, Desc : set_of_text);
begin
PARENT (x) -» + ANCESTOR (x),

PARENT (x) AND ANCESTOR (y) AND ((x.mother.member (y.Children) = true) OR
(x.father.member (y.Children) = true)) -> - ANCESTOR (y) + ANCESTOR (Father =
y.Father, Mother = y.Mother, Desc = y.children.union (x.Children));

end.

In this example, we find the two operators member and union defined for the set_of_text domain.

651

The member operator takes two parameters : the first one is the name of the parent that is to be
identified in the second parameter which is the set of children. The union operator builds the set of
children based on the union of both sets passed as parameters. For instance, after the firing of the
previous module the instance of the ANCESTOR relation is as follows :

Father

Peter
Philippe

Mother

Mary
Louise

Desc

{Louis, John}
(Mary, Anne, Louis, John}

Now, in the third example, let us assume a base relation EDGE (W#: integer, Origin : char, Ext.:
char, Label: integer), which represents oriented arcs in a graph. We can compute the "reduction" of
the EDGE relation into the RESULT relation with the following rule module. The first rule copies
all the tuples of EDGE into EDGE* and marks this operation by memorizing them into DONE. The
second rule replaces two serial edges x and y from EDGE* by one new resulting edge whose label
is a certain function f applied to the labels of x and y.

i
A yS' ' \ B

J
These two edges are replaced by ...

at Parallel trai

1 i 1 J 1

A B C

These two edges are replaced by ...

1 g(i .j)

A

one resulting edge

1 f(i .j)

A

one resulting edge

b)Serial transformation

1
B

■
C

The third rule replaces two parallel edges x and y by one resulting edge whose label is a function g
applied to the labels of x and y. Finally, the last rule computes the RESULT relation from the
EDGE* relation. The diagrams above illustrate the application of the second and third rule.
Intuitively, this module can be used to compute the impedance of a simple electrical circuit.

MODULE REDUCTION
target
RESULT (ORIGIN: char; EXT: char, LABEL: integer),

EDGE (x) AND NOT DONE (x) -> + EDGE* (x) + DONE (x)
EDGE* (x) AND EDGE* (y) AND x.Ext = y.Orig AND (V z 6 EDGE*) [(z.W# * y.W#) OR

(z.Origin * x.Ext AND z.Ext * x.Ext)]
-> - EDGE* (x) - EDGE* (y), + EDGE* (W# = x.W#, Origin = x.Origin,

652

Ext = y.Ext, label = f (x.label, y.label)),
EDGE* (x) AND EDGE* (y) AND x.Origin = y.Origin AND x.Ext = y.Ext

AND x.W# * y.W#
-» + EDGE* (W# = x.W#, Origin = x.Origin, Ext = y.Ext,

Label = g (x.label, y.label)) - EDGE* (x), - EDGE* (y),
EDGE* (x) -> + RESULT (Origin = x.Origin, Ext = x.Ext, Label = x.Label);
end.

4. QUERY PROCESSING TECHNIQUES

4.1. Definition of the Production Compilation Network

As pointed out in section 2, we follow a compilation approach for transforming a rule program into
an execution model which serves as a basis for query processing. More precisely, the analysis of an
RDL1 rule program is performed by the following steps. First, a syntactic and semantics analysis of
the rules is performed. The next step transforms the rule program into an execution model based on
Predicate Transition Nets. The third step performs some consistency checks over the net. Finally,
the last step stores the net in a pre-compiled form in the rule base by incrementally updating the
already existing PrTN. In this section, we just describe the model of PrTN that we use. The reader
interested in the other phases is referred to [20].

Predicate Transition Nets (PrTN) derive from Petri nets. The reader is referred to [21] for a detailed
presentation of the theory and modelling power of Petri Nets. The main difference with Petri nets
consists in the fact that tokens are structured objects carrying values similar to database tuples
and that transition firing can be controlled by imposing conditions over the token values. A formal
definition of PrTN can be found in [22].

PrTN have been shown to be a powerful tool for modeling first order logic programs in Expert
Systems [23] or for operational specification of process control systems. Indeed, a theorem in [22]
states that each well formed formula in first order logic can be represented in a PrTN by means of a
set of dead transitions (i.e., without transition's inscription). In this paper, we use a model, called
Production Compilation Network (PCN), which is derived from the original PrTN in order to
model the behaviors of RDL1 programs.

A PCN model has two aspects : the structure and the execution. These are also respectively called
static and dynamic aspects. The structure aspect represents the interelationship between rules and
relational predicates as specified by a rule program. The following associations can be made
between rules and the PCN structure. We are able to set up a complete isomorphism between an
RDL1 program and a PCN structure which is illustrated by the table in figurel.

653

RDL.1

RULE

RELATIONAL
PREDICATE P

Free variables Xj , . . . ,X n
ranging positively over P

Bound variables ranging over P
or free variables ranging
negatively over P

ACTION + P(t)

ACTION-P(t)

Sub-formula and negative range
predicates

PCN

TRANSITION T

PLACEP

ARC (P,T) labelled by :
+ x1 + . . .+xn

ARC (P,T) labelled by :
(•)

ARC (T,P)
labelled by + t

ARC (T,P)
labelled by - t

Transition's inscription

Figure 1: Correspondence table between rules and the PCN structure

An example of a PCN built from a set of rules will now be given. Figure 3 represents the RDL1,
ANCESTOR module of section 2. Two relational predicates appear in the rules. They lead to the
places PARENT and ANCESTOR. The first rule PARENT (x) -» + ANCESTOR (x) is modeled
by the transition tl whose inscription is the sub-formula TRUE. The second rule is modelled by the
transition t2, whose inscription is the sub-formula (x.mother.member (y.children) = true) OR
(x.father.member (y.children) = true). The arc going from t2 to ANCESTOR is labelled by
+ (Father = y.Father, Mother = y.Mother, Desc = (y.Children.union (x.Children)).

TRUE

x.Mother.member (y.Chfldren) = true

or

i.Father.member. (y.Children) = true

• y + (father = y.falher. mother = y.mother, desc = y.Children.union (Xjchildren))

Figure 2 : PCN for the Ancestor rules

The second example of PCN represents the module REDUCTION given in RDL1 in section 2.

654

Four relational predicates appear in the rules. They lead to the places EDGE (noted E), EDGE*
(noted E*), DONE (noted D) and RESULT (noted R). The first rule is modelled by the transition tl
whose inscription is the negative range predicate NOT DONE (x). The outgoing arc from D is
labelled by (.) since there is no free variable flowing on the arc. Each of the transitions t2 and t3
have one positive arc and one negative arc. Note that the presence of a quantified variable z in the
transition's inscription of t3 does not lead to a label (.) on the input arc of t3 since tuple variables
already appear on the label of this arc.

NOT DONE (x)

+ (x.Origin, x-Ext, xXabel)

+ x + I'x*'

x-Origin = y.Origin and
x.Ext■ y.Ext and
x.W#*y.W#

l '

-x-y

if
^ y ^ +x+y

x.Ext - y.Origin and
(Vze EDGE*)[(z.W##y.W#)or

(z-Origin # x-Exl and z.Ext ■> x.Ext)]

-x -y

'<D

+ (x.W#, x.Origin, y.Exl. g (x.Lab, y.Ub)) + (x.W#, x.Origin, y.Ext. f (x. Lab.. y.Lab.»

Figure 3: PCNfor the module Reduction

4.2. Semantics of a PCN

In this section, precise definitions of the dynamic aspect of a PCN are presented. It is first defined
by the notion of marking. A marking is a distribution of tokens over the places of a PCN. An initial
marking consists of initializing a PCN with a particular marking. Two kinds of initial marking,
called base and source markings, are distinguished : a base (resp. source) marking corresponds to
a marking of only the base (resp. source) relations. The token is a basic concept in all Petri Net
based models. In a PCN, a token represents a database tuple. A Petri Net based model executes by
firing transitions. A transition can be fired if the transition is enabled. The execution rules of a PCN
with respect to a PrTN are different in several ways that are specified below.

A transition T is enabled whenever the three following conditions are satisfied.
(i) Each input place P of T contains at least as many tokens as specified by the number of

tuples figuring on the label of the arc (P, T). A tuple of the form (.) counts for zero.
(ii)Tokens occurring in the input places of T have values satisfying the transition

condition.

655

We use a restricted semantics of PrTN. In fact, in all the applications, it makes no sense to draw the
same tuple twice using the same rule. Therefore, we impose the capacity of each place, that is the
number of copies of the same token a place can carry at the same time, to be bound to 1. A
duplication free PCN is a PCN where two tokens of equal value in the same place are merged into a
single token, and where a transition is not enabled if it can only produce into its output places
already existing tokens.

When a transition T is enabled it can be fired. Firing T produces several actions. First, it duplicates
from each input place P of T a number of tokens equal to the number of positive symbols labeling
the arcs (P, T). Then, for each output place P' of T, it adds the tokens specified by the symbols
occurring on the label of the positive arcs (T, P') and removes from P' the tokens specified by the
symbols occurring on the label of the negative arcs (T, P'). This is a difference with the standard
execution rule of a PrTN where all the tokens flowing through the input arcs of a transition T are
consumed when the transition is fired. Thus, firing a transition T in a PrTn changes the state of both
input and output places of T. Rather, we use conservative nets which where firing a transition T
will only change the state of the output places of T.

At a given time, several transitions can be enabled. A transition firing occurrence is a couple (T, list)
where T is a transition and where list is a list of tokens of the form (xj/aj , . . . , xn/an) where the xj
are all the free variables figuring on the labels of the input arcs of transition T and the aj are some
tokens issued from the input places of transition T. The set of all transition firing occurrences for a
given marking of the net is called the transition's conflict set. Note that for a single transition T,
different lists of tokens can be used to fire the transition. Each one of these lists leads to an element
(T, listj) in the transition's conflict set. We note Rel (T) (for Relevant set of tokens), the set of all
the lists of tokens that appear in the transition's conflict set with the transition T.

Therefore, a PCN evaluator has to execute the following procedure portrayed on figure 6.

procedure evaluate (PCN, Initial marking)
M «— Initial marking
repeat

compute the conflict set,
select a transition T in the conflict set,
compute M = Reachable marking from M by firing T.

until a halting condition is met

Figure 4 : A PCN evaluator procedure

This procedure eventually terminates if a halting condition is met. This means that a stable marking
is obtained for the net. The notion of stability is described below. For a given initial marking, a
place P has a stable marking iff none of its input transitions is enabled. This notion can be used to

656

define the stability of a transition. A transition T is said to be stable for an initial marking iff all its
output places have a stable marking. Then, a PCN has a stable marking for an initial marking iff all
its transitions are stable. When the PCN reaches a stable state no transition is enabled and the PCN
evaluator procedure halts. This corresponds to a fixpoint for the set of rules modelled by the net

Another way for studying PCN is to focus not on what markings are reachable but on how they are
reached. In particular, we are interested in the sequences of firing operations which lead from one
state to another. Such a sequence is a sentence in the language associated with the marked PCN.
Here, the purpose of this language is just to describe the flow of control in the query processing
strategies in a clear and concise manner. The basic symbol of the language is F, j j s t which means
that transition t is fired using the specified list of tokens. The symbol F t j^ej /t\ means that the
transition t is successively fired using the lists of tokens contained in Rel (t). The symbol 0"Ft

means that the transition t is fired up to saturation without specifying the order in which the tokens
are used to fire t, (o stands for saturation). Finally, the last symbol is a star notation " (*) " which
means that a certain sequence is repeated zero or more times. This notation makes sense when a
recursive rule is met. For instance, (oFt j oF^) means that the sequence of firing of tl and t2 is
repeated up to saturation. The set of words built from the above symbols defines the PCN language
noted Lpcuj.. A more complete presentation of this language can be found in [24],

42 Functional architecture

The current prototype which implements the ideas described in this paper is an extension of the
Sabrina relational DBMS [25, 26]. We first present the architecture of this system and then detail
the alterations made to support the rule language with complex domains. The current architecture of
the DBMS is composed of three layers of abstract machines, going from the end-users to the disk
units:
(1) The interface machine comprises the external layer. It is responsible for the dialogue with the
end-users and the parsing of the user requests into internal messages constituting an application
protocol called the Data Manipulation Protocol (DMP). Several types of user interfaces can be
offered.
(2) The assertional machine which constitutes the intermediate layer of the system performs the
evaluation of relational tuple calculus assertions in terms of an extended relational algebra. This
machine also includes integrity, a view mechanism and security control.
(3) The algebraic machine which is the most internal layer carries out the relational algebra
operations as fast as possible. To supply this function, it manages the access path model based on
predicate trees, uses a cache memory and implements efficient join and filtering algorithms. In
addition, the algebraic machine performs the physical controls, that is concurrency and reliability
controls.

Each machine is divided into functional processors which are implemented as software modules.
The extension of this system did not change the global architecture but essentially changed the

657

organization of a machine and added new functional processors to a machine. Figure 5 represents
the functional architecture of the system. First, the interface machine was extended to support the
rule language as described in sections 2 and 3. The main task of the parsing processor is to perform
some syntactic controls over the rules and then to compile them into a PCN form as shown in the
previous sub-section.

The main changes brought to the system resulted in the assertional machine resulted in of A PCN
manager was designed to efficiendy retrieve the relevant rules associated with a query and to bring
them in main memory under the form of a global query PCN. The evaluation of the query is then
done by the query PCN evaluator processor. After a query optimization step, this processor
produces a sequential execution plan written with the PCN language. Each instruction of this plan
contains references to the PCN (contents of the transition, tuples contained in the places of the net).
Then, the processor determines which transitions can be computed using a relational algebra
program. A relational algebra program contains all the relational algebra operations plus functions,
aggregates and "while ... do" control structures. The whole resulting execution plan is then treated
by the optimizer processor [26]. The optimizer processor used in the present version of the
prototype is svary close to a standard relational optimizer. Thus, iteration which arises in recursive
rules is supported by the PCN evaluator processor. The optimizer processor evaluates the condition
of each rule of the PCN and generates calls to the algebraic machine for evaluating all comparison
predicates. When a rule is fired its action is evaluated and new calls to the algebraic machine can be
generated. The only modification made to the algebraic machine was to incorporate the complex
domain processor. The complex domain processor is called to evaluate the user-defined functions
over complex domains contained in the comparison predicates or in the actions. This leads to (i)
load the user-defined function into a LISP working memory and (ii) to evaluate the function.

INTERFACE
MACHINE

QUEL/SQL

ASSERTIONAL

MACHINE

META-DATABASE
MANAGER

PCN
MANAOER INTEGRITY

PCN EVALUATOR

OPTIMIZER

ALGEBRAIC

MACHINE

JOIN. SORT
AOOREOATES

CONCURRENCY
AND

RELIABILITY

ACCESS METHOD

LOCALIZATION
AND

STORAGE

FILTER

CACHE
MEMORY

COMPLEX DOMAIN

f= ^1
Figure 5 : Functional architecture of the extended DBMS

658

4 J The PCN evaluator processor

A query can be seen as a production rule represented by a single transition, several input places and
a single output place, representing the result of the query. Thus, a query can be represented as the
combination of two PCNs. The former represents all the rules needed to define the stable marking
of the input-places of the query. The second net represents the query itself. The resulting PCN is
called a query PCN. A query PCN poses the essential problem of choosing at each step, a
transition firing occurrence among the transition's conflict set. We propose two basic techniques to
obtain an efficient execution and to guarantee a determinist execution of a query.

The first one is to provide a meta-control which permits an ordering in the transition's firing which
guarantees a determinist execution of a large class of rule programs: As mentioned before, rules are
not given by the user in a predefined order. Thus, it is the responsibility of the system to decide in
which order the rules have to be executed. We introduced a partial ordering over transition's firing
occurrences which permits a computation by stepwise saturation of the transitions. This partial
ordering is done through firing a meta control [15] which can be seen as an implementation of the
concept of stratification [28] in a production rule language. For instance, on the net figuring the
reduction module (figure 3) the rule tl will always proceed the transitions t2 and t3 while transition
t4 will be fired at last. However, in this example, our meta control is not able to order t2 and t3. If a
particular ordering has to be chosen, it can be explicitly given by the user. This meta control has
two important consequences :

(1) it allows an efficient computation of the PCN because the non recursive transitions are fired
only once (by using a relational computation).
(2) it provides a determinist semantics of a large class of rule programs [20].
The result of applying this meta-control strategy is a sequential program of statements written in the
PCN language presented in section 4.1.

The second technique is to exploit, whenever possible, the set-oriented processing capabilities of
the relational DBMS for evaluating a single transition. As described in the previous section, the
semantics of a PCN leads to what is usually called a "tuple-at-a-time" computation. In order to
compute efficiently a PCN with a RDBMS, we wish to transform this "tuple at a time" computation
into a set oriented one using a relational algebra program. This means that given a transition t, our
objective is to transform the transition condition of t into a relational algebra expression which is
computed using in one time all the tokens of the input places of t. In this case, we say that we
perform a relational firing of the rule modeled by t. For instance all non recursive rules can be
computed using a relational algebra program. However a relational firing of a transition is not
always possible. More precisely, a relational computation of a rule does not necessarily return the
same result as the execution mode induced by the semantics of a PCN.

Consider for instance the serial rule given in the module REDUCTION in section 2. It replaces two
serial edges by one resulting edge. It is clear that a set oriented computation of the rule does not

659

produce the same results as a tuple-at-a-time computation. A counter example is presented in Figure
6. Let us consider three serial edges (A,B). (B,C) and (C,D). The set oriented computation
produces two resulting edges (A,C) and (B,D), and the "tuple-at-a-time" computation produces one
edge (A,D).

A B C D

I 1 1 1

fal Set oriented compulation (hi A tuple-at-a-time computation

Figure 6: serial rule computation.

For a recursive rule, we provided sufficient syntactic conditions to determine the relational
computability of the rule. A more detailed discussion of this topic can be found in [15].

4.4. The complex domain processor

The evaluation of user-defined operators does not alter the logic behind the processing of standard
database operators {+, -, *, . . . } . It simply implies recognizing whether or not an operator is
user-defined; if it is then the complex domain processor is called otherwise the standard processors
are used. The processor involved in projection and restriction evaluates operators (user defined or
specialized hardware) on a "one-tuple-at-a-time" basis and the processor involved in aggregate
computation evaluates operators which handle sets of tuples. These processors are aware of the
LISP interpreter and call the interpreter to calculate user-defined operators.

In our approach, the mapping of domain values to database attributes is made possible by
representing hierarchical structures in text format with the use of parenthesis as is the case for any
LISP structure. The passage of parameters from database values to the LISP processor is via the
processors which handle projection, restriction and aggregates that, in the case of LISP functions,
call the interpreter with the function name and function arguments to retrieve the function result.
The simplified version of the procedure which handles a function calculation on a complex domain
for projection or restriction is :

procedure complex_calculation (R: relation, C: calcul)
for each tuple in R do

660

call interpreter (C, attribute values);

So, in accordance with the architecture presented in section 4.2, computations and aggregates are
handled by the algebraic machine.

5. QUALITATIVE ANALYSIS

5.1 Functionalities and limitations

This paper present an integration approach to Rule data language with a DBMS. This integration is
partially achieved by the compilation technique introduced in section 4. The new Petri Net based
model used to represent a rule program plays a key role in the compilation process. A PCN is used
to dynamically control the execution of a rule program. This is done through a particular language
which models the flow of control in query processing strategies. In particular, the main known
query optimization strategies for recursive rules can be captured by a PCN. Some query
optimization techniques are presented in [20].
The integration of the rule language in a DBMS has several properties that appear as precise
requirements of the potential applications studied in the project. An important point is the capability
of expressing dynamic updates and sides effect as actions [2]. This means that based or derived
relations can be updated at any time during the execution of the rule program. Furthermore updates
are not restricted to the relations present in main memory, but can affect the all knowledge base.
For example the action of a rule can update relations resident on disk. These updates can trigger the
activation of new rules that were activated before. Thus, there is no separation between the
deductive process and the updating one. They are intimately related. These features are required,
for instance by the ITS (Intelligent Training system) application [2].
As for comparison, current logic programming languages used for deductive databases do not offer
this functionality of dynamic updating. In Datalog languages, the update commands are separated
from the inference process. In a PROLOG program, update actions are expressed as ASSERT or
RETRACT predicates. However, the semantics of these actions is very cumbersome and since their
implementation is dependant on the interpreter, no integration is possible with a DBMS.
On the contrary, the RDL1 language includes as a particular case, the operational semantics of
Datalog languages. The operational semantics of the language provides a uniform and clean
compromise between declarativity and procedurality. This makes writing and maintaining large rule
programs easier. Indeed, the procedural aspects of RDL1 stand upon (i) the use of a kind of
implicit stratified execution of a program which leads to an implicit ordering of the rules and (ii) the
capability of specifying an explicit (user given) partial ordering of rules when ambiguous
interpretations arise. Finally, RDL1 aims at being a full database programming language. All the
rules are defined using modules. A module is the compilation unit of the language. The modules are
hierarchically defined and allow a style of programming by stepwise refinement The need for this
style of programming has been clearly pointed out by an analysis of the applications our project.
The implementation of complex domains provides for an extended relational model where complex

661

domains are integrated at all DBMS levels: (i) the user can access FDL1 from within the assertional
language (there is no external programming environment), (ii) new domains and operators are
registered with the system and their respective code is stored within the system in a function base
(no external files are needed), (iii) complex domains are organized in a "IS A" hierarchy for
operator inheritance among domain types (iv) new domains and operators can be defined using
existing ones, (v) a complex domain clustering strategy can ensure efficient access for frequently
applied functions, (vi) an object oriented "on the top" interface can be implemented using the same
version of the LISP language as the "on the side" extension, both implementations can share the
same function base for user programs.
Several query optimization techniques have been developed in order to compute efficiently a PCN
[20]. In particular, specialized techniques have been specified to deal with recursive rules. The
model is general enough to include in a uniform way the new data types defined through the FDL1
language.

5.2. Performance issues.

A first implementation of the rule language and its execution model has shown the ability of our
approach to specify complex applications such as the ones studied in the Esprit project ISIDE.
Also, it pointed out some research perspectives for improving both the usability and the
performances of the system. For the RDL1 language, performances presents two main problems :
(i) to provide techniques for a global optimization of the extended relational algebra programs
which are produced by the analysis of the PCN; for instance, these techniques should take into
account particular access methods and an intelligent managing of temporary results in main memory
(ii) to design specialized fix-point operators for dealing with recursive rules [29]. These operators
are based on the traversal of join graphs. The graphs are implemented with efficient data-structures
in main memory and/or disks. This technique can be extended with weight computations, allowing
the system to support efficiently practical examples of recursion. Such operators would replace the
iterative calls to the algebraic machine done by the PCN evaluator.

The limitations of this implementation of complex domains stems from the fact that it is based on a
loose coupling strategy. In this type of strategy, before any computation can be done, values have
to be transformed from their text representation into the interpreter's working memory. To do so
implies the managing of a symbol dictionary to ensure symbol unicity. It logically follows that this
limitation is particularly penalizing when processing large structures. The size is also limited to the
size of working memory. This limitation will be overcome with a tight coupling strategy with the
algebraic machine. A new algebraic machine is being developped to support a rich variety of
structures which the interpreter will directly manipulate. Therefore, the distinction between LISP
working memory and database storage structures will disappear and large structures will be
processed efficiently. Compared with an interpreted strategy, a compiled strategy suffers from the
problem of linking the user-code to the DBMS program and protecting the DBMS program from
errors arising in the user code which could cause it to terminate abnormally. But, the advantage of
a compiled strategy over an interpreted one is the gain in performance when processing large

662

numbers of tuples.
To insure performances in the retrieval of complex values which involve operators, a clustering
method based on predicate trees [30], [31] has been extended to include complex domains with
operators [32]. An efficient clustering method should allow clustering tuples verifying an identical
function result. On one hand, the retrieval of rectangles such that SIDES = (3 4) can be optimized
by a clustering on the value of the attribute. On the other hand, if the selection is on surface value
begin equal to 12 (where SIDES.SURFACE = 12), a clustering organization is efficient only if it is
based on the SURFACE function. In such a case where standard clustering methods require
processing the entire relation, our approach allows searching only those blocks possibly containing
the desired result by using functional clustering based on surface values.The following assertional
command clusters tuples at a first level with a hashing function applied to rectangle numbers and
clusters tuples at a second level with the same hashing function but based on the result of the
SURFACE function applied to the SIDES attribute.

CLUSTER RECTANGLES ACCORDING TO
(NOML04)
(SURFACE (SIDES) MUM)

Performances can also be insured by the intelligent filtering of queries. LISP structures are stored
in attribute values as text where the hierarchical structure is represented with parenthesis as is the
case of any LISP structure represented in text format. Consider the following example using the
definition of a dimension which comprises the domain of rectangles built from two numbers. The
following function defines the structure of a rectangle:

(DEFSTRUCT DIMENSIONS LENGTH .integer WIDTH Integer)

In this example, the two values which comprise a rectangle take their values from the integer
domain. Although, the individual domains can be any other complex domain.
Before attempting evaluation, the correct LISP function must be selected from the function base and
loaded into LISP working memory. This work is minimal inlight of the fact that user operators
defined in the form of LISP functions are interpreted. Although, the slower interpreted processing
is penalizing when processing larger quantities of data. Before processing the complex value, the
interpreter must transfer it in LISP working memory which implies creating memory addresses and
managing the symbol dictionary. Even in an optimal environment, a weak coupling strategy
implies that this be done for every tuple value.

We propose a new strategy for processing extended queries which involve only the schema of
complex domain structures. Such queries can be resolved without the LISP interpreter through the
use of a query modification strategy involving text operators. We can thus define two classes of
extended queries, those which can be resolved without the interpreter and those which require calls
to the interpretation process. Namely, the former class of extended queries are those which involve

663

only the domain structures. The intelligent filtering operation uses text operators which isolate the
desired value from within the complex structure.

6. CONCLUSION

In this paper, we proposed an extension of a powerful rule based language to support complex
domain in a DBMS. A rule consists of a conditional part which is a tuple relational calculus
expression and of an action part which is a sequence of insertions and deletions of tuples in the
database relations. RDL1 offers more generality and more computational power than the Datalog
languages and provides a good compromise between declarativity and procedurality. A general
compilation technique is used to transform the rules into a new execution model based on Predicate
Transition Network. This model serves as a basis for an integration between the rule language and
the DBMS. Several query optimization techniques are supported by the model. In particular
recursive queries can be handle efficiently.
The implementation strategy for complex domains is one of a loose coupling between the RDBMS
and a special purpose LISP language interpreter. Complex attribute values are stored as text strings
where the hierarchical structures are represented using parenthesis. In this loose coupling strategy,
performance penalties are incurred when processing large structures which need to be loaded into
LISP working memory for processing. Present work involves building a new algebraic machine
with extended representation capabilities for a tight coupling strategy. Large objects will thus be
processed as easily as small ones since the interpreter will operate directly on the structures of the
algebraic machine.

The object oriented paradigm has gained much interest in the area of persistent memory support.
The problem raised is the creation of a new DBMS model based on the object oriented model.
Although, research has also been centered on the creation of an object oriented interface over an
existing DBMS model. As presented earlier in this paper, the SABRINA DBMS has been extended
to include complex domains by an "on the side" extension using a specialized object oriented LISP
language processor. An "on the top" interface will be built over the DBMS using a compatible
LISP language processor which will use the same facilities as the "on the side" extension. Hence,
all functions will be stored in the function base. The mapping of objects represented by classes can
be directly achieved through relations extended to include complex domains.
A prototype of each system has been developed at INRIA and at the University of Paris VI and they
are both operational on a DPS 8 computer running under the MULTICS operating system. Present
work involves the integration of the two.

REFERENCES:

[1] Deliverable report on task 1 on Work package 1, Esprit Project 1133 april 87.
[2] Deliverable report on task 3 on Work package 1, Esprit Project 1133 to appear October 87.
[3] J. Ong, et al.: "Implementation of Data Abstraction in the Relational Data Base

System INGRES", SIGMOD, rec 14, l,ppl-14, 1984
[4] M. Stonebraker, et al. : "Application of Abstract Data Types and Abstract

Indicies to CAD Data Bases", Proc. of Engineering Design Applications of

664

ACM-IEEE Database Week, San Jose, Ca., May 1983
[5] M. Stonebraker : "Inclusion of New Types in Relational Database Systems",

ACM-IEEE, 1986, pp 262-296
[6] S. Tsur, C. Zaniolo : " An Implementation of GEM I supporting a semantics data

model on a relational back-end", Proc. ACM-SIGMOD Conference on
Management of DATA, 1984

[7] C. Zaniolo : "The Data Base Language GEM", Proc. ACM-SIGMOD
Conference of Management of DATA, 1983

[8] C. Zaniolo, et al. : "Object Oriented Database Systems and Knowledge
Systems", MCC Technical Report No. DB03885

[9] A. Goldberg, D. Robson : "Smalltalk-80 : The language and its implementation",
Ed. Addison-Wesley, 1983

[10] P. Schwartz, et al. : "Extensibility in the Starburst Database System", Proc. of the
International Workshop on Object-Oriented Database systems, California, Sept86, pp. 85-93

[11] S. Osborn, T. Heaven : "The Design of a Relational Database System with
Abstract Data Types for Domains", ACM Transactions of Database Systems,
Volll, No.3, Sept.86, pp 357-373

[12] J. Chailloux, et al. : "LeLisp Version 15.2 Reference Manual", Ed. INRIA,
Nov. 86, 3rd Edition

[13] G. Kiernan, R. LeMaoult, F. Pasquer : "The Support of Complex Domains in a
Relational Database System Using an Integrated LISP language processor",
3ieme Joumees Bases de Donnees Avancees, Port Camargue, Mai 1987

[14] E. Simon : "RDL1 : A Production Rules Language for Deductive Databases."
INRIA Internal Report, April 1987.

[15] C. de Maindreville, E. Simon : "Deciding if a production rule is relational
computable" Journies FIRTECH, Ecole Normale Superieure, April 1987.

[16] E.F. Codd : " A Data Base Sublanguage founded on the relational calculus."
Proc of ACM SIGFTDET 71.

[17] J.M Nicolas, R. Demolombe : "On the stability of relational queries ", Proc of Int
Workshop Logical bases for Databases, CERT, Toulouse, 1982.

[18] L. Brownston, R. Farrell, E. Kant, N. Martin -."Programming Expert Systems
in OPS5 : An Introduction to Rule-Based Programming". Ed. Addison-Wesley.

[19] F. Bancilhon, R. Ramakrishnan :"An Amateur's Introduction to Recursive Query
Processing Strategies." Proc of ACM-SIGMOD , Washington D.C., may 1986.

[20] C. de Maindreville, E. Simon :"A Predicate Transition Net for Evaluating
Queries against Rules in a DBMS." INRIA Research Report, N° 604, Feb. 1987.

[21] J.L.Peterson: "Petri Net Theory and the Modelling of systems." Prentice-Hall.
[22] H. J. Genrich : "Predicate I Transition Nets " , in Advances in Petri Nets' 86.

Springer Verlag, 1987.
[23] A. Giordana, L. Saitta : "Modeling Production Rules by Means of Predicate

Transition Networks." Inform. Sciences Journal, North Holland Ed. Vol.35, N°l.
[24] C. de Maindreville, E. Simon : " A production rule based approach to

deductive databases" Submitted to publication.
[25] G. Gardarin et al. : "SABRE : A relational database system for a multi-processor

system". Advanced Database Machine Architecture, Book, D. Hsiao Ed.,Prentice Hall, 1983.
[26] G. Gardarin, C. de Maindreville, D. Mermet, E. Simon : "Extending a Relational

DBMS towards a KBMS : A First Approach ." Proc. Workshop on
Knowledge Base Management Systems, Ed. J. Schmidt, C. Thanos, Crete, June
1985, to appear Springer Verlag Book.

[27] G. Gardarin, E. Simon, S. Abiteboul, M. Scholl : "Towards DBMS's for
supporting new applications", 12"1 VLDB Int. Conf., Kyoto, 1986.

[28] K.R Apt, H.Blair, A.Walker : "Towards a theory of declarative knowledge"
IBM Research Report RC 11681, april 1986.

[29] G. Gardarin, P. Pucheral; :" Optimization of recursive queries using Graph
Traversal" Internal Research Report, INRIA.

[30] G.Gardarin, P.Valduriez, P.Viemont: " Predicate trees : a way for optimizing relational
queries" proc of the computer Enginneering Conference, IEEE, Los Angeles, April 84.

[31] P.Valduriez, Y.Viemont : "A multikey hashing scheme using predicate trees"
ACM SIGMOD Int Conf on Management of Data, Boston, June 84.

[32] J.P. Cheiney, G. Kiernan : "A Functional Clustering Method for Optimal access
to Complex Domains in a Relational DBMS", submitted for publication

663

P r o j e c t No. 1098

How to Build Knowledge-Based Systems:
Techniques, Tools and Case Studies

S A Hayward
STC Technology Limited

U.K.

Abstract

Increasing numbers of software developers wishing to build knowledge based
systems are realising the need for well-founded techniques to guide and direct the
development process. The results and experience from Esprit Project 1098 (A
Methodology for the Development of Knowledge-Based Systems) are now making
the transition from ideas and concepts to practical methods in use for commercial
systems development. The methods are supported by a computer based
documentation system and a detailed Handbook.

The project has also produced a programming system as a basis for its own tools
which is now being used by a number of other Esprit Projects and is being sold to
other research groups. This system adds the power of object-oriented programming
to symbolic processing languages (such as Prolog and Lisp) and is particularly
suited for the development of systems with sophisticated graphic based interfaces
which are nevertheless simple to use and easy to program.

This paper summarises the current status of the methodology and illustrates some of
the projects on which it has been used. In particular the techniques for the analysis
phase of a development are now reasonably mature and should provide the basis for
construction of a wide range of types of knowledge-based systems. They are now
also being used by personnel outside the research team.

These results are primarily concerned with the "internals" of KBS development.
However as we move from the early "technology push" phase, where a KBS may
be considered desirable in itself, to an "application pull" phase, where the primary
concern is the solution of the problem irrespective of the technology used, then it
becomes increasingly important to understand the relationship between KBS
technology and other software technologies. In this context the relationship is not
primarily in terms of technical comparisons but in terms of how an organisation
decides to use one or more and how such "external" factors impinge on the
development process. The methodological view, as evolved in P1098, is well able
to accommodate such issues. We therefore believe that as well as being technically
sound it is useful and robust in the context of realistic organisation constraints.

666

1. THE SOFTWARE DEVELOPMENT PROCESS

We start by examining software production as another instance of a commodity producing process.
At the most general level, if one considers the whole range of endeavours which are intended to
produce man-made artifacts they can be seen as a spectrum ranging from craft to industrial
production. Crafting is an essentially unstructured process in which progress is made towards a
goal (often not specified in any publically inspectable form). The process is not readily partitioned
or may consist of many small steps which cannot be differentiated but make a cumulative
contribution to achieving the goal. Extreme examples of such activities are sculpture and
pottery-making. At the other end of the spectrum is fully industrialised production, for example of
mass-produced consumer goods. Such production is highly structured, with each component of
the process rigourously defined. This leads to benefits which have been much analysed by
economists, including efficiency in materials procurement, quality control, division of
responsibilities between work-groups, etc. One key characteristic of this end of the spectrum is a
clear specification of the cycle of production i.e. production is defined as proceeding in a number of
stages, each discrete and well defined, with well-defined relationships to preceding and succeeding
stages.

The production of software generally lies somewhere between these two extremes. The use of the
metaphor "software factory" clearly indicates an aspiration towards one end of the spectrum.
However the traditional view of AI programming tends more to the other end of the spectrum. It is
a fundamental presupposinon of our research that commercial KBS development can and should be
viewed as towards the industrialisation end of the spectrum. Thus a description of the development
(production) process for such systems in terms of a lifecycle is appropriate. It also provides a
descriptive framework within which many critical global issues can be tackled - notably the
inter-relationship of activities within the development process and the control of iteration within the
process.

At the top level the KBS development lifecycle (see Figure 2) is very similar to any conventional
software lifecycle with the usual phases of analysis, design, implementation and so on. It is at the
next level of detail that more significant issues emerge. A key insight with regard to the analysis
phases the distinction between internal and external views; the former covering the "knowledge
acquisition" activities (knowledge analysis, analysis of expert and user tasks, and construction of a
conceptual model) and the latter the "requirements analysis" activities (analysis of the current
situation, analysis of organisational objectives and constraints, determination of functional
requirements). There is an interplay between these two views which is focused by a scoping
activity (i.e. the extent of the project/prospective solution) and feasibility estimation. (This is
summarised in Figure 1 and presented more formally in Figure 3.

Informal
requirements

Re-evaluation

Requirements
analysis

WW
\ neflotiatW -V x \i

Knowledge
acquisition

functional
requirements

Figure 1 Scoping / Feasibility cycle

In retrospect we can see that difficulties in a number of our analysis projects have been caused by
the inadequate separation of these two views. Equally the clarification of the objectives of each of
these activities and the output associated with them has enabled project planning and division of
tasks in more recent analyses to be greatly improved. Thus we appear in this respect to to be
achieving the objectives of using a lifecycle perspective.

KBS Ula Cyela Modal

E ntianc «nt ol i/AdopOon

U i * mad*

667

Conceptual Medal and pattal KnoaHadga Baaa

s Raquiiamanli Specification

P'ogr.
Sp-o

Al da»lon
latfmiouai ^ ^ Imp! •man la Dor

11

I lrtaoraii

Anaiytad Knowledge

Maintenance

Figure 2 Top level Life Cycle Model

TT

Analysis Tasks & Dependencies (SADT)

.,.v,l,,,l,,.,^,.,v,,.,.vJ.,J,,,,,.,.,,,,v,,,.,v.^,^.v.,.J.v-v

TTT

3 2

13 w> .vDn

U2 Anara(lacrnqtM 4 I.Ol TT

T£

Resultant Documental ion

Pro|eci
Document
(P1-P3)

Requirements
Document
(R1-R18)

Model
Document
(M1-M7)

Feasibility
Document

<F1)

Figure 3 Model of Analysis Phase

668

The definition of a scoping activity and its relation to these internal and external views also helps to
clarify a wider isssue, namely, how does the decision to base a development on KBS technology
arise in the first place. It may of course be an initial constraint, a classic case of the early
"technology push" phase in the evolution of a technology. However if we look at the database
world and the world of decision support systems it is clear that they also have evolving
technologies which draw on many ideas similar to those current in the KBS field. The relationship
between these technologies is illustrated in Figure 4 which shows them as based on similar core
concepts (which are converging) and impacting through different levels of business constraints.
Each technology currently has its own internal view and as such must be assessed independently
for its capability to contribute to satisfying a need. However as the core converges and as corporate
strategy increasingly demands solutions independent of technology constraints there must be a
convergence between the technologies overall. This evolution can be understood in terms of a shift
from multiple internal views to an increasingly sophisticated scoping operation (cf Figure 1) which
acts in a nested or recursive way from the most general aspects of corporate strategy down to
determining appropriate responses to specific operational problems.

Figure 4 Software technologies in a business environment

Another major issue which can be clarified within the life cycle perspective is the function of
prototyping in system development. One view of prototyping tends to view it as an alternative to
other activities, particularly analysis and modelling activities. In this view prototyping must be
presented as an additional or alternative phase in a methodology. We sugggest that this is an
incorrect understanding of the function of prototyping, which should rather be considered a
technique which can suppport many activities. In S ADT terms prototyping is a mechanism which
supports activities, not an activity in itself. The question as to the function of prototyping can now
be seen more clearly. To answer it we must analyse where prototyping may be used in the lifecycle
and for what purpose. This will lead to a categorisation of prototyping and the decision as to
whether to employ the technique in particular instances will be made on a case by case basis.

There is already a substantial amount of work on prototyping within the Data Processing
community, arising from the Research Programme 'Specification and Development of Software
Systems', undertaken by the National Computing Centre (UK) and the Gesellschaft fuer
Mathematik und Datenverarbeitung (W. Germany), and subsequent conferences and workshops
(NCC, 1985). We believe that much of this is relevant to the KBS lifecycle within the framework
described above.

669

Five categories of "generic issues" are identified to which prototyping may be relevant:
- system requirements
- design of a solution
- resources
- effects on the organisation
- changes in the outside world

There are also five main types of prototyping distinguished:
- exploratory
- experimental
- performance (sometimes known as 'synthetic')
- organisational
- evolutionary

Evolutionary prototyping corresponds to the paradigm of an experimental methodology as we have
characterised it above, and we note the comment made: "What might be called 'incremental
evolution' could well be a risky business". The use of exploratory prototyping is considered in the
context of Requirements Analysis in Barthelemy et al (1987). Experimental and performance
prototyping are more likely to be appropriate in the design phase, with the exception of
experimental prototyping as a mechanism for capturing system-user interface requirements (which
is recognised for all types of software development). Organisational prototyping lies outside the
main focus of P1098, given its concentration on technical issues rather than social and
organisational ones.

In addition to categorising the function of prototyping we must analyse its impact on the
development process. Dearnley and Mayhew (1983) have characterised this in a lifecycle
consisting of two interacting cycles, emphasising the difference from a more traditional linear view
of the lifecycle. A slightly modified version of this model as a basis for consideration in PI098 is
shown in Figure 5. The KBS lifecycle requires more refinement, particularly in the design phase,
before we can produce a KBS equivalent of this view but the work to date (notably the notion of
nested levels of requirements analysis) seems entirely consistent with it. We would expect in any
event that the issues addressed here are relevant to all software lifecycles and that the KBS lifecycle
would be a variant rather than dramatically different.

Modlflad DEARNLEY - MAYHEW Modal

Figure 5 The interaction of Prototyping with the Software Development Lifecycle

670

2. MODEL DRIVEN KNOWLEDGE ACQUISITION

Knowledge acquisition is the major activity driving the internal stream of the KBS analysis phase.
In this context a major problem facing a knowledge engineer when constructing a KBS is
organising and understanding his data. This process, which we term interpretation, is essentially
one of the knowledge engineer building a model or models into which he tries to fit this data. This
modelling process has generally been left implicit in previous descriptions of the system building
process. This is unsatisfactory because it fails to make the model building and testing open to
inspection and critique, and it also does not allow the provision of support or constraints for the
process. Another particular difficulty is that typically the models used by AI programmers building
knowledge based systems will be implementation oriented, i.e. they will think in terms of the data
structures and procedures they expect to see in the implemented system. The problem with this is
that it is in general very difficult to map the data about the expertise and the domain onto such
constructs: the descriptive vocabulary is too distant from the data. This we suggest leads to much
of the perceived difficulty of knowledge acquisition. Our objective in this area is to make available
an "appropriate" modelling language and make the model building process explicit, and to a degree
provide normative support for it.

One specific characteristic of our modelling language is that it allows us to represent
problem-solving activities at a fairly high level of abstraction/generality. This means that we can
also provide models which describe the prototypical character of classes of problem-solving
activity. The knowledge engineer can use such models as a starting point for data analysis by
seeing to what extent his data fits an existing model or composite of models. Thus the knowledge
acquisition process becomes not only explicitly one of model building but one of model refinement
rather than model creation. This we believe is a less demanding task and thereby enables more
effective knowledge acquisition by less experienced people.

The modelling language

The modelling language derived in P1098 incorporates four layers of description, each containing
different types of knowledge. We distinguish between static knowledge describing concepts and
relations, knowledge of different types of inferences that can be made, knowledge representing
elementary tasks, and strategic knowledge. Each of these categories of knowledge is described at a
separate level, reflecting the different ways in which the knowledge can be viewed and used.

The first layer contains the static knowledge of the domain: domain concepts, relations and complex
structures, such as models of processes or devices. The second layer is the inference layer. In this
layer we describe what inferences can be made on the basis of the knowledge in the first layer.
Two types of entities are represented at the inference layer: meta-classes and knowledge sources.
Meta-classes describe the role that domain concepts can play in a reasoning process. For example,
a domain concept like infection can play the role of a finding in a consultation process, but it may
also play the role of an hypothesis. Knowledge sources describe what types of inferences can be
made on the basis of the relations in the domain layer. Examples are specialisation and
generalisation knowledge sources, which both make use of a subsumption relation in the domain
layer. These two layers provide what we may think of as a "theory" of the domain. They define
what can be known and infered but say nothing about how such knowledge is actually applied to
reason towards desired conclusions.

The third layer is the task layer which now begins to define how the knowledge expressed in the
two previous layers is used in a problem-solving context. At this level the basic objects are goals
and tasks. Tasks are ways in which knowledge sources can be combined to achieve a particular
goal. The fourth layer is the strategic layer in which knowledge resides which allows a system to
make plans - i.e. create a task structure -, control and monitor the execution of tasks, diagnose
when something goes wrong and find repairs for impasses. These four layers are schematically
presented in Figure 6.

671

level

domain level

inference level

task level

strategic level

relation

describes

applies

\
j r

controls

\

objects

concepts, relation and structures

meta-classes, knowledge sources

goals, tasks

plans,meta-rules,repairs,impasses

organisation

axiomatic structure

inference structure

task structure

process structure

Figure 6 Layers of the four level model
Creating models

We distinguish two sets of models that are used in the KADS methodology, although both are
described using the four layer notation outline above:

conceptual models

The conceptual model is a full model of the expertise that is to be implemented in a
future knowledge-based system. It contains a full description of knowledge at all four
levels described above. The conceptual model is a major output from the analysis
phase and a primary input for the design of the system.

interpretation models

An interpretation model is a description of the knowledge required to perform a
particular class of tasks, given in terms of the inference, task and strategic levels. The
interpretation model generally does not specify the nature of the domain level
knowledge.

Interpretation models can be further divided into models of so called 'generic tasks' and 'real life
tasks'. An interpretation model can be viewed as a conceptual model abstracted from its domain
specific features, i.e. its domain layer, and its specific references from the inference structure to this
domain layer. In general a model that is obtained in this way is called a 'real life model'. However
often real life expertise may be viewed as the combination of various elementary tasks, which we
term 'generic tasks'. Thus we distinguish:

Generic Models

These are interpretation models for elementary problem solving tasks. An elementary
problem solving task is a task that can stand 'on its own': i.e. has as its input a
problem and produces a solution. This solution may be used in other tasks, but it is
the answer to some original problem.

Real Life Models

Real life models are composites of generic models. Although real life models are
abstracted from a specific domain, there may still be some higher level domain
dependencies left in the model, which may constrain the scope of applicability of real
life models. Real life models may assume certain similar structures across domains, or
even similarities in the functionality of the expertise that has lead to a particular
composition of tasks.

672

Generic models are thus the essential ingredients in the use of interpretation models in KADS. We
assume that the number of generic tasks or, of protypical generic tasks is a manageable set:
preferably described as a taxonomy. Considerable effort has therefore been spent on developing
generic models, and the taxonomy of available models is shown in Figure 7.

KBf^|.|fJfM)B.li|f^n
"UNrEFU'REIAlION HOOU f

*sys te"a t l c_d lagnos ls

5UHDARD
abs t rac t
d e s c r i p t i o n
t a s k . S t r u c t u r e
s t r a t e g y
Hn»a1n_knovledqn

SPECIAL

l a b s t r a r t : { the I n t e r p r e t a t i o n »odel tor systemat ic diagnosis can bn rt
I v l d e d tn

I two submodels: th<? f i r s t ono 1s \ f (d i a g n o s i s by l o c a I I s a M o n \ f r and
I Ihe second one I s \ M c a u s a l t r a d n q W r . Both i n d e l i hav* tlin ^ « n
[i n f e r e n c e s t r u c t u r e which 1 ■; shown 1n f l q n r o 1.7.)

I n t o r p r e a t l o n Models

^ ^ ■ r e p a l r
/:yste"_»oriIf I ca t lon^^^—re»edy

/ ^ ^ ^ ^ r o n t r o l

^ ^ l e s l g n * ^
/.syste«_syntheslB(<^'^ \

\ > p l a n n l n g
^ • o d e l l ing

^ ^ I d e n t l f y ^ " "
^eys lB i .ana lys Is^^^

^ ^ f f nrtlc t—rCT

Ji lerarcl i lcal .des'gn
_^lransfonallona1_dnstgn
—lncre»enial.'iGslgn
—»u 11 l_s tre?i_dns 1 gn
""conf Igurnt Ion

J : las si ty c i——neur ls t lc .c 1 ass t (I cat Inn
~" ~~~assess«pnt

^ * o n l t o r
_predIctlon..of.behnvlnnr
 p i ndlct lon_o(_valuns

Figure 7 The current set of Interpretation Models

A BASIS FOR KBS DESIGN

Accepting the possibility of creating models of a domain and associated expertise as a basis for
KBS development (Breuker et al, 1987; Johnson and Gruber, 1986; Clancey, 1986), the obvious
question arises as to what relationship exists between the model resulting from analysis and the
eventual systems as implemented. In a methodological context this is a particularly hard question
because the process of developing the system given the analysis must be defined (and useable) if
the methodology is to be of value. Experience in building systems starting with the KADS analysis
(Breuker et al, op cit) suggests that given a better structured analysis the subsequent stages of
development will proceed more easily, albeit still on an intuitive basis (Wielemaker 1987, Hayball
1986). This would be expected if the developer is in fact using internally generated models of the
system to guide his activity (cf Littman; 1986). A structured analysis would then provide better
support to develop this intuition.

Our methodological objectives thus require that we make the modelling basis of "design" explicit
and that this modelling is characterised in terms of an appropriate level. By design we mean the
decision process which takes a system requirement, given as a combination of internal and external
views (see Barthelemy et al 1987) and determines what structural characteristics are necessary in
the artifact that will meet this requirement. This is a level of decision making prior to actual writing
of code but covers issues such as what implementation vehicle (e.g. Expert System shell) is
suitable for this application, or how should components of a system be divided between the
paradigms available in a multiple facility toolkit such as KEE, ART or KNOWLEDGECRAFT.
More directly in relation to a KADS fourlayer model, one has to decide how the levels of a specific
model should be mapped onto an implementation vehicle. This can be seen as another instance of
the "where do I start" question which is central to development of a methodology. The
fundamental requirements for a design methodology are therefore a set of categories in which to
describe the design options and a characterisation of design strategies or decision paths which

673

permit selection between these categories on the basis of inputs from the prior development
process. These are currently being investigated.

4. THE METHODOLOGY IN USE

The methodology has now been used for a variety of development projects both within the P1098
research programme and independent of it. This is clearly important for two reasons: the
methodology must be useful for real commercial applications and it must be useable others than
those originally responsible for developing it. A number of the uses of the methodology have been
for initial studies to assess the suitability of particular problem domains for the application of KBS
technology, which probably reflects on the current state of evolution of the technology as much as
the methodology itself, the following list shows the projects outside the scope of P1098 where the
results have so far been applied or are currently in progress:

Bank loan assessment (study)
Social security assessment (study)
Credit guarentee assessment (joint project with an additional commercial partner who
was responsible for the implementation of the system)
Research portfolio selection (implemented)
Oceanographic acoustic modelling (taken to demonstrator stage)
Information Retrieval assistance (study)
Nationality Law advisor (study)
Financial Planning
Machine tool fault diagnosis (study)
Computer maintenance
Manufacturing scheduling

Within the project two experimental systems have now been completed: a statistical advisor
which is now being field trialed with students and a wide area network management advisor
which has been demonstrated successfully to clients. A system to advise operators of a
process involved in the manufacture of printed circuit boards is near completion and is expected
to be operational in the second half of this year. Work is now also in progress on a system to
assist designers of moulds for plastic piece parts and another to advise on the design of fluid
mixing systems in the petrochemical industry.

This variety of applications and the fact that systems are now being developed for live
operational use is for us one of the main indications that the results of P1098 are indeed
proving valuable in aiding the exploitation of KBS technology, thus fulfilling one of the
primary objectives of the Project, which was to assist the wider disemination of the technology
in commercial practise.

5. SUPPORT TOOLS

The current set of support tools for the methodology, known as the KADS Power Tools
(KPT), assist the application developer in a "bottom-up" way. In other words they provide
passive support, allowing the recording of relevant data in various forms as analysis proceeds.
We envisage that the normative guidance in applying the methodology, which is currently
provided in the form of a Handbook, should also be incorporated in the support tools. This
would make advice and guidance available in an interactive form, appropriate to the particular
development in progress. However this is for the future. We will describe here the tools
which exist at present.

The KADS Power Tools are structured around three editors which operate on different types of
data, corresponding to three levels of analysis in the methodology: verbal, conceptual and
epistemological. This is illustrated in Figure 8. The protocol editor allows processing of
continuous text, which would normally be transcripts of interviews. The concept editor allows
the definition of concepts, relations and hierarchies; corresponding broadly to the domain layer
of the four-level model. The conceptual model editor handles the upper layers of the model,
particularly the diagrammatic form used for the inference structure. This editor is closely
related to the Interpretation Model Librarian which allows models to be stored, browsed, and
selected as a basis for modification to produce a Conceptual Model for the application domain.

674

lipislemologica
Analysis

Knowledge
Conceptualisation

Linguistic
Analysis

Figure 8 KADS Tools hierarchy

Protocol Editor

PED, the KADS Power Tools Protocol Editor, supports the linguistic or knowledge
identification level in knowledge acquisition. PED is basically a dedicated hypertext system.
Hypertext (Nelson, 1980) is based on the idea that information should be accessible in a
non-sequential way, for instance someone reading a paper should be able to select a word and
see it's definition, follow references or read other people's comments. Some hypertext
systems have become widely available recently (Guide on the Apple Macintosh for instance),
but there still is little agreement on what a general purpose hypertext system should provide
and, perhaps more important, how it should be provided.

In PED, hypertext provides a solution to the problem of dealing with related written materials.
Every hypertext system defines a set of link types between text. Nelson, for instance, defines
jump-, quote-, note- and equi-links, which corresponds roughly with the way people want to
read or write documents. The situation is different for protocol analysis. The knowledge
engineer does not need to write a document, s/he must study the protocols and identify
knowledge for later use plus topics and questions for further elicitation sessions. PED supports
this analysis by allowing sections of a protocol to be linked together, or to concepts, notes, etc.

All link-types in PED are defined on fragments. A fragment is a contiguous user specified part
of a text. Obviously, fragments may have any length, they could refer to a word, sentence,
paragraph or even the entire protocol.

The following link-types are available in PED:

An annotation is similar to a footnote in a document. Annotations are used to make
observations about a fragment, for instance to point out lack of knowledge or to describe the
KEs understanding what the expert says. It is up to the knowledge engineer how s/he
annotates a protocol.

675

A group is a named collection of fragments. The relation between the fragments may be
superficial ("aboutuser"), about a domain concept ("microprocessor") or some highlevel
abstraction ("inferences"). The important point is that grouping allows the knowledge
engineer to create collections of fragments which s/he thinks are related. Syntactic
approaches, e.g. keyword matching, are necessarily more restrictive. Any fragment may be
a member of any number of groups.

A link is a named crossreference between two fragments. Named links provide a general
solution to the hypertext problem of how many linktypes should be provided. In PED the
answer is one, but the knowledge engineer is able to name that link. Named links allow the
knowledge engineer to create "contrast", "detail" and "continues" etc. links between
fragments, thereby once again offering a facility to impose any desired semantics on the
relationship between fragments.

A concept-link is a link between a fragment and a concept. The name of the conceptlink can
be used to describe attributes or give a definition. These links provide the primary means for
connecting linguistic analysis in PED with conceptual analysis in the concept editor.

2BEEai£U£Qn
51AIUS IlironHAIIOH cunnr.Hr SETTING

Margin up.fnturt
4" "'""f: »""■' f
fcj l i n k : dflscrlbts ++ daterlbti
(?) Concept: pounrdown alar* fj^
gg t ranscr ip t : (61nn*cMptl (EJ ' 6 tr anscMpti
pi r r i f lnnnt : I think thn S9t|(or tha a p Vi dont uie the«. tha on

So u e ' 1 ! go Into the «rg inemember as we are moving through
vag e i td ear l ie r ibout alarms and sounds md visual thfngq. This lg
thn oxygon deficiency monitoring system

Oxygen dnftclency TO"!tor1ng i y s lB " . Hltrngnn le nnt a dangnro'
gas. I t la not explosive, t t l i completely Inert Ihe only danger that
creates In I f you displace the percentage of oxgyen In the atmosphere
such that the amount of oxygen In the atmosphere bBCores tno lew

m existence. How at you can tea there ID a f igure f lashing up
there that Is actual ly mnnltorlnq consistent ly the p«rcent«ge of
oxygen In thB a t r . Hi* monitor* i m actual ly on the u»1'a In the IT***
In chr>5en posit ions »djarent to the prens, approximately " f t a"rf I
think t t IB 7 f t off the ground, eo qrnund l"vol and head (might Wn'v
got four monitors and as ynu can G"e they've ar tua ' l y c^l lbratod and
running at approximately the air la actual ly 21% B2

ynu
mgan you can SBG I t lg Hashing a'ound 2B '

actual ly have to have a f t l r J y large w*ft of nitrogen ccrlncj
to set the alarm o f f . Nov at that treshnld love' Hit «creerh1"g

alarm yMt gn o n , I can actual ly demonstrate that lo you. Because If
yoil saturate one of the s*>nsorB with rarhon dlo*ldn hy breathing nn I t
you can actual ly set the alarm of f Sn I w i l l give ynu a quick
rlpmnnstrallon I can't demonstrate the oHm alarni at thn mnmont

3 02ĵ *Ws»aj5^^^
; riesc Ihpi

?Pl

nr

© © ©
&:;.:

i|ll'^'1flflW
J
'TW»*Jr'Wwa.^ni;ii|ffTTTn^~

Figure 9 Protocol Editor

676

The PED user interface has an interesting feature which hopefully solves some of the potential user
interface problems associated with hypertext systems. A protocol is displayed in a protocol
window (large window in figure 9). A protocol window consists of a text part (on the left) and a
margin (on the right). The margin contains a marker -shown as a small icon- for each link in the
visible part of the protocol. The text part and the margin scroll simultaneously, the markers
therefore always point to fragments in the text shown. The user interface makes clear that there are
links in a given portion of the protocol and also identifies what type of link they are, as each
link-type has a predefined marker icon. Analysing protocols in PED is like writing notes in the
margin as the knowledge engineer might do on paper.

Finally PED will print arbitrary selections from the protocols. The knowledge engineer specifies a
search criterion, for instance all links to a particular concept or all members of a group, and PED
then collects, formats and prints the fragments found. Textual annotations turn into footnotes and
the beginning and end of fragments are indicated. These print-outs can be used to communicate
with the expert ("this is what I know about transistor-2"), for further study and for documentation
purposes.

Concept Editor

The Kads Power Tools Concept Editor supports the knowledge conceptualisation level in
knowledge acquisition. At this level knowledge is organised as concepts, relations and structures
of concepts over a certain relation. The knowledge engineer needs a tool which allows incremental
definition of concepts and the relations they have. As the knowledge engineer, at this stage, is still
trying to understand what knowledge is important in the domain, the tool should be flexible and
preferably not complain about possible inconsistencies other than gross syntactic errors, such as
that a concept can not -indirectly- be a sub-concept of itself.

The Concept Editor knows that concepts may have attributes, and that these attributes may have a
value. It also knows that concepts may be related to other concepts. Precisely what attributes and
relations are used is highly dependent on the domain. It is up to knowledge engineer which
attributes are important for the domain at hand, and there is no obligation to completely define these
concepts.

The creation of taxonomies is a very basic form of conceptual structuring and thus the creation of
class hierarchies (with inheritance) is provided as a primitive facility in the Concept Editor.
However at the conceptualisation level other relations may also be important, e.g. consists-of,
causal or temporal relations. Each hierarchy only shows the concepts over a given relation from a
given root-concept, implying that a single concept can be in more than one hierarchy and that more
than one disconnected hierarchy over the same relation may exist. The Concept Editor has implicit
support for building a glossary. Each concept has four standard attributes (description.translation,
source reference, synonyms) which are initially empty and can be filled by the knowledge engineer.

Documentation is considered important in all (KBS) methodologies, to quote Freiling et al. (1985;
p. 158):

All too often, knowledge engineering projects become a black hole, and managers
have difficulty perceiving signs of progress. With a clear sense of stages and
documentation which can be delivered at each milestone, it becomes possible to
say "We've completed the knowledge organisation phase and we're now defining
the representation," rather than "We're working on it."

The Concept Editor, therefore, can format and print the information that is entered into. Once
again, these documents can also be used to verify with the expert whether the KE's understanding
of a particular aspect of the domain is correct.

The Concept Editor is shown in action in figure 10. From left to right and top to bottom the
sub-windows contain: a list of all concepts in the domain, a list of all attributes of a particular
concept, a text window and a graphics window known as the desktop. The text window is used to
show the concept attributes and other text the knowledge engineer wants to edit or view. The
desktop is the main means of interaction. The user interface is a mix between the Smalltalk style
(paned windows and popup menus) and the Macintosh style (objects represented by icons, clicking
and typing as the basic mechanisms).

677

r*«*<ee«*ti?*jm*&r&&&8?

Figure 10 Concept Editor
Conceptual Model Editor

The Conceptual Model Editor and the Interpretation Model Librarian support the epistemological
level in knowledge acquisition. The primary function of the Interpretation Model Librarian is to
allow the knowledge engineer to choose one or more Interpretation Models that fit the domain. The
user may browse through the hierarchy of models and at any point get more detail of the
components of a model. The Conceptual Model Editor then allows the construction of a model by
combining / modifying / adding to existing models. This includes support for the syntax of the
diagrams used.

Environment

The KADS Power Tools are designed using state-of-the-art software engineering and some AI
techniques. The system is written in a hybrid programming environment called PCE-Prolog
(Anjewierden, 1987), consisting of PCE, an object-oriented programming system and Quintus
Prolog running on the Sun Workstation. PCE, written in the C language, was developed in parallel
with the original KADS system and features high-level windowing, graphics and text-manipulation
facilities. The programmer views PCE-Prolog as a whole, all PCE related facilities are available
through four Prolog predicates. The availability of PCE-Prolog contributed substantially to the
short development cycle of these tools and is now being developed as a system in its own right. It
is interesting to note that PCE, though very much a side issue to the main direction of P1098, has
proven so valuable that it is now in use by a significant number of other research projects both
within and outside the Esprit Programme. This is an example of cross fertilisation between projects
where it is important to see the wider applicability of results even if they are not in the main-stream
of a particular project.

678

6. THE STATUS OF THE METHODOLOGY

In order to provide some reasonably objective assessment of the methodology as it currently
stands we return to the list of criteria provided by Wasserman, Freeman and Porcella (1983)
for IFIP WG8.1 and originally quoted in the P1098 Technical Annex. They suggest that a
methodology for Information Systems development must provide the following:

coverage of the entire development process
the KADS methodology as currently defined in Breuker et al (1987) and Barth61emy
et al (1987) covers the analysis phase, both with regard to the internal and external
views of the system. We can suggest how the models produced by this phase map
onto system architectures but the design phase needs much further definition.
Nevertheless our experience to date shows that a KADS based analysis aids design
even if that is left intuitive (cf Hayball 1986, Rooke and Readdie 1987). The current
analysis techniques concentrate on modelling of expertise; the analysis of
user-system interaction requirements is ill-defined. This requires tackling from the
two perspectives, as for other aspects: internal - user modelling etc, external - human
factors. Maintenance issues are not yet addressed, although the separation of
knowledge acquisition for analysis and subsequent knowledge base refinement and
completion is recognized in the revised Life-Cycle Model. The place and function of
prototyping requires further study although some clarification is emerging from the
Life-Cycle research and related work in Software Engineering (Budde et al, 1984;
NCC.1985).

enhanced communication among interested parties
our emphasis, particularly in the modelling work, has been on assisting the specialist
software developer. The availability of notations and definitions for intermediate
results certainly helps such specialists communicate. Indeed team development of
KBS's appears much more viable with such a methodology than with traditional
experimental methods. It seems likely however that the intermediate results are not
very accessible to non-specialist clients (a common problem with software methods)
(cf Rooke and Readdie op cit). Nevertheless the clear definition of the process given
by the methodology greatly aids in developer-client communication at a management
level, and this is arguably more important than the comprehensibility of the
intermediate outputs.

support for problem analysis and understanding
we believe the notation of Interpretation Models is a major contribution to this
objective, since it enables analysis by refinement rather than in a bottom-up fashion.
As far as we are aware this is a unique feature of KADS.

support for both top-down and bottom-up development
model-driven analysis is top-down but the analyst is not constrained to this. In
particular the KADS modelling techniques can be used in a bottom up fashion and
the availability of an appropriate notation supports such an approach. In practice we
expect that any analysis will be a combination of top-down and bottom-up
approaches.

support for verification and validation
no specific attention has yet been given to this point beyond noting that verification
and validation requires a visible and defined process. We would therefore claim that
the P1098 methodology makes verification and validation possible in a way which is
not true of more experimental approaches. The specific "hooks" for verification and
validation can only be defined once we have more experience of following the
methodology through to implementation. Project tasks to cover these issues are
planned in the later stages of the project.

support for design and performance constraints
the "external" aspect of Requirements Analysi, makes the capture of these
constraints explicit. At present the assessment of their impact can only be intuitive,
pending the fuller definition of the design process.

679

support for software development organisation
the definition of activities for the Analysis phase allows a partitioning of the
development tasks. The lifecycle phases in general allow divisions between
activities based on timing and skills required. This has led in at least one case to
implementation being carried out in a separate group (physically and
organisationally) from analysis and top-level design.

support for system evolution during its lifetime
we have concentrated to date on the initial creation of a system. We hope that by the
later stages of the project there will be sufficient experience of operational KBS's
(both inside and outside the consortium) for relevant data on system evolution to be
available.

automated support tools should be possible
this is a major feature of the work to date and there has been an important inter-play
between the development of tools and the development of the theoretical basis of the
methodology. One weakness at present is that it is not clear how the tools should be
used to support the top-down or normative aspects of the methodology. We are
covering the normative aspects initially in a Handbook and we believe experience in
using this will enable us to define the automated support of this aspect more
effectively.

support for software configuration
we are not directly addressing this point and do not see it as critical for the types of
system currently under development.

teachability and transferability of the methodology
this has become a major issue within the project, quite apart from the question of
transferring results outside. The continual evolution of the methodology has made
teaching it difficult. However we believe the analysis component is now sufficiently
stable to enable it to be documented in the form of a Handbook. This, together with
the support tools, will be the primary means of transferring the methodology to
groups within the consortium organisations outside the actual research team. The
partners believe that this is a critical factor in the success of the project and within
6-12 months we should have clear indications of success (or otherwise) in
transferring the methodology.

open-endedness of the methodology i.e. open to evolution and development
it is not clear to us what exactly is meant by this criterion, particularly since one
might expect a methodology to have a high degree of stability given the
organisational constraints involved in introducing and maintaining a methodology.
Nevertheless there can be no doubt that the P1098 methodology is open-ended at
present so we must presume to satisfy this criterion.

Acknowledgements

The results of an Esprit project are very much a team effort, so it is invidious to single out
particular individuals. A report like this is very much a compilation of project results and
includes material presented in greater detail in many other project documents. I thank all my
co-workers for their efforts which have made this a fruitful project.

680

7. References

Allen J., and Anjewierden A. "KADS Power Tools: User Interface Specification" Esprit P1098
Working Paper 1987

Anjewierden A. and Allen J. "KADS Power Tools: User Guide" Esprit P1098 Working Paper
1987

Barthelemy S, Edin G, Toutain T, Becker S. "Requirements Analysis in KBS Development"
Esprit P1098 Deliverable D3 1987

Breuker J, Wielinga B, van Someren M, de Hoog R, Schrieber G, de Greef P, Bredeweg B,
Wielemaker J, Billeaut J-P, Davoodi M, Hayward S. "Model Driven Knowldge Acquisition:
Interpretation Models" Esprit P1098 Deliverable Dl 1987

Budde R, Kuhlenkamp K, Mathiassen L, Zuellinghoven H (eds) "Approaches to Prototyping"
Proc of Working Conference on Prototyping (Namur 1983), Springer-Verlag 1984

Clancey, W J "The Science and Engineering of Qualitative Models" KSL Working Paper No.
86-27 1986

Dearnley PA and Mayhew PJ "In favour of system prototypes and their integration into the system
development cycle" The Computer Journal 26(1) 1983

Freiling M, Alexander J, Messick S, Rehfuss S, Shulman S. "Starting a Knowledge Engineering
Project: A Step-by-step Approach" AI Magazine 6(3) 1985

Hayball C.C. "KADS and Object Oriented Design" Esprit P1098 Working Paper 1986

Johnson, P & Gruber, S "Specification of Expertise: Knowledge Acquisition for Expert Systems"
AAAI Workshop on Knowledge Acquisition for KBS, Banff Canada, 1986

Littman D. "Modelling Human Expertise in Knowledge Engineering: Some Preliminary
Observations" AAAI Workshop on Knowledge Acquisition for KBS, Banff Canada, 1986

NCC "Prototyping" NCC 1985

Nelson T. "Replacing the Printed Word: A Complete Literary System" Information Processing
80, IFIP, North Holland 1980

Rooke P, and Readdie M. "A Study in the Commercial Application of the KADS Methodology"
Esprit PI098 Working Paper 1987

Wasserman A.I, Freeman, Porcella "Characteristics of Software Development Methodologies" in
(eds) Olle T.W, Sol H.G, Tully C.J. "Information Systems Design Methodologies: A
Feature Analysis" North Holland 1983

Wielmaker J. "The Design of KLASS" Esprit P1098 Working Paper 1987

681

APPENDIX - INTERPRETATION MODELS IN USE

Introduction

The following example shows the use of Interpretation Models in the course of a development
project conducted for an STC factory. The system is intended to advise machine operators in one
of die process shops on what to do in the event of various alarms being triggered. It is based on
the expertise of one of the industrial engineers in the factory who was responsible for the
installation of the equipment and currently advises on problems in its use.

This analysis was undertaken by L. Land and T. Mulhall of the KBSC, Polytechnic of the South
Bank and I. Wright and C. Hayball of STL.

It will be seen that the development of the model revolves around refinement of the Inference
Layer. While this is not necessarily the case it is a common pattern. The final model resulting from
this development of course includes a lengthy definition of the domain layer and detailed definitions
of all the meta-classes and knowledge sources. These are not included here.

Determining the generic tasks

The current library of Interpretation Models (cf. Fig 7) is divided into two sets of models: analytic
and synthetic. It is clear that the task we are dealing with is analytic, i.e. single solutions exist: In
several examples of problem solving, the expert was able to give a single solution to the fault
reported by the operator. Of the analytic tasks described in the library, a diagnosis one is the most
appropriate for our purposes. The expert is required to provide a diagnosis of the fault reported by
an operator. This preliminary elimination procedure enables us to reduce the consideration of
generic tasks from the library to only three, namely 'localisation diagnosis', 'causal diagnosis' &
'heuristic classification'. Multiple fault diagnosis is also a likely model, but the library does not at
present give any details.

It was at that stage that the transcripts did not seem to fit adequately into any of the structures given
by the interpretation models of the above three generic tasks. For example, the expert may
sometimes be able to match a complaint directly to a solution (perhaps as a result of having come
across the situation before), but it is often the case that he cannot give an answer straightaway and
has to go through the set operating procedure with the operator in order to locate the fault. The latter
example seems to imply a localisation task but the former is a heuristic classification task. Of
particular difficulty are situations when the expert would follow the cause of a fault and then do a
localisation task in order to find what when wrong. It is not clear which generic ask follows
another, indeed it seems more likely that one is embedded within another. Thus a new interpretation
model must be developed in order to guide the analysis in a coherent way. This new model is
derived by integrating the above diagnostic models, with the possibility of creating new
metaclasses and knowledge sources. We term it 'mixed-mode diagnosis'.

Integration of Localisation, Causal Tracing, Refinement Interpretation Models

The following diagram represents the inference structure for both localisation and causal tracing.
The difference in each case, is the role in the reasoning process of the meta-classes. In Localisation
the system model will be a consists_of hierarchy. In Causal chaining the model will be a causal
inference net. Implications of the type of system model may be extrapolated throughout the rest of
the inference structure. For example, the type of support knowledge required by the decomposition
knowledge source will be different in each case, the type of hypothesis that will be generated will
be different, etc. The inference structure will also support Refinement if the system model is an is_a
hierarchy.

682

In our considerations of this inference structure we noted some problems. Firstly, we thought that a
norm should be selected on the basis of the current hypothesis and not the system model. The norm
should be able to tell us something about the value of variable selected on the basis of the current
hypothesis. Hence, we made a change to the inference structure giving the following: -

complaint

system
model

^ d e c o m p o s e) ^

universum of
observables

hypothesis

conclusion

specify

An additional problem was noted here. The variable value to be selected from the universum of
observables must be comparable with the norm. Hence, it would make sense if the norm were
taken into account in selecting the variable value. This gives us the following:-

683

complaint

unlversum of
observables

The previous changes that have been made were general observations about the inference structure
of a generic task on offer from the library. They do not relate specifically to the current domain of
study. A problem which does is the inability of the inference structure to support the prioritising
of candidate hypotheses. This is necessary because there is a requirement to give priority to
hypotheses relating to potential risk to operator safety. We may facilitate this by selecting, using
support knowledge, a hypothesis upon the basis of the complaint, as follows:-

univgrsum ol
observables

system
model

\
r>decom po s e j ► conclusion

684

This represents a recursive inference structure in which the hypothesis at one level of invocation
may become the complaint at the next. It may represent localisation, causal tracing or classification
depending on the nature of the system model. It represents a combination of all three, if we take
into account the possibility that each time a system model is selected it may be based on a different
organisational principle to the previous selection (e.g. causal rather than consists_of). Although,
for the latter to be the case, different system models would have to be available.

Unfortunately this transgresses a "rule" within the methodology that a metaclass may be produced
by only one knowledge source. The underlying problem here is that the hypothesis metaclass has at
least three roles with respect to the kinds of inference that it is desirable to make. The three roles are
as follows; a particular hypothesis, a set of current hypotheses and a particular hypothesis currently
receiving consideration. We considered it preferable that the name of a metaclass should relate
explicitly to its role in inference. Hence, we have introduced two new metaclasses (differential and
focus) relating to the latter two of the roles mentioned above. We can now clearly see the root of the
representational problem in the previous version of the inference structure. Whereas we decompose
a system model into (a set of) hypotheses, we need to select a particular hypothesis for
consideration (the focus), from the set of current hypotheses (the differential).

The resultant inference structure, shown below, facilitates the features described above, yet still
displays features inherited from its ancestors. Two additional changes have been made. Firstly, we
are interested in the potential of diagnosing multiple faults. Hence, a single conclusion may be
specified from the differential, still leaving other hypotheses current. Secondly, to provide
additional flexibilty we would prefer to be able to both deny a focus or to verify it. We use criterion
(instead of norm) as a new metaclass to reflect this.

universum ol
observables

\
select j • *

f
criterion

variable
value

^f compare j

difference

hypothesis

This still has two arrows going into a metaclass (focus). The difference between this and the
previous offering in this respect is that here it represents two alternative routes through the
inference structure, whereas previously it represented the ambiguity of the hypothesis metaclass
with repect to its role in inference.

685

Subsumption of Heuristic Classification

So far we have discussed systematic diagnosis by both localisation and causal tracing. We have
also discussed the notion of refinement classification as an add-on extra. What of heuristic
classification? If there is a requirement, how may this be accommodated within our present
inference structure? The inference structure for heuristic classification is as follows:-

(translornn

At first glance this seems to be very far removed from our present inference structure. However, on
closer inspection we may see that a mapping of some sort may be achieved. For heuristic
classification a complaint may take the role of an observable. The focus may take the role of a
variable. Everything from system model, following the arrows round, to differential, may be taken
together as a composite solution abstraction. The system itself may be viewed as an heuristic
model, and decomposition may be viewed as heuristic decomposition. Instead of specifying a
conclusion we are matching a solution. In effect all that we are doing is implying that there is a
requirement for richer support knowledge for some of the knowledge sources, and through this we
can accommodate heuristic classification in addition.

We may use support knowledge to select a focus and to select a system model. Strategy then
becomes subsumed within these two (different) knowledge sources. This obviates the need for a
process structure at the strategic level.

Further Refinements

Additional observations were made at this stage. It seemed more descriptive to use "augment" as
opposed to "add" when putting a new hypothesis together with those already existing in the
differential. The criterion may be a complex formula, rather than something as simple as a
tolerance. In which case producing a conclusion by the evaluation of a criterion with respect to a
variable value is more natural and more flexible. That being the case, conclusion in the previous
offering will be renamed solution. In addition, it is difficult to see how the present arrangement
could handle situations in which we have more than one complaint. We may transform them into
foci, but it is difficult to see how we may prioritise them. Instead we have chosen to transform
complaints into hypotheses which are used to augment the differential. These may now be selected
as a focus, priority being given by the support knowledge of the select knowledge source.

This gives the following:-

686

augment

criterion

universum of
observabies

} (select J ►
variable
value

specify

Clearly, what we have now described in the right half of the inference structure is verification of the
focus. In addition, we may also wish to verify a symptom before transformng it. This implies
having a complete copy of the right hand part of the inference structure stemming from the
complaint metaclass. It seems more convenient to view verification as a new generic task. This
being the case we are now back in the situation of having two inference structures, one for mixed
mode diagnosis and one for verification. We show these structures in the following section. We
also offer a task structure. Note that verification is used as a kind of inferential sub-routine by
mixed mode diagnosis. Hence, the two tasks are linked at the task level. The requirement for a
strategic level is removed.

Final Inference Structure

(1) Mixed Mode Diagnosis

687

(2) Verification

criterion

universum of
observables

►Qsa lacT) ». variable
value

Task Structure

diagnose (complaint) by
create differential by

for each symptom do
verify (symptom),
transform (symptom),
augment (differential),

refine (differential) by
until refined do

select (focus),
classify (focus);
verify (focus);
(select (system model), decompose (system model), augment (differential))

specify (solution)

verify (assertion) by
specify (criterion)
until conclusion reached do

select (variable value),
obtain (variable value),
evaluate (conclusion)

classify (hypothesis) by
for each problem category until classified do

verify (the hypothesis has this problem category)

688

Project No. 1117

THE DESIGN OF AN INFORMATION RETRIEVAL ASSISTANT SYSTEM

Gert Schmeltz Pedersen and Henrik Legind Larsen

Dansk Datamatik Center
Lundtoftevej 1C
DK-2800 Lyngby, Denmark

Abstract: The KIWI project (ESPRIT 1117) is developing a knowledge-
based, user-friendly system for utilization of information bases. To
evaluate the KIWI system we are performing a case study by developing
a knowledge-based system, which we call KIRA for "KIWI Information
Retrieval Assistant".

The aim of KIRA is to assist the information user as a human
intermediary would do, hiding to some degree the confusing
dissimilarities between different information bases, such as access
protocols, query languages, thesauri, and other facilities offered by
suppliers of information services.

The paper describes the specification and design of KIRA including the
necessary knowledge as acquired from human intermediary experts, as
the basis for programming KIRA in the object-oriented knowledge
representation language, called OOPS, developed as part of the KIWI
project. Much of the work in the project is not in the focus of this
paper, and therefore only mentioned briefly.

1. INTRODUCTION

Today's information users are offered a large amount of information in online
accessible form. This includes information available from thousands of public
information bases and from the bases in the users' own organization. Although an
efficient utilization of available information is an important part of good decision
making, such utilizations are often not attempted. It is simply too difficult for the
user to overview the available information bases, to identify the bases that may
contain the information needed, and to learn the particular query language and the
specialities of each host supplying retrieval services from the information bases.

Efficient utilization can only be expected, when the information user finds that
the resulting improvements in decision making is likely to justify the costs of
such a utilization. These costs may include the employment of an information
retrieval intermediary, i.e. a person, who has the expertise needed for an efficient
utilization of information bases.

The aim of the KIWI Information Retrieval Assistant, KIRA, is to provide the user
with a software system that offers some of that expertise. KIRA will support
retrieval both from administrative relational databases that are typically
connected to KIRA via local area network (LAN), and from bibliographic databases
that are typically connected via telephone.

689

It is characteristic of KIRA that it has knowledge of how to create a
representation of user needs, and of how to plan and modify searches in databases,
including selecting among several attached databases. Much of this knowledge is
represented in rules, as usual in knowledge-based systems. In KIRA the rules are
grouped in rulesets, which are hierarchically ordered, such that the root ruleset,
the metarules, will determine when to use the other rulesets. This is a convenient
and modular way of exploring different interview, search, and feedback strategies.

This paper is organized as follows: Section 2 contains a model of the information
retrieval task, discussing its realization in different contexts. In section 3 we
take a look at some of the efforts to provide computer-based assistance to the
information retrieval task; for this purpose we propose a taxonomy of such
systems. Then we are ready to give, in section 4, a description of the KIWI
system, which is the basis for the design and implementation of the KIRA system.
In section 5 we present the intended functionality of the KIRA system, using the
taxonomy to characterize it. Section 6 then contains the design in broad outline.
Finally, we provide a conclusion.

2. INFORMATION RETRIEVAL (IR)

In the literature [1] we can find an illustration of the field of information
retrieval as given in figure 1.

information problem —> query <—> surrogate <— text
I I I

representation comparison representation

FIGURE 1
The information retrieval task

In principle, an information problem is tackled by comparing a query, which is
some representation of the information problem, with surrogates of texts,
retrieving the surrogates that match with the query; and then probably retrieving
the texts represented by these surrogates.

In the pre-computer world of libraries, the texts are books or other kinds of
documents, the surrogates are card indexes, the query is expressed in natural
language, and the comparison is carried out by the information users, or by
librarians on their behalf, by consulting the indexes: These may exist in several
versions, one indexed by author name, one by title, and one by subject.

In the world of computerized, commercial information retrieval systems, texts
and text surrogates are stored in databases as text files and formatted records.
The databases are operated by host organizations that offer information services,
and the most common type is bibliographic databases. A query is expressed in a
command language allowing boolean combinations of search conditions on some
fields of the records. The comparison is carried out by the host computer. A
standard command language is underway from ISO; it is called CCL, Common
Command Language [2].

690

If we turn for a moment to the world of administrative databases, the picture of
data retrieval would resemble figure 1. Only the surrogates would normally not
stand for texts, but for entities of some universe of discourse. A standard query
language for relational databases is underway from ISO; it is called SQL,
Structured Query Language [3].

The task of representing texts in surrogates is called indexing. Whether indexing
is performed manually by librarians or domain experts, or automatically by
computer programs, there is the problem that the surrogate is only a faint
reflection of the text, and that it is highly dependent on the indexer. In the
administrative database world indexing is often called conceptual modelling.

There seem to be 3 types of information problems or needs [4]:

"Verificative needs", where the user wants to verify or retrieve information
on information items with known characteristics.

"Conscious topical needs", where the user wants to clarify, review, or pursue
aspects of a well-known subject.

• "Muddled topical needs", where the user wants to explore new concepts
outside well-known subjects.

The task of representing information problems in queries is not well understood in
general. In libraries the librarians, often called intermediaries in this capacity,
interview the users trying to understand the information problem and to formulate
queries that are compatible with the available indexes. In the case of
bibliographic databases the user or his intermediary has to know the relevant
databases, their structure and command language and how to express the problem
by these commands.

Once the texts are represented and the queries are formulated in a suitable
language, the comparison should be straightforward. But according to experience,
the results often do not satisfy the user's needs. This calls for a reformulation of
the query, whereby the user will employ broader or narrower or related search
terms, trying to guess how the indexer might have chosen to characterize the
relevant texts. Again, the intermediary may do this by interviewing the user and
getting his feedback to the first results. The comparison task may employ a
function that maps each surrogate and query into a retrieval status value [5],
whereby surrogates can be ranked in order of relevance for the query.

The success of an information retrieval session is traditionally quantified by two
measures. The first one is called precision, which is the number of retrieved,
relevant documents divided by the number of retrieved documents. The second
measure is called recall, which is defined as the number of retrieved, relevant
documents divided by the number of relevant documents. In order to be able to
calculate these measures, the user must provide relevance feedback.

3. COMPUTER-ASSISTED INFORMATION RETRIEVAL (CAIR)

Much effort has been, and is being, invested in developing computer programs that
can assist in information retrieval. In order to characterize these efforts and our
intended KIRA system, we propose the taxonomy for CAIR systems given in figure
2. We do not claim that it considers all aspects and details, only those sufficient
for our purpose. We will give comments on a few of the entries now. Other

691

entries have been discussed or will be discussed with the examples and with the
KIWI and KIRA systems.

Among the searcher groups, the elite user possesses both information retrieval
knowledge and highly specialized conceptual knowledge about a particular domain
of interest. The intermediary has information retrieval knowledge, but limited
specialized conceptual knowledge. The end user knows about his domain of
interest, but has scarce or no information retrieval knowledge. The layman has
neither specialized domain knowledge nor information retrieval knowledge.

Exact match comparison techniques will retrieve only those surrogates that match
exactly with the query. This is typical of SQL. Partial match will also retrieve
surrogates that have some small semantic distance from the query. The
techniques available to the user is dependent on the query language. In CCL only
feature based match is available.

We will now use the taxonomy to characterize three CAIR system types.

The simplest of the three types are gateways [7], in that they have almost none of
the knowledge mentioned in the taxonomy. In the simplest case they only have
knowledge of how to access a certain set of databases, enabling them to connect
the user to the databases, but from then on the user is essentially on his own,
without intermediary help. In more sophisticated cases they may as well know the
structure and language of the databases, they may have some subject area
knowledge, and they may accept needs specification in a menu-driven fashion.

In the case of retrieval from an office information system, such as in the
MINSTREL ESPRIT project [8], the CAIR system is connected to the database over a
local area network. This implies other time and cost considerations, than when
connecting over telephone lines as for gateways. MINSTREL has all the user
interface features of the taxonomy except for pseudo natural language, it has most
of the kinds of knowledge, and it has comparison techniques of several kinds,
allowing ranking of documents and handling of missing or incomplete data. But on
the other hand, it does not plan and modify searches as an expert intermediary
would do, using user interview and relevance feedback, and it can only retrieve
from the local databases that it was designed for.

Now, an expert intermediary system such as I R [9] would not take the user's own
needs specification for granted, but would carry out an interview and use
relevance feedback. I3R can thus take care of all 3 kinds of user needs mentioned
in the taxonomy. It has only one database attached to it, but since it is integrated
with it, running on the same computer, it can utilize powerful partial match
techniques. Other expert intermediary systems could run on the user's personal
computer, connecting over telephone lines. This will only allow them the
comparison techniques provided by the host system through the query language.
The KIRA system is intended to be such a system, except that we will not claim to
reach an expert performance level within our scope of resources.

4. THE KIWI SYSTEM

The aim of the KIWI project (ESPRIT 1117) is to design and implement a prototype
system (the KIWI system) that allows the user to develop knowledge-based
applications that make use of data from a number of external databases. The KIRA
system is such an application. The applications will be written using a knowledge
representation language (called OOPS), that is basically object-oriented, but

692

• Connection to host
database system(s)

• Attached databases

• Searcher groups [4]

• User needs [4]

• User interface

• Knowledge of

• Comparison
techniques [1]

[4][6]

.
•
•
•
•

•

.
•
•
•
•

•

•

•
•

•
•
•
•
•
•
•
.
•

integrated
via LAN
via WAN
via telephone

number

types

languages

the elite
the intermediary
the end user
the layman

verificative
conscious topical
muddled topical

needs specification

explanation
result presentation

creating representati

•
•
•

•
•

•

ons
subject areas (domains]
databases - access,
users

one
many
bibliographic or similar
administrative
statistical, product, ...
CCL or variant
SQL or variant
special

command-driven
menu-driven
term-oriented
browsing the knowl.base
(pseudo) natural language
relevance feedback

textual/tabular
graphical

of documents (indexing)

structure, language, costs

creating a representation of user needs
planning and modifying
improving/learning

exact match
partial match •

•

searches

feature based
structure based
clustering
browsing in surrogates

FIGURE 2
A taxonomy of computer-assisted information retrieval systems

693

User
USER—| Interface

(Ul)

Knowledge
Handler

(KH)

Advanced
Database
Environmen
(ADE)

Informatic
Base
Interface
(IBI)

(KNO W L E D G E B A S E

on] ()
Data)
Bases)

)

FIGURE 3
The architecture of the KIWI system

enriched with a number of other powerful paradigms such as rule-based,
procedural, and logic programming, and monitors.

The KIWI system consists of four software layers and a knowledge base, as
illustrated in figure 3. We give a brief explanation here, whereas a longer
elaboration is not in the focus of attention of this paper. The architecture was
explained in detail in [10]

The User Interface (Ul) assists users in the interaction with the KIWI system.
This software layer is written in OOPS and is devoted to maintain a friendly and
intelligent dialogue with users by allowing both their navigation through the KIWI
knowledge base and an easy and assisted query facility on the databases attached
to KIWI.

The Knowledge Handler (KH) implements OOPS and is used to translate user queries
into a form acceptable to the Advanced Database Environment, to handle the
knowledge on the utilization of databases, and to allow a knowledge engineer to
directly encode the knowledge in terms of the problem domain.

The Advanced Database Environment (ADE) is responsible for the management of
the KIWI knowledge base and for the retrieval of data both directly from the KIWI
knowledge base and, indirectly, through the Information Base Interface, from the
databases attached to the system. The ADE supports an extension of the relational
model and logic programming features to efficiently implement the OOPS
concepts.

Finally, the Information Base Interface (IBI) is mainly responsible for routing
requests from the ADE to the appropriate database and for returning the results in
a suitable form to the ADE.

We have used the taxonomy to characterize both the KIWI and the KIRA system, see
figure 4. There the KIWI system is characterized by the -marked terms in plain
characters, while the KIRA system has the additional characteristics in bold
characters. Characteristics of neither system is "-marked.

The user of the KIWI system could be a knowledge engineer, programming in OOPS,
or a searcher with information retrieval knowledge and experience corresponding
to an intermediary.

694

The functionality offered to the searcher is primarily:

Attachment,
Refinement,
Basic search.

Attachment is the process of describing a database to KIWI by giving the schema,
the associated names and terminology and other attributes. KIWI accepts
attachment of relational databases, typically via local area networks. This
provides the knowledge of databases (and their hosts).

Refinement is the process of connecting the user's conceptual model, expressed in
terms from his application domain, with the schema terms given during
attachment. Refinement results in a network of term relationships, involving user
terms, database names, field names, etc. This provides the knowledge of subject
areas.

Basic search provides the searcher with the services of the host information
system augmented with facilities to log on easily and to utilize the term
relationship network in setting up search statements (queries) and in modifying
them to be broader or narrower or focused differently. The user needs
specification is term-oriented, represented as a subnetwork of the term
relationship network, and transformed into SQL by a process similar to one
described by Motro [11]. The comparison technique is exact match, and this covers
verificative user needs.

5. THE KIRA FUNCTIONALITY

We are not ourselves the specialists in information retrieval. Therefore we have
performed a knowledge acquisition process with an expert, Peter Ingwersen from
the Royal School of Librarianship in Copenhagen. We have also consulted with
Bruce Croft, Amherst. This process involves interviews to elicit the experts'
private knowledge and literature studies to acquire the public knowledge. We have
not performed verbal protocol analysis and observational studies, as described in
[12].

As a result of the knowledge acquisition process we have drawn up the taxonomy,
and then used it to define the functionality of the KIRA system as shown in figure
4. The characteristic features are the '-marked terms, including the features
inherited from the KIWI system. The additional features are shown in bold
characters.

The telephone connection to hosts implies higher communication costs and longer
search times, and therefore other search strategies, as compared to more closely
connected environments.

The language is to be standard CCL, with an eye open to easy ways of incorporating
database specific variants. This implies that more sophisticated comparison
techniques than ad hoc feature based are not available from the hosts. One user
needs specification could lead to both CCL and SQL queries being generated.

One of the main lessons that we learned during knowledge acquisition was that the
users often do not express their information problem properly. Therefore an
intermediary, and KIRA, must be able to propose reformulations, in trying to create
a representation of the user's needs.

695

The user of KIRA could be a domain specialist with little information retrieval
knowledge. He will be supported in his conscious topical needs by interview and
relevance feedback. Muddled topical needs would have to be supported by more
general world knowledge, which is out of our scope.

Knowledge of subject areas and databases is input incrementally by the users, as
for the KIWI system. But in an organization there may be one more knowledgeable
user, who performs this on behalf of his colleagues. Later they may input their
own preferred terms to the term relationship network, and thus personalize their
own version. Also, the KIRA system may be provided from the implementor with
more or less tailored knowledge of subject areas and databases.

6. THE KIRA DESIGN

Design is the choice of architecture, techniques, procedures, and data structures
plus resource considerations, in order to realize the functionality. We will give a
broad outline of some of the design choices that we have made. A more detailed
account of some aspects with a querying scenario is given in [13].

The knowledge representation will make use of all constructs of OOPS:

Objects to model hosts, databases, terms, term relationships, users,
sessions, etc. Objects are related by classification, generalization, and
aggregation, with inheritance. They have features, which are either
references to other objects, or functions (methods) in the form of rules,
predicates and procedures.

Rules to model strategies for interview, search, and feedback. Rules are
grouped in rulesets and ordered hierarchically. The root ruleset contains
the metarules that will determine which ruleset to activate in different
situations. Rules are forward chained during evaluation.

Predicates to query the knowledge base, to state inference rules, and to
model virtual objects, like views in relational databases. Predicates are
backward chained during evaluation.

Procedures to give operations such as performing logon to hosts,
transforming answers from the databases to the desired format, or
calculating rankings of answers.

Monitors to catch user or session characteristics.

The term relationship network model is based on Motro's idea of a loosely
structured database [14]. In this model, term relationships have the triple form
(s,r,t), where s is the source term, r the relationship term, and t the target term.
For example, (expert system, application of, artificial intelligence) is a term
relationship expressing that 'expert system' is an application of 'artificial
intelligence'. We consider such triples as term relationship facts. A fact (r,s,t)
must be of one of the types: E*R*E and R*R*R, where E is the set of entity terms,
i.e. non-relationship terms, and R is the set of relationship terms.

Through term relationships we may represent and interrelate the traditional
thesauri relationship types, 'broader', 'narrower', and 'related', the abstraction
types of semantic data modelling, 'classification', 'generalization', and
'aggregation', other important types, such as 'equal to', 'greater than', 'inverse of,
and 'synonymous to', as well as more domain specific types.

The model further contains inference rules defining the valid inferences on facts.
The inferable facts (including the stored facts) comprise the virtual term

696

• Connection to host
database systerr »(s)

• Attached databases

• Searcher groups

• User needs [4]

• User interface

[4]

• Knowledge of [4][6]

• Comparison
techniques [1]

o

o

•

•

•

o

•
o

•

o

•
•
•
.
•
o

•
•

integrated
via LAN
via WAN
via telephone

number

types

languages

the elite
the intermediary
the end user
the layman

verificative
conscious topical
muddled topical

needs specification

explanation
result presentation

creating representati

•
•
•
o

•
o

•
•
•

o

•
o

ons
subject areas (domains)
databases - access,
users

one
many
bibliographic or similar
administrative
statistical, product, ...
CCL or variant
SQL or variant
special

command-driven
menu-driven
term-oriented
browsing the knowl.base
(pseudo) natural language
relevance feedback

textual/tabular
graphical

of documents (indexing)

structure, language, costs

creating a representation of user needs
planning and modifyi
improving/learning

exact match
partial match

o

o

o

ng searches

feature based
structure based
clustering
browsing in surrogates

FIGURE 4
The KIWI system is characterized by the '-marked terms in plain characters.

The KIRA system has the additional bold term characteristics.
The "-marked terms are characteristics of neither system.

697

relationship network. As an example, the fact (artificial intelligence, broader
than, expert system) can be inferred from the facts:

(expert system, application of, artificial intelligence),
(application of, specialization of, narrower than),
(narrower than, inverse of, broader than).

by use of the inference rules:

(B, Y, A) if (X, inverse of, Y) & (A, X, B).
(A, Y, B) if (X, specialization of, Y) & (A, X, B).

The actual user interface will be designed by our partners working on that work
package, but conceptually there will be a number of windows, as exemplified in
figure 5. The interaction between the user and the system through the windows is
partly controlled by the user, partly by the strategies in the rulesets. The user is
free to provide more or less of the possible input values. For instance, he may give
expected minimum and maximum numbers of answers in the ANSWER FORMAT
window, or let the system use defaults.

Also, the user may choose to enter command language sentences directly into the
CURRENT QUERY window, or let the system built up the query based on the USER
NEEDS REPRESENTATION. This is a subnetwork of the term relationship network
connecting the user's selected terms and term relationships. The user can select
terms and term relationships by typing into the NEEDS SPECIFICATION window, and
by pointing in the TERM RELATIONSHIP NETWORK window and in the RELEVANCE
FEEDBACK window. He can also update the term relationship network through the
TERM RELATIONSHIP NETWORK window, for instance when he typed in a term that
was previously unknown to the system, i.e. it was not in the network.

There are two main strategies, one for verificative needs, and one for conscious
topical needs. The main difference is that the latter will rank answers based on
the importance of query terms, and will propose broader, narrower, or related
terms in the process of reformulating queries. The aim is to bring the number of
sufficiently relevant answers within the cardinality limits and above the
precision and recall thresholds. The system will try to infer the type of needs
based on the user profile, the expected cardinality, and the number and exactitude
of the given terms and term relationships.

The strategy rulesets will make heavy use of the term relationship network, for
instance in selection of database. The names of databases and their fields are
also in the network, and it is therefore possible to determine, if there are one or
more subnetworks with close connection between a database name and the
subnetwork representing the user needs. If there are more than one, the user may
be asked to make a preference, the system may decide based on heuristics, or all
possibilities may be queried in parallel.

There will be variants of the strategies in order to take care of the different time
and cost considerations involved for connection to the database via LAN or via
telephone, respectively. There will also be variants for different user profiles.
For instance, a user wanting low control of the session will not need to see or
know about the term relationship network.

We will have to explore alternatives of the strategy variants, before the better
choices can be determined. We expect that the ruleset representation will provide
a convenient way, because of its declarative and modular form.

698

USER PROFILE
NAME >
DOMAIN (default term) >
Wants HIGH/LOW degree of control
Wants at least ...% precision and ...% recall

USER NEEDS SPECIFICATION
What are you interested in? Give one or
more terms or term relationships,
or browse the term relationship network:

BROWSE

TERM RELATIONSHIP NETWORK
> Show neighbourhood of selected term
> Show subnetwork connecting selected terms
> Show BROADER/RELATED/NARROWER terms
> INSERT/DELETE selected term/term rel.ship

USER NEEDS REPRESENTATION
> Show
> Show including first/next related database

DATABASE SELECTION
Database(s) selected by KIRA: <...>, <...>, ...
Make preference or select on your own:
DATABASE NAME >
> List attached databases
> List fields of selected database

CURRENT QUERY

Guery input > in SQL > in CCL
> Send off this query now
Save this query for reuse. NAME >..
Fetch query saved as >

ANSWER FORMAT
Current field-list: <...>,<...>, ...
> ADD/DELETE field from current field-list
Cardinality MIN >... MAX >...
Sample answer: ...

ANSWERS

RELEVANCE FEEDBACK
> Assign importance to query terms
> Assign relevance to answers
> Show additional terms from answers

EXPLANATION
> About actual reasoning
> About strategies

SESSION
> Show session history

FIGURES
User interface, sketched conceptually

699

7. CONCLUSION

There is a large economic potential in better utilization of the rapidly growing
amount of online accessible information. The KIWI project is among the efforts to
provide computer-assistance to such a utilization. From many sources it is
maintained that employing knowledge-based systems techniques is the way to go.
We do that, and we have proposed a taxonomy, that points out how far we go, and
that points out in which directions we might extend our scope.

REFERENCES

[I] N.J. Belkin and W.B. Croft, Retrieval Techniques (ARIST DRAFT, Rutgers
University/University of Massachusetts, 1987).

[2] Documentation - Commands for Interactive Searching, ISO/TC46/SC4/N210,
2nd Draft Proposal DP 8777, 1987-03-12.

[3] Information Processing Systems - Database language SQL, Draft
International Standard ISO/DIS 9075, ISO/TC97, 1986-05-22.

[4] P. Ingwersen, Cognitive Analysis and the Role of the Intermediary in
Information Retrieval, in: R. Davies (ed.), Intelligent Information Systems:
Progress and Prospects (Ellis Horwood, Chichester, 1986), pp. 206-237.

[5] D.H. Kraft, Advances in Information Retrieval: Where is that /#*&@ Record?,
in M.C. Yovits (ed)., Advances in Computers, vol. 24 (Academic Press, 1985),
pp. 277-318.

[6] A. Vickery, H.M. Brooks and B.C. Vickery, An expert system for referral: the
PLEXUS project, in same as [4], pp. 154-183.

[7] J.J. Hewes, Gateways to On-Line Services (PC World, May 1985), pp. 149-156.

[8] G. McAlpine, Techniques for Filing and Retrieval of Office Information,
submitted to the ESPRIT Conference 1987.

[9] W.B. Croft and R.H. Thompson, PR: A New Approach to the Design of Document
Retrieval Systems (Department of Computer and Information Science,
University of Massachusetts, Amherst, 1986).

[10] A. D'Atri, P. Naggar, G.S. Pedersen, D. Sacca, J.J. Snijders, N. Spyratos, and D.
Vermeir, The KIWI System, presented at the ESPRIT Conference 1986.

[I I] A. Motro, Constructing Queries from Tokens, Proceedings of SIGMOD'86, May
1986, pp. 120-131.

[12] N.J. Belkin, H.M. Brooks, and P.J. Daniels, Knowledge Elicitation Using
Discourse Analysis, to appear in International Journal of Man-Machine
Studies, 1987.

[13] H.L. Larsen, Knowledge Representation in IRIS, an Information Retrieval In
termediary System, Proceedings of the 7'th International Workshop on Expert
Systems and their Applications, May 1987 (IRIS was a former name of KIRA).

[14] A. Motro, Browsing in a Loosely Structured Database, Proceedings of
SIGMOD'84, June 1984, pp. 197-207.

701

Project No. 415

Overview of a Parallel Reduction Machine Project

D 1 /levari, (.i I. Hum and ft J Karia *»

(i l - r Research I .id
Hirst Research Centre

Last Lane
Wembley

Middx. HA9 7PI>
United Kingdom.

ABSTRACT

ESPRIT Project 415 has taken what are considered to be good
programming language slyles and is developing parallel architectures to
support them. Here we describe the part of the project which is developing
a distributed memory archilecture for functional languages.

Designing parallel architectures for evaluating functional languages
presents many challenging problems. firstly a model for the parallel
reduction of such languages must be lound. An abstract interpretation has
been developed which leads to a parallel reduction model. 11 can be
implemented in a compiler so that p r o g r a m s ian automatically be
annotated with parallelism information.

The original COBWEB, a novel distributed memory architecture, is
described, along with the conclusions we have drawn from our simulation
work. We also briefly describe some of 1he architectural features of the
architecture we are designing to support the parallel reduction model.

Many programming languages including functional ones require
automatic storage allocation which has to be garbage collected. We present
another piece of work from our project which has resulted in the discovery
of a distributed reference counting garbage collection algorilhm which has
very low overheads.

* Research partially funded by ESPRIT Project 415 : Parallel Architectures and Languages for AIP -
A VLSI-Directed Approach.
** Electronic mail addresses of the latter twoauthors are geoff@gec-rl-hrc.co.uk and karia@gec-rl-
hrc.co.uk respectively.

702

1. In t roduc t ion .

ESPRIT project 415 is investigating several s t y l e s of programming languages and

architectures to support these languages. The project is taking a "languages first approach"

to architectural design. Rather than designing a machine and then trying to implement a

language on top of it, the project has chosen some styles of programming languages which

a n thought to be easier to program in and w h i c h are amenable to formal analysis, and is

then investigating how to design parallel architectures to support them.

This paper deals with the parallel implementation ol functional languages, work

which is being completed by GEC Research I.Id at the Hirst Research Centre. We have

found i1 especially interesting in this pari of the project to see how much the language

s tyle influences architectural design.

The natural reduction mode) for the X-calculus, upon which most functional

languages are based is a sequential one. Therefore one of 1he first things we had to do was

to see where we could oblain parallelism in 1he evaluation of functional languages. Our

work on the abslract interpretation of functional languages has led us to a parallel

reduction model which has the same feeling of naturalness as la/y evaluation does .for

sequential machines. This work is described in the second seition of the paper.

While 1he work on the parallel reduction model was being completed, we

investigated, using simulation, a novel distributed memory architecture for combinator

reduction called C.H [Hankin, Osmon and Shule l*>85]. Changes were made in the

abstract machine lo incorporate some of the early work on the analysis of functional

languages for parallelism information. Afler a brief description ol the architecture, a

summary of our conclusions from this work is presented in the third section. We also

give some indication of the conslrainls that a dis t r ibuted memory architecture place on

parallel reduction.

Finally, many languages, including functional ones, require automatic storage

allocation and collection. This is a problem which is hard enough for sequential machines,

but is even worse for distr ibuted memory architectures. In section four a distr ibuted

reference counting garbage collection algorithm is outlined. Il is more fully described in

[Bevan 1087], a paper which also appears in this volume.

2. Pa ra l l e l i sm in the Eva lua t ion of Func t iona l P r o g r a m s .

There are two broad classes of ways we may choose to obtain parallelism in the

evaluation of functional languages which have no explicit parallel constructs. A machine

may employ speculative parallel evaluation, where all possible redexes in a graph are

703

•educed in parallel, or il may use cotiscrwinw parallel evaluation, where i1 only evaluates
,m expression il' it knows il will need its value.

Speculative parallelism wasles machine resources by evaluating expressions which
may evenlually be discarded. I'or example, in Ihe expression

if condition then e j else e 2

Ihe value of only one of e, and e2 will be needed, depending on Ihe trulh of the condition.
The problem is compounded in languages which allow Ihe writing of expressions denoting
infinile computations, for such computations may try and consume infinite amounts of
rcsourccs.(*)

Because of the wastage of resources and the difficulties we foresaw in trying to
garbage collect infinite processes, we decided to see if we could find out at compile-lime
when functions would definitely eventually need to reduce any of 1heir arguments.

2.1. Determining Parallelism Information from Functional Programs.

By only ever evaluating the left-most outer-most redex and evaluating expressions
only as far as head normal form, lazy evaluation ensures lhat no expression is evaluated
more than is needed 1o produce the result of a calculation. While this is perfectly
satisfactory for a sequential machine, it is hardly useful for a parallel machine for it only
ever allows one expression to be evaluated at a time. The problem is that lazy evaluation
is overly pessimislic aboul which expressions are going to be needed - it only knows lhat
the lelt-most outer most redex is needed.

Anolher way of looking at lazy evaluation is to notice lhat it never initiates a non-
terminating compulation unless 1he semantics of the original expression 1o be evalualed
was undefined, that is, bottom. Our problem then reduces to ensuring that we do not
iniliale a non-terminating compulalion in evaluating a subexpression unless the semantics
of Ihe original expression is undefined. We will call this our \nnantic criterion.

By giving a dilferenl interpretation, an abstract mlerpt elation, to the symbols in a
programming language, we arc sometimes able to find out inlormation about a program
wilhoul running it. An abstract interpretation lor .determining 1he definedness of
I unci ions in terms of the definedness of Iheir arguments has been developed in a series of
papers. Mycrofl [Mycrofl 1981] developed a s1rk1ncss analysis for first-order functions

(*) An infinite compulation does nol necessarily mean no result is produced. When one lias struc
tured data tyjJes. a compulalion may produce a finite or unbounded amount of output as well as
proiei-dinr- forever.

704

over atomic data types!*). This was extended in [Burn, Hankin and Abramsky l')8(>] 1o a

slrictness analysis for higher-order fund ions. Wadler [Wadler 1987] introduced an

abstract domain for s t ructured dala 1ypcs such as lisls. All of 1hese various s t rands were

d rawn together in [Burn 1987a] where a framework for the abs l rad inlerpretalion of

functional languages was developed and applied 1o this problem.

Traditionally 1his abstract inlerpretalion has been used to give a strictness analysis

of funclional programs, thai is. finding iT a fund ion application is undefined when one of

ils arguments is undefined. However, 1 his loses information, lor i1 only 1es1s the semantic

crilerion locally. By looking at Ihe abs l rad inlerprdal ion in another way, we are able to

determine more parallelism information, which leads to a natural model for the parallel

evaluation of functional languages. We call the results of this analysis evaluation

I tansformers, for they tell how much evaluation can be done lo an argument of a function

given that we can do a certain amount of evaluation of the function application.

The analysis can be completed by a compiler.

2.2. Kvalua tors .

We know Ihat in some function applications, the argument will need more reduction

than just to head normal form (HNF). For example, an application of the function

length [] = 0
length x:xs = 1 + length xs

will eventually need to traverse the whole of the argument list, but will not need any of

the values of elements of the list. The function

sumlist [] = 0
sumlist x.xs = x + sumlist xs

needs to traverse the whole of its argument list and also obtain the values of the elements

of the list. We will call 1he process of recursively evaluating the second argument of cons

unlil we reach nil (if we do, which will only happen if the list is finite), creating the

structure of the list. There is a similar idea for all recursively defined types, such as

integer binary trees which have type equation :

tree = 1 + num. X tree X tree

or in a Miranda [Turner 1985](**) definition :

(*) An atomic data type is one which has a flat domain as its usual interpretation. Integers and
booleans are two examples.

705

tree:: = NIL_TREE I NODE num tree tree

where the second and third arguments to the NODE constructor arc recursively evaluated.
Musically, evaluating the structure of an expression is unfolding the recursive part of the
data type definition.

We will say that we can evaluate an expression using a particular evaluator, and call
an evaluator which evaluates expressions to HNF £,, an evaluator which evaluates the
structure of a list £2-

 a n d a n evaluator which evaluates the structure of a list and every
element of the lisl to UNF- | 3 . For completeness, the evalualor £0 does no evaluation.
I he relationship between the evaluators is

| , > | 2 > iv > (0

where the relationship > is read as stronger than, because the first evaluator does more
evaluation than the second.

The abstract interpretation of [Wadlcr 1087]. [Burn 1087a] is able to detect
situations when functions need to do more evaluation of their arguments than just to
I INF. 11 can be used to determine evaluation transformers [Burn 1087a], [Burn 1087b]
which will tell us which evaluator we may use for the argument in an application when
given 1hc evalualor we can use for 1he application.

2.3. A Model for the Parallel Evaluation of Functional Languages.

Jus1 as lazy evaluation is 1he natural model for 1he sequential evaluation of
functional languages, programs annotated with evaluation transformers lead to a natural
model for their parallel evaluation.

One way of representing a functional program is as a graph [Wadsworth 1071] of
binary apply nodes. Thus the application

i
 e i ■ ■ ■

 e
n

would be represented as :

(*•) Miranda is a trademark of Research Software Ltd.

706

/ \ ,

/

l.c'11-mosl OUUT-mosl reduction is oblained by traversing the spine of the application,
until the function] is reached. A copy ol the body ol / is made, substituting pointers to
the arguments e, to em if / needs m arguments, and 1he root ol this graph overwrites Ihe
the application node which points to em . Traversal of the spine begins again at this node.
An excellent coverage of graph reduction is given in [Peyton Jones 1987].

Suppose we labfl the graph with evaluation transformers AV, 1o h"I'n as in the
diagram :

/ \ "

/ \ '

and that we are evaluating the expression with the cvaluator | . Then the only thing that
changes with the evaluation mechanism is that when traversing the spine ol Ihe graph, a
task is initiated to evaluate each expression e, with the evaluator A7',(£).

There are some important things to note about this evaluation mechanism. Any
particular expression is being evaluated using left-most outer-most reduction. The
evaluation mechanism is not some sort of parallel-innermost reduction slrategy (i.e. a
parallel version of call-by-valuc), lor in 1he case that the / in the above example is a
user-defined function, the evaluation of Ihe expression e, proceeds in parallel with the
evaluation of the expression / e , • ■ • cn .

The abslracl machine ol [("lack and Peyton Jones 1986] solves the problems of
synchronisation of processes evaluating pieces of the graph on a shared memory
architecture when only the evaluator £, is being used. In [Karia 1987] an abstract
distributed memory architecture is defined which fully supports Ihe evaluation
translormcr model of parallel reduction. This is in the process of being further refined
[Bevan et al 1987].

707

.3. Parallel Graph Reduction and Distributed Memory Architectures.

lor our purposes, we can divide parallel architectures inlo I wo broad classes. Shared
memory architectures have many processors sharing a common memory. The problem
with such architectures is that the memory becomes a bottle-neck in ihe system.

A dislribuled memory architecture consisls of a series of processing elements (PFs),
each containing, in i1s simplesl form, a processor, some memory and communications
capacity, connected logelher by a network. Given a suitable nelwork, a distributed
memory architecture in theory has no bounds to i1s extensibility. Because of this, we
have chosen 1o develop a distributed memory architecture to support our parallel graph
reduction model.

Concurrently with the work on the parallel reduction model, we have been
investigating a particular computer architecture, the (COBWEB, and the next section
describes the results of that investigation.

Since finishing the simulation work, we have stepped back in order to determine
more abstractly the essential features for the support of parallel graph reduction on a
distributed memory architecture [Bevan el al 1987]. Two main findings of this
investigation are summarised in seclion 3.2.

.1.1. The COBWEB

One of the architectures that has been investigated in detail in our subproject is the
COBWEB, a proposed architecture that exploits the potential of Wafer Scale Integration to
supporl an SKl-combinator reduction model. A description of the architecture is given in
[Shulc and Osmon 1085] and an abstract machine for it is described in [Hankin, Osmon
and Shute 1985].

In this section, a brief description of the architecture along with some discussion of
the simulation results is given.

3.1.1. Overall Architecture

Ihe COBWEB consists of a large malrix of identical processing elements on a wafer,
each of which is capable of communicaling and receiving tokens of machine code to and
from its neighbours. Ihe machine owes its name to the way in which the processing
elemenis are interconnected. A bidirectional communications line originating from a
cenlral port in 1he two dimensional matrix of processors traverses through the
processors in a spiral pattern and ends at the outermost processor, establishing a
circumferential line for communication between processors. Bidirectional lines also

708

traverse radially from the centre o u t w a r d s th rough processors so that tokens can be

commun ica ted to an O U T E R l e v e l in the web. The configuration is establ ished d y n a m i c a l l y

by Hie processing elements on start up, avo id ing any f a u l t y processing elements and

creat ing a spi ra l of a l l the good ones. This scheme was or ig ina l l y proposed in [Aubusson

and Ca l l 1
(
)78], and ensures both fau l t tolerance and graceful degradat ion in the event of

fa i l i ng elements on the wafer . A n example spira l conf igurat ion of processors is shown in

f i gu re - S . 1 . M .

□ Dud Processor

Working Processor

Blind Alley

Circumferential
Line

Radial Line

Figure 3.1.1-1

A f unc t i ona l program is t rans lated i n l o combinators wh ich can be represented as a

graph. Tokens cons t i tu te the nodes of the combinator graph. The combinators used

709

include the ones used in Turner's machine [Turner 1070] along with the P and 1''
combinators described in [Hankin, Burn and Peyton Jones 1086] for strict functions. Each
token has an identifying tag by which it is addressed by otherr tokens. A program
consists of two types of lokcns - those 1 hat represent nodes in Ihe funclion definitions
and those that represent 1he function applications being reduced. Initially, the
defining lokcns arc fed into the machine via the input port. By virtue of the
communications logic in each processing element, they arrange themselves in ascending
order of tag value along thecircumferential line of Ihe spiral, each token occupying one
processor. The function applications arc then released into 1he machine to search for
their matching definitions. When an application token meets an appropriate definition
token, a match occurs, and Ihe latlcr's body is instantiated and made to replace the tag in
the former. If the head of the token is a combinator then the token can be reduced, which
may cause further tokens and applications to be produced. These in turn are routed to
their respective positions in the spiral. This treatment ol tokens continues until results
are generated, which are routed to ihe output port on the outer most circumference.
Tokens not referenced by others are automatically destroyed by the garbage collection
strategy.

3.1.2. Simulation and Performance Results

The simulation of the COBWEB has been implemented in lnterlisp on a Xerox I 108
workstation. It includes an event scheduling simulation model that supports the
scheduling of processes representing transactions of bolh 1he reduclion of lokcns and their
communication between neighbouring processing elements.

Two major changes were made to the abstract machine given in the above papers
[Karia 1087]. Firstly, preliminary results of the work of delecting parallelism
information and encoding i1 in SKI-slyle combinators [Hankin, Burn and Peyton Jones
1086] was included in the simulation. Early work on abslract interpretation concentrated
on slrictncss analysis, which was interpreted to say when the argument in a function
application could be evaluated in parallel with the application. By regarding combinators
as directors on application nixies [Dijkslra 1080], [Kennaway and Sleep 1086], this
information could be encoded as anotherdireclor, P. which is semanlically like I, but
which initiated a parallel process to evaluate the argument.

Secondly garbage collection was inhibited because at the time of 1he simulation we
had no suitable garbage collection algorithm for a distributed memory architecture. This
situation has been solved in [Bevan 1087]. As well, deleting tokens in the middle of the
contiguous chain of tokens merely increases the number of token hops, an overhead,

710

whose price obscures the simulated lime lor the execution of a program.

In the realisation of the abstract machine in the simulation a third change was made

in that square rather than hexagonal processors were used.

The simulation experiments were carried out on an "ideal" wafer, i.e. one without

dud processing elements in order to determine the maximum possible performance.

We will not go into the simulation results in delail, lor they are covered adequately

elsewhere, for example [Karia 1987], but brielly discuss some ol the lessons which we

have learnt 1 roni Ihe simulation.

One ol the principal results of the simulation of a multiprocessor is its speedup

factor, i.e. Ihe ralio between the lime taken to execute a program on a single processor to

that taken on the whole system. This is the scheme adopled by a number of researchers

investigating dataflow and reduction machines using simulation techniques, e.g. [Hudak

1085]. The move from a uniprocessor 1o a multiprocessor a l lows for parallelism at the

cost of overheads in communication, which degrade the ideal performance, viz an n fold

improvement (where n is the number of processors). For example a program that takes x

lime units to execute on a uniprocessor, would ideally lake — time units on two

processors but in practice would take rr + y. where y represents communication

overheads. There arc, of course, other factors thai increase y, such as how much

parallelism 1hc algorithm has, memory management within each node, e1c. bu1 1hese arc

not as readily measurable as communication time. For a distributed memory reduction

machine, communication time is dependent on the access latency, i.e. Ihe time 1aken by an

expression 1o access a subexpression whose value it needs. Consequently, simulation

experiments are done 1o investigate schemes on the architecture to minimize access

latency. As an example, one factor that influences access lalency is the locality of

reference in the program.

On COBWEB, the number of reductions done during program execution is merely a

fraclion of the number of hops. This implies that a fairly coarse grain of compulation is

required to balance communication overheads before benefiting from migrating work over

the spiral. For example, our experiment with plac 1 8(*). where plac is the parallel

laclorial function defined by

pjac x y = x if x — y
= X X y if y — x = 1
= (pjac x z) X (pfac (z + l) y) where z = (x + y)/2

showed thai 1he grain for that program had to be large enough to be at least 6 times

greater than ihe time for one hop. Hence, the need for a larger grain lhan SKI-combinators

711

is one of Ihe conclusions drawn from our simulalion.

Since communication overheads dominate' execution time, the machine's performance
largely depends on how efficiently tokens are managed. The experiments lhal have been
done wilh the simulator have been to identify what values ol the variable parameters of
COBWEB ensure efficient token management and minimal communication overheads.
Unfortunately, the experiments show that suitable values for these parameters depend
on Ihe si/e of the program being executed. Tor example, the required ratio between ALU
time and hop lime varies wilh program si/e and so does the number of free tags required
per cell 1o avoid lag reqtiesls. These, in addition to several other variable factors render
the machine's performance is quite unpredictable and hence, no consistent measure of the
speedup factor is obtainable. l:or this reason, the idea to run a suite ol programs on the
simulation was abandoned. Given the time taken to run a single experiment on the Xerox
I 108 (typically 1 1 and 30 hours for pjac 1 8 and pfac 1 16 respectively), it was decided
that the amount of useful information gained from trying a suite of programs would not
be sufficient to justify tarrying out such experiments. The results anticipated from such
runs is the same as those seen with pfac .

One of COBWEB's features that distinguishes it from other distributed memory
architectures is its unique addressing scheme. We have attempted to minimize access
latency by defining a suitable routing algorithm for a spiral configuration and by
providing an elemenl of locality in the distribution of free tags. A1 presenl, 1he routing
algorithm relies on the tags of tokens residing in each cell. The latter are constantly being
shuffled, and hence, lokens are being sent through a maze of varying addresses to a moving
destination. Also, the experiments have shown that radial lines are very poorly utilised.
Perhaps allocating absolute addresses to the cells on a wafer would overcome a lot of the
problems associated with routing lokens. Having absolute addresses would allow for a
packet switching scheme for the routing of lokens as is done in some recently proposed
point 1o p o i n t network multiprocessors, e.g. Cosmic cube [Seitz 1985]. It also overcomes
the need for free tags, since the address space would be directly mapped onto memory
locations or registers in cells. A third advantage of absolule addressing would be that
resident lokens would not need to be maintained in a contiguous chain, i.e. gaps in the
program are allowable. This does away with the need for pull lokens which arc created
to close the gaps in the spiral caused by the deletion of a token. A scheme for fault
tolerant reconfiguration and loken routing on a wafer with absolute address cells has been
proposed [Anderson el al 1987].

The use of a spiral configuration makes COBWEB, in the best case (i.e. when there are
no faulty cells) a two dimensional grid of processing elements. What is required of a

712

network in a reduction multiprocessor is to difl'use work rapidly to all processors as it is
generated, whilst maintaining localily of reference. The problem of locality of reference in
lunclional programs has so far remained unanswered. However, topologies lor
multiprocessor systems have been proposed that have the dilfusion property, e.g. doubly
Iwistcd lorus, hyperlree e1c. These have been experimented wilh by other researchers in
architectures lor functional programming. I;or example, [lludak 1984] shows how a
doubly twisted lorus dill'uses work belter than a complete interconnection of processors
when experimenting with a simple diffusion heuristic.

In spile of the delects identified ;n COBWEB, it has several good features that can be
well exploited in reduction architectures. Tor example, the use of variable si/ed tokens is a
unique feature of COBWEB'S abstract machine. The use of variable sized tokens
eliminates the need 1o traverse graphs composed of binary apply nodes as in other
proposed machines [Turner 1979], [Johnsson 1987], [Peyton-Jones, Clack and Salkild
1985]. Another favourable fcalure of COBWEB is the manner in which function
definitions are maintained. Since tokens constituting a definition are spread over a number
of processors, several tokens that are applications of a definition can concurrently traverse
it in a pipelined fashion. This overcomes the need to hold several copies of the definition
over the network of processors. Such a scheme is also employed in dataflow machines.
Finally, COBWEB has been a very useful vehicle for research, since it incorporates
numerous innovative approaches to reduction. Among the ideas generated from working
with COBWEB are the refinement of the abstract machine to perform graph reduction and
to evaluate programs in parallel (as opposed to normal order), the definition of a
distributed reference count garbage collection scheme [Bcvan 1987], and some ideas for
the definition of an alternative reduction architecture which is described in [Bevan et al
1987].

At present, a collaborative project funded by the Alvey Committee in the UK is
under way to investigate modifications 1o COBWEB'S architecture to overcome the
aforementioned problems in its original design [Anderson et al 1987].

3.2. Principles for the Design of a Distributed Memory Architecture.

COBWEB embodies many unique architectural features, and is very different to
shared memory architectures for graph reduclion. With this in mind, we decided to try
and find out what features were essential features which had to be included in a
distributed memory architecture for graph reduction [Bevan el al 1987].

There were two main conclusions. The firsl is that al the abstract machine level,
programs mus1 be represented as variable-sized tokens. Each token mus1 be a maximally

713

unsharaNr piece of the spine of Ihe graph. This means lhat one does not have to traverse
the spine over Ihe network and also that sharing is not compromised. Interestingly these
tokens correspond exadly to the tokens of COBWliB.

Secondly, the unit ol work is 1o reduce an expression to head normal form. Because
expressions are not allowed lo be copied until they are in head normal Conn, this is a
natural unit of compulation; the root token of the result does not need lo overwrite the
root token of the original expression until it is in head normal form.

These ideas are incorporated into an abstract distributed memory architecture which
supports our parallel reduction model in [Bcvan e1 al 1987].

4. Distributed Reference Counting Garbage Collection.

One of the major problems with implementing languages which require some sort of
automatic storage allocation is the recovery of storage when it is no longer needed. For an
architecture which has several processors and memories, the problem is compounded
because data structures may become spread over several memory modules. Reference
counling garbage collection is attractive because memory is freed as soon as an object is no
longer referenced, ralher than having to stop the machine to do some sort of mark scan
algorithm.

A major problem with reference counting garbage collection is lhat the natural way
to think of it working is that whenever a reference to an object is duplicated, then the
reference count of the object is incremented. Similarly, when a reference lo an object is
deleted, the reference counl is decremented. This is nol easily lifted to a distributed
architecture because there is the problem that a decrement message may reach an object
before an increment message, and so the object is delcicd before i1 should be. A solution
lo this problem is to introduce a complex protocol such as in [Lerman and Maurer 1986].

The key point of our algorithm is that it only requires decrement messages to be
sent, and so alleviates 1he need for complex protocols. Below we briefly outline the
algorithm which is discussed in detail in [Bevan 1987].

4.1. The Basic Algorithm.

We assume that our machine consists of a number of I'Ks and that on each PE there
are a number of objects. These objects may contain references to other objects (or indeed
themselves), possibly on other nodes. At any time a reference may be deleted or a new
objeel may be created and a reference to it crealed from an object already in existence.
Similarly, at any time, a reference may be copied from one object to another. We require

714

thai no object be deleted if il is referenced and that objects be deleted when they are no
longer referenced.

In order 1o achieve 1 his, we associate with each reference a positive weight and with
each object a reference count. The algorithm attempts to maintain the following
invariant.

The reference count of an object is equal to 1hc sum of the weights of 1he
references to i l .

This ensures that the reference count of an object is zero if and only if it is not

referenced by another object. An object can thus be deleted if its reference count is zero.

We consider the different possible operations on references separately.

When a new object is created with a reference from some ob jec t already in existence,

the new object may be given an arbitrary reference count and the reference to it a weight

equal to tha t reference count (sec Figure 4.1 - 1 (0) . This maintains the invariant.

RW-8

^_
B RC-8

RW-4

\C v'

RW-4

B I RC-8

(i) A new object B is created
with a reference from A.

(ii) The reference from A
to B is duplicated.

Figure 4.1-1

When a reference is duplicated, its weight is split between the two resulting

references in such a way that the sum of the weights of the resulting references is equal to

the original weighl of the inilial reference (see Figure 4 .1-KiO) . This maintains 1he

invariant wi thout needing 1o communicate with 1he o b j e c t referenced or to change its

reference count.

When a reference to an object is deleted, the reference count of the object needs to be

reduicd by the weight of the reference. To achieve this, a message, known as a decrement

reference count (DRC) message, is sent to the object. This message contains the weight of

DRC(4)
V

RW-4

715

RW-4

¥
B RC-8

\1/
B RC-4

The reference from A to B is deleted.

Figure 4.1-2
the deleled reference. When an object receives a DRC message, il decrements Ms reference
count by the weighl contained in the message (see Figure 4.1-2). Thus the invariant is
maintained.

When the reference count of an object reaches zero, the object may be deleted. In
order 1o do this all its references to other objects must first be deleled by sending DRC
messages to each object referenced.

The invariant given above now holds if there are no DRC messages in Iransit. The
following invariant holds all 1he lime.

The reference counl of an object is equal to the sum of the weights of the
references to it added 1o the sum of Ihe weights contained in DRC messages in
t rans i t to it.

4.2. Indirection O i l s

In order 1O cope with references with weight one, we make use of indirection cells.
An indirection cell is a small object consisting of a single reference of weight one. Since
1he weight of 1he reference in an indirection cell is always one, its value need no1 be
stored. When we wish to duplicate a reference with weight one we crealc an indirection
cell containing a copy of the reference to be duplicated and having a maximum reference
counl. This indirection cell can be created on the same node as Ihe object containing the
reference to be duplicated, so no communication is necessary. Nolc that the reference
counl of the referenced object does not need to be changed. The reference to be duplicated
is replaced with a reference 1o the indirection cell with maximum weight. This new
reference can 1hen be duplicated as normal (sec figure 4.2-1).

716

EX

y.

R W - 1

J_l

d
RW-8

^
I - C l RC-8

RW-1

RW-4 RW-4

RW-1

L"B_]

Duplication of a reference with weight one
using an indirection cell

Figure 4.2-1
4.3. Further Issues and Analysis of the Algorithm.

The paper [Bevan 1987] gives many more details and also shows how space
overheads can be decreased by coding the rcfencc information.

There are Iwo ways in by which the performance of the algorithm can be measured,
namely how many indirection cells an evaluator will have to go through in order to reach
Ihe objeel being referenced, and what Ihe space overheads of recording the reference
information are. Clearly the number of indirection cells is determined by how big the
reference counl and reference weight fields are. By taking into account the characteristics
of the execution of functional programs, it is shown in [Bevan 1987] that the overheads
are encouragingly small, typically between one and three bits per reference field for very
good performance.

5. Conclusions and Further Work.

Two major breakthroughs have been made in this part of the project, namely the
definition of a natural parallel reduction model and the discovery of a distributed
reference counting garbage collection algorithm which has low overheads.

Using experience gained in looking a1 various parallel architectures for parallel graph
reduction, and especially COBWEB, we have defined a distributed memory architecture
which supports our parallel reduction model [Bevan el al 1987]. An emulation of our
parallel reduction model could quite well be helpful in helping us understand how such a
machine will work, and we need to now simulate our architecture.

717

6. Acknowledgements.

Our work has nol proceeded in isolation, but has benefited greatly from many
discussions with various people. We would like to single out especially Chris Hankin and
Samson Abramsky of Imperial College London. Simon Peyton Jones of University College
London, Peter Osmon of The City University and Malcolm Shute of Middlesex
Polytechnic. The work on the distributed garbage collection algorithm would not have
been done if we had not been forced to look more carefully at memory management by
the Working Group on Architectures and Applications within ESPRIT project 415.

This work has been partially funded by l-SPRI'l Project 415 - Parallel Architectures
and Languages for A1P : A VLSI-Directed Approach.

7. References.

[Anderson et al 1987]

Anderson, P., Hankin, C , Kelly, P., Osmon, P., and Shute, M., COBWEB-2 :
Structured Specification of A Wafer-Scale Supercomputer, PARLE (Parallel
Architectures and Languages Europe), (Vol. 1), Eindhoven, The Netherlands, 15-19
June, 1987. Springer-Verlag LNCS 258, pp. 51-67.

[Aubusson and Catt 1978]

Aubusson. R.C., and Call, 1., Wafer Scale Integration - A Fault- Tolerant Procedure,
1 EM Journal of Solid State Circuits, Sc-13, 5. 1978.

[Bevan 1987]

Bevan, D.L., Distributed Garbage Collection Using Reference Counting, Best Paper
Award, PARLE. (Parallel Architectures and Languages Europe), (Vol. II), Eindhoven,
The Netherlands, 15-19 June, 1987, Springer-Verlag LNCS 259, pp. 176-187.
[Bevan el al 1987]

Bevan, D.I., Burn, G.L., Karia, R.J., and Robson, J.D., Design Principles of a
Distributed Memory Architecture for Parallel Graph Reduction, Submitted to : Draft
Manuscript, January, 1987.

[Burn 1987a]

Burn, G.L., Abstract Interpretation and the Parallel Evaluation of Functional
languages, PhD Thesis, Department of Computing, Imperial College of Science and
Technology, University of London, 1987.

[Burn 1987b]

718

Burn, (J.I.., Evaluation Transformers - A Model lor the Parallel Evalulion oF
I'unctional Languages (Extended Abstract), To be published at: Third International
Conference on I'unctional Programming languages and Computer Architecture.
Portland, Oregon, September 1987.

[Burn, Bankin and Abramsky 1086]

Burn, G.L., llankin. C.I.., and Abramsky, S.. Strictness Analysis lor Higher-Order
Functions, Science of Computer /'rogramming, 7. November 1986, pp.240-278.

[(lack and Peyton Jones 1986]

Clack, C., and Peyton Jones, S.L., The Four-Stroke Reduction Engine, /Proceedings of
the 1986 ACM Conference on Lisp and Functional Programming, Cambridge,
Massachusetts, 4-0 August, 1980, pp. 220-232.

[Dijkstra 1980]

Dijkstra. E.W., A Mild Variant of Combinatory l^gic. EWD7.35. 1980.

[l lankin. Burn and Peyton Jones, 1980]

llankin, C.L.. Burn, G.L., and Peyton Jones, S.L., A Sale Approach to Parallel
Combinator Reduction (Extended Abstract), Proceedings ESOP 86 (European
Symposium on Programming), Saarbrucken, Federal Republic of Germany, March
1980, Robinet, B., and Wilhelm, R. (eds.), Springer-Verlag LNCS 213. pp. 99-110.

[llankin. Burn and Peyton Jones, 1987]

llankin, C.L., Burn, G.L., and Peyton Jones, S.L., A Sale Approach to Parallel
Combinator Reduction, To be published in. Theoretical Computer Science.

[Hankin. Osmon and Shute 1985]

llankin. C.L., Osmon, P.E., and Shute, M.J., COBWEB: A Combinator Reduction
Architecture, in : Proceedings of IFIP International Conference on Functional
Rogramming languages and Computer Architecture. Nancy, France, 10-19
September, 1985, Jouannaud, J.-P. (ed.), Springer-Verlag LNCS 201. pp. 99-1 12.

[Iludak 1984]

lludak P. and Goldberg B., Experiments in Diffused Combinator Reduction, ACM
Symposium on Lisp and I'unctional Programming, Austin. Texas, USA, August 1984,
pp 107-170.

[Hudak 1985]

719

Hudak P. and Goldberg. B., Distributed Execution of Functional Programs using
Serial Combinators, IEFE Transactions- on Computers, Vol C-34 10, October 1985.

[Johnsson 1087]

Johnsson. T., Compiling Iazy Functional Languages. PhD Thesis, Department of
Computer Sciences, Chalmers University of Technology, 1987.

[Karia 1987]

Karia, R.J., An Investigation of Combinalor Reduction on Multiprocessor Architectures,
PhD Thesis, University of London, January 1987.

[Kennaway and Sleep 1986]

Kennaway, R., and Sleep, R., Director Strings as Cornbinalors, Universily of East

Anglia Technical Report, November 1986.

[Lerman and Maurer 1986]

I.erman, C.-W. and Maurer, D., A Protocol for Distributed Reference Counting,
Proceedings 1986 ACM Conference on Lisp and Functional Programming, Cambridge,
Massachusetts, August 4-6, 1986,

[My croft 1981]

Mycroft, A., Abstract Interpretation and Optimising Transforations for Applicative
Programs, PhD. Thesis, University of Edinburgh, 1981.

[Pcylon Jones 1987]

Peyton Jones, S.L., The Implementation of Functional Programming Languages,
Prentice-Hall International Series in Computer Science, 1987.

[Peyton Jones, Clack and Salkild 1985]

Peyton Jones, S.L., Clack, C. and Salkild, J., GRIP - A Parallel Graph Reduction
Machine, Depl of Computer Science, University College, London, November 1985.

[Seitz 1985]

Seitz, C.L., The Cosmic Cube, CACM 28, I, January 1985.

[Shute and Osmon 1985]

Shute, M.J., and Osmon. P.M., COBWEB - A reduction architecture. International
Workshop on Wafer-Scale Integration, 10-12 July, 1985. Southampton Universily,
United Kingdom.

[Turner 1979]

720

Turner, U.A., Another Alg,orithin l o r Mrackcl Abstraction, The Journal of Symbolic
lA\t>ic 44 2, June 1979, pp. 267-270.

['lurnc-r 1985]

Turner, I).A., Miranda: A non-stri t l functional language with polymorphic lypes,

functional /Yognimming Ixmguagcs and Computer Architecture. Seplember 1985,

Nancy, Jouannand. J. P.. (ed.). Springer-Vcrlag I.NCS 201 , pp. l-l(>.

I Wacller 1987]

Waaler, P.. Strictness Analysis on Non-i'lat Domains (hy Abstract Interpretation over

linile Domains), in Abramsky, S., ana l lankin, ('., (eels), Abstract Interpretation of

Declarative languages, I;llis l lorwood, 1987. (Originally ais tr ibuled on 1he FP

mailboard November, 1985.)

[Wadsworth 1971]

Waa.sworlh, ('.P., Semantics and Pragmatics of the Ixunbda Calculus (Chapter 4), PhD

Thesis, University of Oxford, 1971.

721

Project No. 415

S E T H E O
A SEquential THEOremprover for first order logic

Stephan Bayerl, Reinhold Letz

Forschungsgruppe Kunstliche Intelligenz
Institut fur Informatik
Augustenstrafie 46 / II

8000 Munchen 2

Tel.: +49-89-521098 / Telex: tumue d 05-22854
csnet: <name> % tumki.uucp © germany.csnet

KeywORDS

Automatic theorem proving, first order logic, preprocessing, Connection Method, Model
Elimination.

INTRODUCTION

The main goal of the Project 415 F is the design and implementation of a parallel
theorem prover for first order logic. As an intermediate result the sequential version of the
system has already been attained which is the topic of this paper. The system contains the
following characteristic features:

• the Connection Method as engine of deduction,

• strong modularisation of all parts to enable independent working and interchangeabil-

• a powerful preprocessing part to reduce the complexity of the input formula without
violating its validity status,

• a connection graph module which enables the system to work only on a restricted part
of the search space (reducing search effort),

722

• fanning out of clauses to facilitate entrance at any literal during the proof process,

• reordering of clauses to reduce the amount of backtracking,

• compilation of clauses into system functions and machine code which allows more com
pact code during generation of new clause copies.

• polynomial unification incorporating occurs-check to guarantee soundness of the proof
procedure (unlike almost all P R O L O G systems),

• completeness ensured by consecutively depth-bounded search (in contrast to all P R O
L O G systems),

• lemma generation to reduce the number of inference steps in proves with similar
subgoals.

The system is implemented in FRANZ LISP and C . All essential features will be dis
cussed in detail and advantages will be demonstrated with different examples.

PRELIMINARIES

We assume the reader to be familiar with the basic notions of predicate logic as they are
presented e.g. in [Bi82, Cha73, Ro79, Smu68]. We stick to standard terminology but let
us just emphasize our usage of a few essential concepts. S E T H E O accepts different logical
notations. By default the formulae are assumed to be in Skolemized normal form. If the
input formula is expressed in standard notation containing quantifiers and logical opera
tors it is first normalized by a linear and structure-preserving transformation. For details
consult [Ed85a]. Just by convention the decision is here to deal with the refutation of
formulae which is sufficient for reasons of duality. Hence in the sequel all formulae are
supposed to be written in conjunctive normal form.

Accordingly a formula - or matrix - is a set of dailies which are sets of literals.

A literal is a (negated) atomic formula, i.e. consists of a predicate symbol followed by
terms as arguments.

A literal occurrence in a matrix F is a pair (L,c) - abbreviated by Lc - where the literal
L occurs in the clause c.

A connection { L ^ K j } in a matrix F is a two-element set of literal occurrences with L« c
and K € d for clauses c, d in F, where L and K have same predicate symbols and dif
ferent signs.

A connection { L ^ K j } is weakly unifiable if there are substitutions a, T of terms for
variables such that a(L) - - , T (K) .

A resolvent R(C) with respect to a weakly unifiable connection C = {L c ,K d } is the union
of c(c) \{a(L)} and a variable-disjoint renaming of T (C) \ { T (K) } , where a and T are
most general substitutions induced by C (for details consult [Ro65]).

723

MODULARISATION

SETHEO is designed as a set of main modules.

• INPUT

• PREPROCESSING

• ADAPTATION

• MAIN PROOF MECHANISM

• O U T P U T

Each of these modules is devided into a set of smaller modules as displayed in the follow
ing graphic.

User Interface

Input

Preprocessing
Tautology Reduction

Restricted Unit Resolution

Subsumplian Redaction

Factorization Redaction

Parity Redaction

Tautology Connection Redaction

Isolated Connection Redaction

Proposition*! Satisfiability Test

Adaption
Connection Graph

Theorem Prover
Controller

Goal Stack

Rearrangement of Goal Stack

Use of Lemmata

Unification

Compilation

Fanning Oat of Clauses

Clause Reordering

Picture 1: System Design

724

The Input Module takes a first order formula written in one of the notations given above,
normalizes it, if necessary, and transforms it into an internal representation acceptable for
the preprocessing part.

The Pieproccuing Module includes complexity reductions as well as analysis of the prepo

sitional structure of the input formula.

For reasons of efficiency in the Adaptation Module the clauses the output of the prepro

cessing are fanned out, reordered and compiled into LISP functions.

The Main Proof Mechanism is a theorem prover for full first order logic based on a t ree

structured specialization of the Connection Method [Bi82], which is as well known as the
Model Elimination calculus [Lo78, Sti84]. The prover is a backtrackingdriven search
algorithm incorporating factorization. Completeness is guaranteed by limiting the number
of inferences (or the depth of the search tree) and by successively increasing this limit.

The interaction between the several submodules of the proof procedure may be visualized
with the help of a diagram:

Goal Stack

Extension

Buccal!

Goal Stack
Rearrangement

Reduction

' — — < ■ ;
' — — ■ "

Lemmata

Fail

Picture 2: Architecture of the Theorem Prover

Some of these submodules which are of greater interest for the understanding of the effi

cieny of the whole system will be discussed in separate sections (e.g. use of lemmata, con

nection graph, unification).

The Output Module gives the user information on the result of the proof as well as
optional information on the process itself, e.g. trace, valid parts of the given formula or
even the whole proof tree, which is shown as a twodimensional graphic displaying all
substitutions and connections between the respective literals.

725

PREPROCESSING

In the preprocessing part the complexity of the input formula is reduced with respect to
the search space induced by the proof procedure. The performed modifications comprise
reductions which preserve (un)satisfiability and in some cases even equivalence. Also the
propositional structure of the formula will be tested for satisfiability.

The preprocessing module consists of eight independent submodules.

Equivalence Preserving

• Tautology Reduction
• Restricted Unit Resolution
• Subsumption Reduction
• Factorization Reduction
(Un)sarisfiahility Preserving

• Purity Reduction
• Tautological Connection Reduction
• Isolated Connection Reduction
Satisfiability Test

• Prepositional-Satisfiability Test

The first four features are local processes, i.e. they may work correctly on any subclass of
the formula. For the other ones it is essential to consider the formula as a whole.

T A U T O L O G Y R E D U C T I O N

If a clause c of the input formula contains a literal together with its negation, c cannot
contribute to a proof of the formula. Hence it may be deleted.

R E S T R I C T E D U N I T R E S O L U T I O N

If there exists an unit clause c and a clause d, literals L e c and L' e d with complemen
tary predicate symbols and an unifier a for the arguments of L, L ' such that no substi
tuted variable of L ' is contained in other literals of d, then the clause d is replaced by
d \{L '} .

S U B S U M P T I O N R E D U C T I O N

According to the definition in [Ro65] we say that a clause c subsumes another clause d
iff there is a substitution a such that o(c)Cd.
All subsumed clauses of a formula can be canceled without changing the provability

726

properties of the formula. We have divided the process of removing subsumed clauses into
two parts. At first we determine for each clause c the set of clauses c - { c h c2 , . . . , cn }
with all predicate symbols of c occurring in P ^) l~l P(c2) l~l ... fl P(c n) where P (q) is
the set of predicate symbols of q .
This can be done easily with our representation of the input formula. Then we test sub-
sumption of c with respect to the elements of c. In general the result of a subsumption
test between two clauses is negative. Therefore we do not use backtracking but implicit
parallelism. Since the subsumption problem is NP-complete we employ in the case of
large clauses a time limit to stop exponential explosion as a rather simple heuristics.

F A C T O R I Z A T I O N R E D U C T I O N

If a clause c subsumes a proper subset d of itself c may be substituted by d.

P U R I T Y R E D U C T I O N

We call a literal L of a formula F pure in F , if there are no literals in other clauses of
F that are unifiable with L. Clauses containing pure literals do not contribute to any
refutation of a formula. Therefore they can be canceled out. By deleting some clauses
from a formula new pure literals may emerge and initiate repetitive applications of this
reduction process.
In checking a literal L for purity we are forced to find literals in other clauses that are
unifiable with L. In this process previous information about the unifiability of connected
literals is gained which can be used in the main proof procedure.

T A U T O L O G I C A L C O N N E C T I O N R E D U C T I O N

Let C = {L c ,Kj} be a connection inducing most general substitutions a, T for the clauses
c, d respectively. The connection C is called tautological iff either the resolvent R(C),
a(c) or T(d) are tautological clauses. In the Connection Method for any unsatisfiable
formula there is a refutation without ignoring inferences on tautological connections.

I S O L A T E D C O N N E C T I O N R E D U C T I O N

A literal L in a clause c of a matrix F is called isolated in F iff it is contained in just
one (unifiable) connection {L^.Kj} of F and c ^ d . Notice that in the case where c = d
the literal L would be a pure literal in F. It holds that any matrix F containing an iso
lated literal in a connection C - l L , . . ^ } is satisfiable iff (F \ (c})UR(C) is satisfiable.
Thus an isolated literal may be eliminated by simply performing a resolution step and tak
ing in the resolvent instead of the clause containing the isolated literal.
Obviously this procedure results in a proper reduction of complexity in case the partner of
the respective literal is the member of a unit clause or, if both partners in the connection
are isolated in which case we speak of an imlatfH connection [Bi87].

727

In any case an isolated literal can be specialized as induced by the respective connection.
This may affect other literals in the matrix to become isolated as well resulting in a snow
ball effect.

P R O P O S I T I O N A L - S A T I S F I A B I L I T Y T E S T

This procedure tests the propositional structure of the formula for satisfiability. To this
end we consider a formula where all terms of the initial formula are cancelled out. If the
modified matrix is satisfiable, then this is also true of the unreduced input formula. In
this case any further refutation attempt is useless.

Although all preprocessing modules are kept mutually independent, successful employment
of one reduction rule may give rise to new applications of other ones, i.e. the reductions
intensify each other. The investigation of powerful combinations and interactions between
these modules opens a separate field of research which is not under discussion here.

ADAPTATION

C O N N E C T I O N G R A P H

Inspired by the concept of weak iinifiratinn used in [Ed85b] an extended connection graph
is employed. Ordinarily a connection graph expresses all possible connections between the
literals occurring in a matrix neglecting unifiability of the respective literals. Hence in the
execution of the proof procedure there is no information whether a unification fails in
principle for two connected literals or because previous specializations are incompatible
with the current one. Being able to distinguish these two cases may result in considerable
reduction of the search space as is demonstrated with the formula

F , - { {^P(x), ^Q_(f(x))}, { P (a ,) } , {P(a 2)} {P(a„)} , {{*(&(*))}, {Q_(f(an))} }.
A PROLOG-style top—down interpreter needs 3n unifications until success, whereas dele
tion of Q_(g(ai)) from the possible alternatives for -,Q_(f(x)) reduces the number of unifi
cations to 2n.

F A N N I N G O U T

It is possible to view - similar to P R O L O G - any clause with more than one literal as a
rule. The literal at which a clause is entered plays the role of the momentary head and the
remainder (tail) makes up the current subgoals. Clauses with only one literal are the facts
and any clause could function as a request.

Instead of the complicated generation of subgoals depending on the current entry point
during run- t ime we use a LISP function yielding all subgoals for a chosen head literal.
This can be done by representing every clause with n literals by n new clauses with

728

different heads.

One advantage is the fast access of connected subgoals, another one the employment of
heuristics during compile time, e.g. clause reordering.

C L A U S E R E O R D E R I N G

An even more powerful method to reduce backtracking is supplied by the reordering of
clauses. Recalling the previous example F t the indispensability of such a feature is obvi
ous, as a reordering of -.P(x) and -.Q_(f(x)) decreases the amount of unifications from
3n to n+1.

In more detail we favour the following preference rules where the earlier ones are dom
inating the later ones:

• prefer subgoals with the smallest weight with respect to the matrix,

• prefer most specialized subgoals (e.g. ground literals),

• prefer subgoals that share most variables with the respective head.

The first preference rule says that subgoals with the smallest total value of connections
will be pushed to the front of the subgoal list. Each connection starting from a subgoal
gets a value depending on the number and the cardinality of the connected clauses. As a
very simple strategy we calculate the weight of a literal occurrence as the sum of the car
dinality of all connected clauses.

Example. The weight for the first subgoal in the rule r.
R(x) :- P(z), Q(z), ^S(z).

in a formula containing the other clauses
?- R(x).
P(z) :- T(a), ^S(z) , - .Q(z) .
P(z) :- M(x), Q_(f(a)).
P (z) : - R(z).
P(a) :- L(c), S(b), Q_(x).
P(a).
P(b).
P(fOO)-
P(f(b)).
P(%(a))).

Q (w) : - ^ S (w) .
-S(f (b)) .

number of (unifying facts) 5
number of (unifying rules) 4
number of (subgoals in all unifying rules) + 9

18

729

By this heuristic the tail of any rule will be reordered prefering subgoals with the smallest
weight. For instance the reordering of the rule r yields:

R(x) : - - .S(z), Q(a) , P(z).
A solution using the bold formulae together with the reordered rule needs only 5 instead
of 17 unifications. End of example.

The second preference rule says that the tail of a rule will be reordered according to the
degree of specialisation of its subgoals, i.e. a constant ranges over a variable.

With the third one we take advantage of the fact that subgoals having many variables in
common with the respective head are with a higher probability specialized than others as
they may be instantiated by previous inferences affecting the head.

Application of these two heuristics is demonstrated with the clause
^P(x,y) :- ^Q(z ,w) , R(a,b), R(z,w), R(w,a), - Q (y , x) , S(a), Sf(a).

where the second rule dominates the third one. Reordering yields as result the succession
^P(x,y) :- R(a,b), Sf(a), S(a), - .Q(y,x) , R(w,a), ^Q(z ,w) , R(z,w).

A similar approach may be found in [B181].

C L A U S E C O M P I L A T I O N

In general a proof procedure, if based on the Connection Method or on any other cal
culus, requires copying of variables. Using structure sharing in LISP, copying can be very
time consuming, as information about objects already created has to be gathered and con
sulted every time a variable, constant, or term is processed. During a compilation phase
in advance of the main proof process the information about structure sharing is gathered
only once and stored statically in the compiled code.

The advantages of this decision are numerous. The amount of garbage data produced can
be reduced substantially, since no sets of terms visited have to be dynamically created each
time a copy of a clause is made. Variables occurring only once in a clause need no over
head in the copy procedure. The resulting functions can be compiled into fast machine
code. Finally the concept may be transferred easily to programming languages without

730

T H E O R E M P R O V E R

M O D E L E L I M I N A T I O N

The procedure of finding a refutation in the Connection Method can be easily described
with a tree or tableau instead of a static display of the respective connections in a matrix.
Model Elimination is a specialization of the Connection Method based on this idea. It is
an analytic calculus based on semantic trees in the tradition of the tableaux calculus
[And81, Smu68].

Definition. A Model Elimination refutation or tableau T of a formula F is a pair (t,\i),
where t is a finite tree and \i is a function from the non-root nodes of t onto literals
satisfying the following conditions:

• for any equivalence class N of the brother relation on the non-root nodes of t - i.e.
for the set of nodes with the same immediate predecessor - the range of N under u
is an instance of a clause of F .

• any leaf L of t has a predecessor K such that (i(K) contradicts to n(L) - in this case
L and K are called complementary,

• any other non-root node has at least one complementary node among its immediate
successors. End of Definition.

It is useful to differentiate the single construction steps of such a tree starting from the
immediate successors of the root (the itait clause) into extension- and reduction-steps.
Extension step: take an open end 1 of the momentary tree and attach as immediate succes
sors of 1 a clause instance of the formula containing - . 1 , which is determined to be a leaf
of the final tree.
Reduction step: an open end of the momentary tree, which has a contradicting predecessor
is made a leaf of the final tree.

Consider the formula F 2 = {{^P(a) , P(b)} , {P(x), Q.(x)}, {-Q.(x), P(x)}} and a tableau
demonstrating the unsatisfiability of F j . A star indicates the complementarity of a path.

P(a) 4 Q(a) \ p(b)

- Q(a) / p (a) \ -, Q(b) / P(b)
* « « *

Picture 3: Tableau far F2 ={{-J»(a), P(b)}, {P(x), Q(x)}, {^Q(x), P(x)})

731

INFERENCING AND DATA STRUCTURE

Terms are internally represented as lists with constants and function symbols as LISP
atoms. Thereby we follow the LISP convention that a function symbol is pushed in and is
taken as the CAR of a list while its argument list makes up the CDR . Thus the term
f(a,g(b,c)) is represented as the construct (f a (g b c))).

The treatment of variables is somewhat special. They are not represented as LISP atoms
but as nameless CONS-cells, where identity of variables means that the respective pointers
address just the same cell. This is advisable for an efficient working with destructive pro
cedures such as the reorientation of pointers, which we use in unification. Consider the
following picture as an illustration of the term f(g(x,y),a,y), which is the LISP expression:
(f (g (nil) (nil)) a (nil)).

nil
T i

nil

nil

nil nil

Picture 4: Data Structure in Pointer Notation

With the decision to use such a type of structure sharing two instances of a clause are
totally equal in structure but different in addresses. The solution of the problem of gen
erating clause copies is now easily solved by defining a LISP function that constructs a
new instance of a clause any time it is needed. The clauses are accessed via the extended
connection graph, in which for every literal of the matrix the names of the clause func
tions with the possible partners as head literals are hold. In this implementation the predi
cate symbols of the literals are even replaced by the names of the respective clause func
tions. Performing an inference step means calling a clause function pushing its value
onto the stack in place of the goal in question. If unification with the head succeeds head
and goal are removed and in case there are further alternatives available for the goal a
backtrack point is established. Then the process is repeated with the first subgoal of the
entered clause which is now on top of the stack.

732

U N I F I C A T I O N

The unification algorithm is due to [Co83]. This is essentially the Robinson algorithm,
but by sharing the structure of terms of any size it is pushed down to quadratic complex
ity. In our implementation we do not use backward pointers to enable the reorientation of
pointers but reference cells, which are introduced with every single step in a unification.
It should be emphasized that no additional data structure is needed to support unification
- the main reason for choosing this algorithm.

To minimize the performing of an occurs-check within a unification the simple heuristic
is used that it may be omitted in extension steps into clauses where no variable occurs
more than once inside the head [Pla84].

D E P T H - B O U N D E D S E A R C H

Completeness is guaranteed by limiting alternatively

• the number of inferences

• the depth of the proof tree

and by increasing this limit successively.

In choosing the first completeness mode with each successful inference step the number of
available inferences is diminished by the cardinality of the entered clause. This mode is
very successful in case the resulting proof tree is not well-balanced in depth. Furthermore
this strategy guarantees that the proof tree with the smallest number of inferences will be
found. On the other hand it is not very reasonable to increase the number of inferences
only by one for each proof attempt.

Favouring the other alternative is strongly recommendable in a situation where a relatively
even solution tree is to be expected. Unfortunately with this approach the number of
inferences is difficult to control as it depends on the possible branching of the tree.

U S E O F L E M M A T A

The use of lemmata more or less corresponds to factorization in Resolution. It may reduce
the number of inferences considerably, if one and the same literal occurs multiply as
subgoal in the proof tree. In the case of Horn clause reasoning the incorporation of this
feature is relatively unproblematic for reasons of completeness of Input Resolution [Lo78]
which means in our terminology that no reduction steps are necessary. As a consequence
in Horn clause reasoning ordinarily only extension steps are performed. Hence a lemma
has the logical status of a unit clause and may be added to the list of facts of the respec
tive formula. For illustration consider the PROLOG program for Fibonacci numbers

733

fib(O.l).
f i b (l . l) .
f ib(N,F) : - N2 is N - 2 , N l is N - l ,

fib(N2,F2), f i b (N l ,F l) , F is F2+F1.
? - fib(n.F).

where n stands for any natural number . The program obviously induces proof trees with
an exponential number of nodes with respect to n. More precisely in the computation of
Fibonacci (n) we need

n
£ Fibonacci (n - i)
i -0

inferences involving fib-predicates. Thus e.g. for n = 9 the subgoal fib(2,F) has to be
solved 21 times in which case it makes sense to include fib(2,2) as an additional fact.
In the transition to full predicate logic the lemma feature may be generalized applying as
well to subgoal solutions containing reduction steps. But in this case lemmata do not have
the status of unit clauses in general. If the solution of a subgoal depends on reduction
steps using predecessors of this subgoal, the generated lemma is a rule with the respective
subgoal as head and the employed predecessors as subgoals. As the lemma feature is no
necessary condition to guarantee completeness we decided for the present implementation
to take into account only lemmata without reference to predecessors.

In any case the generation of lemmata during run- t ime is a very t ime-consuming process
and should be carefully restricted to exceptional cases only. Momentarily we apply this
feature only, if two literals in a clause have a common specialization.

P E R F O R M A N C E

In the current FRANZ LISP implementation the main proof procedure runs with
machine-coded clause functions appr. 2.7 K lips on a T A R G O N 35.

O U T L O O K

The system is designed to be generalized easily to a parallel theorem prover. Particularly
its modularity facilitates independency in execution. Additionally we aim on different
layers of parallelism

• competitive (i.e. pursuing different strategies),

• module extern (i.e. simultaneous performance of several modules),

• module intern (i.e. concurrent execution of module functions),

• function intern (e.g. in unification or subgoal selection).

These aspects will be integrated into the highly PARallel T H E O r e m prover P A R T H E O
which will be tested on different existing architectures to achieve the optimal hardware for
its execution.

734

ACKNOWLEDGEMENTS

We would like to thank Wolfgang Bibel for valuable comments and Norbert Trapp for
helpful discussions.
This work has been supported by the EC and by Nixdorf Computer AG within ESPRIT
project 415 "Parallel Architectures and Languages for A . I .P . " .

R E F E R E N C E S

[And81] Andrews, P .B. ; Theorem Proving via General Matings; J A C M Vol 28 Nr 2,
pp 193-214 (1981).

[Bay86] Bayerl, S. & Kurfess, F. & Letz, R. & Schumann, J . ; P R O T H E O / 2 :
Sequential PROLOG-l ike Theorem Prover based on the Connection Method;
ESPRIT 415F Deliverable D5 (1986).

[Bi82] Bibel, W. ; Automated Theorem Proving; Vieweg Braunschweig (1982).

[Bi83] Bibel, W. ; Matings in Matrices; C A C M 26, pp 844-852 (1983).

[Bi87] Bibel, W. & Letz, R. & Schumann, J . ; Bottom-up Enhancements of Deduc
tive Systems; Conference on Artificial Intelligence and Information-Control
Systems of Robots, North-Holland, Amsterdam (to appear 1987).

[B181] Blasius, K. & Eisinger, N . & Siekmann, J . & Smolka, G. & Herald, A. &
Walther, C ; The Markgraf Karl Refutation Procedure; Proceedings of the
7th I JCAI Vol 1, pp 511-518 (1981).

[Cha73] Chang, C . - L . & Lee, R . C . - T . ; Symbolic Logic and Mechanical Theorem
Proving; Orlando et al. (1973).

[Cor83] Corbin, J . & Bidoit, M. ; A Rehabilitation of Robinson's Unification Algo
rithm; Information Processing, North-Holland, Amsterdam (1983).

[Ed85a] Eder, E.; Properties of Substitutions and Unifications; JSC Vol 1 (1985).

[Ed85b] Eder, E.; An Implementation of a Theorem Prover Based on the Connection
method; Art. Intell. (W. Bibel, B. Petkoff, eds.); North-Holland, Amster
dam, pp 121-128 (1985).

[Lo78] Loveland, D.W.; Automated Theorem Proving: a Logical Basis; Nor th-
Holland, Amsterdam (1978).

[Pla84] Plaisted, D.A. ; The Occur-check Problem in Prolog; New Generation Com
puting, Vol 2 Nr 4, pp 309-322 (1984).

735

[Ro65] Robinson, J.A.;' A Machine Oriented Logic Based on the Resolution Princi
ple; JACM, Vol 12 Nr 1, pp 23-41 (1965).

[Ro79] Robinson, J.A.; Logic: Form and Function; North-Holland; New York

(1979).

[Smu68] Smullyan, R.M.; First Order Logic, Springer, Berlin (1968).

[Sti84] Stickel, M.E.; A Prolog Technology Theorem Prover; New Generation Com
puting, Vol 2 Nr 4, pp 371-383 (1984).

736

Project No. 415

MULTI-LEVEL SIMULATOR FOR VLSI
- an overview - *

P. Mehring and E. Aposporidis
AEG Aktiengesellschaft, Berlin Research Institute

Hollaenderstrasse 31-34, D-1000 Berlin 51

Abstract
Simulation is a key element in modern and future digital circuit
design. However, simulation becomes a bottleneck with increasing
design complexity. There are mainly two ways to get out of this
situation: reduction of the simulation load through multi-level
simulation and acceleration of the simulation through exploitation
of parallelism.
This paper deals with the development of a VLSI-Simulator which
combines both approaches to achieve optimal performance. It is an
informal overview of the work of AEG and its subcontractor
Technische Universitaet Berlin carried out within ESPRIT Project
415.

1. INTRODUCTION
Within the frame work of ESPRIT 415, Philips and AEG are investigating the
object-oriented approach in a joint venture. The object-oriented approach is
considered as a natural evolution from current programming styles.
AEG's task is to develop one of the three demonstrators for the machine,
namely a multi-level VLSI-simulator, together with its subcontractor
Technische Universitaet Berlin. The demonstrators are being developed in
parallel with the architecture for ensuring optimal design.
Powerful simulators are a key element in modern and future digital circuit
design environments. However, simulation becomes a bottleneck in the circuit
design with increasing design complexity.
There are mainly two ways to get out of this situation:

- Reduction of the simulation load through so-called multi-level simulation,
i.e. using different modelling levels within a circuit and not only a
basic level throughout, e.g. gate level or electrical level.

- Acceleration of the simulation through exploitation of parallelism on the
different modelling levels and simulator levels.

The multi-level VLSI-simulator combines both approaches to achieve optimal
performance.

* Research partially funded by ESPRIT Project 415: Parallel Architectures and
Languages for Advanced Information Processing - A VLSI-Directed Approach.

737

2. LEVELS OF ABSTRACTION' IN THE DESIGN PROCESS
VLSI-circuits are very complex systems and can not be designed in one single
step even with modern computer aided design techniques. There are four major
design steps as shown in Figure 1.

Design steps

system design

logic design

circuit design

Abstraction levels

System
Program

Register-transfer
Block-functional
Gate
Switch

electrical

physical

layout

Figure 1: Steps in the circuit design [2]
The design starts with a global specification which is formulated at the
highest possible level of abstraction and covers all system requirements. Then
the detailed structure of the system is derived by breaking down this
abstraction level step by step. In this process the designer tries to break
down the problem into a number of interconnected subproblems. This process is
repeated until solutions to all the subproblems are known or until well-known
procedures are available which can be applied to solve these subproblems
(top-down design).
At least eight levels of abstraction have become recognized (see Figure 1).
Each abstraction level has a related notation for describing the system (i.e.
the components, ways of combination and rules of behaviour).
In the following we focus on the logic design levels as these are the most
important levels for multi-level simulation.

738

3. PRINCIPLES OF DIGITAL-CIRCUIT SIMULATION
Simulation methods are characterized by the circuit model used and by the
procedures for model handling. Models may represent different levels of
abstraction corresponding to the levels in Figure 1. There is a large variety
of models. Each model is characterized by its modelling of signals and its
modelling of elements.
There are two types of simulation in logic design corresponding to different
phases of the design including production:
- logic simulation for checking the design for logic and timing errors
- fault simulation as an aid in testing the circuit for possible hardware
defects.

3.1 Simulation models
Modelling of signals

At the logic design levels (switch, gate, block-functional and register-
transfer) the analog signals are replaced by discrete approximations [5, 4].
As a first approximation the stationary (binary) values 0 and 1 are used. In
order to mimic the dynamic behaviour of the elements more closely, the signal
transitions must be introduced into the model. At least one additional value is
needed, e.g. U for the unknown state. The modelling of edge triggered elements,
however, requires the introduction of two additional values - R (Rise) for a
transition from 0 to 1 and F (Fall) for a transition from 1 to 0 (see Fig. 2).
Apart from these values, which serve to mimic the underlying analog signal,
additional values or states are required to model particular technology or
circuit specific characteristics. The following are commonly used:
- to model the high impedance condition of an element output (in general
this refers to gate elements used in connection with busses) the
additional value Z is used.

- to model MOS transistors as bidirectional switches at the "switch level"
strength classes are added. They specify the type of connection between
the voltage source and the node.

s

V

1 A"t
i ' i 1
1 / 1

f°; R

\w////y//A
1

\
\
F

S S S ^

t
0

plus: U, X, Z,
strength classes

Figure 2: Modelling of circuit signals for a stochastic signal transition
s=signal, v=variable

Normally, these additional values are only used in those parts of the circuit
where they apply (i.e. transmission gates, wired outputs and bus connections).

739

Modelling of elements

Modelling of circuit elements splits down into modelling of their logical
behaviour and of their timing behaviour.
As an example we focus on the gate level, the basic level for the logic design.
At this level the elements are gates, i.e. unidirectional basic elements with
boolean logical functions.
In order to simplify the modelling of elements, the logical function is
separated from the delay characteristics of the elements. Delays are
represented by a delay element (DELAY) which is placed in series with the logic
element (LOGIC) (Fig. 3).
The logic operation can be performed by an algorithm corresponding to the gate
type or by a truth table (table look up-technique). As an example, the truth
table of a NAND-gate for a tri-valued signal is shown in Figure 3.
The propagation delay of the circuit elements causes a delayed output reaction
to a change at the input.

input 1
input n

LOGIC DELAY output 1
0
u

1 0 u

0 1 u

1 1 1
U 1 u

-1 -2
Figure 3: Modelling of circuit elements

- 1 Model of a gate
- 2 Truth table of a NAND-gate for a tri-valued signal

3.2 Simulation execution control
There are three basic methods for the control of the execution of a simulation:
"compiled simulation", "event driven" (or "table driven") simulation and
"interpretive simulation".
The most important execution control method is the event-driven (or table-
driven) simulation. This method is applied in by far the greatest part of
available simulators for digital circuits.
With this method "element calculations" are triggered by "events", i.e. changes
of signal values. The "simulation time" is not incremented by fixed units of
time but jumps from one event instant to the next. Moreover, only those
elements are (re)-calculated which are immediately affected by an event, i.e.
those of which at least one input signal has changed (selective trace).
An "event list" listing all future events (input-events as well as evaluated
events) is used to keep track of the events.
The simulator fetches from the event list an event from the next time instant,
enters the new variable values into the corresponding list and determines via
the "connection list" those elements which are activated by this event. These
elements are then calculated in sequence and resulting new events are entered
into the event list (Fig. 4).

740

01

event

M

L

L»

u.

*

m

7

event list

A
1

t

»1

t+2

^

t+3

»2

. . .

■ •

t+m

J
3

delay

Figure 4: Principle of eventdriven simulation.
The event i, propagates to three circuit elements (with delay of
3, m and 2 units of time)
The evaluation of these elements at simulation time t results in
three new events (i~, i,, i.) to be processed at simulation time
t+3, t+m, t+2

3.3 Fault simulation
Fault simulation serves in checking the quality of test patterns developed for a
digital circuit. To this end the digital circuit is simulated assuming certain
defects with their binary effects being injected into the circuit model. The
results at the outputs are compared with the fault free case (good circuit).
The core of every fault simulation is, therefore, logic simulation for all fault
configurations. It is to be determined how many of the assumed defects are
detected and how many are not, and ultimately a "fault catalogue" is to be
produced containing the detected faults.
The simplest fault simulation method is single fault simulation, in which every
fault is simulated in a separate simulation run. This method is inefficient. A
much more powerful approach is the socalled concurrent method, in which the
whole set of faults is simulated concurrently. The basic idea here is to use
the simulation of the good circuit as a reference for the faulty circuits. The
faulty circuits execute explicitly only the changes to the reference behaviour;
the rest is "borrowed" from the reference simulation.
3.4 Multilevel Simulation
Traditionally the design and simulation of a circuit is carried out on just one
level, the gate level, using elementary logic operations such as AND, OR, etc..
However, simulation of VLSIcircuits at this level only is not efficient.
Because of reasons of time and cost multilevel methods have to be applied;
i.e. simulation is accomplished at different levels of detail for the various
parts of a circuit. This allows the cost of simulation to be considerably
lowered compared to gatelevel simulations.
With multilevel simulation a digital circuit is first of all partitioned into
subcircuits and the subcircuits are modelled on different abstraction levels.
These models are then translated or compiled into the corresponding simulator
lists.

741

4. EXPLOITATION OF PARALLELISM
The basic principle behind the organisation of parallel processing in the
simulation of digital circuits is partitioning with regard to structure and
time. There are three basic levels for the organisation of parallel processing
plus special techniques on hardware level.

. — +
I
+

+
! Level
+-

Case
Circuit
Algorithm + + __+

! Hardware ! Implementation parallelism !
+ ---+ --+

! Mechanisms
-+
! Partitioning of: fault set, stimuli set, variant set
I
! Circuit partitioning, macro-pipelining, asynchron. proces.! !
! Algorithm partitioning, task pipelining, event handling

4.1 Parallelism on the case level
On the case level, i.e. on the level of simulation jobs, there is a very
important possibility for parallel processing for all of the types of variant
simulation:

- the structure variants, such as with fault simulation and the simulation of
design variants,

- the stimulus variants, such as, for example, with the simulation of
instruction variants (e.g. addressing modes) of a processor.

The basis is that all the variants can be executed as single-case simulations
independently from each other; i.e. in parallel.
Figure 5 illustrates the principle of variant simulation in the case of fault
simulation. To this end the set of variants is divided into subsets which are
then processed as parallel jobs.

Controller

Circuit
model

Faults to be
simulated

A^ / \ \

Circuit
model setn

Exec. Proc. n

Figure 5: Principle of variant simulation in case of fault simulation

742

Because of cost reasons variant simulations have been done routinely only for
fault simulation because fault simulation is indispensable for the analysis.of
testability and the preparation of test patterns.
Consistent use of VLSI technology and the cost savings which arise from this
will also make the systematic testing of design variants economical.
4.2 Parallelism at the circuit level
At the circuit level, i.e. the level of individual circuit simulation, the
basis for parallel processing is partitioning of the circuit into subcircuits.
Modern design techniques (top down design) lend themselves automatically to a
hierarchical partitioning of circuits into functional units.
On the highest partitioning level a combinatorial type of linking of functional
units usually results. Such functional units can be treated independently from
each other, i.e. each can be ascribed a "virtual simulator".

c1rcu1t

subclrcult
--/

S*BO-
z v _

. . . virtual
simulators

Figure 6 : Circuit partitioning
Circuit partitioning ascribing subcircuits to virtual simulators allows the ex
ploitation, individually or in combination, of the following forms of parallel
processing:

- Parallel processing of synchronous and asynchronous subcircuits between
clock points,

- Macro-pipelining of the processing of subcircuits, and
- Asynchronous parallel processing of all subcircuits.

For asynchronous parallel processing of subcircuits there are two principally
different strategies :

- Conflict-free strategy according to the principle of the so-called
"delimited action" ("Worst case strategy") [8]

- Strategy with conflicts according to the principle of the so-called "time
warp" ("optimistic strategy") [6].

As shown in [9], the "time warp" principle is well suited for the object-
oriented machine. This principle is also providing the basis for current
experiments at the Cosmic Cube [11] within the framework of discrete
simulations [6, 12].

743

4.3 Parallel processing at the algorithm level
The algorithm level, i.e. the level of individual virtual simulation machines,
offers very important and distinct options for parallel processing. It is the
major level for exploitation of parallelism in today's "simulation machines".
In the following we concentrate on the event-driven algorithm.
Figure 7 illustrates the principle sequence of operations in the event-driven
algorithm and the inherent parallelism [1]. The "signals" are concurrently
propagated along the different paths (vertical lines).
Conceptually all the operations on the same horizontal level may be performed in
parallel. Note that different concurrent events may be propagated to the same
element which may lead to a multiple input change.

1 Advance Tine

Retrieve
Current Event

Update Configuration
of Source

Determine Fanout
t Update Configuration

of Fanout

| Evaluate |

| Schedule |

| insert In Event Llst|

-1 -2
Figure 7 : Concurrency in Logic Simulation (event-driven algorithm) [1]

- inherent parallelism
- principle sequence of operations

A very efficient and common approach is to map the sequence of operations onto a
circular pipeline with a central event list.
4.4 Parallel processing at the hardware level
At the hardware level there is a whole bunch of options for exploitation of
parallelism, e.g. through processor tailoring, parallel communication path, use
of parallel table look up techniques for the evaluation of elements, data
caching etc..
These are implementation details which heavily depend on the choice of methods
and machine architecture. Both points are still under study.

744

5. PRINCIPLE FEATURES OF THE SIMULATOR
The multi-level simulator covers the logic-design cycle, i.e. from register
transfer level to functional level, gate level down to switch level with
provisions for including the programming level and the electrical level and
support for hardware-in-the-loop simulations. We expect that the lower level
design cycles, namely the electrical and physical design cycle, will be largely
automated in the near future.
The architecture exploits the inherent parallelism by use of the following
principle techniques (Fig. 8):

a
circui t

subclrcult

algorithm |

s /
-£§-
/- V--V-r^

$&2;
—1

virtual
simulator

\
cp-cp- virtual
fc-w subslmulator

i rV.. rn vlrtual
I I I I I prnrp^snr

mapping

parallel machine
D O O M

Decentralized Object-Oriented Maschine [13]

Figure 8 : Exploitation of parallelism
- Case partitioning with multi-case simulations, i.e. simulation of structure
variants such as in fault simulation, design variants, stimuli variants.

- Functional circuit partitioning, i.e. partitioning of a whole circuit into
subcircuits (functional units). Processing of subcircuits will be as far as
possible asynchronous, e.g. using the so-called time-warp method.

- Algorithm partitioning primarily into pipelined tasks. How far multiple
pipelines or a totally parallel approach are possible is yet to be
determined.

The major question is how to match these techniques with the machine
architecture for an optimal trade-off between node architecture and
communication.

745

6. GOALS OF THE PROJECT
The fundamental goal in the development of the multi-level simulator is to gain
precise insight into the different aspects of parallel machines in a sensible
application, from architecture and programming to performance increase and cost
effectiveness.
More detailed goals are:

- drastic simulation performance increase by use of multi-level simulation
and massive parallel processing.
We strive for a speed-up by a factor of more than 100 in logic simulation
and a near linear speed-up in fault simulation on a 1000-node machine
through parallel processing techniques. Additional speed will come from an
advanced compute engine within the nodes by exploiting VLSI-technology.

- Significant improvement of cost effectiveness through the use of VLSI tech
nology for the simulation itself. The nodes will be of RISC-type.

- Substantial reduction of cost for software production and maintenance
through use of the object-oriented programming style.

- Extensibility of architecture (especially with regard to maximum design com
plexity as well as new simulation techniques, e.g. symbolic processing or
knowledge based components).

The goal is an open simulation architecture and a prototype implementation.

7. PRESENT STATUS AND RESULTS
The main activities and results in the first half of the project, are:

- Development of a simplified experimental simulator (SILKE) and measurements
with SILKE on a number of machines.

- First implementation of the experimental simulator in the parallel object-
oriented language POOL on the POOL-simulator (SODOM).

- Specification of SILKE in FP2.
- Study of the above mentioned fundamental techniques of exploiting
parallelism with prototype implementations [3].

7.1 Experimental Simulator
The experimental simulator is intended to serve as a vehicle for testing ideas,
mechanisms and machines. It was originally written in PASCAL and later on
rewritten in POOL, OCCAM and C. The basic version contains only the gate level;
the first multi-level version includes the register transfer level additionally.
The implementation of the switch level as well as parallel versions (see later
"circuit partitioning") are underway.
The SILKE performance was measured on a number of complex instruction set
machines (VAXes, 68020, 80286) and RISC-type machines (TRANSPUTER, Fairchild
CLIPPER). The results support our option for a RISC-type compute engine.

746

7.2 Implementations in TOOL
For checking the suitability of the object-oriented language (POOL-T) for
parallel logic simulation and the language constructs needed, three different
experimental approaches have been exercised:
- the Circular Pipeline as the "classical" approach for parallel processing
at the algorithm level. This approach is sijnilar to the pipeline in
[1], see Fig. 7; it uses a central event list.

- in the "natural" Gate/Object approach each gate was modelled by one object.
Objects communicate by sending event messages. An event is the tuple
(value, time stamp). Each input of a gate is modelled by a FIFO-queue
through which the time-ordered stream of event messages flows, i.e., each
gate has his own event list.
This approach is the most natural one for object-oriented simulation and
can be regarded as the extreme case of circuit partitioning, i.e., down to
the gate level.

- the Circuit Partitioning approach using Time Harp synchronization performs
parallel processing at the circuit level (see section 4.2, Fig. 6). This
approach (which uses distributed event lists) is novel.

All these approaches implement the specification of SILKE. The underlying basic
principles for simulation execution control are event-driven simulation with
selective trace.
First measurements have indicated granularity problems. For solving the problems
two different directions are performed: enhancements in the object-oriented lan
guage (P00L-2) and changes in the implementation of the simulator to achieve
coarser granularity.
A detailed description of the implementations and the discussion of the results
is given in [9].
7.3 Specification in FP2
In connection with work of the Working-Groups in the project, a formal specifi
cation of SILKE in FP2 [7] was done in collaboration with LIFIA, as reported in
[10]. The specification runs on the FP2-interpreter.
This specification serves as a basis for "benchmarking" the various programming
styles in project ESPRIT 415 (object-oriented, functional, logic, data-flow)
using SILKE as application example.
7.4 Exploitation of parallelism
In the field of exploiting parallelism (see section 4.) the following results
were achieved.
Case partitioning

We successfully implemented a method for dynamic distribution of a fault
simulation task in a network. The implementation is based on a state-of-the-
art fault simulator (DISIM fault simulator [4]), as shown in Fig. 9.
The main component of the "parallel fault simulator" is a SUPERVISOR which
controls all "servers" and schedules them appropriately.

747

Disk server

supervisor server

server

server

global network (HAN)

local network (UN)

Figure 9: Initial implementation of the parallel fault simulator
To give the SUPERVISOR dynamic control over the fault simulations running on
the servers, a special "fork on external request" was added to the DISIM fault
simulator. This external request is mapped onto an existing internal mechanism
in the fault simulator for splitting the actual fault set in case of memory
overflow.
The SUPERVISOR uses this mechanism for dynamically s p l i t t i n g the fault sets in
the servers - as shown in Figure 5 - so that a nearly optimal load balancing
of servers is achieved.
Simulation results for networks with up to 64 nodes using a VAX-based network
with four physical processors are shown in Figure 10. As expected, the speed up
is nearly linear with the number of processors, as long as the ratio between
fault simulation and good circuit simulation per node (w) is reasonable (in
the order of 10).
The speed-up degradation for smaller ratios is due to the increasing overhead
in good circuit simulation.
Circuit partitioning

We implemented a prototype for a distributed (object-oriented) version of SILKE,
in which the objects are subcircuits. Each subcircuit maintains a local clock
and has its own processor. All processors run independently. Synchronization
is by using a variant of Jefferson's "time-warp" algorithm [6].
This work is in an early stage. The version is used as a testbed for testing
the "time warp" method in combination with circuit partitioning.
Algorithm partitioning

We have designed a 3-stage pipeline for the algorithm level compute engine. The
design is based on Fairchild CLIPPER, an advanced RISC-type processor. The
pipeline 1s implemented using the novel cache features of CLIPPER.
This engine serves as the basis for a dedicated-simulation-accelerator and for
detailed pipeline design studies.

748

30 -

2 5 -

n 2 0 -
=3

0)

B l 5 -

10 J

5 -

0 -

/

/
/

/
/

/ >
/ /

/ x
/ y V^^^

i

/
/ /

/
/

i

" H = 121

H = 61

H = 11

32

17,6

10,7

16 32 nodes 61

circuit faults
o 500
» 1212
a 3<470

fault slm.
on single node

1.2 h
5.2 h
27.3 h

good circuit
slm.

0.085 h
0.085 h
0.22 h

fault sim. time
s good circuit sim. time

n = w /n (n = number of nodes)

(on single node)

Figure 10: Performance measurements on the parallel fault simulator

References
[1] Abramovici, H.

Levendel, Y.H.
Menon, P.R.

[2] Albert, I .
Mueller-Schloer, C.
Schwaertzel, H.

[3] Aposporidis, E.
Daue, T.
Mehring, P.

[4] Aposporidis, E.
Jud, W.

A Logic Simulation Machine;
IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, 2 (1983), pp. 82-94
CAD-Systeme fuer die industrielle Rechner-
entwicklung;
Informatik-Spektrum (1986)9, pp. 14-28
Structure of a multi-level simulator
exploiting maximal concurrency,
ESPRIT 415, Doc. No. AEG 008-86, April 1986
Logik- und Fehlersimulation kundenspezifischer
Schaltungen;
10. Intern. Kongress Mikroelektronik,
Muenchen, 9.-11. Nov. 1982, pp. 414-423

749

[5] Blunder!, D.F.
Boyce, A.H.
Taylor, G.

[6] Jefferson, D.
Sowizral, H.

[7] Jorrand, P.

[8] Leinwand, S.M.

[9] Lohnert, F.

[10] Schaefer, P.
Schnoebelen, Ph.

[11] Seitz, C.L.

[12] Unger, B.
Lomow, G.
Andrews, K.

[13] Odijk, E.

Logic Simulation - Part 1;
The Marconi Review, Vol. XL, No. 206,
Third Quarter 1977, pp. 157-171
Fast concurrent simulation using the time
warp mechanism;
SCS Multiconference, San Diego, Jan. 85,
Part: Distributed Simulation, p. 63-69
Term Rewriting as a Basis for the Design of a
Functional and Parallel Programming Language;
A case study: the Language FP2;
in Fundamentals of Artificial Intelligence,
LNCS 232, 1986
Process oriented Logic Simulation;
IEEE, 18th Design Automation Conference,
Paper 25.1, 1981, pp. 511-517
Necessary Language Constructs for the Object-
oriented Language with Respect to Logic
Simulation:
ESPRIT 415, Doc. No. AEG 001-87, Febr. 1987
Specification of a pipelined event driven
simulator using FP2;
PARLE-Parallel Architectures and Languages Europe,
Vol. 1: Parallel Architectures. Eindhoven,
June 15 - 19, 1987, pp. 311 - 328
Concurrent VLSI Architectures;
IEEE Transactions on Computers, Vol. c-33,
No. 12, (December) 1984, pp. 1247-1265
A process oriented distributed simulation package;
SCS Multiconference; Part: Distributed Simulation,
January 1985, San Diego, S. 76-81
The DOOM system and its applications;
PARLE-Parallel Architectures and Languages Europe,
Vol. 1: Parallel Architectures. Eindhoven,
June 15 - 19, 1987, pp. 461 - 479

750

P r o j e c t No. 415

AN OVERVIEW OF DDC: DELTA DRIVEN COMPUTER.
R. Gonzalez-Rubio, J. Rohmer, A. Bradier.

BULL SA CENTRE DE RECHERCHE
DSG/CRG/DMIA - PC 58 A 13

B.P. N° 3
68, Route de Versailles

78430 Louveciennes. France.

ABSTRACT

In this paper we present an overview of the DDC "Delta Driven
Computer" and the state of this research project at the end of 1986.

DDC is a parallel inference computer, composed by a set of PCM
(Processor, Communication Device, Memory) nodes interconnected. It is
currently under design at BULL Research Center*.

From a conceptual point of view, DDC executes a language based on
production rales, called VIM Virtual Inference Machine. This execution is
made following the forward chaining strategy. Given a set of rules and a
set of initial facts, the only mode of operation of the machine is the
saturation (all conclusions are found).

VIM is an intermediate language; so, part of the project is the study of how
to translate from a high level language to this intermediate language. The
high level languages which we are thinking about are declarative ones (i.e.
Logic Programming or Functional Programming).

The execution of VIM is possible by the DDEM Delta Driven Execution
ModeLThe parallelism in the machine is achieved by distributing the facts
among PCM nodes and by firing rales independently in each processor.

One goal of this project is to have a first prototype (including both
hardware and software) at the end of 1987, so we try to prove that the
parallelism handled by the model/machine has a valuable rate
cost/performance.

Note: This work is partially supported by ESPRIT Project 415.

1 INTRODUCTION.

We present here the general ideas of DDC "Delta Driven Computer" and the state of
this research project at the end of 1986.

751

DDC is a parallel inference multiprocessor computer, currently under design at
BULL Research Center, early papers are just describing just part of our ideas [Gon
85], [Gon 86].

The architecture of DDC can be viewed as a multiprocessor system composed by a
set of PCM (Processor, Communication device, Memory) nodes interconnected, in
which there is no need to have a shared memory. •

From a conceptual point of view, DDC executes a language based on production
rules, called VIM (Virtual Inference Machine). This execution is made following the
forward chaining strategy. Given a set of rules and a set of initial facts, the only
mode of operation of the machine is the saturation (all conclusions are found).

VIM is an intermediate language; so, in the project, we study how to translate from a
high level language to this intermediate language. The high level languages which we
are thinking about are declarative ones (i.e. Logic Programming or Functional
Programming).

The execution of VIM is possible with the DDEM (Delta Driven Execution Model).
In this model the execution is driven by the facts deduced by the rules. We call these
"new" facts the Delta.The parallel architecture we propose can support the DDEM.

The parallelism of the machine is achieved by distributing the facts among PCM
nodes and by firing rules independently in each processor.

The implementation of DDEM is based on relational operations, so VIM rules are
transformed into a program in DDCL (Delta Driven Computer Language).

One goal of this project is to have a running prototype (including both hardware and
software) at the end of 1987. We had to take some decisions, and we made some
restrictions to implement this prototype, but the ideas included it must prove that the
parallelism handled by the model/machine has an interesting cost/performance rate.

In section 2 we give a general overview of the project DDC, the motivations for its
architecture, and the key ideas concerning the different levels of languages . Section
3 presents the architecture and the DDEM mapped into it. Section 4 gives the
current ideas of the first implementation. Section 5 gives some conclusions and an
open for the future work.

2 A GENERAL OVERVIEW OF DDC.

2.1 MOTIVATIONS.

The basic motivations of the DDC project have been to design an efficient computer
dedicated mainly to symbolic computation, to build "large" Artificial Intelligence
(AI) applications.

752

Let us start by analyzing the situation in eighties. In one hand, the needs for high
efficiency in AI are clear. It is commonly thought that they are from 100 Mlips to 1
Glips(see [Mot 84]).

But to reach such performances only with technological progress offered by Ultra
Large Scale Integration is not possible. This is due to the von Neumann architecture
model which is characterized by its sequential operations. Effectively, we know that
the execution time of the instruction of a machine is bound by the propagation time
of signals. Then predictions are that a processor's clock period cannot be smaller
than 1 ns. Hence, the maximum performances are under the order of the Giga
instructions per second [Lun 85]. Thus the only issue is to design parallel
architectures.

On another hand, the requirement of AI machines is to maintain software costs as
low as possible. This could be feasible by using a simple high level language where
parallelism is hidden for the programmer.

Consequently, a prerequisite to the design of a specialized AI parallel architecture is
an execution model well adapted to handle parallelism and symbolic processing.

Another prerequisite is that the architecture must not be dedicated to one particular
language. Instead, it is enough opened to accommodate a variety of programming
declarative styles, including:

- relational + deduction
- logic
- functional.

Typical applications for this architecture stem from relational databases, deductive
databases, expert systems, simulation systems, etc..

2.2 AN INTERMEDIATE LANGUAGE APPROACH.

The language levels in DDC are:

- a high level language, which is issued of logic programming or
functional programming. Currently we just work in the logic
programming side.

- an intermediate language, which is the key of our approach. This
language is based on production rules with a forward chaining
(saturation) strategy. We call this language VIM.

- to execute the saturation the DDEM is provided. This model can be
parallelized, as explained later. In fact a VIM program is translated into
a program DDCL (Delta Driven Computer Language). DDC machine
language is DDCL, and a program is executed following the DDEM.

753

The translation from a logic programming language into a VIM program is done
following an algorithm called the Alexander Method, proposed by J. Rohmer [Roh
85].

In fact we define these three levels of language to get a better understanding of how
the system works.

In the next sub-sections we describe the VIM language, to present how a computation
takes place. Then, we examine the Alexander Method to show how a logic program
is translated into a VIM program. We also present the DDEM, DDCL and the
architecture of the machine.

We want to underline that what we present in the next sections are just the basic ideas
of how to implement DDC, and at the end we consider how the machine can be used.

2.2.1 Virtual Inference Machine VIM.

The design of VIM is based on our background experience on production systems.
[Pug 85]).

Basically, this language is composed of production rules [Pug 86], i.e. rules of the
form:

h i => c i , c p
h i , h 2 => c i , c p

Where the Hi and c j are predicates of the form:

p (* i , , xn)

Where x± is either an atom (constant) or a variable.

This means that functions (or trees) are not visible at this level.

We impose that variables in the conclusions must appear also in the hypotheses.

We can remark that the restrictions that we imposed to VIM are the same than these
of Datalog (Logic database).

This means that if initially there exists a set of facts composed by constants, all the
generated facts will also be composed by constants.

For implementation reasons we impose a maximum of 2 hypotheses in rules.

The only mode of operation of the machine is the saturation: Given a set of clauses
and a set of initial facts "Find all possible conclusions".

The computation model is based on the notion of saturation of a rule-set by a set of

754

facts. This notion corresponds to the generation of the semantic model associated to
the logic program made of clauses . This model is indeed the Least Fixed Point of the
set of clauses (rules and facts are just clauses in First Order Logic).

Example.

Consider the following rules:

father(X,Y) => ancestor(X,Y)
ancestor(X,Y),ancestor(Y, Z) => ancestor(X,Z)

Consider the set of initial facts:

father(1,2)
father(2,3)
father(3,4)

When a saturation takes place, all the ancestors are deduced.

ancestor(1,2) ancestor(1,3)
ancestor(2,3) ancestor(2,4)
ancestor (3,4) ancestor(1,4)

The saturation stops when no more facts can be deduced. The termination of the
saturation process was proved by J.M. Kerisit [Ker 86] in a Datalog framework.

The saturation process in the case of commutative rules can be executed in
parallel.This means that the rules can be fired at the same time, as data are available.

We can describe the DDEM in an informal way at the VIM level. When a rule is
applied, then eventually a fact or a set of facts is deduced, in our terminology a BA
(read Black Delta). Only those facts which are not contained in the database are
considered as new ones or in our terminology as a wA (read White Delta), and this wA
is inserted in the database, then the rules can be tried again using just the wA as
trigger.

Example:

Consider the set of facts and rules of the previous exemple:

We consider that the initial facts are wA:

The following facts can be deduced when the first rule is applied:

ancestor(1,2) ancestor(2,3)
ancestor(3,4)

As they do not already exist, they are thus inserted into the database, and then they
are considered as a wA.

Now the following facts can be deduced from the facts in the database and the wA are:

755

ancestor(1,3)' ancestor(2,4)
ancestor(3,1)

etc.

Until any more A is produced.

The rules have been triggered in parallel.

In some way VIM can be considered as a sub-set of Prolog, the Datalog part of
Prolog, although the execution of VIM is different with respect to Prolog, but one
big advantage is that VIM is really declarative. To illustrate this point consider this
example.

The following set of clauses in Prolog loops

father(louis,jean).
ancestor(X,Y) :- father(X,Y).
ancestor(X,Z) :- ancestor(X,Y),ancestor(Y,Z).

with the query:

ancestor(X,Y)?

but if it executed in saturation with VIM rules it will stop.

2.2.2 The Alexander Method.

Forward chaining as in VIM exhibits an interesting property of simplicity. But
forward chaining has the drawback of computing all possible solutions to all
possible predicates included in the set of rules. For instance, if we want to know the
ancestors of Jean, it is useless to start by computing all the ancestors of everybody
(by saturating the database) and to select afterward just the ancestors of Jean.

The Alexander Method is an algorithm to tranform a set of VIM rules (to be
executed in forward chaining) and a query (to be executed in backward chaining),
into a new set of rules to be executed in forward chaining, that compute just the
desired solutions. In some way, the Alexander Method permits to simulate backward
chaining into forward chaining.

In an informal way the Alexander Method cuts a recursive goal in:

- one problem
- one or several solutions.

For instance, the goal (as the literal) ancestor (w, jean) is cut in:

- a new literal: probiem_ancestor (jean) which can be interpreted as
"The problem of finding the ancestor of Jean exists"

756

- literals like' s o l u t i o n _ a n c e s t o r (l o u i s , j e an) which can be
interpreted as "Louis is a solution to the problem
problem_ancestor(jean) ".

To go from backward chaining to forward chaining, we need rules which handle
problem_ancestor and solut ion_ancestor literals.

For instance:

problem_ancestor(X),q => r

can be read as "if there is the problem of finding the ancestors of x, and q is true,
then... "

and a => solution_ancestor(W,X)

can be read as "if a is true then w is a solution".

With these intuitive ideas in mind, let us process an example step by step:

Let's have as goal ancestor (w, jean) and the rules:

Rl: father(Y,X) => ancestor(Y,X)

R2: father(Z,Y),ancestor(Y,X) => ancestor(Z,X)

Rl gives:

Rl.l: problem_ancestor(X),father(Y,X) => solution_ancestor(Y,X)
"if there is the problem of finding the ancestors of x, and if Y is the father of x,
then a solution is Y"
R2 gives:

R2.1: problem_ancestor(X),father(Z,Y),ancestor(Y,X) =>
solution_ancestor(Z,X)

"if there is the problem of finding the ancestors of x, and if z is the father of Y, and if
Y is an ancestor of x, then a solution is z"

But this rule contains itself the goal ances tor (Y,X) , thus it must itself be
transformed. This goal will itself be cut into two pieces, yielding two new rules R2.2
and R 2.3.

R2.2: problem_ancestor(X),father(Z,Y) => problem_ancestor(Y)

"if there is the problem of finding the ancestor of x, and if z is the father of Y, then
there exists the problem of finding the ancestor of Y, because Y is an ancestor of
x."

757

This rule generates a new probiem_ancestor, which, through rule Rl.l for
instance, will generate news soiution_ancestor.

R2.3: solution_ancestor(Y,X) => solution_ancestor(Z,X)

"the solution to the Y problem are also solutions to the x problem".

In fact, rule R2.3 does not respect a restriction of VIM (predefined variables), since
z appears in conclusion and not in hypotheses. Thus, it is necessary to transmit the
information z between rules R2.2 and R2.3. For that purpose, we create a new
predicate named continuation.

The final version of R2.2 and R2.3 is now:

R2.2': problem_ancestor (X) , fa ther (Z, Y) =>
problem_ancestor(Y),continuation(Y,Z)

R2.3': so lu t ion_ances tor (Y,X) , cont inuat ion (Y, Z)=>
solution_ancestor(Z,X)

The detailed algorithm of the Alexander Method was presented in [Roh 86].

2.2.3 Delta Driven Execution Model DDEM.

The DDEM is an algorithm to execute the saturation upon a logic database.

Considering a rule Ri containing the predicate r in the conclusion. Each time that a
set of facts are deduced from the execution of the rule Ri, we call them a BA. This BA
is compared with facts that already exist. If a fact exists, nothing happens. If it does
not, then it is considered as a WA. Then this wA is inserted into the data base, and it is
used to eventually fire rules with predicate r in hypotheses.

A VIM rule as

p , q => r

is transformed into:

WAp,qc *=> BAri
WAq,pc «=> BAr2

where qc and p c are the current representation of q and p in the database
the BAr is:

BAr <- BAri Union BAr2

where <- is the assignation and union is a set operation.

To eliminate the duplicates we consider that r c means the current representation of r
in the database

758

WAr <- BAr - r c

where "-" is a set operation.

The insertion of wΔr into r c is represented by:

r c <- r c Union WAr

this wAr can be tried in rules of the form:

WΔr,s => t

when any more wA is produced the logic database is saturated, and the work is
finished.
Let us apply this algorithm to an exemple.

Consider the following rules:

father(X,Y) => ancestor(X,Y)
father(X,Y),ancestor(Y, Z) => ancestor(X,Z)

Consider the initial facts:

f a t h e r (l , 2) fa ther(2 ,3) fa ther (3 ,4)

So the rules are transformed into:

R1
R2
R3

WAfather(X,Y) => BAancestor.o(X,Y)
WΔfather(X,Y),ancestorc(Y,Z) => BAancestor.i(X,Z)
fatherc(X,Y),WΔancestor(Y,Z) => BAancestor.2(X,Z)

then the saturation is executed as follows:

I n i t :
ances to r c <- empty

all initial facts are put in fatherc
f a t h e r c <- f a t h e r (1 , 2) , f a t h e r (2 , 3) , f a t h e r (3 , 4)

also all initial facts are considered as wA
WAfather <- f a t h e r (1 , 2) , f a t h e r (2 , 3) , f a t h e r (3 , 4)

Label 1:
Apply WA t o ru les Rl, R2, R3
BAancestor <- BAancestor.0

Union BAancestor.1
Union BAancestor.2

WAancestor <- BAancestor - ances to r c
ances to r c <- ances tor c Union WAancestor
i f (WAancestor i s not empty) goto Label 1

Another way to represent what happens when saturation takes place is with an
execution graph.

We can differentiate two types of process:

759

- application of rules.
- elimination of duplicates.

We can represent as a square block the application of a rule, and as a round block the
elimination. See figure 2.1. In the figure a square block produces a BAr, and a round
block produces a wAr. As many rules can produce conclusions on predicate r, all the
outputs BAr go to the round block where elimination of r facts takes place.

Inference Process

WAr WAp,qc=>BAr

WA<
WAq,pc=>BAr

Elimination Process

WAr U n i o n r e = > r c
BAr

The DDEM process.
« « F i g u r e 2 . 1 » »

The elimination process "transforms" a BA into a wA if the BA is not in the database.

Figure 2.2 shows the execution of a saturation in the form of a graph. Arrows
represent the A productions. We can see that execution is driven for the A. We know
that as far as wA are produced, the execution goes on but when there is no more wA
produced, saturation stops.

To represent what is happening in the elimination process, we define two operations;
at this level they can be represented as rules. The first is the elimination:

BAr - r c => WAr

The second is the insertion of the wA into the database:

WAr U n i o n r c => r c

BAr is the BA on r, r c contains the facts on predicate r, wAr is the wA on r.

This two rules are not VIM rules, they are needed for the DDEM.Their semantic is
then different from VIM rules.

We can remark that a BA arrives at any time the operation BA <- BA.I union BA.2

760

becomes implicit and it is unnecessary to add the suffix to distinguish BAS.

One advantage of this model is that it is asynchronous, in the case of monotonic and
commutative rules. This means that the order of A arrivals does not modify the final
result.

Rules
R l : W A p (X , Y) , q (Y , Z) = > B A p (X , Z) , BAq(X,X)
R l ' : p (X , Y) , W A q (Y , Z) = > B A p (X , Z) , BAq(X,X)
R 2 : WAq(X,Y) , p (Y , Z) = > B A q (X , Z) , BAp(Z ,Z)
R 2 ' : q (X , Y) , W A p (Y , Z) = > B A q (X , Z) , BAp(Z ,Z)

BAp

WAp
rBAp

o f p

R l '

I

^

(^ n BAq

/*E of q>

BAp

[%BAp

/ ^ A q

R2
I

BAq

R2'
I

WAq

DDEM Graphe.

««Figure 2 . 2 » »

2.2.4 Delta Driven Computer Language DDCL

To fill the gap between VIM code and machine language of each node we define
another language called DDCL. The primitives of the language are mainly relational
operations.

Some examples of rules:

p (X , ' j e a n ') => q(X)

can be implemented as a selection in the relation p.

p (X , Y) , q (Y , Z) => r (X , Z)

761

can be implemented as a join beween relations p and q.

In section 3 we specify the reasons of this choice, and we present the execution of the
primitives.

This transformation of rules VIM into relational operation is consistent with the
defined properties of DDEM.

So we can consider that at DDCL level instead of predicates and facts the machine
handles relations and tuples.

3 THE ARCHITECTURE AND DDEM.

3.1 THE ARCHITECTURE OF DDC.

DDC consists in a set of nodes linked by an interconnection system without shared
memory.

All nodes are identical, a P-C-M triple: Processor, Communication device and
Memory.

The Processor has two parts:

- a general purpose microprocessor: Motorola 68020
- a special purpose custom VLSI chip called |iSyC.

H-SyC chip acts as a coprocessor of the 68020. This means that when a coprocessor
code is detected by the 68020, it "calls" the coprocessor to execute a coprocessor
instruction. Each instruction of the coprocessor is a complete relational operation,
the whole algorithm is microprogrammed.

The Memory can be divided into three parts :

- fast static RAM on the CPU board - but not cache
- boards with large capacity
- a secondary storage.

The Communication Module.

This module is responsible for receiving and sending messages from and to the
interconnection network.

Figure 3.1 shows the DDC architecture.

762

HOST

c INTERCONNECTION

JTJ~ I
)

o o

PCMO PCM1 PCMn

DDC Architecture.
« « F i g u r e 3 . 1 » »

3.2 DDEM INTO DDC.

The mapping strategy of DDEM into the DDC architecture is statically determined.
We try to balance the load in the machine, keeping the communications as low as
possible.

Here we detail how DDEM is mapped into DDC architecture without care about the
initialization phase. So at a given time of a saturation we can consider that:

- facts are distributed along the pcm nodes
- all rules of DDEM level are copied on each node.

To be more precise:

- relations are distributed along the pcm nodes. According to a hash
function h determined at compile time
- the DDCL code which "makes" the application of rules is copied on
each node
- the code of the hash function, which serve to distribute relations is
copied on each node.

As show on figure 3.2.

In P.l and P.2 are the same facts, but P.l and P.2 are distributed in different ways.

763

pern 1

P.2 f na hh
Q.I 1 hh.rr

00
©

pem 2

P.lf aa.bb 1

R.ir aa.rr 1

00
©

pem 3

q . l f rr,rirt

00
©

o o o o

pem n

00
©

<?
* " « '■"' ™*

^ >
Interconnection DDEM mapping Into T)DC.

« « F i g u r e 3 . 2 » »

A relation is distributed according to an hash code function applied to the value of
one of their attributes. Relations can be "duplicated" in case of uses upon different
attributes in rules.

In the case of "duplicate" relations they are distinguished by adding a suffix to the
name of the relation.

The advantage of this mapping is that: the data go where they will be used, the
locality is ensured by the hash function statically defined.

This is a commented example of a saturation following the DDEM:

Consider that DDC is composed of three nodes.

And the set of two VIM rules is :

R l : p(X,Y) ,q (Y,Z) => r (X,Z)

R2: P(x,Y),r(x,z) => p(Y,z>

The set of four initial facts:
p(aa ,bb) , q(cc ,dd) , q(bb ,cc) , r (aa ,cc)

that must be stored as relations as follows:

At compilation it could be noticed that the p relation is used in Rl and R2 but in each
one according to different attributes.

So, in the machine, instead of having p , there are two copies: p c . i and p c . 2.

p c . 1 (x, Y) to be used by R2 distributed according to values of its first argument.

Pc • 2 (x, Y) to be used by Rl distributed according to values of its second argument.

764

For q there is just qc. i distributed according to values of its first argument.

For r there is just r c . i-

So if we apply the hash function to values of arguments of the initial facts, we
identify in which processor a tuple will be stored.

H (l , p . i (a a , b b)) = H (1 , r . i (a a , c c)) = h (a a) = 1
H (2 , p . 2 (a a , b b)) = H (l , q . i (b b , c c)) = h(bb) = 2
H (l , q . i (c c , d d)) = h (c c) = 3

where H is a function, with the arguments: the number of the attribute to apply the
function and a tuple; h is the hash function which has as argument the value of the
selected argument, and returns the identity of the destination node, and 1,2,3 are the
node PCM number.

So in node PCM 1 there exists:
p c . l (a a , b b) r c . i (a a , c c)

In node PCM 2 there exists:
P c . 2 (a a , b b) q c . i (b b , c c)

In node PCM3 there exists:
q c . l (c c , d d)

We can consider that a saturation starts here:

The initial facts are wA:

Arriving to PCM 1:
WAp. i (aa ,bb) W A r . i (a a , c c)

Arriving to PCM 2:
WAp.2(aa,bb) WAq. i (bb ,cc)

Arriving to PCM 3:
WAq. i (cc , dd)

The compilation of rules are:

Rl gives

R l l WAp.2 (X,Y) ,q c . l (Y ,Z) = > B A r . i (X , Z)
R12 WAq. i (Y ,Z) ,p c . 2 (X ,Y) => BAr . i (X,Z)

R2 gives

R21 W A p . i (X , Y) , r c . i (X , Z) => BAp.i(Y,Z)
R22 W A r . i (X , Z) , p c . i (X , Y) => BAp.i(Y,Z)

In this example the elimination is done with respect to one copy of each relation, here

765

we chose to execute the elimination taking as a reference the relation indice 1.

Elimination rules are:

R3: BAp.l(X,Y) - p c . l (S , T) => WAp.l(X,Y),WAp.2(X,Y)
R4: BAr. l (X,Y) - r c . i (S , T) => WAr.i(X,Y)

We recall that in R3 and R4 the condition to produce something is X?S or Y^T.

R5: WAp.i Union pc.1=> Pc•1
R6: WAr.i Union rc.l=> rc.i
To each produced tuple of a BA one node the hash fonction h is applied, as shown
before. Then each tuple is sent to just one processor.

In the elimination rules we can notice that in some cases one wA appears as conclusion
(R4) and in other cases more than one wA appear. What happens is that each
produced tuple, must be sent to one (i.e. R3) or more processors (i.e.R4) applying
the hash function to different attributes.

Note that the processor who receives a tuple (a BA) contains the part of the relation
where the tuple (a BA) can be "transformed" into a wA.

Inside each node, the execution mechanism can be divided into basic cycles triggered
according to delta arrivals. See figure 3.3.

R reception of wA or BA into a buffer
P production which is either an inference

wA produces a BA or nothing or an elimination
BA produces a wA or nothing

T transmission of either wA resulting from elimination or BA
resulting from inference.

766

Reception
BAor WA

Production
inference

or elimination

Transmission

Execution mechanism in a node.

« « F i g u r e 3 . 3 » »

Let us see in details what happens in one node when a saturation starts.

At TO: data are distributed and "rules" installed.

At TO + the time to recognize the wA:

InnodePCMl.

Node state : facts = { p c . l (a a , b b) , r c . l (a a , c c) }

Production by wAp.l(aa,bb) andR21
of a BA containing {p (bb, cc)} .

Transmission of this BA to node PCM 2
because H(l,BAp.l(bb,cc)) = h(bb) = 2
Production by wAr.i (aa,cc) andR22
of a BA containing {p (bb,cc)}.
Transmission of this BA to node PCM 2

becauseH(l,BAp.l(bb,cc)) = h(bb) = 2

Then this node waits for a wA or a BA or for the end of the saturation.

The work on the other nodes follows the same sequence, as far as there are A in the
input of a node.

We call this implementation of DDEM: scenario with elimination with respect to a

767

single file, because the elimination is made taking as a reference one representation
of the predicate. Another scenario where the elimination is made taking each "copy"
as a reference is also under study.

3.3 DDCL AND DATA REPRESENTATION.

As precised before, DDCL consists mainly in relational operations, most of them are
executed following the principles of filtering by automata presented in [Gon 84], and
the join algorithm LA-JOIN presented in [Bra 86].

Let us first describe how a selection can take place. Suppose that we make the
selection on relation r of the tuples where the first attribut is equal to jean or paul or
pierre. We build an automaton which recognizes jean or paul or pierre. Then each
tuple of r is sent to the automaton which indicates if the tuple has to be kept or not.

The automaton representation can be more compact than the classical matrix.

The join of two files can be executed by making a selection of tuples of the first file
then building an automaton to make a selection upon the second file.

3.3.1 The relational operations in DDC.

Here we consider just a join.

If we have the VIM rule:

R l : p (X , Y) , q (Y , Z) => r (X,Z)

First it is transform in rules:
R l l : WAp.2(X,Y) , q c - l (Y , Z) => BAr. l (X,Z)
R12: WAq.i(Y,Z) , p c -2 (X,Y) => BAr. i (X,Z)

The current representation of qc. i will be stored as an automaton and pointers to the
elements of the second attribute. The automaton is to recognize if a tuple of the
wAp. 2 can be joined to qc . i. If that is the case a BA is produced. This BA contains
tuples with the value of the first attribute and the different values of the second
attribute of qc. i. See figure 3.4.

The advantage of this solution is that with just a few comparaisons of characters of
the wA against the automaton, a BA can be produced.

The same technique can be used to make other operations in DDC as pattern
matching.

This solution is consistent with the DDEM because it is asynchronous. The locality of
data is ensured by the hash code function. The wA only arrives to the node where the
ith part of the join can take place.

768

WAf(X,Y), ec(Y,Z) =>BAe(X,Z)

WAf (t

1

o b , t e d)

r
B A e i s (bob

(bob,

A

e c (t e d , J o h n)
(t e d , p h i l)
(t o r n , j e r r y)

represented as

0
l

2
3

d e m o t

2

t e d
torn

\

3
1

/ V ff. j e r r y
John p. p h i 1

gives: (t e d , John)
(t e d , p h i l)

r John)
P h i l)

join in DDC.
« « F i g u r e 3 . 4 » »

4 FIRST IMPLEMENTATION.

With all the ideas presented in section 2 and 3, we are implementing a first version of
DDC.

Even if conceptually the DDEM seems to be a good solution to parallelism,
compromises for the implementation must be taken and evaluated. So the aim of this
first version is to gain experience, in parallel machines and particulary in the
implementation of the DDEM. We hope to obtain a feedback to be able to propose
improvements.

For this first version, we take an existing multiprocessor machine a BULL SPS7,
and we concentrate our efforts in the software implementation of DDCL and the
DDEM on this machine.

The BULL SPS7 is a multiprocessor which uses up to 8 PM (processor and local
memory); they are attached to a bus, where a common memory lets the PM
communicate. The modules PM play the role of nodes PCM.

The advantage of this solution is that the BULL SPS7 has already a lot of software.

769

4.1 FROM A USER PROGRAM TO EXECUTABLE CODE.

One of the processor of the BULL SPS7 will act as a host, the others constitute DDC.
In this configuration DDC acts as a coprocessor to execute saturations. A program
consists in sequential parts grouped as blocks and parallel parts. Each block for DDC
describes a saturation, it contains the set of facts and the set of rules to be saturated.
The user must indicate which blocks of the program are parallel, then executed by
DDC.

The order of block execution is imposed by the user program and controlled by the
host. Serial blocks are executed by the host and calls are made to DDC each time a
saturation is needed.

Before execution, a program is compiled by the host, in one hand the sequential
blocks, and on the other hand the parallel blocks are compiled first into VIM then
into DDCL.

The transformation of VIM to DDCL also gives the primitives to load DDC, to
initialize a saturation and to get results.

4.2 CURRENT WORK.

Currently we are working on:

- implementation of the first version
- optimisations of the compiler from high level language to VTM
- optimisations of the compiler from VIM to DDCL
- memory management problems
- planning the integration and test of the first version
- looking for applications
- performance prediction.

5 CONCLUSIONS.

We present in this paper the basis for the design of DDC, an AI parallel machine
supporting DDEM, a suitable execution model where rules are executed in parallel
with relational operators.

We describe all the levels, from the high level language until machine level, and how
we can go from one level to another.

We are working on this first implementation as described in section 4.

Also we are active in the possible extensions of the system, as for instance:

- DDC as a coprocessor of a main -frame.
- introduction of predefined predicates.
- list and function processing.

770

Finally, we would like to thank the anonymous reviewers of the paper for their
comments, also to: R. Lescoeur, J. M. Kerisit, and J. M. Pugin, F. Anceau, K. R. Apt
and B. Bergsten; they are involved in the project and we benefit from their
comments, ideas and suggestions. We are grateful to E. Pavilion for her help,
improving the English of the paper, but if there are still some English faults we
assume the responsability.

6 REFERENCES.

[Bra 86] Bradier A.: "LA-JOIN: Un Algorithme de Jonction en Memoire et sa
Mise en Oeuvre sur le Filtre SCHUSS. U emes Joumees Bases de
Donn6es Avancees. Giens, Avril. 1986.

[Gon 84] Gonzalez-Rubio R., Rohmer J., Terral D.: "The SCHUSS Filter: A
Processor for Non-Numerical Data Processing". 11th Annual
International Symposium on Computer Architecture. Ann Arbor. 1984.

[Gon 85] Gonzalez-Rubio R., Rohmer J.: "From Data Bases to Artificial
Intelligence : A Hardward Point of View". Nato Summer School, Les
Arcs 1985.

[Gon 86] Gonzalez-Rubio R., Bradier A., Rohmer J.: "DDC Delta Driven
Computer. A Parallel Machine for Symbolic Processing". ESPRIT
Summer School on Future Parallel Computers. University of Pisa.
June. 1986.

[Ker 86] Kerisit J. M.: "Preuve de la Methode d'Alexandre par une approche
algebrique", BULL Rapport Interne, Mail986.

[Lun 85] Lunstrom S. F., Larsen R. L.: "Computer an Information Technology
in the Year 2000- A projection". Computer, September 1985.

[Mot 84] Moto-oka T., Stone H. S.: "Fifth Generation Computer Systems: A
Japanese Project". Computer, March 1984.

[Pug 85] Pugin J.M.: "BOUM: An Instantiation of the (PS)2 concept". 5emes
Journees Internationales Systemes Experts. Avignon 1985.

[Pug 86] Pugin J.M.: "VIM Language". Bull Internal Report 1986.
[Roh 85] Rohmer J., Lescoeur R. : "The Alexander Method. A technique for the

processing of recursive axioms in deductive databases". Bull Internal
Report 1985.

[Roh 86] Rohmer J., Lescoeur R., J. M. Kerisit: "The Alexander Method. A
technique for the processing of recursive axioms in deductive
databases". New Generation Computing, 4. 1986.

771

Project No. 415

A two-level approach to
logic plus functional programming integration

M. Bellia+, P.G. Bosco*, E. Giovannetti*, G. Levi+, C. Moiso*, C. Palamidessi+

* CSELT - via Reiss Romoli 274 -10148 Torino - Italy
+ University of Pisa - Dipartimento di Informatica - corso Italia 40 - 56100 Pisa - Italy

1. Introduction: the reasons for the integration

Logic programming and functional programming are the two most popular styles of
declarative programming, and some debate went on in the past on the respective pros and cons of
each of them with respect to the other. No wonder that an attitude to overcome this discussion by
combining the two paradigms and thus the advantages of both (without their drawbacks)
developed relatively soon.

Logic programming is characterized by two essential features: non-determinism, i.e.
search-based computation, and logical variable, i.e. unification. The bidirectionality of unification,
in contrast with the unidirectionality of pattern-matching, allows procedure invertibility and
partially determined data-structures, and thus a more compact and flexible programming style. The
central role of search (or don't know nondeterminism) in logic programming languages is
connected with their being halfway between theorem provers and standard programming
languages, which makes them particularly adequate for artificial intelligence applications, or as
executable specification languages.

Functional languages share with logic languages the formal simplicity (function application
as the only control construct) and the property of being based on a well-established mathematical
theory, in this case (some kind of) lambda-calculus, which directly provides a clear semantics.
Reduction is the key concept, which corresponds to the use of equalities as rewrite rules, in
contrast with standard logic programming, where the equality is not explicitly present.

Apart from notational aspects, the other fundamental difference with the languages based on
first-order logic is the presence of the notion of higher-order function, a powerful structuring
concept which can be exploited in programming in the large, in program synthesis from
specifications, etc.

In addition, functional languages offer a variety of other useful programming concepts,
such as typing disciplines, outermost/innermost strategies, etc., which would be profitably
included in an integrated system.

Several different approaches to the integration have been proposed. Roughly, they can be

772

partitioned into two classes. On the one hand, the logic+functional languages, i.e. the logic
languages enhanced with some limited functional features, essentially based on first-order logic
with equality: they usually lack one of the very aspects which characterize functional
programming, i.e. higher-order. On the other hand, the functional+logic approach, i.e. the
functional languages augmented with logic capabilities, for example the ability to solve equations,
to invert functions, etc. For a survey of the most relevant proposals of both kinds see [3, 13].

The approach chosen in the Subproject D of ESPRIT Project 415, described in this paper,
consists in splitting the problem into two levels. The upper level, or user interface, is a sort of
superlanguage combining higher-order functional programming (i.e. lambda-calculus with a
simple theory of types) with Horn clause logic. It is represented, for the time being, by the
experimental language IDEAL [4]. This level is still subject to evolution, as it should eventually
contain all the desirable features for this kind of language, w.r.t. different fields of applications.
Some theoretical aspects still have to be deepened, in particular concerning a satisfactory definition
and semantic characterization of the programming problems we want to be able to solve.

The lower level is a Prolog-like language augmented with directed equality, which is
represented at the present stage of research by K-LEAF [14, 7], an evolution and refinement of the
language LEAF [2]. It is a rather well assessed language, with a clear and original declarative
semantics, and with a sound and complete operational semantics.

The upper level is mapped into this intermediate language by means of a transformation
which removes the higher order by compiling it into first order (through a meta-interpretation).
Moreover, in any implementation there will be a bottom level consisting of a control-flow
imperative language close to the physical architecture (e.g. C-language in the present sequential
prototype, maybe Occam in a future parallel architecture). Between this "machine-language" and
the intermediate logic language further virtual machines could be introduced, corresponding e.g. to
the elimination of nondeterminism in a mapping to a lower-level logic language, such as, for
instance, Concurrent Prolog.

2. The Higher-Order Language

The user level is represented by the prototype higher-order (HO in the following) language
IDEAL, for which an implementation on top of a standard Prolog environment is already available
with a good efficiency.

The syntax for the functional component is, as usual, a sugared version of a polymorphic
lambda-calculus with some form of universal types, in the style of MIRANDA [28] or ML, while
the logical component is basically the underlying first-order (FO in the following) (Prolog-like)
language.

The integration of the logic into the functional part is obtained, as at the intermediate FO
level, by allowing function definitions to be heads of Horn clauses, functional terms to be
arguments of predicates, and goals to be equations (to be solved). A program is therefore a set of
possibly conditional function definitions, i.e. clauses of the form:

773

fname = XXl.XX2...XXn.term :-cond.
or equivalently

fname@Xl@...@Xn = term :- cond.
where @ stands for the application. Fname is the name of the curried function being defined, and

Term is a term, not starting with X, of a lambda-calculus equipped (sugared) with the if-then-else
construct and a number of data constructors, tests and selectors, along with the related reduction
rules. Recursive definitions are allowed with their usual meanings. The condition cond is a
conjunction of literals, i.e., in general, a conjunction of equations between lambda-terms.
Definitions by cases are also possible, with a straightforward extension of the pure
lambda-notation:

fname@Dtl@...@Dtn = term :- cond.
where the Dti are data terms.

The usual let, letrec, where, whererec structuring constructs are permitted with their
standard meanings corresponding to pure lambda-calculus expressions. The following example of
functional program taken from [28] is a good introduction to the syntax (the type information
inferred by the system is listed after the":" symbol).

Example 1.

foldr@Op@Z = g
where g@[]=Z,

g@[AIX] =Op@A@(g@X). :(A->A-->A)-->A-->(list(A)-->A)
product = foldr@ (*)@ 1. :list(int)->int
sum = foldr@(+)@0. :list(int)->int.
sum@ [1,2,3] ;term to be evaluated
:int 6 ;result

The user is allowed to define its own polymorphic data types, through a construct like the one
suggested in [28]:

typename(Typevarl.....Typevarn) ::= constructor!(Typenamel 1 ,...,Typenamelnj i;

constructorm(Typenameml,...,Typenamemnm)

which declares data objects of type typename, the structures being identified by constructor],
...,constructorm, each of the appropriate argument types.

If the possibility of currying is to be coherently extended to predicates, these have to be
considered as boolean-valued functions. The standard definition:

p :- al an
has to be regarded as a short notation for:

p = true :- al = true,...,an = true.
With this extension of higher-order capabilities to predicates, definitions of predicate combinators
and lexically scoped predicate definitions become possible, which greatly improves conciseness
and modularization of logic programs, as is suggested by the following example.

774

Example 2.

comb@P@X@Y :- P@Z@X,P@Z@Y. :(A->B->bool)-->A-->B->bool
non-disjoint = comb@member

where member©X@[XIL]:-.
member®X@[YIL] :- member@X@L. :list(A)-->list(A)->bool

person ::= (a;b;c;d;...) ;declares type person
brothers = comb@parent

where parent@a@b:-.
parent@c@d:-.

:person—>person~>bool
where non-disjoint is a predicate which succeeds when two lists are non disjoint, while brothers
succeeds when its two arguments have a common parent.

The main program, or goal, is either the application of a function to arguments, i.e.
?-f@tl@...@tn /= Result]

or an existential logic-programming goal:
?-p@tl@...tm [= true]

or, more generally, an equation between lambda-terms
?- tl =a.

As for the integration primitives, the construct Term suchjhat Cond has been introduced as a
functional-flavoured version of the logic-programming conditional definition ...Term ..:- Cond...
For example,

k = g(X such_that p(X)).
is equivalent to:

k = g(X):-p(X).
Moreover, a metalevel construct bag is available for producing, in formally one step, the possibly
empty list of all the Term satisfying Cond. The following definition of quicksort, derived by a
widely known functional program built on functional set-expressions, is an example of the use of
bag, which enables a more abstract specification of the algorithm with respect to the way the list is
scanned.

Example 3.

[] ++ L = L ; definition of append
[XIU] ++ L = [XIU++L]. :list(A)->list(A)~>list(A)

gt@X@Y :- X > Y. :A->A~>bool
lt@X@Y :- X < Y. :A->A->bool
gte@X@Y :- X >= Y. :A->A->bool
lte@X@Y :- X =< Y. :A~>A~>bool
inv(lt) = gte,
inv(gt) = lte. :(A->A->bool)->(B~>B~>bool)

qsort@p@[] = [],
qsort@p@[AIL] =qsort@p@bag(X,(member(X,L),p@X@A)) ++

[Alqson@p@bag(X,(member(X,L),inv(p)@X@A))]
:(A->A->bool)~>list(A)->list(A)

775

An example of the symmetrical possibility, i.e. the logic part "calling" the functional one, is
the following goal, where the predicate member "calls" the function map, whose application
occurs in one of the predicate arguments:

Example 4.

map([],F) = [],
map([XIL],F) = [F@Xlmap(L,F)] :list(A)->(A->B)-->list(B)

X such_that member(X,rnap([l,2,3],lambda(x,x+l))) ;term to be evaluated

:int 2;
3;
4

the values 2,3,4 are "alternative" values which in a sequential environment are obtained by
"backtracking".

Finally, to get the flavour of a more exciting field of application, consider the simple goal
F@[l,l] = [l , l]

executed in the scope of the definitions of functions like reverse, append, the previous qsort.
Among the possible solutions we can find

F = lambda x.x; F = lambda x.[1,1]; F = reverse; F = append©[]; F = qsort@lt

while the goal: F@ [1,2] = [2,1]
would only yield the solutions

F = lambda x.[2,l]; F = reverse; F = qsort@gt

HO programs, where functions and predicates are higher-order in the sense that they can take
as arguments and deliver as results functions and predicates, are converted into "equivalent" L+F
programs which are first-order in the usual logic sense (no quantification over predicates is
allowed), e.g. K-LEAF programs (see next section). This merely amounts to considering the HO
level as an object language described in the FO language used as a metalanguage. Terms of the
object language, i.e. lambda-terms, are constants of the metalanguage. Reduction rules become
FO equational axioms for the object structures in the metalanguage. "Equivalence" between the
original program and its FO translation means that the transformation has to be sound and
complete w.r.t. the class of solutions of equations we are interested in at the HO level. This
strongly depends on the relation between the execution strategy of the lower level and the
extension of the runtime core which is put at this same level to support the upper language. Some
mappings from IDEAL to K-LEAF are complete (and sound) for a limited but meaningful class of
programming (unification) problems, while for broader classes a complete mapping would involve
a too large amount of interpretation with the related inefficiency. Enhancements of K-LEAF are
presently being studied in order to be able to cope with this kind of problems efficiently.

776

3. The First-Order language

The lower level is a FO logic+equational programming language, i.e. a language based on
HCL with equality. The term syntax is any signature with constructors, i.e. it is based on the
distinction between constructors and functions, corresponding to the distinction, found in all the
ordinary programming languages, between data structures and algorithms. Among the other
distinctive features there are the allowing for partial functions and infinite objects, joined to a
complete semantic characterization.

The concrete syntax of the first-order L+F programming system is basically the same as the
language LEAF [2]. The alphabet consists of a set C of data constructor symbols, a set F of
function symbols, a set P of predicate symbols, a set V of variable symbols, and the special
equality symbol =. The distinction between data constructor and function symbols leads to the
distinction between (general) terms and data terms. The former are built both on C and F (and
V), the latter are built on C (and V) only. The clauses of the language are defined in the usual
way, with some constraints on the syntax of atoms.

A head atom is:

i) afunctional headf(dj,...,dn) = t, where/is a function symbol, dj,...,dn are data terms,

t is a term, and the following two conditions are satisfied:

1) left-linearity: multiple occurrences of the same variable in (dj,...,dn) are not allowed

2) definite outputs: all the variables occurring in t must also occur in (dr,...,dn)

ii) a relational headp(dj,...,dn), where p is a predicate symbol and dj,...,dn are data terms.

A body atom is:

i) an equation t} = t2, where t1 and t2 are terms

ii) a relational atom p(tj,...,tn), where p is a predicate symbol and tj,...,tn are terms.

A program W is a set of definite clauses {Cj,..., Cm } such that:

for each pair of equational heads f(d'j,...,d'n) = t' &ndf(d"1,...,d"n) = t",

f(d'j,...,d'n) andf(d"j,...,d"n) are not unifiable {superposition free).
The above syntax, unlike the earlier version of LEAF, is to be considered a sugared form of the
actual underlying language which we called Kernel-LEAF, or K-LEAF, where all the equalities in

the bodies and in the goal are strict equalities, denoted by the symbol ^ while equalities in the
heads always are non-strict equalities, denoted by the usual symbol =.

In K-LEAF the heads of the clauses, either functional or relational, must be left-linear, and a

user-language clause like p(xjc)*—Bj,...,Bn is automatically transformed by the parser into the

K-LEAF clause p(x,y)<— x=y, Bj,...,Bn. This transformation cannot be used for functional

heads, since it would cause the loss of the superposition-freedom. In the functional case the

777

left-linearity constraint has been therefore introduced directly in the user-language
It is worth noting that equalities in the body, multiple occurrences of the same variable in

(the argument-part of) a head or functional nestings in (the argument-part of) a head would
introduce a not-semidecidable equality test on (possibly non terminating) subterms. Moreover,
from the point of view of the declarative semantics developed in next subsection, this would
violate the continuity requirement for the interpretations of functions and predicates.

The other constraints, i.e. definite outputs and superposition-freedom, have to do with
confluence, i.e. with the requirement that function definitions actually define (univocal) functions.

The following set of clauses is a correct K-LEAF program:

Example 5.
samefringe(tl,t2):- fringe(tl) = fringe(t2).
fringe(t) = fringe l(t,nil).
fringel(leaf(x),continuation) = cons(x,continuation).
fringe l(tree(tl,tr),continuation) = fringe l(tl,fringel(tr .continuation)).

3.1 . The model-theoretic semantics.

The natural setting for assigning meanings to possibly partial functions is found in the
concept of algebraic CPO.

Let us briefly summarize the related notions. Let X be a set and let < be an order relation on

X. A set D c X is a chain iff D is totally ordered with respect to < (X, <) is a Complete Partial

Order (CPO) iff there exists a minimal element ±x (bottom) and every chain D has a least

upper bound U D. An element a is a finite (or algebraic) element iff there are not any infinite

chains (from J.„) to a. (X, <) is an algebraic CPO iff every element a is the least upper bound of

the set of the finite lower elements (its finite approximations). Let (X, <) and (Y, <) be CPO's,

and let / be a function from X to Y. f is continuous iff /(LJ D) = LL GDf(d) holds for every

chain D.

A simple algebraic CPO is the set LL = { _L,, true, false), with the ordering J . ^ <true

and -L, <false, (three-valued boolean CPO). Note that all the elements of LL are algebraic. The

formulae of the language will receive - from interpretations - truth-values in this CPO: we have
therefore a three-valued logic, with "undefined" besides true and false.

Definition. Given a K-LEAF program W, an interpretation for W consists of an algebraic CPO

(X, <), and a meaning function Hx which assigns to every constructor or function symbol a

continuous function on X, and to every predicate symbol a continuous function from X to LL.
The meaning of terms and atoms involves, as usual, the notion of environment, (that is a function

778

p:V—>X) and is derived by imposing the structural compositionality, i.e.:
Ilvjy . = vp for v e V.

U(ti,-,tn)lx>p =H/H* (h^Xp Kh.p > for / e C uF , tj tneT(V)

lp(tl tn^X.p^Ph^lh.p <~'Kh,p > f o r p e F , »; r „ e r (V)

The equality, i.e. the symbol = is interpreted as the identity eqx on the CPO (X, <), i.e.:

(true if Hf/lvo and I l ?] y n are identical
Itj = t2\XtP = hjlX,p eqX h2h,p = { , ,P X'P

\ false otherwise
Note that eqx is non-strict and non-monotonic (and, therefore, non-continuous): for

example, J. eqx J. = true, while J. eqx ^ = false, for £ different from ±.
On the other hand the symbol =, having to represent a sort of semidecidable test of

equality, must be given a continuous interpretation. Hence the largest set on which strict equality
can be true is the set of algebraic maximal elements. Maximality ensures that equal elements cannot
become distinct by adding more information. Algebraicity guarantees that the comparison can be
done in a finite time (by exploring a finite amount of information). A possible solution is the
assignment of a fixed interpretation of = which satisfies this requirement, for example:

(true if hj^xp an^ ^h^X p are algebraic, maximal and identical
hj-^xp = ^ fa^se if I ' J x p anc* "r2^Xp are algebraic and maximal, but not identical

^ J-LL otherwise
Alternatively, we can consider = as an ordinary predicate (whose interpretations must be

continuous by definition) and axiomatize its truth , by adding to the program the clauses:
d(x1,...,xm)=d(y1,...,ym) *-x1=y1,...,xm=ym (m>0)

for each constructor symbol d (this alternative will be the one choosen for implementing
K-LEAF). Note that the two ways of defining = are equivalent, relatively to the set in which the
value of strict-equality is true.

The meaning of non-atomic formulas is defined as follow:
IS7,..., B„ l x p = lB,]Xp and ... and lBjXp

U < - S ; ,..',Bn\Xp =IA \XiP <= IB j , . . . ' , Bn \x>p

| « - Bj ,..., BjXp = false <= \Bj,..., fl„ lXp

where and and 4= are continuous extensions of the standard conjunction and implication [14].
Definitions . Let IV be a set of Kernel or flat LEAF (program and goal) clauses. A model
of W is any interpretation M = ((X, <), 0) such that, for every clause cl in W and for every
environment p, I d l x . = true. W is consistent if it has a model. A conjunction of atomic
formulae, G, is true in M iff for every environment p lG}xp= true. A conjunction of atomic
formulae, G, is valid with respect to W, or is a logical consequence of W, iff it is true in every
model of W.

A special class of interpretations is represented by Herbrand interpretations, which are
based on a purely syntactical domain, the Herbrand universe. In our case the Herbrand universe is
simply the set of the ground data terms, ground data partial terms and ground data infinite terms,
i.e. the set of (oossiblv infinite) terms that can be built bv means of the (constants and)

779

constructors of the language and of the new constant J.. Infinite terms may be defined in the
standard way as infinite (finite-branching) trees. The ordering is the usual approximation order,
which correctly gives to the above set the structure of an algebraic CPO [14].

A Herbrand model for W is any Herbrand interpretation which is a model. In the following,
HI will denote the set of Herbrand interpretations, while HM will denote the set of Herbrand
models.

Let us point out the meaning of equality and strict equality on Herbrand interpretations.
Equality simply is syntactic identity. To see the meaning of strict equality, note that in the CPO
(CU, <) maximal algebraic elements are the data terms which contain no occurrences of 1. Hence
strict equality is the syntactic identity only on the subset of the Herbrand Universe which is
isomorphic to the ordinary "data-term" Herbrand Universe.

Consider the set of functions from a poset (X, <) into a poset (Y, <). This set is naturally
ordered by the relation g <g' iff VxeX g(x) £g'(x). The minimal function (Q) is the function
which maps every element ofX in the bottom element of Y (VxeX Q(x) = J.y).
This functional ordering induces an ordering on Herbrand interpretations:

for/, / ' e HI, I < / ' iff V / e F.VpeP. H/J, < H/l;, and lpl,<lplr.
The interpretation 70,which maps in CI every function and predicate symbol, is the minimal
element of///. Also (HI, <) is a CPO, as proved in [14].

Herbrand models can be proved to keep, also in this kind of logics, the special role they
have in standard logic. Namely, if W is a set of K-LEAF (program and goal) clauses, it is
consistent iff it has a Herbrand model. Moreover, the lub of the Herbrand models of W is a
Herbrand model, hence (if it is consistent) W has the minimal Herbrand model. Therefore a
conjunction of ground atoms is valid in W iff it is true in the minimal Herbrand model of W.

It is possible to extend the standard transformation on Herbrand interpretations (used to
define fixpoint semantics) so as to preserve monotonicity and continuity. Standard results still
hold. Namely, the least (minimal) fixed point of the extended transformation T is equal to the
minimal Herbrand model and can be effectively computed as the lub of the chain IQ„ T(IQ,), T*(

V
3.2 . The execution of K-LEAF programs

The computational methods that have been proposed for the execution of languages based
on Horn clause logic with equality are, in general, linear refinements of resolution and completion
(i.e. SLD-resolution and narrowing, respectively). Among them we find conditional narrowing
[10, 11] and SLDE-resolution (i.e. SLD-resolution with syntactic unification replaced by a
E-unification [15, 26, 22]).

The technique we have chosen in the project is flat SLD-resolution, i.e. SLD-resolution on
flattened programs augmented with the clause x=x. The flattening tranformation consists in
eliminating functional composition by recursively replacing a term f(t/,...,tn) with a new variable
v and adding the functional atom f(tl,...,tn)=v to the body. The original idea, in the
theorem-proving domain, probably traces back to [9], while in the area of logic and functional

780

programming it was first proposed in [1, 27].
SLD-resolution on flat programs seems to be more adequate than narrowing, because:
- SLD-resolution was shown to be equivalent to "refined" narrowing [6], with a

considerable gain in efficiency with respect to "ordinary" narrowing (elimination of
redundant solutions and, more generally, reduction of the search space);

- the full (relational + func ;onal) language can be supported by a single inference
mechanism;

- conditional equations can easily be handled, without need of extensions;
- sharing of subexpressions deriving from a common expression is obtained for free.
The flattening algorithm for K-LEAF is similar to the one described in [2], with

strict-equality atoms handled as ordinary predicates.
For instance, the K-LEAF program in Example 5 is flattened into:

samefringe(tl,t2):- fringe(tl)=vl, fringe(t2)=v2,vl = v2.
fringe(t) = v :- fringel(t,nil)=v.
fringe! (leaf(x),continuation) = cons(x.continuation).
fringel(tree(tl,tr),continuation) = v :- fringel(tr,continuation)=vl,fringel(tl,vl)=v2.

The flattening transformation is correct because an original K-LEAF program and its flat
form have the same Herbrand models - where the notion of model for flattened programs is a
trivial extension of the corresponding K-LEAF notion [14].

An objection which has been raised to this approach concerns the presumed loss of the
producer-consumer information contained in the functional notation. On the contrary, this
information is still implicitly present in the flat form, and can be exploited by the selection
strategy.

A selection rule corresponding in the unflattened program to an innermost rule can be easily
implemented through the usual leftmost selection rule of Prolog [6], provided the flat literals are
put in the right order by the flattening procedure. This strategy has however a serious drawback in
the unlimited possibility of resolving functional atoms with x=x , which results in a large amount
of useless computation. The elimination of the reflexive clause causes the loss of completeness,
unless functions are constrained to be everywhere defined, as in [11]. The problem can be
overcome by noting that the resolution of a functional atom t=z with x=x is only useful when the
resolutions of the atoms in whose arguments z occurs, bind z to variables (i.e. they do not require
a value for z). This is in general not the case, and it cannot be determined statically.

The detection of this situation requires an outermost strategy, analogous to lazy evaluation
in functional programming, which reduces a functional atom only when its output variable would
be bound to a non-variable term by resolution of a consumer atom. Resolution with x=x can then
be profitably applied to the functional atoms whose output variables do not occur elsewhere in the
goal, and may therefore be implemented as an elimination rule (which can also be viewed as an
explicit garbage collection step). Moreover, when, in the resolution of an atom, unification
attempts to instantiate a variable produced by another (functional) atom, resolution of the current
atom is suspended and resolution of the producer is tried instead. The suspended goal is resumed
after (one step of) resolution of (all) the activated functional atom(s).

781

Example 6.
Consider the program (which is already in flat form):

1) p(x,y) :- q(x,x).
2) q(a,x).
3) f(b) = a.

where a and b are constructors.
Let the goal be

?-p(f(x),g(x)). flattened into: ?-p(vl,v2),f(x)=vl,g(x)=v2.
The only outermost atom is p(vl,v2), which is resolved with (1):

?- q(vl,vl),f(x)=vl)g(x)=v2.
The functional atom g(x)=v2 can be eliminated, as the produced variable v2 does not appear
elsewhere in the goal:

?- q(vl,vl),f(x)=vl.
Resolution of q(vl,vl) is suspended, since (2) would bind the variable vl, produced by the other
atom, to the non-variable term a. Resolution of the producer is executed instead: ?- q(a,a).
Now resolution of q(a,a) (i.e. q(vl,vl) with vl bound to a) with the clause (2) can be resumed.
The goal thus succeeds with computed answer {x:=b}.

The strict-equality atoms can in principle be handled through their defining clauses like any

other user-defined predicate. However, resolution with the ^-clauses can give rise to infinite

branches of computation if atoms of the form x = y , with x and y non-produced, are present. In

this case the fake clause x = x is instead applied.
The outermost strategy, unlike the innermost case, cannot be implemented by means of a

trivial compilation, because the atom selection order is not known statically, but can only be
established at runtime. A more complex control of the computation than the one needed for Prolog
is therefore required. While the selection order of the relational atoms is immaterial, the choice of
the functional atoms to be resolved must be performed within the unification algorithm. The
efficiency of the strategy is thus related to the efficiency in recognizing the produced variables and
in finding their producers.

The complete definition of the outermost strategy is described in [7] and in [14], where it is
proved correct and complete with respect to the declarative semantics.

As the design of an efficient sequential model is a preliminary step to any parallel
implementation, we are now developing a K-LEAF abstract (sequential) machine. It consists in a
modification of the Warren Abstract Machine (WAM) [30] where, to implement the outermost
strategy, the unification instructions are changed as follows:

- functional atoms are represented as terms stored in the heap;
- to represent produced variables, a new kind of term is introduced which links the variable

to its producer;
- unification instructions collect all the (terms denoting the) functional atoms that produce

782

the variables bound by the unification: these atoms are then resolved before body atoms.
Storing functional atoms as terms on the heap requires, to start their resolution, an efficient

implementation of a meta-predicate similar to Prolog's call.
We have developed in C-Prolog a quite efficient "compiled-emulated" executor of K-LEAF

where the unification instructions are emulated by Prolog predicates. Its natural evolution, planned
for the next years, will be the implementation of the abstract parallel computational model
described in [14].

4. Mapping Higher-Order L+F to First-Order L+F

The approach consists in taking an HCL+E axiomatization of the higher order language and
in trying to efficiently execute this axiomatization, possibly specialized to the particular
computational needs required by the context of application. A technique for introducing HO
curried functions in the logic programming framework was first proposed by Warren [29]. He
suggested to this end the definition and use of an apply predicate in Prolog programs. For
example, the HO function twice would be written

apply(twice,X,twice(X)).

apply(twice(X),Y,R):- apply(X,Y,Rl), apply(X,Rl,R).
To Warren's mind, the burden of building these clauses was to be left to the user. In our
approach, on the other hand, they are automatically obtained by partial evaluation of the
user-supplied function with respect to an axiomatization of lambda-calculus. This means that a
procedure for deriving theorems from the axioms is used to reduce the application of a user
function to a symbolic constant (i.e. to prove some universal properties of the function).

For example, with the function X(x,X(y,x+y)) we obtain:
(1) X(x,X(y,x+y))@A => X(y,A+y)

and
(2) A.(y,A+y)@B => A+B

A "compiled" version of the function merely consists of the proved theorems (1) and (2).
Observe that capital letters denote logical variables which are universally quantified when (1) and

(2) are asserted in a logic database. From a "functional" viewpoint, the term MyA+y) , produced

by the first application, is a closure where My,_+y) is the text component (which could be
substituted by a new constructor) while A is the environment component to be kept for further
applications. At least for the sequential case, there is a strong analogy between the traditional
implementation of functional programs with closures built on the heap, and the most standard
computational model for logic programming, namely the Warren Abstract Machine (WAM) [30],
where the structure copying mechanism causes terms like the rightandside of (1) (an argument of
the reduction relation) to be copied on the heap.

This approach was argued by Warren to be reasonably efficient in a Prolog environment
equipped with the capability of indexing on the first argument of predicates, e.g. a standard WAM

783

with switch-on-term/constant/structure instructions which, at every call of the apply predicate,
perform a hashed search of the function definition. Optimized specific handling of apply could be
obtained with a slight modification of the WAM: the function definition could be entered
immediately through a fast indirect step, where the address of the function body to be executed is
fetched in a special field of the function name which contains the index of that name in the scope
of the apply predicate.

We merely reobtained in a logic programming framework what in the functional
programming community is called lambda-lifting [20], a technique used to find universal
consequences of the reduction relation on a specific program. It basically consists in transforming
a nested lambda-term into a set of flat rewrite rules, (or super-combinators): these rules are
equivalent, with respect to reduction, to our apply clauses.

To produce by partial evaluation a "compiled" code like the one shown above, the
interpreter of the HO language could be built, in principle, either in logic-programming style or in
equational style. K-LEAF provides both alternatives. However, since for an interpreter of
lambda-calculus the possibility of a leftmost strategy at the HO level must be guaranteed, the
availability of a leftmost strategy already at the lower level allows a more compact and efficient
axiomatization [0'Donnell85]. To this end, the so-called micro-lambda-calculus [21] has been
adopted, in this first experimental phase, as the equational theory to be "implemented" in (the
equational part of) our FO language. A variant which seems to have the normalization property,
derived by the idea in [25], could be the following:

a.X.X@G = G :- Xvar(X).
XX.X@@G = G : -W(X) .
AX.Y @ G = Y :- A.var(X), A.var(Y),X * Y.
XX. Y @@ G = Y :- Xvar(X), Xvar(Y),X * Y.
XX.E@F @ G = (XX.E @ G)@(A.X.F @ G) :- Xvar(X).
XX.E@F @@ G = (XX.E @ G)@(XX.F @ G) :- Xvar(X).
XX. XY.B @ G = A.Y. (A.X.B @@ G) :- Xvar(X), A.var(Y),X i t Y , Y «

varfree(G).

The compilation we could obtain by such a method looks like the following:
twice@X = twicel(X)
twicel(X)@Y = X@(X@Y)

or alternatively
twice@X = twice@'X
twice@'X@Y = X@(X@Y)

where @' is the "constructor" version of the function @, denoting the closure. These are correct
K-LEAF programs.

784

4.1 Unification

If the general axiomatization of lambda-calculus is not kept at "run-time", and the compiled
code is executed alone, unification at the FO level has a limited capability of solving equations in
functional variables, which can only be instantiated to functional forms (functions) present in the
original program. For example, if the simple definition plusl@X = s(X) is added to the ones
above, the execution of the goal F@a=s(s(a)) yields the substitution F=twice@'plusl; on the other

hand, the solution X(x,s{s(x))) is not found out because this term does not belong to the Herbrand
space of the "compiled" program.

This kind of invertibility can be achieved with a good efficiency, on the basis of the present
K-LEAF implementation. The user interested in synthesizing programs should introduce a library
of basic functions over which the search has to be performed. An external methodology could
enforce the introduction in the library of second-order patterns which guarantee some correctness
properties (well-typing in a broad sense). Suppose, for example, that a specification of an
unknown recursive function F requires F@3=6. We could try to see whether, given a set of
primitive functions, a particular recursive scheme s :

s(Arg,Test,End,Fl,F2) = if Test then End
else Fl@s(F2@Arg,Test,End,Fl,F2)

fits our I/O specification. This amounts to requesting the evaluation of the term
?-s(3,Test,End,Fl,F2) = 6

which, in presence of a library of "fully" axiomatized integer functions like plus, times, etc.,
produces the solution

Test = eqO, End = 0, Fl =plusl, F2 = subl
corresponding to the function computing the sum from N downto 0, and the solution

Test = eqO, End = 1 , Fl = times, F2 =subl
corresponding to the factorial function.

In conclusion, this approach amounts to translating the higher order program into the set of
equations arising from the partial evaluation of an equational axiomatization of beta-reduction, and
solutions of functional equations can be found only in lambda-terms already present in the
program.

A natural generalization of the method consists in using the axiomatization itself and the
FO-level inference method (roughly a form of narrowing) to obtain more general solutions for
functional equations. In other words, equations between lambda-terms can be solved by executing
a general E-unification algorithm on a particular equational theory for the lambda-calculus.

Because the problem of unification in lambda-calculus has been proven to be only
semidecidable even in the typed case [19,16], it does not follow that an algorithm which
eventually finds unifiers, if they exist, is useless. Application domains like program
transformation or program synthesis could supply sufficient edge conditions so as to make
undecidabilty relatively irrelevant for the practical usage.

We have not taken into consideration specialized unification algorithms, like the one in [19],
recently chosen by [23] in the integrated L+F language lambda-Prolog as the basic unification

785

algorithm, to be used only when really needed. Our goal, at this stage of the research, rather
consists in trying to identify one simple execution mechanism for both logic and functional
programming.

In this perspective, our interest has concentrated on the narrowing technique, which can be
efficiently supported by a resolution machine [6]. Our present efforts are aimed at finding out
which extra-features should be added to standard narrowing procedures in order to be able to deal
with non-terminating systems like those for lambda-calculus, which do not satisfy the constraints
of the language K-LEAF (non-superposition, distinction between functions and constructors,
treatment of the occur-check). Recently [31], narrowing has been proved complete for a class of
non-terminating systems satisfying the "non-repetition" constraint, which means that a same rule
cannot be indefinitely applied to E-equivalent terms. Unfortunately this result doesn't apply to
lambda-calculus.

Some form of the so-called narrowing-on-variables, which is forbidden in standard
algorithms, seems to be mandatory in the presence of rules like/= c(f), if the execution of a goal
like ?-X = c(X).m\ist be able to produce the solution X :=f. Following the idea suggested in [18],
we are now experimenting with a modified narrowing algorithm where narrowing-on-variables is
only tried on occur-check failure. More precisely, when a goal t(..X...)=t(...f(.X..)...) fails for
occur-check and/('.X..) is no more narrowable, a rule of the form / ->f(...) can be applied to
narrow the variable X, and the goal becomes t(.../(...)...) = t(...f(.X..)...) . With this
modification, the narrowing algorithm is able to solve equations like

F = z@F (i.e. find a fixpoint of z)
F:=lambda(x,z@(x@x))@lambda(x,z@(x@x))

or Y@f = f@(Y@f) (i.e. find a general fixpoint combinator)
Y:=lambda(z,lambda(x,z@(x@x))@lambda(x,z@(x@x)))

As a matter of fact, these solutions have been obtained by "driving" the narrowing process
so as to narrow only the "interesting" subterms, and to disregard those which could lead to infinite
failing computations.

One important source of infinite branches is the axiomatization of lambda-variables. If
conditions of rules (declaring that the first arguments of lambda's must be lambda-variables) are
evaluted before the narrowing step, (names of) lambda variables are actually generated, so
introducing an infinite nondeterminism. This problem can be solved by a more complex narrowing
strategy, where some conditions are carried over unresolved as constraints, and sometimes
checked for satisfiability. In this case we may obtain solutions equipped with a set of satisfiable
constraints. Of course falsity of constraints has to be computed as soon as possible. Some special
meta-level primitives, hidden to the user, could be profitably embody some special cases of
induction. Consider, for example, the dif(XX) test (where X is a logical variable), which yields
false for every assignment of the variable X. The satisfiability test can be exemplified by the
following Prolog clause

dif(X,Y) = false :- var(X),var(Y),X==Y.

786

where, in order to reduce the constraint as soon as possible, the special primitives var and == are
used, in a sound way.

4.2 Alfa and eta conversions

If we have an algorithm for confluent theories, eta-conversion does not pose particular
problems. It can be added as a rewrite rule:

A.(X,(M@X)) = M :- X e varfree(M).
As for alfa-conversion, in principle it could be introduced as a rewrite rule (actually an expansion
rule)

X(K,B) = X(Z,lambda(X,B)@Z):- Z e varfree(B).
which executed by narrowing can prove alfa-equality with an infinite number of failing reductions
(expansions). However, to cope with the alfa-equality in a "sensible" way, it is wise to embed it in
the syntactic unification. The algorithm thus becomes a beta-eta-narrowing modulo alfa. If we
represent syntactic equality by the term eq(XJ) the alfa-equality can be expressed as follows (but
syntactic unification is implemented at a machine level):

eq(lambda(X,B),lambda(Y,Bl) = eq(lambda(X,B)@Z,lambda(Y,Bl)@Z) :-

Z « varfree(B),Z £ varfree(Bl).

4.3 Impacts on the First-Order language

The scenario presented above, which has to be considered a research theme rather than a set
of fully achieved results (in the sense that the completeness of the approach has not yet been
proved), involves several assumptions on the underlying FO language. Some modifications and
relaxations of constraints will be needed in K-LEAF, to make it able to direcdy support the kind of
narrowing sketched above, necessary for a complete treatment of lambda-calculus. Among these
features we recall: less strong distinction between functions and constructors, relaxation of the
non-ambiguity constraint, introduction of the occur-check, strategies for carrying over unresolved
constraints, ways of connecting with special algorithms for constraint satisfiability and (for more
general purposes) with special unification algorithms.

4.4 Efficiency

So far the only figures about efficiency of functional programs compiled in a logical FO
language are those obtained with the prototype language IDEAL, which is, as already mentioned,
implemented in Prolog, following the original Warren's idea. We report here the timings (in
seconds) relative to a simple benchmark (the computation of the list of permutations of a

787

six-elements list) which exhibits a reasonable amount of closure construction, the distinctive
feature for this kind of comparison. Three languages are compared, running on VAX780: Digital's
Common Lisp and INRIA's LeLisp (with lexical scoping) both in their interpreted and compiled
versions, and IDEAL, whose code is run by the C-Prolog interpreter and by Quintus Prolog.

map(F,n,C) = C,
map(F,[XIL],C) = [F@Xlmap(F,L,C)].
insert(A,[]) = [],
insert(A,[[]IL]) = [[A]],
insert(A,[LILl]) = [[AIL]lmap(lambda(E,[hd(L)IE],

insert(A,[tl(L)]),
insert(A,Ll))j.

perm(n) = [[]]■
perm([AIL]) = insert(A,perm(L)).

perm([1,2,3,4,5,6]) = ?.

Compiled Interpreted

IDEAL (C-Prolog) 4.6
IDEAL (Quintus Prolog) 1.9 22
VAX Common Lisp 1.5 32
LeLisp 2.4 4.3

These figures, though having to be confirmed by a larger set of benchmarks, are quite
encouraging. Similarly satisfactory results have been shown in [17], where functional programs
compiled into Prolog have been compared with the equational interpreter of [24].

5. Conclusions

Though the overall ESPRIT Project N.415 is on parallel architectures, and in this
framework also the subproject D will produce as final result a parallel virtual machine, much of the
work of the first two years concentrated, as scheduled, on the design of the L+F language, which
was not in existence at the start. The result of the effort has been described in this paper, an can be
judged quite satisfactory, even in comparison with what has been achieved elsewhere in the same
domain.

While the choice of HO language as the user ideal language was mainly dictated by the need
of powerful programming capabilities, the design of a new FO language to replace Prolog as
intermediate compilation language was forced by the need of a semantic characterization, to start
with, of the goals computable at the first order.

As regards parallelism, we are considering the applicability to the L+F language of the
annotation scheme and computational model devised in [12], and the mapping of these on the
machine described in [8].

Acknowledgement

This work has been partially sponsored by EEC under ESPRIT Project 415 "Parallel
Architectures and Languages for Advanced Information Processing - a VLSI-directed approach".

788

References

[I] R. Barbuti, M. Bellia, G. Levi and M. Martelli, On the integration of logic
programming and functional programming, Proc. 1984 Svmp. on Logic Programming
(IEEE Comp. Society Press, 1985), 160-166.

[2] R. Barbuti, M. Bellia, G. Levi and M. Martelli, LEAF: A language which
integrates logic, equations and functions, in Logic Programming: Functions. Relations and
Equations. D. DeGroot and G. Lindstrom, Eds. (Prentice-Hall, 1986), 201-238.

[3] M. Bellia and G. Levi, The relation between logic and functional languages: A survey,
Journal of Logic Programming 3 (1986),217-236 .

[4] P.G. Bosco and E. Giovannetti, IDEAL: An Ideal DEductive Applicative Language,
Proc. 1986 Symp. on Logic Programming (IEEE Comp. Society Press, 1986), 89-94.

[5] P.G. Bosco, E. Giovannetti and C. Moiso, A completeness result for a semantic
unification algorithm based on conditional narrowing, to appear in Proc. Foundations of
Logic and Functional Programming (Trento 15-19 December 1986).

[6] P.G. Bosco, E. Giovannetti and C. Moiso, Refined strategies for semantic
unification, Proc. TAPSOFT '87. LNCS 250 (Springer-Verlag, 1987), 276-290.

[7] P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso and C. Palamidessi, A
complete semantic characterization of K-LEAF, a logic language with partial functions,
Proc. 1987 Svmp. on Logic Programming (IEEE Comp. Society Press, 1987).

[8] P.G. Bosco, E. Giachin, G. Giandonato, G. Martinengo and C. Rullent, A
parallel architecture for signal understanding through inference on uncertain data, Proc.
PARLE Conference. LNCS 258 (Springer-Verlag,1987), 86-102.

[9] D. Brand, Proving theorems with the modification method, SIAM J. Comput. 4 (1975),
412-430.

[10] N. Dershowitz and D.A. Plaisted, Logic Programming cum Applicative
Programming, Proc. 1985 Svmp. on Logic Programming (IEEE Comp. Society Press,
1985), 54-66.

[II] L. Fribourg, SLOG: A logic programming language interpreter based on clausal
superposition and rewriting, Proc. 1985 Svmp. on Logic Programming (IEEE Comp.
Society Press, 1985), 172-184.

[12] G. Giandonato and G. Sofi, Parallelizing Prolog-based inference engines, ESPRIT
Project 26, T4.3 Techn. Rep. (Sept. 1986).

[13] E. Giovannetti and C. Moiso, Some aspects of the integration between logic
programming and functional programming, to appear in Proc. of AIMSA '86
(North-Holland).

[14] E.Giovannetti, G. Levi, C. Moiso and C. Palamidessi, Kernel LEAF: an
experimental logic plus functional language - its syntax, semantics and computational
model, ESPRIT Project 415, Second year report (1986).

[15] J.A. Goguen and J. Meseguer, Equality, types and generic modules for logic
programming, in Logic Programming: Functions. Relations and Equations. D. DeGroot and
G. Lindstrom, Eds. (Prentice-Hall, 1986), 295-364.

[16] W. Goldfarb, The undecidability of the second order unification problem, Theoretical
Computer Science 13 (1981), 225-230.

[17] J. Heering and P. Klint, The efficiency of the equation interpreter compared with the

789

UNH Prolog interpreter, SIGPLAN Notices 21, n. 2 (ACM, 1986). 18-21.

[18] S.Holldobler, A Unification Algorithm for Confluent Theories, Personal Communication
(1986).

[19] G. Huet, Resolution d'equations dans les langages d'ordre 1.2....CO. These de Doctorat
d'Etat. Universite' Paris VII (1976).

[20] T. Johnsson, Lambda-lifting: Transforming Programs to Recursive Equations, Proc. of
Int. Conf. of Functional Programming Lnguages and Architectures. LNCS
201 (Springer-Verlag, 1985), 190-203.

[21] J.W.KIop, Term Rewriting Systems, Notes for the Summer Workshop on Reduction
Machines (Ustica, 1985).

[22] A. Martelli, C. Moiso and G.F. Rossi, Lazy unification algorithms for canonical
rewrite systems, to appear in Proc. of Colloquium on Resolution of Equations in Algebraic
Structures. Lakeway, May 4-6 (Prentice-Hall).

[23] D. Miller and G. Nadathur, Higher-Order Logic Programming, Proc. of Third Int.
Conf on Logic Programming. LNCS 225 (Springer-Verlag,1986), 448-462.

[24] M. O'Donnell, Equational Logic as a Programming Language, (M.I.T. Press, 1985),
54-62.

[25] G. Revesz, Axioms for the theory of Lambda-conversion, SIAM J. COMP. vol.14, n.2
(May 1985), 373-382.

[26] P.A. Subrahmanyam and J.-H. You, FUNLOG: A computational model integrating
logic programming and functional programming, in Logic Programming: Functions.
Relations and Equations. D. DeGroot and G. Lindstrom, Eds. (Prentice-Hall, 1986),
157-198.

[27] H. Tamaki, Semantics of a logic programming language with a reducibility predicate,
Proc. 1984 Int. Symp. on Logic Programmine (IEEE Comp. Society Press, 1984),
259-264.

[28] D.A. Turner, MIRANDA: a non-strict functional language with polymorphic types, Proc.
of Int. Conf. of Functional Programming Lnguages and Architectures. LNCS
201(Springer-Verlag,1985), 1-16.

[29] D. H. D. Warren, Higher order extensions to Prolog. Are they needed?, Machine
Intelligence 10 (Ellis Horwood, 1982), 441-454.

[30] D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309. SRI
International (Oct.1983).

[31] J.-H. You and P.A. Subrahmanyam, E-unification algorithms for a class of confluent
term rewriting systems, Proc. ICALP'86. LNCS 226 (Springer-Verlag, 1986), 454-463.

790

P r o j e c t No. 818

D E L T A - 4 Definition and Design of an open

Dependable Distributed computer system architecture

MARTIN Bull SA
1 rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
Tel.: (33) 76 39 76 13
Telex: 980648

1. INTRODUCTION
The overall aim of Delta-4 project (n°818) is the Definition and
Design of an Open Dependable computer system architecture covering
a wide application area, especially CIM and Office Systems. Three
key quality attributes of the Delta-4 architecture are
dependability, performance and software portability.
Following successful completion of the pilot phases of the ESPRIT
Delta-4 and Concordia projects, the Commission of the European
Communities has approved a large scale continuation project which
combines the two. The project is continuing under the title of
Delta-4; this second phase started on 1st March 1987 and will have
a duration of two years and a budget of 8.8 MECU. The industrial
partners of the present consortium are Bull (F) prime contractor,
BASF (D), Ferranti (UK), Jeumont-Schneider (F) and Telettra (I).
The research partners are IITB-FhG (D), FIRST-GMD (D), IEI-CNR
(I), INESC (P), LAAS-CNRS (F), LGI (F), MARI (UK) and the
University of Bologna (I).

2. MAIN OBJECTIVES
The Delta-4 project is targeted to provide a distributed
environment for several application areas. These applications
present generic aspects in terms of Information Processing,
Communication Systems, Data base Systems, Object sharing, Man-
machine Interface. Specific applications such as Computer
Integrated Manufacturing, Process Control, Office System,
Transport Information System, Banking System,..., increasingly
require a fault-tolerant distributed support.
In the area of fault-tolerance and distributed systems, most of
the existing products are of US origin. As examples Tandem,
Stratus and August for fault-tolerance. Locus, Apollo and Sun for
distributed systems. The fragmentation of Community
manufacturers' activities has not produced recognised products in
this area.

791

Most of the existing solutions do not offer a sufficient openness
by the fact that they are limited to specific applications, and
that they are proprietary, making difficult, and even impossible,
use of these solutions for other existing computer systems. The
environment provided by the Delta-4 project is OPEN, in the sense
that it allows the use of existing proprietary computer systems,
it accomodates the connection of heterogeneous equipment and it is
capable of co-existing with, and interworking with, ISO standards
conforming to the OSI model.

The main objective of Delta-4 is to elaborate an open european
solution, that improves the current state-of-the-art in terms of
fault-tolerance and distributed systems, and that allows european
companies to offer competitive products on the world-wide market.
In order to achieve this objective, the Delta-4 project has built
up a european association of users, computer systems manufacturers
and research organisations, all of these partners having an
important background in the above-mentioned areas.
The delta-4 project does not content with defining new concepts,
but also intends to apply and to demonstrate them. The
demonstration prototypes within the project have been formulated
to show, at regular intervals, tangible advances in a progressive
manner which can be readily exploited and engineered into
commercial products by european industry. The distributed
architecture is a living architecture accomodating technological
evolution by means of continuous prototyping. A first
demonstration has already been provided using Phase 1 prototypes.

3. OVERALL APPROACH TO DEPENDABILITY AND DISTRIBUTION
The major objective of the Delta-4 architecture is to enable
modular configurations of systems offering a range of fault-
tolerance and performance in an open distributed environment.
DEPENDABILITY is the quality of the delivered service such that
reliance can be justifiably placed on the service. It includes
reliability, safety and security. Dependability avoids system
failures that may be costly in loss of human lives, productivity,
custom and privacy. Dependability is procured within Delta-4 by
fault-tolerance techniques. Fault-tolerance is the provision, by
redanduncy, of proper service despite occurence of faults.
Distribution and fault-tolerance are tightly related. Should a
single element of a distributed system fail, users expect at worst
a slight degradation of the service that they are offered;
distributed systems must thus at least have some built-in fault-
tolerance. On the other hand, most fault-tolerant systems can, at
some level, be seen as a distributed system due to their redundant
processing resources.
The Delta-4 project pursues this tight relationship between
distribution and fault-tolerance in order to offer an architecture
that is both open and dependable. Applications supported by the
Delta-4 architecture can be made incrementally fault-tolerant on a
service-by-service basis. At system configuration time, the
application designer can choose which services he wishes to make
fault-tolerant and to which degree. Several techniques for fault-
tolerance are supported; the application designer can thus choose,

792

according to the available resources, the technique that best
suits his application and make the necessary trade-offs between
fault-tolerance and performance.
The management of fault-tolerance and distribution will
nevertheless remain invisible to the application programmers. This
allows SOFTWARE PORTABILITY i.e. to re-use existing or part of
existing software.
The Delta-4 architecture consists of a number of (heterogeneous)
host computers interconnected by a dependable communication
system, the application software being executed by the host
computers.
One of the main dependability goals of Delta-4 is fault-tolerance
with respect to hardware faults. Delta-4 achieves the tolerance of
host hardware faults through the use of replicated software
components executing on distinct hosts.
It is important in an open architecture using existing proprietary
computer systems that the fault-tolerance mechanisms be capable of
withstanding arbitrary host failure behaviours ("fail-
uncontrolled" hosts). However, the architecture is also able to
take benefit of "fail-silent" hosts, i.e. hosts possessing
autonomous error-detection and confinement mechanisms that can be
assumed to stop if they fail.
It is also intended to study new techniques for ensuring the
confidentiality, authenticity and availability of information in
high-security applications based on intrusion-tolerance (tolerance
of intentional faults).
With regard to communication issues, Delta-4 selects among
existing ISO services, those that are necessary, and extends these
to take into account not yet satisfied needs, especially those
related to fault-tolerance requirements. The Multicast
Communication System (MCS) provides multi-end-point communications
and is based on atomic multicast protocols, using logical
designation. Multicasting is the basis for the management of
replicated software components. The MCS uses standard Local Area
Networks (DIS 8802.5 Token Ring, DIS 8802.4 Token Bus and ANSI X3
T9.5 FDDI). The atomic multicast protocols located at layer 2 of
the OSI model extend the standard MAC (Medium Access Control)
protocols, allowing MCS to co-exist and to interwork on the same
LAN with ISO communication systems, especially with MAP for CIM
communications. MCS enables portability of ISO applications by
providing a superset of the ISO Common Application Service
Elements (CASE).

Delta-4 is also contributing dependability concepts and
techniques, through ECMA, to the new ISO upper layer architecture
work item on Open Distributed Processing. The computational
Reference Model which forms the basis of this work was promoted by
the UK Alvey Advanced Network System Architecture Project - ANSA.
Delta-4 is collaborating with this project in evaluating the
relationship between the ODP Reference Model and dependability. We
are doing this by implementing an instance of the proposed ODP
Support Environment which will embody our dependability models.
This instance, to be known as DELTASE, will be complemented by

793

language constructs for application binding and be directly
supported by the underlying MCS.
The Delta-4 architecture provides a range of PERFORMANCE in terms
of responsivity and respect of the various deadlines imposed by
the different targeted applications.

4. MAIN ACHIEVEMENT OF PHASE 1 (March 86 - February 87)
Due to the reduced scale of the one year first phase of Delta-4 by
comparison with the long-term objectives of the project, it was
necessary to follow two different approaches:

- a top-down approach that consisted in undertaking research to
identify the project requirements and to define appropriate
concepts, methods and architecture in order to fulfil the
main features of Delta-4, that are distribution, performance,
dependability and openness

- an anticipative approach, whose goal was to develop some
basic component prototypes of the Delta-4 system, which had
been considered as of general interest in any case, i.e.
whatever the results of the top-down approach were.

The main results of Delta-4 phase 1 were as follows :
- Delta-4 Overall System Specification; issued in August 1986
with the publication status open, this deliverable includes
the requirement and objectives of the Delta-4 project, the
dependability and performance concepts, an overview of the
proposed architecture and the relationships to OSI model and
standards.

- Dependability in Delta-4: concepts and techniques. Provided
in February 1987 with the publication status restricted, this
specification includes items such as:

° types of faults taken into account in Delta-4
° policies of fault-tolerance management
• mechanisms for effective error processing ; transaction
concept

* computational model issues
° Communication-, Fault-tolerance- and Maintenance-Network
Management

- Cluster Multicomputer Specification; issued in February 87
(publication status restricted), this specification includes
the design concepts of the hardware and operating system

794

software for a high-performance and cost-effective Network
Station to support the Delta-4 System architecture. This
specification introduces items applicable to the whole Delta-
4 architecture such as:

° an Applications Support Environment (DELTASE)
• a method of invoking remote operations (RSR: Remote
Service Request).

Delta-4 Phase 1 provided three prototypes and the corresponding
functional specifications:

- Trial implementation of Inter Process cooperation protocols;
a software generation utility, interface generator,
activator, and language and communication libraries, which
activate servers and transfer data between client and server,
have been implemented. The implementation is based on Modula
2 and UNIX and operates RSR.

- Real Time UNIX prototype; the extensions to UNIX System V.2
include priority and deadline scheduling and the associated
new system calls, detection of missed deadlines, preemptive
scheduling of high priority process with respect to lower
priority processes, reduction of interrupt latency.

- Multicast Communication System prototype; this first
prototype was based on an IEEE 802.5 Token Ring LAN. The
generalisation of ISO standard point to point communications
towards MCS multipoint communications induced the definition
and implementation of adapted Session and Transport services
and protocols, while the MAC services and protocols are an
extension of DIS 8802.5 (Token Ring), offering an ascendent
compatibility, i.e. providing both an ISO access and a
multicast access.

5. FIRST DELTA-4 DEMONSTRATION
Delta-4 demonstrators are intended to be exhibited every year
during the project life. The first demonstration was shown at the
end of Phase 1; it demonstrated the three prototypes listed above.
This demonstration is divided in three separate parts:
a) The Real Time UNIX demonstration
This demonstration, on a Ferranti UNIMAX machine, shows extensions
to UNIX System V to support real-time processes as well as
standar UNIX facilities. Various mixes of real-time and time
sharing processes are shown competing for CPU time under a pre
emptive real-time scheduler which takes each process's priority
and optional deadline into account.

795

b) The Remote Service Request (RSR) demonstration
This demonstration shows the prototype high-level language
construct supporting RPC-like invocation of remote services in
parallel with the continued execution of client processes. This
first prototype implements the construct with pseudo-remote
services: it is scheduled in the present phase of the project to
be integrated with DELTASE and hence with the Multicast
Communications System.
c) The Multicast Communication System (MCS) demonstration
This demonstration involves heterogeneous computer systems: one
Ferranti UNIMAX machine, three Bull SPS7 machines and two IBM
compatible PCs.
All of these equipment are connected to a single Token Ring LAN.
The two PCs communicate through standard protocols, while the four
other machines simultaneously use MCS.
The distributed demonstration application consists of:

- a file server that performs accesses to a file on behalf of
client processes,

- one or several client processes requesting over the network
read or write accesses to the file.

The file server may be replicated on different equipment;
different scenarios are implemented according to the supposed
fault-tolerance attributes of the stations ("fail-silent" or
"fail-uncontrolled") and to the fault-tolerance attributes the
user expects from the file server ("don't care", "error detection"
or "service continuity").
This application wants to demonstrate that MCS enables:

- the communication between heterogeneous computer systems, co
existing on the same LAN with equipment using standard
protocols (OPENNESS),

- to garantee the consistency of the file, whatever be the
number of server copies or of client processes (ATOMICITY,
CONSISTENCY of the file copies).

- to reach the dependability requirements of the user according
to the dependability attributes of the stations (ERROR
DETECTION, ERROR RECOVERY, DYNAMIC RECONFIGURATIONS).

The Delta-4 project is also presented at this ESPRIT Conference
week 87 by means of this Phase 1 demonstration.

796

6. MAIN OBJECTIVES OF DELTA-4 PHASE 2 (March 87 - February 89)
During Phase 1, possible techniques for achieving dependable
system operation in Open Systems were analysed. The analysis
concluded that these techniques permitted systems to be built from
a heterogeneous set of hosts, each of which may be fail-silent or
fail-uncontrolled. It was shown that each technique could be
supported by MCS.
One of these techniques, the Passive Replicate Model, has been
pursued independently by the ESPRIT CONCORDIA project. The Delta-4
work has prototyped components which can support all techniques,
but for analysis purposes has primarily concentrated on the other
identified approaches. This complementarity has allowed the Delta-
4 and Concordia partners to combine resources to undertake the
second phase of work.
In phase 2, it is planned to develop sufficient prototype system
elements to support the mounting of an industrial-scale
demonstrator project under ESPRIT 2. In preparation for such a
project, a major industrial user, BASF, has already joined the
project to provide guidance on user requirements and to plan
suitable applications which would permit the various prototypes to
be integrated.
In parallel, work already started in phase 2 in order to validate
design and protocols and to undertake the standardisation of
components of the Delta-4 architecture by direct involvement on
standardisation committees such as ECMA and IEEE.
The technical issues for the distributed architecture in Phase 2
are as follows:

- extensions to MCS including enhanced functionalities (inter
connection of LANs, CASE services), performance (real time
services, design of custom VLSI integrating atomic
multicasting on Token Ring) and versatility (through
implementation of Token Bus and fibre optic Token Ring
connections, redundant medium).

- a computational-model-related work which provides the
consistent overall framework for the use of the
dependability-related mechanisms, and also language support
for a distributed Object Model and an open Application
Support Environment,

- implementation of Communication, Fault-tolerance, and
Maintenance Network Management functionalities,

- specification and prototyping of fail-silent controllers,
- analysis and specification of a technique based on intrusion

797

tolerance through the use of fragmentation-scattering in a
file storage system,

- integration of all of these components in the demonstrators,
- specification and implementation of demonstration
applications.

7. CONCLUSION
The project is active both in specifying generic distributed
architectural features and in developing resulting prototypes. The
presently designed environment for distributed applications could
be completed in an ESPRIT 2 project, by a distributed system
environment.
Active contribution to the standard committees will be developed,
particularly for ODP (formerly known as DASE) at the ECMA
committee; relationships with other european project(s) are
intended to be established, in particular in the area of
distributed architectures, and Office System and Computer
Integrated Manufacturing applications. As an example, a
cooperation with the UK Alvey Advanced Network System
Architecture project has already started.
The importance of demonstrating the total architecture in an
industrial environment is recognised and a further project is
planned under ESPRIT2 in which large-scale pilot sites will be
installed. Within this framework, it is envisaged to extend the
present consortium to other users and to other computer systems
manufacturers.

798

Project No. 967

PADMAVATI* : PARALLEL ASSOCIATIVE DEVELOPMENT MACHINE AS A VEHICLE
FOR ARTIFICIAL INTELLIGENCE

by
Philippe ARSAC
Project Manager

THOMSON-CSF Division CIMSA-SINTRA
Pare d'Activites KLEBER
160, Boulevard de Valmy
B.P. 82
92704 COLOMBES

Abstract
This ESPRIT project, started on 24th of February 1986, is a cooperative effort
between THOMSON-CSF Division CIMSA-SINTRA (prime contractor), CSELT (Italy),
and GEC (United Kingdom). Are involved as subcontractors : THOMSON-CSF LER
(France), NON STANDARD LOGICS (NSL France), PROLOGIA (France), UNIVERSITA DI
TORINO (Italy), POLITECHNICO DI TORINO (Italy).
Its objectives are to provide a software and hardware mock-up and give way to
symbolic architecture concepts achieving high performances validation. Domains
investigated are parallelism in LISP and PROLOG, associative devices at
different hierarchical levels, preliminary studies in knowledge based system
connection and in symbolic and numerical integration. First year was a system
definition phase, middle stage will be hardware and software integration.
During the last year we will implement applications in the fields of image
recognition (LER), speech understanding (CSELT), natural language (GEC), and
study interactions with PROLOG III.

PADMAVATI is a MIMD symbolic dorsal architecture connected with a MicroVax
host. For performance and flexibility compromises : processing is based on the
Transputer, a Delta Network provides non local communications, and the links
connecting the Transputers into rings convey the local communications. We have
distinguished for PROLOG : Dispatching Processors (DPs) and Processing
Elements (PEs). With the implementation of PROLOG on a (DP) and a (PE) we
study microparallelism in sequencial PROLOG interpreters and validate Associa
tive Devices concepts. Studies in parallel PROLOG led us to the definition of
two different PROLOG models. One is close to a dynamic sort of "Delta Prolog",
the other is annotated and uses "Intelligent Backtracking". Studies in paral
lel LISP led us to provide the parallel machine with an implementation of a
standard LISP system (Le_Lisp), extended with facilities for explicit concur
rency. Asynchronous communications, debbuging facilities, host interfacing and
loose communication with PROLOG, are ensured by the run time support.

*This research is 50 % founded by the European Economic Community (EEC) under
contracts for ESPRIT Project 1219 (967).

799

1 - INTRODUCTION
Since the announcement of the Japanese Fifth Generation project, researchers
all over the world have been working even harder towards results compatible
with the industrial demand at a middle range date.
However very few projects have focused simultaneously on the hardware level,
the parallel computational model, the application level ; and made finally all
work together in real scale.
This is the goal of the ESPRIT Project n° 1219 (967) "PADMAVATI", the mean
being the partners having complementary expertise in order to provide a near
term oriented mock-up. It is designed to support parallel LISP and parallel
PROLOG in a efficient way.
At the hardware level, our research had to provide enough performance
possibilities, keeping flexibility to support different explicit/implicit
computational models.
The main difficulty is that when a sufficient grain of parallelism is sought
after (100 processors or above), physical, language and algorithmic levels
interact to a considerable extent.
Because of the considerations reported in 2.1, we retained for the basis of
our architecture the one defined in project ESPRIT n° 26 (fig. 1). N Transpu
ter processors, up to 128, are interconnected by :

- a packet switched network of the Delta topology,
- a local network constituted of Transputer links.

Figure 1 : PADMAVATI basic architecture

1

j

PN " PN PN

DELTA NETWORK

P N . PN

HOST

. L
PN

800

This highly parallel machine was adequate for investigation of various compu
tation schemes. However we wanted to investigate speed-up of each node as well
as the best repartition of the work and data between them.
We thought associative devices would accelerate PROLOG whose key feature is
unification, and accelerate LISP for functions using pattern matching. We
remembered D.H.D. Warren's [14] dictum :

Unification = Pattern Matching + the Logical Variables.
We decided to incorporate such features in the architecture. The interesting
point being that the speed-up of associative processors would add to the
speed-up obtained by parallelism.
Exploration of the solutions and validation of the concepts have been
achieved. They concern Hash Coding techniques, Content Adressable Memories
(CAM) and Filtering Operators as precised further. We will measure the
improvements in real context in the next stages of the project.
A workable model of LISP has been defined, suitable for continuous speech
understanding.
Several PROLOG computational models have been studied. This study was at
language level and also about the repartition of the data and programs between
the processors.
Applications and the related algorithms are studied in this project : image
recognition, speech understanding, natural language. Useful informations about
continuous speech understanding can be found in [3]. However the application
parts will not be related in this paper.
We will discuss successively the main conclusions drawn at this stage at the
hardware and basic software level, on different points above-mentioned. Our
report is splitted in two parts : architecture and software. It is only a
convenient way of presenting things and does not reflect our thought process.

2. HARDWARE ARCHITECTURE
2.1. Basic architecture
We had in mind future VLSI implementation of the machine. This led us to
reject solutions based on a centralized shared memory, incompatible with that
approach.
Our basic choice was to use a concept of global distributed storage, already
investigated in other contexts, at first with the CM*, then followed by
Darlington's ALICE, Keller's REDIFLOW, the BBN Butterfly and the RP3.
In our MIMD model, each node is seen as a Processing Node (PN) accessing
locally to a page of the global memory space, and accessing through remote
pointers to objects located in other PN's.
We thought that a packet-switched network, belonging to the family of Delta
network, was the ideal interconnection structure for a system being both
highly parallel and asynchronous.
At the PE level fast switching capabilities were required to tolerate long
latency times in accessing remote memory.
A sufficiently fast context switching of 1/us (1 order of magnitude faster
than other microprocessors), the OCCAM language providing synchronisation at

801

the system level, led us to the TRANSPUTER choice.
This basic architecture is summarized in figure 1.
Details about the 2 types of connections between the nodes and their
motivations are related in detail in [3].
2.2. Hardware enhancements for PROLOG
Our vision of PROLOG led us to isolate two main functions that directed our
hardware vision.
Statistics of G. Berger Sabbatel [2] report that 40 % of the execution time is
spent in the procedures relative to the environment management. 25 % of time
is spent for resolution, 25 % of time is spent for unification.
According to these, we found it was feasible to distinguish two types of
processors at the hardware level.
2.2.1. Dispatching Processors (DP)
The designation came from the parallel view where DP distributes the tasks to
other processors according to the load balancing.
According to the statistics above-mentionned, DP is in charge of the access to
clauses, and realizes a preunification . He is connected to an Associative
Memory Subsystem (AMS) for helping him in his clause access. AMS is made of a
CAM and hash-coding operator detailed farther on (figure 2). The connection to
the Transputer is done using a bus extension we designed. DP manages the hash
tables and memory structures relative to the clauses.

Figure 2 : DP and its AMS

<
32 BIT EXTENTION BUS

(DP) mh

; >

802

2.2.2. Processing elements (PE's)
On the same basis, we have PE realizing unification and management of the
environments. PE is connected to a CAM with the bus extension we designed.
The CAM is used as a cache, to have a fast access to environments (figure 3).

Figure 3 : PE and its CAM

$

32 BIT EXTENTION BUS
$

2.2.3. Sizing of hardware enhancements
The objectives were to determine the average number of clauses and arguments
in PROLOG programs, in order to have usefull acceleration by hardware.
39 application programs were analysed by M. Py including 3736 clauses, 1501
facts and 2235 rules.
The mean value are 2.35 arguments in a clause, and 2.29 arguments in a packet.
Furthermore 87 % of the packets have 3 or less arguments.
The interest of our research increases when big packet size are reached, i.e.
in data base problems.
2.2.4. Hash Coding Operator (HCO)
In compiling PROLOG D.H.D. Warren realizes hashing on one argument. To be more
efficient, our measures led us to have a hashing scheme with the 3 first
arguments.
However for complexity problems we were led to realize that hashing only to
access clauses whose 3 first arguments are constants. Other cases are managed
by a filtering done by the CAM.
The HCO operates a polynomial division computation transforming a n-bits
information into a m-bits results (m<n). The output result is used by the DP
to address the memory part holding the hash-tables.
2.2.5. CAM

The CAM designed is general enough to be used in two different uses : preuni-
f icat ion and variables access. They are cascadable to reach a total size of
16 K words of 32 b i ts . The design allows don't care f ields for variables.

803

Preum'fication. The method is an extension of the one of Robinson [10] :
our clause heads contain variables. CAM is well adapted to such clauses which
are also far less numerous than those with constants in the case of knowledge
base applications.
Variables access. We only store PROLOG variables that have been instanciated,
not the whole environments. We create dependencies between variables and their
environment. That allows a global reset when backtracking, and compared with
traditional implementations avoids covering reference chains.
2.3. Hardware enhancements for LISP
Two enhancements have been studied for LISP : the CAM and a coprocessor.
2.3.1. CAM
The previously mentionned CAM can be profitably used to speed up LISP.
Two examples of functions that may benefit from the CAM are selector functions
and memo functions.
2.3.2. LISP coprocessor
The main idea came from the observation that in many interpreters a lot of
time is spent in a critical loop.
Only taking 5 to 10 % of the code, the execution of this loop enhanced the
performance by an order of magnitude in a 68000 previous version.

Figure 4 : PADMAVATI global architecture including extensions

1
HOST -[CP

\>

NUMERICAL

MEMORV

■ Of ♦ ^— » •
rwa ftt>

]

1 - I

DELTA

n* . ?€♦
Crtl CM

c—>.
DB

FP
"V"

NETWORK

<T^>
• « * *
DB

- FP
i

DICTIONARY

804

2.4. Knowledge based interface, symbolic and numeric integration
These studies were not to be implemented in the framework of this project. We
adapted existing work to our context.
Concerning the knowledge base interface, we started from the work done in
Grenoble [1]. PROLOG is seen as a support of relational algebra. We designed a
filtering processor compatible with our parallel architecture and with the
PROLOG model studied.
Symbolic and numeric integration gave way to a loose coupling solution. The
work is continuing in another ESPRIT Project n° 1588 SPAN (Symbolic Processing
And Numeric).
Figure 4 describes the complete architecture.

3. SOFTWARE ARCHITECTURE
3.1. Introduction
As pointed out in the introduction, software architecture was defined concer
ning parallel LISP and parallel PROLOG.
The LISP parallel model is based on a set of programs communicating results
via messages.
In PROLOG, to start with we have investigated an analogous philosophy than
LISP. Then we came to a more promising philosophy for PROLOG using Intelligent
Backtracking [4]. It will be fully implemented in March 1989.
An intermediate stage, whose deadline is March 1988, is made of a PROLOG
splitted on a pair of DP/PE.
In the parallel LISP or PROLOG models, the processes are synchronously commu
nicating with run-time support processes that manage buffering and routing of
messages. The MicroVax host supports the I/O and the file system. The debug is
also managed by the host via VMS processes.
The OCCAM processes are simulated by VMS processes.
We will now describe the principal features of the computational models
defined concurrently with the hardware.
3.2. LISP software architecture
Le_Lisp from INRIA [5] has been used as a starting point of our language. The
computational model consists of a set of concurrent Lisp processes stat ical ly
allocated into the processing elements.

The communication between these parallel processes is made through asynchro
nous SEND/RECEIVE primitives.

Le Lisp LLM3 vir tual machine is directly compiled into Transputer assembly
cricfe. This allows efficiency at each process level .

Each process is defined to have n input buffers, one for each message type.
The sending process gives a pr ior i ty to the messages to be queued.

The syntax of the non-blocking SEND primitive is :

(SEND proc- l is t buffer prior msg).

805

. p r o c - l i s t : l i s t of receiver process names.

. bu f fe r : bu f fe r name.

. p r i o r : p r i o r i t y .

. msg : S - expression.

The syntax of the RECEIVE p r im i t i ve i s :

(RECEIVE var (bu f fe r - 1 body 1)
(bu f fe r - 2 body 2)

[(body - e l s e)]) .

. var : name of the var iab le assigned to the received expres
s ion .

. b u f f e r - i : name of the selected bu f fe rs .

. body-i : to be evaluated a f t e r receiv ing the corresponding
message.

. body-else : form to be evaluated i f no message i s present in the
selected bu f fe r .

Figure 5 : LISP computational model

3K
3BK

3.3. PROLOG software architecture

We will exibit to start with the ideas of the PROLOG splitted on a DP and a
PE. The we will show the approaches studied and retained for parallelism.

806

3.3.1. Distributed PROLOG

This step had two goals :

- Simulation and validation of hash-coding and associative access
independently of the parallelism.

- Evaluation of the gain obtained in such a sp l i t t ing and the
messages overhead.

Figure 6 summarizes the spi t t ing.

This distr ibut ion allowed a rather straight forward repart i t ion of the
internal structures of the interpreter.

A l inear representation of terms avoids conversions into an usual form to the
serial l inks. Usually :

Transfer time = Linearization + Transmission + Delinearization

We have with the l inear representation :

Transfer time = Transmission

Links allows transmission at a 20 M Bit/s rate.

Figure 6 : Spl i t t ing of PROLOG between DP and PE

REPARTITION OF TASKS BETWEEN

(DP) AND (PE).

ACCESS TO CLAUSES
WITH PREUNIFICATION■

RESOLUTION.

- UNIFICATION.

This sp l i t t ing allows preunification in advance. The chaining of clauses
without variables (hash-coding tables) gives directly the address of the next
preunified clause. For other clauses OP wi l l be doing the f i l t e r i n g , while PE
wi l l be performing unif icat ion. That method allows suppression of choice
points when not necessary.

807

Other easy speed up are obtained by :
. detection of the / in first position of the tail (no choice point

to be created).
P (...)-» / q ;
P (...)-» / ... ;
P (...)-» ... ;

. detection of empty tail (allows the next resolution to proceed
immediatly).
3.3.2. Parallel PROLOG
We will report the different PROLOG models we have studied. The first
paragraph reports a type of macro-parallelism. It has sharpen our views about
distributed memory management but will not be implemented.
Then we will summarize the model defined for this project, based on
distributed AND parallelism.
3.3.2.1. Initial parallel PROLOG studies
The simulations of this model were oriented in 3 steps. First, PROLOG was
extended with OCCAM like communication primitives. No variables were shared
between concurrent statically allocated processes. Then, distributed back
tracking was introduced. To end with, we allowed dynamic creation of processes
and chanels. That dynamic creation gave a power of expression greater than
Delta Prolog [9].
However for semantic clarity, we shall not implement this version.
3.3.2.2 A parallel PROLOG model : LOGARITHM
We have kept the syntax and evaluable primitives of C-PROLOG. The "//"
construct is added to indicate parallel evaluation of arguments.

Ex : P (...) // q (...).
Because of parallelism the use of the cut is not allowed in a subtree whose
root is "//".
We rejected languages based on Guarded Horn Clauses, like PARLOG [6] or
Concurrent Prolog [11]. The reason is we wanted to keep the non determinism
and completeness of sequential PROLOG semantic.
We used Intelligent Backtracking [4] extended for parallelism. Using a
dependency graph, it allows backtracking to the possible causes of failure,
instead of taking the last choice point.
Computational model
The evaluation of a goal is managed by a process. Process are created for the
subtrees of a AND parallel node.
Each process is made of a complete Warren abstract machine. Communication
between processes are achieved by their common variables like in PARLOG [6].
Preliminary measures
According to simulations, in the map coloring problem, the extension speed

808

appears to be hundred times faster than the same problem written in
PROLOG II.
Conclusion
LOGARITHM appears to be rather promising. However better performance ideas
will be given in an implementation where clauses will be semi-compiled in
Warren code extended to parallelism.

4. CONCLUSION
Let us summarize what has been done and what are the next stages hopes.
The hardware has been fixed and is starting to be built. The different
computational models are implemented and critical parts are measured on the
Transputer.
It is a major advantage of the Transputer to be able writing code on one
processor, then splitting the code on several processors to obtain true
parallelism.
Boards of 4 Transputers (B003-2) can be easily connected in a rack of 10 cards
(B201-1).
The splitting of PROLOG on a DP and a PE under implementation will give us a
good idea of the communication overhead, in case of a small grain of
parallelism. Measures about PROLOG will also lead us to evaluate the best
proportion between DP numbers and PE numbers. It will also help to refine our
strategy of load distribution.
In the year 1989, studies of interactions with PROLOG III will show us how our
architecture can accelerate what could be a major advance in logic program
ming. This year will also fully validate our developments with applications
whose performances with more traditional vehicles are known.

ACKNONLEGMENTS
I would like to thanks all the people that are related to the project in the
EEC, in the various Companies and Universities, and that I cannot all
mention.

809

REFERENCES

[1] G. BERGER SABBATEL, W. DANG, J.C. IANESELLI, G.T. NGUYEN, Unification
for a Prolog database machine, (2nd Int. Logic Programming Conference,
Uppsala - Jul. 84).

[2] G. BERGER SABBATEL, "Mesures comportementales sur 1'interpretation de
PROLOG". Actes du seminaire TREGASTEL 86 (CNET LANNION 86).

[3] P.G. BOSCO, E. GIACHIN, G. GIANDONATO, G. MARTINENGO and C. RULLENT, A
parallel architecture for signal understanding through inference on
uncertain data, PARLE, volume 1 Parallel Architectures (Eindhoven, the
Netherlands, June 15-19, 1987, Proceedings).

[4] M. BRUYNOOGHE, L.M. PEREIRA, "Deduction revision by Intelligent
Backtracking", Implementations of PROLOG, (Ellis Harwood, 1984).

[5] J. CHAILLOUX, M. DEVIN, J. HULLOT, LeLisp a portable and efficient LISP
system, Proc. of the 1984 ACM sym. on LISP and Functional Programming,
(Austin Texas, August 1984), PP 113-122.

[6] K. CLARK and S. GREGORY, Parlog : A Parallel Logic Programming Language,
(Imperial College London 1984, Research Report Doc 83/5).

[7] F. GIANNESINI, H. KANOUI, A. PASERO, M. VAN CANEGHEM, Prolog
(Intereditions, Paris 1985).

[8] V. HERMENEGILDO, "Efficient management of backtracking in AND -
Parallelism", (Lecture Notes in Computer Science, London, July 1986).

[9] L.M. PEREIRA, L. MONTEIRO, J. CUNHA, J. APARICIO, Delta PROLOG a
distributed backtracking extension with events, University Nova de
Lisboa, Third International Conference on Logic Programming 1986,
(Spinger-Verlag).

[10] I. ROBINSON, A Prolog Processor based on a pattern matching memory
device, Third International Conference on Logic Programming, (Lecture
Notes in Computer Science, London, July 1986), PP 172-179.

[11] A. SHAFRIR, E. SHAPIRO, Distributed Programming in Concurrent PROLOG,
(Tech. Rep. CS84 - 02 ICOT - 1984).

[12] THOMSON-CSF DIVISION CIMSA-SINTRA, CSELT, GEC, LER, NSL, PROLOGIA,
UNIVERSITA DI TORINO, POLITECHNICO DI TORINO, (PADMAVATI Deliverable 1
on system definition, March 1987).

[13] M. VAN CANEGHEM, L'anatomie de PROLOG II, These d'Etat, (Universite
d'Aix - Marseille 1984).

[14] I. VUONG, A. WOZNIAK, S. KRISHNA, I. FILOTTI, KOALA : A cost effective
workstation for fast LISP interpretation, (Rapport de recherche LRI,
Universite Paris Sud).

810

[15] D. WARREN, "Implementing PROLOG", (Tech. report 39, Edinburg University,
May 77K
[16] D.H.D. WARREN, "An abstract Prolog instruction set", (Technical note

309, SRI International, Menlo Park, California, October 1983).

811

Project No. 857

USER MODELLING IN THE GRADIENT PROJECT

Erik Hollnagel
Computer Resources International
Vesterbrogade 1A DK-1620 Copenhagen V, Denmark

George Weir
University of Strathclyde, Scottish HCI Centre
George House, 36 North Hanover Street, Glasgow Gl 2AD, United Kingdom

Gunilla Sundstrom
Gesamthochschule Kassel, Fachbereich Maschinenbau
Labor, fur Mensch-Maschine Systeme
Monchebergstrasse 7 D-3500 Kassel, F. R. Germany

ABSTRACT

In the design of the GRADIENT system several user modelling strategies are
required to provide flexible support not only across different operators but also
to particular operators at various stages of expertise. Our approach is to
separate the role for operator modelling according to tasks within the
GRADIENT system. Thus, we distinguish between the need for modelling
operator's plans at the level of control operations from the tasks of modelling
the operator's strategies in dialogue. A third facet of modelling is addressed in
designer support tools which complement the GRADIENT system. Here, the
designer can employ an intelligent graphical editor which comes complete with
insight on the target operators in terms of display ergonomics and domain
dependent graphical standards.

1. THE GRADIENT PROJECT

GRADIENT (for GRAphical Dialogue environmENT) is a five year ESPRIT project to
design and develop a graphics and knowledge based dialogue interface for industrial
Supervision and Control (S&C) systems - process control, power distribution and data
communication networks - and, more generally, monitoring of multiple, dynamic activities.
The project has two main objectives. Firstly, to develop a prototype Graphical Dialogue
Environment which can support operators in their monitoring and supervision tasks, and,
secondly, to build a suite of software tools which support designers in implementing a
particular GRADIENT application. In each of these aims, an essential requirement is the
facility to model the end-user. In this paper we detail the role of such modelling in each of
the GRADIENT objectives and argue for a distributed approach to modelling in a system
of this nature.

1.1 General Background

Current S&C systems provide least support for the operator at those moments when it is
most needed - during adverse conditions - and the dialogue between the system and the
operator is usually inflexible and non-adaptive. If graphics display systems are used, they
function by assembling pre-packaged pictures, to present information anticipated by the
display designer.

812

In GRADIENT, we are investigating the use of knowledge-based systems to support
operator decision making during normal and adverse system conditions. GRADIENT will
use techniques from knowledge processing and user modelling to support a flexible,
dynamic dialogue system. The operator of the S&C system will be given intelligent support
during fault investigation, emergency cont inment, process tuning, and system modification.
This is to be achieved by a set of interacting expert systems which will provide:

o knowledge-based alarm analysis and fault identification,
o recognition and monitoring of operator tasks and strategies,
o intelligent control of the dialogue between the operator and the S&C system,
o communication to the operator by dynamic generation of graphics displays.

The project is using a demonstrator S&C system to prototype, test, and evaluate each stage
in the development of the knowledge-based modules. Construction of these component
systems is being preceded by development of an improved S&C dialogue system and a set of
intelligent design tools for use in building advanced graphics display systems.

2. SYSTEM ARCHITECTURE

The impetus for the Gradient project derives from two principal shortcomings of current
control systems. Such systems provide little or no support to operators during emergency
situations, and ordinarily maintain inflexible dialogue between operators and target systems
(cf. Alty et al., 1985).

The Gradient design will consist of three co-operating expert systems which support an
advanced dialogue system. Additionally, an intelligent graphical interface will enable the
operator to handle a large volume of information from the control system. The graphical
display will be formed and controlled by a graphical expert system, allowing it to decide not
only what information should be displayed but also how it should be displayed intelligently.
An overview of the system is given in Figure 1.

Flexibility in dialogue is achieved from the design phase through use of support tools for
the dialogue and graphics designers. These tools maintain inbuilt knowledge relevant to the
application domain, and are able to provide checks on the detail and consistency of
dialogue and graphics specifications as they are composed.

Operator support is concentrated in three knowledge-based systems. The first of these, the
Support Expert System (SES), acts as an intelligent consultant to both the operator and the
other modules of the GRADIENT system. The remaining two act as intelligent monitors.
The Quick Response Expert System (QRES) monitors key values from the process through
the S&C system and handles alarms generated by the existing S&C system. Using a small,
finely-tuned knowledge-base, QRES responds quickly to error syndromes, advises the
operator of the most important condition and recommends possible restorative action.

The Response Evaluation System (RESQ) monitors operator actions in order to identify
erroneous actions or potentially problematic trends in nis behaviour. Any such indications
will trigger warnings from RESQ to the operator.

At the heart of GRADIENT lies its Dialogue System. This system (DIS) is charged with
control of communication between each of GRADIENTS advisory components and the
operator(s). The DIS architecture must accommodate multi-threaded asynchronous
interaction between operators and GRADIENT. In addition, it should be able to assist

813

r \
O P E R A T O R

P R E S E N T A T I O N
S Y S T E M

[f
s &c

S Y S T E M

P R O C E S S

V̂_

G R A P H I C A L
E X P E R T
S Y S T E M

D I A L O G U E
S Y S T E M

Q R E S 3

(C I N T E L L I G E N T
G R A P H I C A L

E D I T O R

D I A L O G U E

S P E C I F I C A T I O N

M O D U L E
V̂_

R E S Q

S U P P O R T T T
EXPERT I
SYSTEM J

J)

E S P R I T # P 8 5 7 - G R A D I E N T

G e n e r a l S y s t e m A r c h i t e c t u r e

814

operators in framing queries to the SES, through its inbuilt knowledge of dialogue and of
the operator's interaction with GRADIENT. (For more detail on the DIS architecture see
Airy & Johannsen, 1987.)

3. USER MODELLING

In accord with the structure and functionality of the GRADIENT system, user modelling is
relevant in several places. At the initial design phase of any GRADIENT implementation,
the designer requires support with both dialogue and graphical specifications. In part, this
takes the form of inbuilt operator models. In the Dialogue iystem, modelling is required in
order to support operators with query formation and SES directed dialogue. Finally, RESQ
must maintain models of operator action strategies in order to support its interpretation of
operator behaviour. Details of the strategies employed for each or these requirements are
given below.

3.1 User Modelling For Dialogue Designers

The requirements on the dialogue designer are quite specific. If the designer is to
characterise adequately the possible range of interaction between operator and the
GRADIENT system, he must have a master's grasp of the target process. Since the purpose
of the dialogue system is to handle queries from operators and warnings and advice from
the GRADIENT sub-systems, the individual who designs the dialogue must be acquainted
with the range of possible queries that may arise in relation to the application domain. In
turn, this knowledge allows him to specify operators' likely dialogue objectives, in reaction
to what they may ask, and under which circumstances they may ask it. Effectively, the
dialogue designer will have two tasks. Firstly, he must specify the range of possible queries
and answers between operator and SES. This will be done using a high-level dialogue
specification language as part of the dialogue design tool (cf. Alty & Mullin, 1987).

Subsequently, based upon his initial dialogue specification, the designer is required to
characterise typical dialogue objectives or dialogue plans. These plans form the basis of a
dialogue user model, in terms of which the GRADIENT Dialogue System (DIS) can lend
support in operator interaction. In effect, this model will allow DIS to reason about the
operator's likely concern, given the query options he selects in relation to specific process
states. This overlay model of dialogue plans should serve not only the GRADIENT
Dialogue System in its monitoring and operator prompting roles, but will also provide
valuable insight for the graphical design module, where the graphics designer can be
advised both of the sequence of dialogue and the likely dialogue contexts. Part of the role
of the dialogue design tool is thus to provide the designer with support in formulating an
operator model for dialogue. The dialogue design tool does not itself cortain or employ any
such model. In this respect it differs from its complementary graphics design support tool.

3.2 User Modelling For Graphics Designers

Current design of graphics for support of operators of dynamic systems is mainly based on
the "common sense" of the person doing the design. In other words, the design process
relies on a lay-man's hypotheses about the behaviour and the needs of operators. This
situation can be improved by providing the designer with an explicit model pertaining to
aspects of operators' problem solving behaviour in supervisory and control situations. The
question arises as to which aspects of operators' behaviour may be modelled and which type
of user model would be appropriate. A cognitive modelling approach, i.e. actually
accounting for cognitive processes by simulation, should be based on an existing cognitive

815

theory. Since there is a deplorable lack of sufficiently developed cognitive theories, this is
not a viable option at present.

Clearly, one source of insight into operator objectives is the dialogue design tool mentioned
above. This will provide valuable information in the form of dialogue plans. This and other
aspects of operator behaviour to be modelled must be related both to information
processing behaviour and be of importance in existing theories of operators' problem
solving behaviour. One feature which meets these two criteria is operators' information
seeking strategies.

Information search has been stressed in all process tracing approaches (Newell & Simon,
1972) and also in the information processing approaches suggested by Rouse (1983) and
Rasmussen (1984) within the field of man-machine studies. On this basis, it seems
reasonable that the user model should provide the designer with general knowledge about
operators' information search strategies as well as knowledge about factors that are known
to influence information search. Obviously an operator model for use by the system
designer should contain general knowledge about how operators process information in
supervisory and control situations and not knowledge about any specific operator. This
requires a canonical rather than an individual model (Rich, 1983).

In order to be able to structure knowledge about information search, behavioural
descriptors are necessary. Operator behaviour may be described as either categorisation,
planning, or action (ct. Rouse, 1983). In addition, the problem solving process is
characterised as decision making where the decision alternatives are hypotheses about the
state of the process (related to categorisation) or about possible actions (related to
planning). The evaluation of the hypotheses gives rise to information search. Thus, the
model provided to the designer is basically a choice model represented in a state-space
(Simon, 1983). Nodes in the state space represent conditions for and consequences of
actions. In order to be able to represent the choice model in the state-space, knowledge
about the objects and their relations within this state-space has to be accumulated. This is
derived by task analyses in the particular application domain for any GRADIENT
implementation.

Such explicit knowledge on operator behaviour can be used by the designer in the course of
designing the pictures and display sequences which will eventually be presented to the
process operators. The canonical user model will act as a pre-programmed image of a
typical operator and act as a standard against which to assess and advise the designer of the
graphical specification.

33 User Modelling In Dialogue

In GRADIENT, the Dialogue System is concerned to follow the interaction of operators
with SES and in their selection of graphical information screens, in order to offer the most
appropriate or most efficient dialogue options for the given context. At the same time, DIS
attempts to make operator interaction as flexible as possible. The latter is achieved through
the use of Dialogue Assistants, which constitute packets of dialogue or conversations on
specific aspects of SES interaction. Access to these assistants is structured such that various
levels, including a top-level assistant, are always available to the operator, who can thereby
pursue any line of enquiry at will. In addition, interaction with SES on any topic may be
discontinued whenever the operator chooses. (See Alty & Mullin (1987), for more on
Dialogue Assistants.)

Dialogue options are made available to operators by menu selection. While it will always be
possible for the operator to invoke a desired option, the precise combination of menu

816

options presented at any one time may be varied in accord with insight from the dialogue
user model. Thus, if the operator's interaction with SES indicates a likely interest in a
specific process sub-system, the menu option to view this sub-system in detail will be

assigned greater priority. Thereby, the user model provides advice to the presentation
system on which dialogue routes immediately to offer the operator in his exchanges with
SES.

3.4 User Modelling In Action Monitoring

The principal role for RESQ within the GRADIENT architecture, is in the monitoring and
analysis or operator actions. RESQ performs this function in terms of operator plans. A
plan is defined as consisting of a goal and an activity which is one or more actions in an
ordered sequence. For any given situation the operator is assumed to have a goal or target.
A task is defined as the activity (or sequence of actions), described on the level of
generalised functions, by which the man- machine system can reach the goal. If the goal is
simple, a single task may suffice. But if the goal is complex, and possibly composed of
separate sub-goals, a set of tasks or a more complex activity may be required.

The individual actions in an activity may be either unique or replaceable, and one or more
steps in an activity may be either required or optional. This makes it rather difficult to
produce a generic description of an activity, let alone trying to follow it. However, the
situation is further complicated because individual actions may match more than one
activity (one-to-many mapping), just as more than one action may match a step in a activity
(many-to-one mapping).

The general method used in RESQ is based on a description of the set of potential plans
(goal-activity lists). These must be provided in advance by the system designer, either based
on the design specification or on extensive knowledge ehcitation. Within each goal-activity
list the individual actions must be marked as being replaceable/unique or required/optional.
(This may, of course, also be the case for sub-sequences consisting of several actions, but
these may then be regarded as a single conglomerate action in relation to the particular
goal). Initially, only one or a few goals are active. At least one must be active, but
depending on how the situation is initiated there may also be two or more. The active plan
is transferred to a separate knowledge base. Here it will be interrogated whenever an event
takes place, i.e. whenever there is input to the system.

In the simplest possible case, a new action is checked against the next expected action in
one of the current active plans. If the action matches the step it is marked in the plan, which
is further checked for completion. If the action does not match, the set of passive plans are
searched to see if the action fits into any of them as the first step, in which case that
particular plan is added to the set of active pans. This must, of course, be done with due
regard to whether an action is unique/replaceable or required/optional. This alone makes
the scheme far from straightforward to implement.

Clearly, there are limitations to this simplistic approach. What happens, for instance, if the
action does not match any known plan? It could be because the set of plans is incomplete;
because the action is misplaced, e.g. a human error as in a slip; or because the action is
simply wrong, i.e. a genuine error or mistake. Furthermore, the position of an action in a
task sequence may not be unique in isolation, but only when seen in relation to the actions
that precede and follow it, i.e. it may be necessary to keep several possible orderings 'alive'
at any one time. A complete solution must obviously be based on a theory or taxonomy of
human error and make heavy use of the reasomng techniques developed in artificial
intelligence applications, particularly the idea of 'possible worlds'.

817

4. DISCUSSION

A notable feature of our approach to operator modelling is the distribution of models in
accord with the modelling objectives of particular GRADIENT modules. Thus, we have
one model in the Design Tools, one in the Dialogue System and a third in RESQ. Why have
three models when, ostensibly, one would do?

In the first place, the requirement for user modelling at the design stage, when both the
dialogue and graphics specifications are defined, involves us in deriving part of the user
model from the dialogue and graphics designer. This source of operator insight,
supplemented by information from knowledge acquisition and task analysis and also an
account of operator's information search strategies, is employed off-line from the particular
GRADIENT application. In contrast to the two on-line models, the user model available
for the design of the graphics does not change as a function of who is using the system. In
consequence, focus is less on the detection of current operator's objectives than on
representing key factors of operator behaviour as well as establishing a relation to the
process of designing graphics.

The requirements for the on-line user modelling are very different. In the latter group of
models, the concept of plans (behavioural or dialogue), as well as their detection, are of
central importance. Thus both the user model in DIS and in RESQ focus on monitoring
current behaviour of operators. In RESQ, the need for user modelling centres on
monitoring operator actions in real time. As such, while dialogue plans may be of some
value, in terms of insight into operator's purpose, they will be substituted by behavioural
plans that account for the dominant patterns of interaction with the process. The main
difference between the user models in RESQ and DIS is that the latter centers on dialogue
objectives and dialogue plans, while the former focusses on behavioural plans with the
intention of correcting operator behaviour. The user models envisaged within GRADIENT
differ in the purposes they serve. In itself, this gives good reason for maintaining distinct
models in such a complex interactive system. Reflecting their different objectives, the user
models in RESQ and DIS will employ different knowledge bases. RESQ is concerned with
the user's behaviour in relation to control actions, whereas DIS attends to the operator's
dialogue with the GRADIENT advisory systems. Clearly, these require different insights. In
turn, this difference in knowledge requirements will be reflected in the use of different
inference mechanisms.

While there may be a connection between an operator's objectives in dialogue with
GRADIENT and his control objectives for the S&C system, the complexity, not to say,
opacity of such relations set them outside the scope of current modelling techniques. To
some degree, this reflects the lack of a generally recognised theory of cognitive user
modelling. In the absence of such an approach, functional separation of user models is the
only viable alternative.

5. ACKNOWLEDGEMENTS

The work reported here was carried out under ESPRIT Project #857 in a consortium
consisting of CRI (Copenhagen, Denmark), BBC (Heidelberg, F. R. Germany), University
of Kassel (Kassel, F. R. Germany), University of Strathclyde (Glasgow, Scotland), and
University of Leuven (Leuven, Belgium). The contributions of all members of the project
consortium are gratefully acknowledged.

818

6. REFERENCES

Alty, J. L., Elzer, P., Hoist, O., Johannsen, G. & Savory, S. (1985). Literature and user survey
of issues related to man-machine interfaces for supervision and control systems. Copenhagen,
Denmark: Computer Resources International (ESPRIT P600 Final Report).

Alty, J. L., & Johannsen, G. (1987). Knowledge based dialogue for dynamic systems. Survey
paper IF AC 10th World Congress, Munchen, F. R. Germany.

Alty, J. L. & Mullin, J., (1987), The Role of the Dialogue System in a User Interface
Management System. Proceedings of Interact' 87.

Newell, A. & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, N.J.: Prentice
Hall.

Rasmussen, J. (1984). Strategies for state identification and diagnosis in supervisory control
tasks, and design of computer based support systems. In, W.B. Rouse (Ed.), Advances in
man-machine systems research. Vol. 1. Greenwich: JAI Press.

Rich, E. (1983). Users are individuals: individualizing user models. International Journal of
Man-Machine Studies, 18, 199-214.

Rouse, W. B. (1983). Models of human problem solving: Detection, diagnosis, and
compensation for system failures. Automatica, 19, 613-625.

Simon, H. A. (1983). Search and reasoning in problem solving. Artificial Intelligence, 21, 7-
29.

819

P r o j e c t No. 857

DIALOGUE DESIGN FOR DYNAMIC SYSTEMS

J L Alty and G R S Weir

Scottish HCI Centre, University of Strathclyde, George House, 36 North
Hanover Street, Glasgow Gl 2AD, Great Britain

The importance of separating dialogue for application in an interactive system is
emphasised. The Dialogue Controller architecture proposed for the ESPRIT
GRADIENT system is outlined. This provides an intelligent interface to dynamic
and supervisory systems. The approach is based upon a multi-channel dialogue
handler, the dialogue knowledge being separated out in a series of
knowledge-based dialogue assistants. The relationship between the dialogue
controller and the other modules in the GRADIENT architecture is discussed.

1. INTRODUCTION

A major effort in the GRADIENT project (P857) is directed toward improvements in the
design of dialogue for complex dynamic systems. The need for improvements in this area
became evident in an earlier pilot phase project (P600). In the pilot phase, an operator and
literature survey indicated that current dialogue systems for process control were lacking both
in adaptability and flexibility (cf. Alty, Elzer, Hoist, Johannsen and Savory, 1985). These
problems were undoubtedly due in part to the complexity of design for such large-scale
applications.

In the face of such complex design requirements, one line of attack from our project is the
development of designer support tools for dialogue and graphical specification. The main
weapon for assault on the flexibility problem is the architecture of the GRADIENT dialogue
system (DIS) itself. Both of these approaches depend upon the introduction of knowledge
based techniques. In elucidation of our strategy, the present paper, details the benefits arising
from functional separation of dialogue from tasks and the design requirements placed upon the
DIS architecture by the exigencies of dynamic systems.

2. DIALOGUE SEPARATION

The governing principle underlying dialogue specification is that dialogue should be definable
separately from the tasks in the application. Although this seems desirable, interactive
dialogue has in general, been regarded simply as part of the programming code of the
application, initiated from input/output statements embedded in conventional languages. This
has a major drawback if one wants to vary the way in which user and application
communicate. Whilst variability in the communication can be achieved through extensive use
of conditionals the approach is clumsy. It is not easy, for example, to record user interactions
for future analysis, the dialogue cannot adapt to different user circumstances and any changes
to the dialogue result in major programming updates. Furthermore no analysis can be
performed on the dialogue. Edmonds (1982) suggested that the dialogue aspects of an
interaction should be separable from the application code, and early dialogue systems such as
CONNECT (Alty and Brooks, 1986), SYNICS (Edmonds and Guest, 1984) and RAPID

820

(Wasserman and Shaw, 1983) provided dialogue creation facilities which supported this
separation. Generally, a "dialogue controller" is driven by a specification of the dialogue and
this controller communicates both with the user and with the application. Techniques used for
specifying the dialogue included transition nets (Woods, 1970), production rules (Waterman,
1978), event-driven approaches (Green, 1986) and Command and Control Languages such as
TICCL (Kasik, 1982).

The benefits from functional separation of dialogue and application code are considerable. For
example, the set of actions can be logged for play-back or for analysis. This is important
given the current pragmatic nature of dialogue design. The dialogue can be readily changed
without altering the application code. Different dialogue sequences can be provided to cope
with users of differing experience and a limited form of on-line adaptability can be supported
(see the CONNECT system for example (Alty and Brooks, 1986)).

Importantly, such functional separation allows the dialogue to be cast in the form of a
specification language which can in turn be analysed (for example using Path Algebras (Alty
and Ritchie, 1986)) and used for prototyping. Specification techniques include transition
network specifications, modified forms of BNF notation (Reisner 1981) and multiparty
grammars (Shneiderman 1982). See Jacob (1983), for a review of dialogue specification
techniques. For a critical evaluation of dialogue specification techniques and their possible use
in adaptable systems see Cockton (1987).

This paradigm of dialogue-task separation enables support tools to be provided which make
the construction of the dialogue a much easier task. Examples include interactive net
construction in CONNECT, graphical construction of dialogues as in RAPID and a complete
interactive workstation approach as in the FLAIR system (Wong and Reid, 1982). Yet this
approach still suffers from a number of weaknesses. The dialogue definition is usually task
dependent. In other words the sequence of actions on the net (or set of rules) have an intimate
dependency with the task being performed. Furthermore, any implemented adaptability
(possibly supported by some form of user modelling) is also implicit in the specification of the
dialogue. Finally, presentation issues are normally mixed in with the dialogue specification as
well. Thus this approach solves some problems but leaves others untouched.

In order to gain further benefit from the dialogue-task separation the different functions of the
interface may be more clearly separated. One strategy is the User Interface Management
System (UIMS) architecturs (cf. Edmonds (1982), Green (1985), Pfaff & ten Hagen (1985)).
The UIMS approach distinguishes the following functional components of a user interface
system.

The Presentation System - This is responsible for the external presentation of the user
interface i.e. how a particular request or interaction will be carried out in the hardware
available. It does not concern itself with which particular presentation technique has been
chosen. Naturally, this module is heavily dependent upon the actual hardware used in the
interaction.

The User Model - This module advises the Dialogue System on the interaction style which
should be used to communicate with a particular user or category of user, based upon its
knowledge of the user in question. It might also act as an interpreter between the plans of the
application and those of the user. Plans in the User Model would, of course eventually map
onto application plans.

The Dialogue System - This system controls all interaction between the other modules. It
serves as a form of telephone exchange and also holds general dialogue knowledge about the
objects being manipulated and presentation styles available. It will normally have some
application-dependent information.

The Application Model - This takes the form of an explicit representation of the tasks in the
application and thereby allows the Dialogue System to reason about aspects of the application.

821

In the design of the GRADIENT system, we have adopted these principles of functional
separation at several levels. In the first place, our Dialogue Design Tool will employ a
top-down dialogue specification technique. This secures the benefits of dialogue-task
separation detailed above. Furthermore, this tool will support the designer as he specifies the
dialogue, by providing logical checks and analysis on his dialogue specification. Assistance
will also be available towards integrating dialogue and graphical specifications for a single
application.

Our approach to dialogue design, based upon functional separation, is further reflected in the
overall design of the GRADIENT system. In keeping with the UIMS architecture, the
GRADIENT design has separate modules for presentation, dialogue and application model.
This ensures the greatest possibility of flexible control over display, dialogue content, and
mode of addressing the application. Flexibility in dialogue is secured jointly by this separation
and by the design of our Dialogue System.

3. DIS ARCHITECTURE

Process control imposes additional constraints on dialogue design compared with traditional
human-computer interaction. It requires a rapid response time in critical situations, and has a
large number of continuously changing state variables. Additionally, the Supervision and
Control (S&C) System is fronted by a team of operators working on multiple Visual Display
Units. In the full GRADIENT system there must be interaction between the operators, the
dynamic system, its automation (S&C system) and all the intelligent interface and operator
support modules. In order to simplify handling all such interactions a further functional
separation is made between low-level dialogues processed by the Presentation System and
high-level dialogues through the Dialogue system. The former low-level interaction involves
direct display of process variables and handles operators' manipulation of the process.
Although the latter is monitored by the Dialogue System, it is infeasible to manage process
values, with their rapid variation, through the main Dialogue System. Likewise, in order not
to delay operator control over the process, a direct link with the S&C system will always be
available to the operator.

The central role for the Dialogue System lies in handling interaction between operators and the
GRADIENT advisory systems. This requires that numerous conversation channels be
available to the several operators. Furthermore, these channels must operate concurrently,
interfacing each operator to the Support Expert System, which is part of GRADIENT, or
interfacing GRADIENTS operator warning systems.to output channels.
With this in mind, the DIS architecture has to meet three principal objectives. It should
provide interruptable handling of conversation channels and should support the high-level
dialogue specification technique employed in the Dialogue Design Tool. Thirdly, it must
provide flexibility in dialogue such that operators no longer feel constrained or trapped in
interaction sequences (cf. Alty, et al, 1985).

The first of these features is secured by including an Interrupt Handler and Scheduler in the
Dialogue system. Additionally, a Dialogue event Handler controls a particular interaction once
initiated. Different 'conversations' are made possible by use of 'Dialogue Assistants'.
Dialogue Assistents contain the knowledge necessary to conduct interaction between operator
and SES, or between a GRADIENT alarm system and an operator. In brief, they are used by
the Dialogue System to handle application dependent conversations. Assistants will form a
hierarchy with some assistants acting on the knowledge of others. Just as the operator can
interrupt when he wishes a specific service, to call a particular assistant, Dialogue Assistants
are able to interrupt the Dialogue System when further services are required, i.e. from other
assistants. This approach has been termed the 'event model' (Green, 1985), and provides
advantages such as allowing operators to conduct parallel dialogues with different assistants.
This asynchronous approach to the DIS architecture is illustrated in Figure 1, below.

822

1-

Assistant \

f \ \
T a s k - Assistant ^

"u ' ' T a s k - Assistant < -

. 1 /
T a s k - Assistant

'1

DIALOGUESYSTEM

i W1ERRUPTHANDLER .
AND SCHEDULER

L
; D1ALOGUEEVENT .
I HANDLER
i

- DRESEfiTAT10N

SYSTEM

.

1

SHARED KNOWLEDGE

FIGURE 1 - iNTERRUPTABLE DIALOGUE SYSTEM

When the system is initiated, one Dialogue Assistant will act as a "top level assistant". This
will present the first level of user options to the operator, and enable the dialogue to
commence. Thereafter, different assistants will come into play as required. This assistant
concept is a general one and there will be assistants to help with presentation issues as well as
task execution.

Currently, Dialogue Assistents are being implemented as event-driven networks in order to
capture both the event and sequence nature of interactions. We have used a transition network
interpreter/compiler in Franz Lisp (Ritchie, 1987) which overcomes a major limitation of
other systems such as RAPID. This is running on a Texas Instruments Explorer
Lisp-machine in KEE3 (software by Intellicorp). By regarding networks, nodes, local and
parameter variables as objects they can be reasoned about in the high-level KEE environment.

Clearly, Dialogue Assistants are the vehicle for our dialogue specification. Their contents,
which define individual conversations, are determined by the dialogue designer, and
implemented via our Dialogue Design Tool. Dialogue flexibility is assured by means of the
'dialogue packaging' offered by Dialogue Assistants. The limitations inevitably imposed by
sequence are never such as to restrict operators from pursuing other dialogues with the
system. In every case, an active dialogue can be terminated or suspended by the operator in
favour of some other interaction.

Figure 2, below, illustrates the structure of the Dialogue System within the GRADIENT
architecture. In this representation, the Application Model comprises the Support Expert
System, which can reason about the Process, and two operator alarm systems QRES and
RESQ. QRES monitors the Process and advises the operator when urgent alarm conditions
arise. RESQ monitors operator input and advises on worrying trends or possible pitfalls in
such interaction. Both QRES and RESQ have dedicated Dialogue Assistants which respond to
their output, and interrupt the Dialogue System accordingly. A Channel Sequencer Module is
required to control access of Dialogue Assistants to the SES, since many assistants may be in
conversation 'at one time'. The Knowledge Pool contains knowledge shared between several
of the GRADIENT modules, including the Dialogue system.

823

S&C

SES

QRES

RESQ

INTERRUPT HANDLER AND SCHEDULER

UUA

•*»
DIALOGUE
ASSISTANT!

•4fr

•4—►

to Knowledge
Pool

<4—►
DIALOGUE
ASSISTANT!

~1
to Knowledge

Pool

DIALOGUE
ASSISTANT!

•4—►

to Knowledge
Pool

QRES
DIALOGUE
ASSISTANT!

•4—►

to Knowledge
Pool

RESQ
DIALOGUE
ASSISTANT!

-4—»

I
TO/FROM PROCESS

<

to Knowledge
Pool

I
D
i
i

A
L
0
G
U
E

E
V
E
N
T

H
A
N
D
L
E
R

1

* » • * >

udul

udu2

udu3

udu4

KNOWLEDGE POOL

FIGURE 2 THEGRRDIENT DIRLOGUE SYSTEM

824

REFERENCES

Alty, J.L., (1984), The application of Path Algebras to interactive dialogue design, Behaviour
and Information Tech., Vol 3, No 2, pp 119 - 132.

Alty, J.L., and Brooks, A., (1985), Microtechnology and user friendly systems: the
CONNECT dialogue executor, J. Microcomputer Applic, Vol 8, pp 333 -J346.

Alty, J.L., Elzer, P., Hoist, O., Johannsen, G., and Savory, S., (1985), "Literature and
User Survey of Issues Related to Man-Machine Interfaces for Supervision and Control
Systems", ESPRIT P600, Pilot Phase Report. (Issued as Scottish HCI Centre Report No.
AMU8603/01S, 1986.)

Alty, J.L., and Johannsen, G., (1987), Knowledge Based Dialogue for Dynamic Systems, to
appear in Proc. of the 10th. IFAC World Congress on Man-Machine Systems (Munich,
1987).

Alty, J.L., and Mullin, J. (1987), The Role of the Dialogue System in a User Interface
Management System, in Proc. of Interact'87.

Alty, J.L., and Ritchie, R, (1986), A path algebra support facility for interactive dialogue
designers, In People and Computers (ed. Johnson, P and Cook, S.,),Univ. of Cambridge
Press, pp 128 - 137.

Cockton, G., (1987), Abstractions for Adaptable Dialogue Specification, in Proc. HCI'87.

Edmonds, E.A., (1982), The Man-Computer Interface: a note on concepts and design, Int J.
Man-Mach. Studies, Vol 16, pp 231 - 236.

Edmonds E.A., and Guest, S.P., (1984), The SYNICS2 user interface manager, INTERACT
'84, First IFIP Conference on Human-Computer Interaction, Vol 1, pp 53 - 56.

Green, M., (1985), The University of Alberta User Interface management system, Proc.
SIGGRAPH '85, Vol 19, No 3, pp 205 - 213.

Jacob, R.J.K., (1983), Survey and examples of specification techniques for user-computer
interfaces, Naval Research Laboratory, Washington, D.C.

Kasik, D.J., (1982), A User Interface Management System, Computer Graphics, Vol 16, No
3, pp 99-106.

Pfaff G., and ten Hagen P.J.W., (1985), Seeheim Workshop on User interface Management
Systems, Springer-Verlag, Berlin.

Reisner, P., (1981), Formal grammar and human factors design of an interactive graphics
system, IEEE Trans. Soft. Eng. SE-7, pp 229 - 240.

Ritchie, R., (1987), Private Communication.

Shneiderman B., (1982), Multiparty Grammars and Related Features for Defining Interactive
Systems, IEEE Trans on Systems, Man and Cybernetics, Vol 12, No 2, March-April 1982,
pp 148 - 154.

Wasserman, A.I., and Shaw, D.T., (1983), A Rapid/Use Tutorial , Medical Info. Science,
U.C., San Fransisco, Calif.

825

Waterman, D.A., (1978), A rule based approach to knowledge acquisition for man machine
interface programmes, Int. J. Man-Mach. Studies, Vol 10, pp 693 - 711.

Wong P.S.C., and Reid E.R., (1982), FLAIR - User Interface Dialogue Design Tool,
Computer Graphics, Vol 16, No 3, pp 87 - 98.

Woods, W.A., (1970), Transition Network Grammars for Natural language Analysis,
Comm. ACM, Vol 13, No. 10, pp 591 - 606.

826

Project No. 280

TEXT GENERATION IN THE EUROHELP PROJECT : THE UTTERANCE
GENERATOR

Lene Stausholm
CRI A/S, Copenhagen
Vesterbrogade 1A
DK-1620 Copenhagen V, Denmark*

The user interface to an Intelligent Help System has a
requirement to provide help in the form of natural language
help texts. In the EUROHELP project, the responsibility for
producing the natural language form of the help is delegated
to a component called the Utterance Generator. This paper
describes the EUROHELP framework for text generation and the
current implementation of a prototype of the Utterance
Generator.

1. INTRODUCTION.
1.1. The EUROHELP Project.
The aim of the EUROHELP project is to establish a methodology for
providing intelligent help facilities for users of information
processing systems and to operationalize this methodology by
developing a Help System Development System which provides a tool
for easy design and implementation of Intelligent Help Systems
(IHS).
The IHS for a given Target Application (TA) must be able to
interpret the user's performance in order to interrupt when
something goes wrong or when there is an opportunity to extend
the user's knowledge of the TA. Furthermore, the IHS must be
able to answer questions from the user taking account of the
context of his current interaction with the TA.
Thus, the help facilities of the IHS are both active and passive
- active, when the IHS offers the user advice, passive, when the
user initiates a help session by asking the IHS a question.

1.2. Requirements of the Help provided by the IHS.
The help presented to the user must fulfill a number of
requirements, of content, form, and presentation in order to be
easily understood and thus fulfill the goal of the IHS: to help
and teach the user of a specific TA.

* Partners of the EUROHELP project (Esprit P280) are: CRI A/S (Denmark), DDC (Denmark),
Courseware Europe (Netherlands), University of Amsterdam (Netherlands), University of Leeds (UK),
and ICL (UK).

827

Concerning the form of the help, the IHS must be able to present
it in the form of Natural Language (NL) help texts, as NL is one
of the most effective means of communication. Whenever
appropriate, help in form of graphics should be used; this has
however not been investigated within the project so far.
The most basic requirements of help in the form of NL help texts
are listed in the following:
Content:
- the information presented to the user must be relevant,

i.e. take account of the context of his current
interaction with the TA
the help text must be based on concepts the user
understands

Formulation:
- help texts must be syntactically correct
- help texts must be linguistically coherent
Presentation:
- the presentation of the help text must be clear and

agreeable

1.3. Text Generation in the EUROHELP Project.
The EUROHELP project is well-suited for text generation:
First, the NL used in help texts represents a sub-set of "real"
NL, i.e. the vocabulary is restricted and the syntactic
structures are simpler than in "real" NL.
Furthermore, one of the (many) difficult issues of text
generation, deciding what to say, which requires a knowledge base
containing the relevant information and heuristics for retrieving
it, is taken care of, as there is a representation of the
individual TA, the Application Model, which other components of
the IHS use for deciding the content of the help texts.
Thus, in the EUROHELP project, the requirements to the content
and formulation of help texts are fulfilled by generating help
texts using :

a representation of the TA, the Application Model, common
for all the components of the IHS

- knowledge about the user contained in the User Model
- knowledge about linguistics contained in the Utterance

Generator

Compared to other approaches to production of help texts, such as
on-line manuals (canned text) or slot-filling in text-frames
without linguistic control, the EUROHELP-approach provides a
number of advantages:
First, it ensures the relevance of the information contained in
the help texts and the linguistic quality of the help texts.

828

Second, keeping in mind that the aim of the EUROHELP project is
not to develop just one IHS but a Help System Development System
for generating several IHSs, it provides a flexible way of
producing the help texts.
Compared to on-line manuals, for which all help texts must be
typed in, the IHS-developer (i.e. the person using the Help
System Development System to generate an IHS) will have to do a
lot less typing.
The linguistic rules are not dependent on a specific TA, i.e.
they are general, and may therefore be used to generate help
texts for different TAs.
During the generation process, text templates representing
sentence patterns are filled in with NL words. This also
provides flexibility since the sentence patterns and the NL words
in the dictionary are re-used for different help texts.
Finally, the Application Model and the linguistic rules may be
used for generating different kinds of texts.
In the EUROHELP project, the responsibility for generating the NL
help texts is delegated to a component called the Utterance
Generator. The Utterance Generator is only concerned with the
linguistic realization of the help texts. The reason(s) for the
user's need for help and the content of the help texts are
determined by other components of the IHS. The rest of this
paper is focused on the current implementation of a prototype of
the Utterance Generator.

2. THE PROTOTYPE OF THE UTTERANCE GENERATOR.
2.1. Background Information.
The purpose of implementing a prototype of the Utterance
Generator was to evaluate the structure of the Utterance
Generator and the linguistic rules controlling the generation
process described in Stausholm [1].
As the focus of the prototype was the linguistic aspects of text
generation, the prototype was implemented as a stand-alone piece
of software with no connection to any other components of the
IHS.
The prototype was developed in the fast prototyping environment
offered by a XEROX 1186 with InterLisp-D/LOOPS.
The prototype generates NL help texts in English for a sub-part
of Unix Mail. The structure of the Utterance Generator is NL
independent. Therefore, presupposing that language dependent
parts such as NL words in the dictionary and some of the
linguistic rules controlling the generation process are modified,
the Utterance Generator may be used to generate help texts in
other NLs.

829

2.2. The Architecture of the Prototype.
As the prototype was not connected to the components of the IHS
determining the content of the help text nor to an Application
Model for a TA, it not only had to contain the linguistic
knowledge belonging to the Utterance Generator proper but also an
Application Model (in this case for a sub-part of Unix Mail) and
an interactive interface allowing the user of the prototype to
decide the content of the help text.
Figure 1 below illustrates the architecture of the prototype (the
arrows indicate the flow of information):

The P r o t o t y p e ol the Utterance Generator

O -
/ l \
/ \

m e n u I n t e r l a c e

l ist ol text templates

A p p l i c a t i o n

M o d e l

I /
U t t e r a n c e G e n e r a t o r

NL help texts

F i g u r e 1

2.3. The Application Model.
The Application Model includes all the information specific to a
particular TA. Since a full-scale Application Model would be
time-consuming to develop without tools to facilitate this, and
issues related to the Application Model had low priority in the
implementation of the prototype, the Application Model developed
for the prototype only describes a sub-part of Unix Mail.
The Application Model may be regarded as a network representation
of Unix Mail, describing concepts (their attributes, if commands
their parameters and effect etc.) and relations between them.
Figure 2 below** shows the linking of the concepts "UserName"
and "Char" via the relation "consists_of". The relation is
furthermore described via the cardinality (1,8) which means that
a username (in Unix Mail) may consist of one to eight characters.

* * The characters "#$" occurring In the examples throughout this paper are LOOPS-characters which
Indicate that the specific concept Is an Instance of an object.

830

#$Consists-ofUserName:
((First #$UserName)
(Last #$Char)
(Min 1)
(Max 8))

Figure 2

In addition to this kind of information, the concepts described
in the Application Model contain a reference to the NL word in
the Dictionary representing the translation of the term used in
the Application Model into NL.

2.4. The Interface.
The interactive interface, which is designed as a menu-interface,
allows the user of the prototype to act as the components of the
IHS which determine the content of the help texts.
The concepts and their relations from the Application Model are
presented to the user in menus. The user's indication of which
concepts and relations he wants to serve as content of the help
text triggers the generation of the input to the Utterance
Generator.
For each selected relation a text template representing an
appropriate sentence pattern is chosen, for example:

i sa - > ((Subject) (Verb) (SubjectComplement))

Figure 3

The concepts selected from the Application Model and a reference
to the appropriate NL verb in the dictionary are added to the
sentence pattern. Furthermore, the chosen relation is added to
the sentence pattern as its first element. This allows the
Utterance Generator to retrieve information about the chosen
relation from the Application Model during the generation
process.
As concepts and relations are chosen and templates filled in, a
list of filled-in templates is generated. This list serves as
input to the Utterance Generator. For example, the selection of
the concept "UserName" and the relations "is_a" and "consists_of"
gives the following input to the Utterance Generator:

((#$ls_aL)serName
(Subject #$UserName) (Verb #$BeVerb) (SubJectComp #$String))

(#$Consists_ofUserName
(Subject #$UserName) (Verb #$ConsistVerb) (ODject #$Char)))

Figure 4

831

3. THE UTTERANCE GENERATOR PROPER.
3.1. Architecture of the Utterance Generator.
The Utterance Generator is composed out of a Dictionary,
Interpretation Rules, Linguistic Rules, and Linearization Rules.
This architecture is inspired by Rubinoff [2].
The Dictionary contains NL words. The Interpretation Rules are used to
interpret the information in the Application Model. The Linguistic
Rules consist of Cohesion Rules controlling the application of
different means of connecting sentences and Syntax Rules. The
Linearization Rules control the generation of the final form of the
help text (i.e. punctuation, lower/upper-case letters etc.). The
latter are not described in detail in this paper.

3.2. The Dictionary.
The Dictionary stores the NL words. As the English morphology is
relatively simple, i.e. the words have very few forms, the
Dictionary stores all the different forms of words needed.
The format of the dictionary entries vary according to the word-
classes. The following figure shows the format of noun entries:

#$DirectoryNoun:
((Singular "DIRECTORY")
(Plural "DIRECTORIES")
(IndefArt "A"))

Figure 5

The noun entries contain the indefinite article in order to
ensure use of the correct morphological form of the indefinite
article which would otherwise require morphological analysis of
the specific noun. For example, the expression "Man Machine
Interface" requires the form "a" whereas the acronym "MMI" also
beginning with an "M" requires "an".
Verb entries contain present tense, singular and plural, and past
tense. The verb "be" is defined as a specific word-class as it -
in contrast to other English verbs - has both a singular and a
plural form in the past tense.
The personal pronouns also represent an example of a NL word
class which has been further specialized in this implementation,
since some of them have specific objective forms (e.g. they -
them) and others do not.
The Dictionary contains both TA dependent words and TA
independent words. Keeping in mind that the end result of
EUROHELP is a Help System Development System, the Dictionary may
be divided into a generic part which is part of the Help System
Development System and contains TA independent words such as
auxiliary verbs, determiners, and pronouns, and a TA dependent
part, which the IHS developer will have to fill in with TA
dependent words. This division would reduce the IHS developer's
workload concerning generation of the dictionary.

832

3.3. The Interpretation Rules.
The Interpretation Rules are used to interpret information in the
Application Model. For example in order to choose quantifiers
and form of nouns. An example is that the indication "(Max 1)"
shows that a concept cannot be described by a plural noun but is
always in the singular.

3.4. The Linguistic Rules.
The Linguistic Rules control the linguistic realization of the
list of templates into NL help texts. They consist of Syntax
Rules and Cohesion Rules. The Syntax Rules are not further
described in this paper.
The concept of cohesion is crucial for the quality of the help
texts: The output from the Utterance Generator must form a
unified whole and not just a sequence of unrelated sentences in
order to be characterized as a text at all (Halliday and Hasan
[3]. The Cohesion Rules are used to ensure that this requirement
is fulfilled, i.e. they control the different means by which
sentences may be connected.
The Utterance Generator achieves cohesion in the help texts via
rules concerning:

- coordination of sentences
- ellipsis of subject and/or verb
- relativization
- pronominalization of subjects and objects.

The decision of which rules to use and when to use them depends
on the number of templates making up the list, their type, and
their topic.
For example: Even though the help texts in Figure 6 begin with
the same sentence, pronominalization is used in example 2 to make
the text less complex and more legible.

1. Delete is a command which marks one or several messages for deletion.

2. Delete is a command. It takes one or several messages as parameters
and marks them for deletion.

Figure 6

Another example of a rule (which is obvious for human beings) is
that relativization is enforced in example 1, which makes the
text more fluent than if pronominalization was applied in this
case - and keeps the system from generating ill-formed texts as
"Delete is a command and marks one or several messages for
deletion".
The precondition for actually applying ellipsis, relativization,
or pronominalization is that the topic of the constituents in

833

question (e.g. the subjects) in two consecutive templates must be
the same - as illustrated by the example*** below:

Delete is a command. Delete marks one or several messages for deletion.
I
V
Delete is a command which marks one or several messages for deletion.

Figure 7

3.5. The Generation Process.
The Utterance Generator generates the NL help texts from the list
of templates by first applying the Cohesion Rules. The Cohesion
Rules are applied first, before inserting NL words, since they do
not operate on the actual NL word and since they may result in
changes to what must be output (e.g. pronoun instead of noun)(in
the following examples, the list of templates is presented as a
tree-structure):

List ol templates:

Is a co ns ls ts_ot

S u b | e c t V e r b S u b |e e t c o mp

I I I
3 U s e r N a m e # » B e V e r b # i s t r l n g

S u b | e c l O b | e c t

I U s e r N a m e # t C o n s l s t v e r b # 3 C h a r

Text structure:

Is a c o n s l s t s _ o t

S u b | e c t V e r b S u b | e c l C o m p S u b | e c t V e r b O b | e c l

I I I I I J
8 U s e r N a m e # S B e V e r b # » S t r l n g R e l P r o n # t C o n s l s t v e r b # 8 C h a r

F i g u r e 8

In this example, the indication "RelPron" in the subject of the
second template shows that the Relativization rule has been
applied. The surface form of the relative pronoun is inserted
later in the generation process.
Then, Interpretation Rules and Syntax Rules are used during
Dictionary look-up to make sure that correct forms of the NL
words are inserted in the sentences, replacing the initial
information selected from the Application Model:

* * * This example Is written in NL form instead of in its representation in the system in order to make it
more legible.

834

Text structure with NL words:

c o n s i s t s ot

S u b | e c t v e r b S u b | e c l C o m p S u b | e c t V e r b O b j e c t

I I I I I I
A U S E H N A M E I S A STRING W H I C H C O N S I S T S OF ONE TO EIGHT

C H A R A C T E R S
F i g u r e 9

Finally, Linearization Rules are enforced:

A username Is a string which consists ot one lo eight characters.

F i g u r e 10

4. CONCLUDING REMARKS.
The prototype of the Utterance Generator generates NL help texts
which are syntactically correct and coherent.
Because of the relatively limited Application Model used for the
prototype, the NL sub-set handled currently is very restricted.
For example, causal and temporal relations are not described in
the Application Model and, consequently, the issues related with
them (e.g. the choice of tense, adverbs etc.) are not included in
any linguistic rules.
However, working with the prototype showed that the structure of
the Utterance Generator is flexible - allowing modifications to
parts of it without consequences for its structure as a whole.
This facilitates future expansions of the NL sub-set and also
allows adaption to other Indo-European languages than English.
As the description of the limitations on the Utterance Generator
caused by the under-sized Application Model shows, future work on
the Utterance Generator would benefit considerably from being
integrated with "real-life" parts of the IHS. Therefore, the
experience gained from the prototype of the Utterance Generator
will be used in the forthcoming development of a pilot-system
incorporating all components of the IHS.

[REFERENCES]
[1] Stausholm, L., Functional Specification of an Utterance

Generator (CRI/EUROHELP/050, 1987).
[2] Rubinoff, R., Adapting MUMBLE: Experiences with Natural

Language Generation (in Proceedings of AAAI, Univ. of
Pennsylvania, Philadelphia, Pa., 1986, pp. 1063-68).

[3] Halliday, M.A.K. and Hasan, R., Cohesion in English
(Longman, London, 1976).

835

BIBLIOGRAPHY.
Danlos, L., Generation Automatique de Textes en Langues
Naturelles (Paris, 1985).
Holm, J., EuroHelp - Intelligent help systems. Experiences with a
prototype and directions of future work (Esprit Technical Week,
1986) .
Jacobs, P.S., Generation in a Natural Language Interface (in
Proceedings of IJCAI, 1983, pp. 610-612).
McKeown, K.R., Text Generation: Using Discourse Strategies and
Focus Constraints to Generate Natural Language (Cambridge
University Press, 1985).
Quirk, R. and Greenbaum, S., A University Grammar of English
(Longman, 1973).
Stausholm, L. , Generation of NL Help Texts (CRI/EUROHELP/045,
1986) .
Stausholm, L., Description and Evaluation of the Prototype of the
Utterance Generator (CRI/EUROHELP/054, 1987).

836

P r o j e c t No. 26

A Control Strategy for a Knowledge-Based
Approach to Signal Understanding

Egidio Giachin, Claudio Rullent

CSELT - Centra Studi e Laboratori Telecomunicazioni
Via Reiss Romoli, 274 - 10148 Torino (Italy) - Tel. +39-11-21691

ABSTRACT
This paper pertains to the activity on the understanding level of a continuous speech

understanding system. Two are the most important topics involved in this research: knowledge
representation and control strategies. The speech understanding level deals with a lattice of word
hypotheses instead of a sequence of words, thus the techniques for natural language understanding
must deal with the preoblems caused by the uncertainty of the input data, i.e. very large search
space and risk of erroneous interpretations.

The paper describes a control strategy characterized by integrating top-down and bottom-up
steps in a strictly opportunistic way. During the analysis both goals and phrase hypotheses are
generated. At each control cycle the item that has the best support from the lexical hypotheses is
selected and a forward or backward step is performed according to its type. The strategy is
formalized through the definition of a set of operators that are applied on deductive process instances
(goals and phrase hypotheses); the operators also allow the join of two different deductive processes
that have evolved independently (forward or backward).

1. INTRODUCTION
The final goal of a continuous speech understanding system is the generation of a

representation of the utterance meaning, beside the recognition of the utterance words. From this
representation a proper action can be taken in order to satisfy the needs of the user that interacts with
the system (for instance by giving him an answer to a question). Both activities, recognition and
understanding, have to be performed and should take advantage from the knowledge about words,
language and domain. Recognition must use that knowledge as a source of constraints for word
disambiguation while the understanding activity is entirely based on that knowledge and requires the
same effort as in the case of written natural language understanding.

The majority of the speech understanding systems developed during the DARPA project were
primarily involved in recognition while understanding was considered only a secondary goal. The
techniques they used for knowledge representation (mainly semantic grammars) were of low com
plexity as knowledge about language and domain had to be used for both recognition and understan
ding. That resulted in a limitation of the potentialities of the natural language understanding activity.

In our approach syntactic and semantic knowledge is not used to add constraints to a
recognition system: the issue is a natural language understanding stage that deals with the results
given by a recognition stage reflecting the current state of the art that uses only acoustic and
phonetic knowledge. More precisely the understanding stage accepts a lattice of scored word
hypotheses instead of a word sequence and performs the final part of the recognition activity, joindy
with the understanding activity.

The output of the recognition stage is a lattice of word hypotheses, each of them
characterized by a score reflecting the goodness of the match (fig. 1). The number of word
hypotheses has to be as high as necessary to contain the right hypotheses (i.e. those corresponding
to the actually uttered words). If such requirement is not met the understanding stage has to interact
with the recognition level to further analyze restricted segments of the utterance. Improvements in
signal processing and pattern recognition techniques will reduce the number of wrong word
hypotheses generated by the recognition stage and will improve the reliability of their scores. On the
other hand, improvements in natural language understanding techniques (for instance in knowledge
representation of syntax and semantics) can be exploited independently from the particular signal

This research has been partially supported by the EEC ESPRIT Project n. 26.

837

Uttered Sentence:

"DIMMI LA LUNGHEZZA DEL TEVERE"
("Tell me the length of the Tevere")

Word Hypotheses

A
lunghe

i 1
dimmi

I I

anche
I 1

lunghezza *""
la I I

del
I 1

nere
1 1

alte
I 1

Fig. 1 - Structure of the lattice of word hypotheses.

processing techniques that are used. A real advantage of this approach is the possibility of using the
same syntactic and semantic knowledge representations both as a source of constraints (to perform
the final part of the recognition activity) and as a way of structuring word sequences in order to
understand their meaning.

Nowadays the above mentioned approach is studied by a few reasearch groups, among them
the group at Carnegie Mellon University [1] and the group at University of Erlangen-Nuernberg
[2]. A common element of all these approaches is the use of a lattice of word hypotheses as the
input of the understanding stage. These approaches to speech understanding are characterized by a
more declarative way of representing syntactic and semantic knowledge with respect to the DARPA
project (usually semantic grammars are not used any more) but in our opinion there are still some
critical aspects that require new solutions. The final part of the introduction discusses two important
aspects that have been analyzed during our research and whose solutions represent the innovative
aspects of SUSY, the speech understanding parser that has been implemented in CSELT.

A convincing answer to the problem of an effective integration between syntactic knowledge
and semantic knowledge is still to come. The problem is from one side to maintain independent and
highly declarative representations for both semantic and syntactic knowledge and from the other to
use them in an integrated way in order to exploit constraints as soon as possible. While this aspect
is important for written natural language understanding (see [3] for a work of the authors on this
subject), it is vital for speech, where the search space is very large, being the non-determinism of
parsing added to the uncertainty of input data.

The central point of this paper does not concern knowledge representation, but control
strategies for speech; anyway section 4 briefly describes the knowledge representation formalism
adopted by SUSY. The reasons for the selection of such knowledge representation formalism, the
importance of integrating syntax and semantics and finally the relationships between knowledge
representation and control are described in [4].

While some speech understanding systems based on the use of semantic grammars, like
HWIM [5], were really concerned about the problem of control, now this aspect seems to be
underestimated. That is not surprising, as an increased complexity of the representation formalisms
for syntax and semantics makes a formal control policy hard to reach and often induces to the use of
heuristic methods.

The paper is organized as follows. Section 2 describes the basic requirements that a parser
for continuous speech should have; section 3 gives an overview of SUSY. Section 5 describes the
reasons for an effective formal control strategy in a problem solving environment and illustrates the
difficulties that arise when such approach is taken. The solution of these incoming problems requires
the integration of top down and bottom up activities through the generation of expectations. Refer to
[6] for a more precise comparison of our system with the most similar systems like HWIM and
HEARSAY-II and for a more precise description of our approach in terms of a highly controlled

838

blackboard system. Conceptual items called 'Deduction Instances' that represent intermediate steps
of deductive processes are introduced in section 6 while a framework that allows an effective
control strategy and the operators involved are outlined in section 7. Section 8 is devoted to a
description of the memory structures that are used to represent phrase hypotheses. Finally, section 9
contains an example that should better clarify both the aspect of knowledge representation and the
parsing strategies that have been previously described.

2. SOME BASIC REQUIREMENTS OF A PARSER FOR SPEECH
The understanding stage needs to detect, in the lattice, the best scoring sequence of word

hypotheses covering the whole utterance and compatible with the models of the language and of the
domain. The presence of word hypotheses spread all over the utterance, instead of a sequence of
words, requires a parser whose main features are related to a very high flexibility in the control
strategy. Some features of the parser are the following:

- It is important to have powerful control strategies based on the combination of word scores. An
efficient parser must take this aspect into account.

- Due to the limitations inherent in the recognition stage, a "tolerant" parser is required:
. Contiguous word hypotheses can slightly overlap, likewise gaps can exist between them.
. Very short words (e.g. articles) are normally difficult to be detected by the recognition level

and could be missing from the lattice; if they do not convey essential semantic information
the parser should understand the sentence all the same.

These requirements argue against a left-to-right parser.

- The parsing strategies must be suitable for parallelism. Only a highly parallel machine can
perform speech understanding in real time. See [7] for a discussion of a possible way of
exploiting parallelism from the parsing strategies adopted by our understanding stage.

- Syntactic and semantic knowledge must be separately defined and used in a joint way. Such
separation allows a reduction of the time required for an expert to define an application for a new
domain, i.e. to declare all the knowledge required to adapt the speech understanding system to
the new domain.

3. OVERVIEW OF SUSY
A simplified overview of SUSY is reported in Fig. 2. A recognition level, that makes no use

of syntactic and semantic knowledge, generates a lattice of scored word hypotheses that constitutes
the input data of SUSY; see [8] for recent work on the recognition system. The uttered sentences
are questions aimed to extract information form a data base pertaining to a given domain (Italian
geography).

Dictionary
Syntax

Semantics DB

Lattice of
Word

Hypotheses
!

PARSER

Utterance
Meaning

Representation

IF
Information
Access &

Natural Language
Answer Generation

Natural
Language
Answer

Fig. 2 - A simplified overall architecture of SUSY.

839

The lattice is processed by a parser that recognizes the most likely word sequence and
generates an internal formal representation for the meaning of such word sequence. The formal
representation, a conceptual graph of domain concepts connected by relations, is used to extract the
required information from the data base. Starting from such information a natural language answer is
generated and given to the user.

The parser is based on the use of a dictionary and on a set of syntactic and semantic rules.
The internal structure generated and used by the parser is a network of phrase hypotheses. So the
parser activity consists in generating continuously new phrase hypotheses that represent alternative
or cooperative paths of the parsing activity.

4. KNOWLEDGE SOURCES FROM DEPENDENCY RULES AND CONCEPTUAL
GRAPHS

The parser, during its activity, makes use of the following different kinds of knowledge:
- A dictionary, where each domain word is characterized by its morphologic and semantic features.
- A set of dependency rules (Dependency Grammar formalism, [9]) augmented with rules for

controlling morphologic agreement conditions; dependency rules must constitute a subset of the
language sufficient to cover the application.

- A set of caseframes expressed using the conceptual graphs formalism [10]. They describe
domain knowledge and are represented by domain concepts connected by conceptual relations.

Starting from the last two knowledge bases and from additional syntax/semantics mapping
knowledge, an integration of syntax and semantics is performed, generating items generically called
'Knowledge Sources' (KSs) in the remaining of the paper.

The parsing strategy can be better explained in terms of a blackboard system. The whole set
of Knowledge Sources constitutes a deduction system: the actions that a KS can perform when it is
triggered will be described in section 7 in terms of five operators; some of them behave in a forward
fashion, some in a backward fashion while others allow integration of different deductive
processes.

Each KS integrates different types of knowledge. First, the KS is characterized by a
compositional structure that results from a 'compilation' process that integrates the semantics of
one or more caseframes (expressed by conceptual graphs) with the structure of one or more
dependency rules. This compilation process is performed off-line through the use of "mapping"
information, that relates implicit grammatical relations of the dependency rules with the semantic
relations of conceptual graphs (see [11] for a discussion about the utility of such mapping in the
general case of natural language understanding).

A KS is also characterized by the associated dependency rules augmented by rules for the
control of morphologic agreement. This knowledge is transformed off-line into special structures
suitable to perform efficiently the activity of constraint propagation. All the other kinds of
knowledge used by a KS are expressed through procedures. For instance a procedure (that makes
use of thresholds) represents knowledge about the recognition system word-spotting characteristics;
it is used to impose constraints on the allowed gaps and overlaps between word hypotheses.

Two Knowledge Source examples are shown in Fig. 3. Knowledge Sources have a
compositional structure that is, in some way, similar to that of a rule, the basic difference being the
fact that the AND premises are not at all independent but highly constrained by different kinds of
knowledge: temporal constraints, morphologic and functional constraints, etc. It is the compositional
structure of the KSs that permits to see them as constituting a Deduction System.

5. THE IMPORTANCE OF CONTROL STRATEGIES
The word lattice is usually characterized by a lot of spurious word hypotheses intermixed

with the correct ones (i.e. those that correspond to words really uttered and covering the given time
interval). Some spurious word hypotheses may also happen to have a better score than the correct
ones.

5.1 Two good reasons for an effective control strategy
In a problem solving approach to speech understanding two main problems arise:

- There is a risk of erroneous understanding, that is spurious word hypotheses of the lattice can
lead to incorrect solutions before the right one is found. So the utterance can be incorrectly
understood.

- The search space is very large, adding the non-determinism typical of the parsing to the
uncertainty of input data. The whole search space cannot be explicited.

The elimination of incorrect solutions requires a method for comparing solutions so that the best one

840

a)

b)

fTo have boundaries)

CONFINARE
CG-2

(EGIONE

(ftovince) (Region)

(To wash)

BAGNARE
CG-1

(River) (Region)

Syntax-Rule RS-35:
VERBO = NOME * NOME
VERBO (modo (indie)) (tempo (pros)) (pers (3)) (num! ?y)

(trans (vit)) (complemento ! ?c) (rill (norifl))
NOME (num! 7y)
NOME (t-compl! ?c))

C) Mapping RS-35:
(VS) = (AGNT+) * (LOC+ WITH+)

Syntax-Rule RS-25:
VERBO = * NOME
VERBO (modo (panic)) (tempo (pass)) (gen ! ?g)

(num ! 7n) (trans (vt)) (complemento (passivo))
NOME (t-compl (passivo))

Mapping RS-25:
(AGNT OBJ) = • (AGNT+)

d) ;Compositional structure
CONFINARE = PROVINCIA <HEADER> REG10NE
;Syntax
(RS-35 RS-35a)
;Activation condition
G(?x) = > ACTION (?x CONFINARE)

;Compositional structure
BAGNARE = <HEADER> HUME
;Syntax
(RS-25 RS-25a)
;Activation condition
G(?x) = > ACTION (7x BAGNARE)

Fig. 3 - Simple KSs (d) derived from conceptual graphs (a), dependency rules (b) and mapping
rules (c). In the KSs, the pointers indicated in the Syntax slot (RS-35, etc.) refer to data
structures not shown in the figure.

can be selected as the correct one. A number, called Quality Factor, is assigned to them; this number
depends only on the word hypotheses involved in the solution. So we assume that a formal
probabilistic method can assign a number, called Quality Factor, to combinations of word
hypotheses, starting from their scores and from their intervals. Probabilistic models of the source of
word hypotheses and statistical correlations among them are not considered, due to the intractable
complexity of the required methods. We have experimented the following ways of assigning Quality
Factors:
- Joint probability: sum of the word hypotheses scores (seen as logarithms of their probabilities).
- Score density with or without shortfall [12].

In the examples a simplified view of the Score Density is considered: the average value of the scores
of the word hypotheses involved.

As regards the second problem, Quality Factors must be used also to direct the search, in
order to find the solution long before having to perform an impossible exhaustive search.

From the probabilistic point of view the most natural way of dealing with scored input data is
to start with the best word hypotheses and trying to combine them together until a solution is
obtained. The problem is the necessity of exploiting constraints from domain knowledge as soon as
possible to drastically reduce the combinatorial activity. On the other hand a good way of exploiting
domain constraints is a bottom up parsing strategy guided by the score of the word hypotheses in the
lattice. But this approach is inadequate when the search space is very large due to a great amount of
noise. In fact dangerous bottlenecks cannot be avoided if expectations are not considered. As an
example consider a situation where a low level constituent, part of the solution, has to be formed
using a very bad word hypothesis wl (this could easily happen). The problem is that the solution
can have a good Quality Factor (the bad score of wl is compensated by the good scores of the other
word hypotheses) but it can be unduly delayed by wl because a lot of word hypotheses have to be
considered whose score is better than wl but worse than the Quality Factor of the solution.

5.2 The role of expectations: Integrating top down and bottom up parsing
strategies.

An important feature of the parser in order to deal with these difficulties is the possibility of
creating expectations at the highest levels. This is always possible in our approach because each KS

841

has been obtained from a caseframe and can be triggered by a word that represents the caseframe
header. So a good word hypothesis has always a KS that can be activated by it. In addition the use
of dependency rules perfectly suits to this point: each node of a dependency tree is taken by a word
and such word hierarchy allows the generation of high level expectations.

The informal conclusion is that in some cases good word hypotheses cause the parsing to
proceed bottom up while in other cases they first create expectations (goals) and then cause the
parsing to proceed top down, looking for word hypotheses when necessary in order to perform
single backward steps. The acquisition of a new word hypothesis during a top down step usually
worsens the Quality Factor of a subgoal (incomplete phrase hypothesis), delaying its processing,
while in the meantime other phrase hypotheses will be processed. Integration among bottom up and
top down steps is vital: having to solve an incomplete phrase hypothesis a check is made to see if a
suitable complete phrase hypothesis has already been generated and vice versa. The next section
introduces conceptual items called 'Deduction Instances' that simplify the description of the parsing
control strategies.

6. DEDUCTION INSTANCES AND SEARCH
The understanding of an utterance is completed when a solution S involving a certain set

wl,...,wn of word hypotheses is obtained. The Quality Factor resulting from wl,...,wn is
supposed to be the best one among the possible solutions. Such solution can be represented by a
Deduction Tree: the AND tree whose nodes are facts (complete phrase hypotheses) and (sub)goals
(incomplete phrase hypotheses). Following the informal guidelines of the previous section, a
solution is obtained starting from one or more initial word hypotheses (the best ones) and then
performing predictions, bottom up and top down steps and joining constituents.

Let us consider the simple case of a single initial word hypothesis that performs a prediction
generating a goal that is solved through a sequence of top down steps. From the probabilistic point
of view, new word hypotheses are connected one by one (assuming they satisfy all the required
constraints) to the initial one until the solution is reached, connecting all the word hypotheses
wl,...,wn. We call this activity a Deductive Process and each intermediate step is called Deduction
Instance (DI). Some steps consist in adding a new word hypothesis to the existing ones, others
represent only activities performed by a KS that do not involve the acceptance of a new word
hypothesis. The OR alternatives of the overall search process are taken into account by different
DIs. Each Deduction Instance can be represented by its Deduction Tree and it is characterized by a
Quality Factor obtained applying a selected probabilistic method to the word hypotheses of the
Deduction Tree.

A similar situation happens when bottom up steps are considered. In this case DIs have
Deduction Trees whose nodes are all facts; they are called fact DIs while the others are called goal
DIs. A single deductive process leading or not (if it fails) to a solution is a sequence of DIs.

6.1 Joining Deduction Instances
The optimal result would be obtained if the Quality Factors corresponding to the sequence of

DIs worsen gradually in quality converging to the Quality Factor of the solution. The required
integration among bottom up and top down steps can be obtained by merging together two
Deductive Processes that have previously evolved independently: from two DIs a new DI is
generated.

With some simplifications the whole deductive activity can be seen as a search in a state
space. A state is a deductive process at a certain point of its evolution, i.e. a Deduction Instance.
Operators can be applied on these states performing single prediction, bottom up, top down or
merge steps. To each state a Quality Factor is also associated, then a best-first search can be
performed; the state priority is given by the DI Quality Factor. On each state all the possible
operators are applied. The next section presents the conceptual structure of the Control Strategy and
describes the involved operators.

7. CONTROL STRATEGY AND OPERATORS
The control of the deductive activity is carried out by a Deduction Scheduler that at every

cycle selects the best item among the remaining word hypotheses and the DIs (phrase hypotheses
generated so far and inserted into a network called Hypothesis Network). All the items have a
priority given by their Quality Factors (in the case of a DI) or by their scores (in the case of a word
hypothesis); these scores have to be comparable with the Quality Factors of DIs. Each goal DI is
also characterized by a Current Subgoal, selected among its unsolved subgoals. If the Deduction
Scheduler selects a DI, the Deduction Cycle is entered, otherwise the Activation Cycle is

842

performed.
The Activation Cycle is executed when the best DI has a Quality Factor worse than the score

of the best word hypothesis. In that case such word hypothesis is extracted form the lattice, and the
ACTIVATION operator is applied, making predictions. Given a KS the operator decides if it can be
triggered by the given word hypothesis; if so a DI is generated and inserted into the Hypotheses
Network. Quality Factors are assigned to the new DIs. Conceptually this operator creates
expectations.

In the Deduction Cycle the selected (i.e. the best) DI is given to the KSs. The activities
performed by the KSs can be summarized by the following phases:

- Solution Test:
The DI is tested to see if it is an acceptable solution; if so it is stored in the solution list. When
the strategy is optimal the first extracted solution is guaranteed to be the best one, and the
analysis can stop. Otherwise the analysis goes on until the available resources are consumed,
and then the best solution in the solution list is selected.

- Problem solving actions:
The actions that a KS performs when it is triggered can be described in an abstract way through
five operators that represent the process of generating new hypotheses starting from others. The
operators can be triggered either by a DI or by a Word Hypothesis; the characteristics of the
triggering element define what operator is applicable. Each operator application represents an
alternative continuation of the deductive process leading to the selected DI. The operators are:

- SUBGOALING:
It is chosen if the selected DI represents a goal. It performs a subgoaling operation on the
Current Subgoal (the subgoal currently pursued) of that DI. Such subgoal must be a non
terminal one (i.e. it cannot be solved directly by word hypotheses). The subgoal is
decomposed according to the compositional structure of the KS.

- VERIFY:
If the Current Subgoal of the selected DI is a terminal subgoal, this subgoal is tried to be
solved through a matching against the lattice of word hypotheses.

- PREDICTION:
If the selected DI is a fact, it predicts the goals having non-terminal subgoals solvable by this
fact DI.

- MERGE:
The selected DI is merged with some other compatible DIs of the blackboard. Starting from
two DIs (the selected one and the other) a new DI is created; so two deductive processes
which have evolved independently from one another meet into a new deductive process. If
the triggering DI is a fact, then the KS tries to merge such fact DI with compatible goal DIs
having subgoals that can be satisfied by such fact. If the triggering DI is a goal, then the KS
merges the current subgoal of such DI with compatible fact DIs.

- Subgoal Selection:
For each new goal DI the Current Subgoal is selected applying a Subgoal Selection Function.

- Constraint Propagation:
For each new DI the constraint propagation is performed. The constraints induced by the
acquisition of new word hypothesis are propagated everywhere needed on the new DIs.

- Quality Factor Computation:
A Quality Factor is computed for each new DI.

8. REPRESENTING DEDUCTION INSTANCES WITH MEMORY STRUCTURES
An aspect that has to be considered when representing DIs with memory structures is to

reduce the amount of memory required and to properly organize the memory structures in order to
simplify operators application (the MERGE operator, mainly). This section deals with these aspects
and illustrates the Blackboard organization: a Hypothesis Network that makes use of two classes of

843

links. The section can be skipped without compromising the understanding of the example in Sec. 9.
The blackboard elements are conceptual structures previously called Deduction Instances

(DIs). The most trivial way of implementing them would be the use of an explicit Deduction Tree
for each of them, but to keep memory occupation within reasonable limits it is necessary to make
DIs share common parts, if any. A natural choice is to use AND-OR trees; unfortunately, a problem
arises when constraint propagation is required, as in our case: the AND-OR trees representation
assumes the OR alternatives to be independent from one another, but that is not true if constraints
propagation has to be taken into account. An example will clarify this statement.

a)
DL

b)
D l , and Dl 2

Fig. 4 From a Deduction Instance DIO (a), the resolution of subgoal M with two different word
hypotheses generates two new Deduction Instances DI1 and DI2 (b), represented by an
AND-OR tree: there will be problems due to constraints propagation.

Let us consider the goal Deduction Instance DIO of Fig. 4-a, and suppose that the current
subgoal M can be solved by two different word hypotheses generating two new DIs, DI1 and DI2
shown in Fig. 4-b and characterized by two competing solved subgoals (facts) Ml and M2. Now,
suppose that N is selected as the current subgoal for DI1 or DI2. Since the two DIs are distinct and
endowed with different word hypotheses, a word hypothesis satisfying N can happen to be
compatible, say, with Ml but not with M2, and thus could be inserted in the context of DI1 but not
in the context of DI2. This means that different constraints have to be propagated from the solved
subgoals Ml and M2 to subgoal N, and N must be splitted in two subgoals Nl and N2, respectively
associated with Ml and M2. By applying the same reasoning to any other subgoal in DI1 and DI2,
it results that the whole Deduction Tree has to be duplicated, each of the new Deduction Trees
having its own constraints. Trying to keep them implicitly united in a single structure would be of no
use.

In order to still take advantage from the use of AND-OR trees also when constraint
propagation has to be performed, a memory representation has been devised in which the nodes can
be shared without n-plicating the tree. This is possible provided the topologies of Deduction Trees
are constrained to have certain features. To obtain this result, limitations have been imp <sed on the
ways deductive processes can go on; this is done by intervening during the current subgoal
selection.

Such limitations do not compromise integration among top down and bottom up activities.
The allowed tree topologies are called 'Canonical' and the resulting DIs are called 'Canonical DIs'.
Let us introduce these concepts.

8.1 Canonical Deduction Instances (CDI)
We define CDIs starting from the definition of Canonical Deduction Trees (CDTs).

Definition 1:
- A DT is homogeneous if and only if it is a fact DT or a not yet decomposed (sub)goal.

Definition 2:
- A DT is canonical if it is homogeneous.
- A DT is canonical if:

. All the (sub)DTs connected to the root are canonical and

. No more than one of them is non-homogeneous.
- No other DTs are canonical.

844

Definition 3:

- A DI is Canonical (CDI) if and only if it corresponds to a Canonical DT.

From the definitions some consequences follow:

Proposition 1:
If a CDI corresponds to a homogeneous fact CDT, there is one-to-one correspondence between the
CDI and the one-level AND tree whose root is the root of the associated CDT.
PROOF - Omitted (the statement is self-evident).
For reasons that we shall clarify in a short time, we call this tree the Representative of the CDI.
Proposition 2:
If a CDI corresponds to a non-homogeneous CDT, such tree contains exactly one non-homogeneous
one-level AND subtree.
PROOF - By recursion: Consider the CDT associated to the CDI. If it is a one-level tree, the CDT
itself is the subtree we looked for. Otherwise, since the CDI is canonical, Defs. 1 and 2 insure that
its associated CDT has just one canonical non-homogeneous subtree. Then the above discussion can
be applied to this subtree, until a one-level canonical non-homogeneous sub-n-tree is found; Q.E.D.

Proposition 2 implies that there is one-to-one correspondence between a goal CDI and such
one-level non-homogeneous subtree. We call the subtree the Representative of the CDI (RS). For an
example, see Fig. 5.

presentatlve
btree (RS)

Fig. 5 - Representative Subtree in a Canonical Deduction Instance.

We give now the restriction on subgoal selection so that only canonical DIs are generated.

Subgoal Selection Rule:
The current subgoal of a goal CDI must be one of the goal leaves of the Representative Subtree RS.

The importance of CDIs lies in their one-to-one correspondence with their Representatives.
In fact, to carry out the application of an operator on a CDI, the information provided by the
Representative is sufficient. Thus we can use the Representatives instead of the whole CDI.
Representatives are implemented by a memory structure called Physical Hypothesis, described in
detail in the following.

8.2 Physical Hypotheses as representatives of CDIs
This section describes Physical Hypotheses and how they can represent CDIs in a fashion

compatible with the use of AND-OR trees. A Physical Hypothesis (PH) is a memory structure that
implements a one-level subtree. Physical Hypotheses stand for the Representative Subtrees of
CDIs. They store all the information that is necessary to process a CDI when it is selected by the
Scheduler. Similarly, when a new CDI is generated, only one new PH is created, representing the
whole new CDI for future processing. If a PH represents a fact CDI it is said to be complete; if it
represents a goal CDI it is said to be incomplete.

Physical Hypotheses in the Hypothesis Network are connected by Compositional Links to
form AND-OR trees, called PH-trees. Every PH in the PH-tree represents a DI that constitutes the

845

P H 7 «B

Fig. 6 - Physical Hypotheses and AND-OR trees. Solved subgoals are represented by shaded
circles, then complete Physical Hypotheses have all their circles shaded.
a) The AND-OR tree of Physical Hypotheses represents 7 canonical DIs. 7 AND trees can

be extracted, each corresponding to one canonical DI.
b) The Canonical Deduction Tree (CDT) corresponding to PH6. CL1 has been discarded,

otherwise the DT would not have been canonical. When extracting AND trees, the CLs
are taken into consideration if and only if they do not compromise canonicity.

c) The CDT corresponding to PH3. CL5, CL6 and CL1 have been discarded.
d) The CDT corresponding to PHI. CL2 has not been discarded: CLs to facts do not

compromise canonicity and hence they are always considered.

only AND tree, extracted from the AND-OR PH-tree, that includes such PH and that has a
canonical structure (remember Proposition 2).

PH-trees can have non-canonical structures, possibly with OR alternatives. Informally, one
could say that a PH "sees" the PH-tree it is part of as lacking the PH-subtrees that would give rise
to a non-canonical structure. Thus, no conflict will arise from the non-canonicity of the PH-trees.
An example is shown in Fig. 6, where an AND-OR tree of seven PHs represents seven CDIs, three
of which are depicted in the figure. The OR alternatives are independently interpreted thanks to the
canonicity of the DIs. Summarizing:

- An AND-OR tree of n PHs represents exactly n CDIs.

- An incomplete PHi that is part of a PH-tree represents the Canonical Deduction Tree
corresponding to the only AND tree, extracted from the AND-OR PH-tree, that is canonical and
has PHi as its Representative Subtree (see Fig. 6). The PH represents a goal CDI and contains
goal specifications and fact descriptions about the leaves facts/goals involved in the Reprentative
Subgoal of the CDI. Summary information is provided for the root of the Representative Subgoal.

846

- A complete PHj (part of a PH-tree) represents the homogeneous Canonical Deduction Tree
extracted from the AND-OR PH-tree, and having root PHj. The CDI associated to the CDT is a
fact CDI. The PH represents a fact CDI and has the same structure of an incomplete PH, the
difference being that there are no subgoals.

- When a subgoal is solved, a new PH is created in which constraints from the solved goal have
been propagated to all of the remaining subgoals of the PH.

8.3 Specialization Trees
Since a PH represents a decomposition of a concept into subconcepts, it corresponds directly

to a KS. Thus PHs can be grouped according to the KS they correspond to. Now, suppose to start
from a Deduction Instance CDI1 and to apply an operator to it obtaining CDI2. CDI2 is more
"specialized" than CDI1 because it has acquired new pieces of evidences or because its current
subgoal has become more constrained, etc. When the PHs representing CDI1 and CDI2 refer to the
same KS, PH2 (representing CDI2) is connected through a Specialization Link to PHI
(representing CDI1).

Specialization Links allow the generation of Specialization Trees. Each Specialization Tree
corresponds to a KS and the level of a PH in the Specialization Tree corresponds to the level of
completion of its Representative Subtree. The presence of Specialization Links connecting PHs,
together with the Compositional Links that constitutes the AND-OR trees, explains why the
working memory has been referred to as a Hypothesis Network. The links are frequently used
during the analysis, mainly during the application of the MERGE operator to make easy the search
forjoinable DIs.

8.4 The MERGE operator
We consider now, as an example, the application of the MERGE operator. Given the current

Deduction Instance CDI1, the MERGE operator tries to use other CDIs contained in the Hypothesis
Network. Let be CDI2 one of the CDIs satisfying all the conditions for merging with CDI1. Then
the MERGE operator applied on CDI1 and CDI2 generates a new Deduction Instance CDI3.

Fig. 7 describes the MERGE operator when one CDI is a fact and the other is a goal. Let
CDI1 be the fact DI (represented by PHI) and CDI2 the goal DI (represented by PH2). The current
subgoal CS of CDI2 has to be of the same type (D in figure) of the fact constituting CDI1. A new
goal CDI3 is generated, substituting subgoal CS of CDI2 with the given fact. CDI3 is represented

CDI : (P H „ t PH,)

CDI, :(PH +PH, + P H J

£§ CDI.: (PH

Fig. 7 - Merging a fact DI with a goal DI. The MERGE operator applied on CDI1 and CDI2
(represented by PHI and PH2) generates CDI3 (represented by PH3).

by the Physical Hypothesis PH3. Since PH3 refers to the same KS as PH2 and CDI3 is more
specialized than CDI2, PH3 is connected to PH2 through the Specialization Link SL.

847

9. THE EXAMPLE
The uttered sentence is reported in Fig. 8-b; for clarity, articles and prepositions ("dalla",

"con", "le", "del") are supposed not to be in the lattice. The parsing algorithms are able to
understand an utterance even if such word hypotheses are missing; nevertheless they are searched
for, but phrase hypotheses are completed all the same even if they are not found.

Seven correct word hypotheses (small dark circles in Fig. 8-c) are in the lattice, intermixed
with noisy word hypotheses, not reported in figure. The vertical position of the initial word
hypotheses and of the generated phrase hypotheses corresponds to their score/Quality Factor (QF).
The horizontal position of word hypotheses and DIs corresponds to the position inside the utterance
time interval and is graphically centered on the word of the utterance word sequence in Fig. 8-b that
corresponds to the head node of the Representative Subtree of the DIs (or to the word hypotheses
itself). In the example QFs are computed using a simplified density method: when word hypotheses
are combined, the resulting QF is the average value of their scores (in other words all the time
intervals of the word hypotheses have been assumed to be 1).

Fig. 8-a represents the final representation of the utterance meaning: a conceptual graph
resulting from the join of the two canonical graphs represented in Fig. 3 together with a third one
that relates a province to a region through a "part-of' relation. In addition a few dependency rules
are outlined; refer back to Fig. 3 for an example of two complete dependency rules involved in the
example and of their associated mapping rules.

The following describes the parsing phases relevant for the solution (i.e. the parsing
activities that are related to noisy data are not described):

- The best scored word hypothesis (see Fig. 8-a and -c), "regioni" (regions), activates a Knowledge
Source (KS) that results from the combination of dr-1 (see back Fig. 3, rule RS-25) with a set of
conceptual graphs that includes cg-1. Such word plays at the same time the role of governor of
the dependency rule and the role of the "obj" case filler of the cg-1 caseframe. As such it satisfies
the activation condition of the KS and the Deduction Instance dl is then generated.

- dl is still the best scored item : the SUBGOALING operator is applied and a set of new KSs are
triggered, among them a KS whose activation condition requires a VERB and a concept like
BAGNARE (to wash), ATTRAVERSARE (to cross), etc. The VERIFY operator is immediately
applied and, thanks to the word hypothesis "bagnate", the caseframe header (whose "obj" case
was already filled) is obtained and an incomplete phrase hypothesis d2 is generated.

- But d2 is not the best item any more: the word hypothesis "quali" (which) has a better score and it
is activated, generating d3; "quali" is an interrogative adjective that can be taken into account by
the dependency rule dr-4. Now a prediction activity is performed: a KS that has been obtained
from dr-4 is triggered and the VERIFY operator takes into account the very bad word hypothesis
"province", generating d4.

- Given the bad QF of d4, this inferential process is suspended. At this point d2 is resumed and a
further top down step is performed, generating the complete phrase hypothesis d5, thanks to the
word hypothesis "Tevere" that fills in the remaining "agnt" case of the "bagnare" (to wash)
caseframe.

- d5 has the best QF among the active items and a prediction activity is performed (perhaps after
some other noisy items have been processed). Among the others a KS resulting form dr-3 and a
concept like CONFINARE (to border on), is triggered by d5, by filling a "with" case; the result
of the VERIFY operator is d6, where the word hypothesis "confinano" constitutes the header.

- The word hypothesis "Campania" has a better QF than d6 and is then activated generating a
complete phrase hypothesis d7 that is joined with d4 generating the complete phrase hypothesis
d8. At this point d6 returns to be the best item and a top down step is performed: the "agnt" case
is filled trough a join with d8, generating the solution d9 with QF = .486.

10. CONCLUSIONS
The basic consideration that has led us to this new parsing strategy for continuous speech

can be summarized in the following way: if a recognition level has a good performance, then the
number of incorrect word hypotheses with score better than the Quality Factor (QF) of the solution
should not be too large, while it is possible to have a small number of correct word hypotheses

848

a)

OBJ
, ' noma

WITH -) r->t f-^^
_ x art verbo (panic.) /

REGOME
dr-1

/ /S^PART-OF\ (PART-OFJ [VX^AQMT > ^
\ ' ^ i t * DreD nome-Dra' /

BAGNARE

^ agg nome-pro /

dr-4

prep nome-prq,' ,

dr-2
FIUME: Tevere

b)

(Good)

d e l l i con le dal
QUALI PROVINCE CAMPANIA CONFINANO REGIONI BAGNATE TEVERE

(WHICH PROVINCES CAMPANIA BORDER REGIONS WASHED TEVERE)
of by the

Score/QF

.7 --

.8 - -

(Bad)
.9

Word hypothesis
Incomplete
hypothesis
Complete pi
hypothesis

O Incomplete phrase
hypothesis

/ \ Complete phrase

75 m CONFINANO

.85 m PROVINCE
Time of utterance

Fig. 8 - A parsing example: a) The resulting meaning representation together with a few dependency rules,
b) The uttered sentence and its literal translation, c) The initial word hypotheses and the generated
DIs in a time vs. score plane.

849

with low scores, for instance due to bursts of noise, imprecise probabilistic models of some words,
etc. These hypotheses are usually intermixed in the lattice with a lot of bad and incorrect word
hypotheses; we call bad word hypotheses those that have a score worse than the solution's QF.

The main purpose of our control strategy is to avoid the need of combining together large
quantities of incorrect word hypotheses with bad scores while still being able to "capture" among
them the correct ones. The described parsing strategy and careful constraint propagation algorithms
make possible to combine only those bad word hypotheses that can be part of specific, well
constrained contexts; that results in a drastic reduction of the number of phrase hypotheses
supported by bad word hypotheses.

The example shows that the parser is able to start parsing processes anywhere in the time
interval and, given the best parsing process, always has the chance of making a single step towards
the solution and to suspend it if that is required by the QF of the Deduction Instance: there are not
fixed parsing directions at any instant during the parsing activity. Efficient parsing techniques have
been developed to allow the confluence of two parsing processes (remember the Specialization
Trees described in section 8 for the application of the MERGE operator).

From the knowledge representation point of view the most suitable formalisms have been
selected (Dependency Grammars for syntax and Conceptual Graphs for semantics) and combined
into Knowledge Sources that allow the creation of expectations at all the levels. The combination of
syntax and semantics into KSs has also the basic advantage of better exploiting syntactic,
morphologic and semantic constraints during the parsing activity.

The proposed control strategy is not limited to speech, but it is useful whenever a problem
solving approach is taken to deal with uncertain data. The only requirement is the possibility, for the
KSs, of creating expectations at the highest levels.

REFERENCES
[I] Hayes,P.J., Hauptmann.A.G., Carbonell.J.G., Tomita.M., 1986. "Parsing Spoken

Language: a Semantic Caseframe Approach", Proc. COUNG-86, Bonn.
[2] Brietzmann.A., Ehrlich.U., 1986. "The role of semantic processing in an automatic speech

understanding system", Proc. COUNG-86, Bonn.
[3] Comino.R., Gemello.R., Guida,G., Rullent,C, Sisto,L., Somalvico.M. 1983.

"Understanding Natural Language through parallel processing of syntactic and semantic
knowledge: an application to data base query." Proc. 8th IJCAI, pp. 663-667.

[4] Poesio,M., Rullent.C, 1987. "Modified Caseframe Parsing for Speech Understanding
Systems", Proc. 10th IJCAI, Milano.

[5] Woods.W.A. et al., 1976. "Speech Understanding Systems: Final Report." Rep. No.
3438, BBN, Cambridge (MA).

[6] Gemello.R., Giachin.E., Rullent.C, 1987. "A Knowledge-Based Framework for Effective
Probabilistic Control Strategies in Signal Understanding.", Proc. GWAI1987.

[7] Bosco, P.G., Giachin, E., Giandonato, G., Martinengo, G., Rullent, C , 1987. "A Parallel
Architecture for Signal Understanding through Inference on Uncertain Data", Proc. of
PARLE - Parallel Architectures and Languages Europe, Eindhoven (NL), in "Lecture Notes in
Computer Science", vol. 258, pp. 86-102.

[8] Laface, P., Micca, G., Pieraccini, R., 1987. "Experimental results on a large lexicon access
task", Proc. ICASSP-87, Dallas.

[91 Hays D.G.,1964. "Dependency theory: a formalism and some observations", Memorandum
RM4087 P.R., The Rand Corporation.

[10] Sowa, J.F., 1984. "Conceptual Structures", Addison-Wesley, Reading (MA).
[II] Danieli, M., Ferrara, F., Gemello, R., Rullent, G, 1987. "Integrating Semantics and Flexible

Syntax by Exploiting Isomorphism Between Grammatical and Semantic Relations.", Proc. 3rd
Conference of the European Chapter of the ACL, Copenhagen.

[12] Woods, W. A., 1982. "Optimal Search Strategies for Speech Understanding Control.",
Artificial Intelligence 18, pp. 295-326.

850

P r o j e c t No. 940

STEREO RECONSTRUCTION USING A
ROBOT MANIPULATING ARM

G. Garibotto (ELSAG)
Tech. Coord. ESPRIT Project P940

Participants: Cambridge Un., ELSAG S.p.A., Genoa Un.,
G.E.C., INRIA, ITMI, MATRA S.A., NOESIS

Abstract
The paper describes, in a qualitative form, the recent results obtained in the
ESPRIT Project P940, entitled Depth and Motion Analysis. In particular
the presentation will be limited to 3-D stereo reconstruction which has
proved to be the most established topic of research within the project.
The proposed stereo approach consists in a trinocular configuration using
edge features which are clustered into linear segments and used for stereo
correspondence. In this way it is possible to achieve a first order average of
the edge point positions, and minimize noise effects in 3-D reconstruction.
Preliminar results are referred in the paper using a robot manipulating arm
in a rather simple configuration. Increased flexibility will be demonstrated
at the Conference, by using eye-in-hand scene acquisition.

1 INTRODUCTION
The main purpose of the research project P940 is the study and real

ization of a prototype system, to recover 3-D data from stereo and motion
information [lj. This processing system will be integrated in two different

851

application domains: a mobile vehicle to be able to orient itself and build
3-D visual maps in indoor scenes and a robot arm for object classification
and manipulation.

In the first case the typical environment is that of an office, with ordi
nary furniture, doors, windows, corridors, desks with computer terminals,
books and telephone sets, file cabinets, etc. In order to allow the system to
move friendly within such environment and to be able to recognize them
accordingly, an accurate 3-D description of the scene is required mainly in
the form of planar surfaces. An efficient way to display the results seems
to be the projection of the detected 3-D features in three orthogonal views.

In the second case the robot manipulator is supposed to be able to
recognize and move to the appropriate position a set of simple shaped
objects, like cylinders, cones, spheres, for which a reference model will be
available. Moreover, complex objects from industrial environment will be
handled, in order to automatically find the most suitable grasping position,
starting from their convex hull description, through a more accurate surface
representation in terms of high level primitives.

In both demonstrators the optical axes of the three TV cameras can be
arbitrarily oriented to a common fixation point, and appropriate calibration
procedures are required to correctly compute such orientation. Moreover,
this calibration parameters are also used to perform epipolar transformation
of the significant edge features, and simplify feature matching.

The paper summarizes the major results obtained in our project, as
far as passive stereovision process is concerned, with no discussion on other
fundamental topics of our research such as motion analysis, 3-D description
and representation problems. Further details on these subjects can be found
in the official deliverables of the project and related publications which are
quoted in the references.

Section 2 will describe the full stereovision process, providing a synthe
sis of the investigation carried out so far within the project and the major
achievements obtained from this analysis. Section 3 will refer on edge de
tection techniques, to extract the required tokens for stereo correspondence.
Section 4 is then devoted to discuss the problem of camera calibration and
the obtained results have proved to be very promising in our applications.
Stereo matching and epipolar transformation are then discussed in section

852

S and an example of segment matching is referred in section 6, together
with a description of the robot system configuration which is used for data
acquisition and scene inspection. Finally, section 7 will introduce some
of the advanced topics of research which are currently investigated in our
project, and summarize the basic strategy which has been adopted by our
team.

2 STEREO APPROACH
Our consortium has selected edge points as the appropriate tokens for

both Depth and Motion analysis. So far we have mainly investigated and
used step edge models, although significant improvements are epected from
including other models like roof edges, corners, occluding edges, coloured
edges, shadows, etc. Textures and regions, for different reasons, have not
been found adequate to the requirements of our demonstrators.

Three different levels of token clustering have been considered, that is
individual edge points, along epipolar lines, edge chains, with continuity
and propagation constraints, and disjoint contiguous linear segments. It
is well known that small errors in the estimation of disparity values deter
mines significant fluctuations in the depth values so that it is extremely
important to achieve subpixel accuracy in feature localization. Since the
best edge detection process can achieve accuracy in edge localization up to
the available spatial resolution, the only way to improve such precision is
an averaging process, to be performed on connected edge chains.

Polygonal approximation represents an efficient first order linear smoo
thing of the contours into contiguous disjoint segments, so that the uncer
tainty associated to each individual edge point is suitably reduced. This
token description is very appropriate for indoor scene representation, as
required by the mobile vehicle application, due to the inherently linear
structure of the environment [7]. In the representation of man-made objects
with complex curved surfaces (industrial scenes) this solution is slightly less
efficient in data compression, and the sparseness of 3-D reconstructed seg
ments is sometimes unsatisfactory. On the other hand, since the recognition
and manipulation tasks of the robot arm do not always require video-rate
performance, some additional computation and a more accurate contour

853

description can be acceptable for this application.
Improved results are expected including a logical connection of 3-D seg

ments coming from the same edge chain in the image plane. Continuity
constraints along edge contours can be included also using individual edge
point correspondence, as a final consistency check on the estimated dis
parity values. An alternative, still under investigation, consists in using
edge chains as matching features, to include on-line constraints during the
estimation of the disparity values. In this second case a chain scanning
would be required, instead of the simpler row scanning, after epipolar line
rectification.

A trinocular vision system has been adopted within the project for stereo
reconstruction, to achieve at least two complementary goals. First, to in
crease sensitivity to different edge orientations, and minimize the ambi
guity due to features oriented along epipolar lines. Moreover it provides
an intrinsic triangular geometric constraint for edge matching, so that for
any admissible correspondence between two different views, a similar edge
feature should be found in a certain position (scaled triangle) in the third
image, due to the epipolar geometry. Using this constraint most ambiguous
matching are immediately removed at the very beginning.

The adopted dissimilarity function is essentially based on the magnitude
of the gradient as a local attribute. Other functions like gradient slope and
average intensity values have been also investigated in the project but they
have shown less discriminant power.

In any case epipolar transformation has been always used to compensate
for the convergency of the optical axes, and to obtain a more convenient
arrangement of the conjugated epipolar lines along one of the principal axes
on the image plane.

A further problem which has been taken into account is the optimum
addressing of edge pixels for stereo matching. On one side finding the
potential correspondences of edge contour points (both individual and along
chains) is a relatively simple task due to their discrete spatial position (x, y)
on the rectangular sampling grid. On the other hand, bucketing techniques
are necessary when dealing with linear segment correspondence, since the
end points are no longer quantized to discrete values.

854

3 EDGE DETECTION
As already mentioned, edge features have been selected for stereo match

ing. Edge detection is performed using the approach proposed by Canny
|2], to maximize localization properties and S/N response, and minimize
the effect of multiple responses to noise input. Edge contours are obtained
by hysteresis thresholding, using two threshold values & < S2.

We have investigated some alternatives by considering both first and
second spatial derivatives of the images, at various resolution. The gradient
based approach has been finally selected, with respect to zero crossing,
for many reasons, and in particular because it provides less distortion of
straight segments around intersection points and it exhibits less sensitivity
to noise, which allows to perform edge detection at higher resolution.

Different smoothing regularization functions have been considered by
comparing gaussian functions against optimal operators for step edge mod
els. A very efficient recursive implementation [3] has been proposed in our
project, to allow a fixed low number of operations per output pixel (26 for
gradient convolution) irrespective of the spread of the impulse response.
Anyway, present technology suggests to use available building blocks for
FIR implementation of the convolution filters. In our examples a hardware
convolver [4] has been used to implement FIR filters and to compare the
performance of two different gradient functions obtained as a truncated
approximation to the gaussian derivative and the exponential function [3]

/'(*) = - « - M (1)

Using the performance criteria suggested by Canny [2], we obtain the results
of table 1 where gaussian derivative is poorer in edge localization but is
superior in terms of multiple responses. Furthermore, from a very practical
standpoint, quantization effects on the image grid are so severe that no
perceivable difference has been found in the considered examples, which
seems to dictate that the shape of the regularization function is not so
critical in finite word length FIR implementation.

Once the gradient function has been computed it is necessary to locally
remove non-maxima samples, to come to connected groups of edge points
of thickness equal to one pixel. The output edge map contains only those

855

41
A
u
<rt
U
V
•a

V

u
u
V
■d

V
A
u
■H
li
CI

N
V
X
u
■H
U
u

B
n

n
n
3
■I

n •)
3
id

n
n
3
4
tn

<<
*1

o
N
•0

CM
Cn
ii

O

US
• cn
cn
o

o

o

o
r»
o

m
CO
m
CM

10
in
CO
o

CM
fi

o

©

o

■n

in

o

in
00
en
o

en .

o

CO

o

in
en
r»
o

CO
on
00
o

GO
ft
00
o

in
m

o

r»

«n
en
CM
O

CO
r»
<n
o

cn
CM
cn
o

<n
o
en
o

«4

m
o

us
CO

o

US
en
en
o

in
CD
O

en

CM
en
o

<n
o

ID
O

<MJ
CM
o

10
to
o

o

co

m
00
o

in
«n
o

c
en
o

f t

o

o
m
o

m
en
to

o

CM)
CO
CM

<n
co
co
o

m

IM

m
o

CM

<n
o

ft
00
CM

us
re

o
m
in
o

ID

o

cn
cn

t-t
o
cn
o

in

US
r»
m
o

in
en
o

CO
m

us
m
in

o
m
o

VO
o
SO

o

in
cn

o
cn
o

r»

03
CO
m
o

US
m
cn
o

CO

SO

CO
CM
m
o

en
us
in

o

CM
cn
in

in
o
cn
o

en

en
in

o

cn
o

in
in

00

in
in
o

US
m
o

00

©
CM
cn
o

ft
tM

O

o

o
m
cn
o

o
10
SO

• m
in

in
n
in
o

CO
f-i
in
o

in
r
r

on
en
o

(M

O

O

sD

on
o

*
r^

<n
in

cn
CM
in
o

CO

o

o
in
00

SO
en
CO

o

m
CM

o

o
en
o

CM
CO

10

o
in
o

US

o

cn
N
on

m
cn
CO

o

(M

O
CM

O

CO
CO
o

en
CO

en
in
o

in

o

en
o
o
(M

ft
en
o

cn
(M

M

o

cn
us
eo
o

in
UJ
cn

CO
o

in
in
in
o

cn
tn

o

o
in
o

CM

CM
m
cn
o

in

Table 1. Comparison of performance of the FIR filter implementa
tion of gaussian derivative with respect to the exponential function, using
Canny's parameters (E, A, k) for different truncated window sizes (from 5
to 31 taps).

856

samples having a gradient magnitude above threshold St. Quantization
effects have been considered also in this operation of non-maxima suppres
sion. As a matter of fact, it has been proved that 8-bit precision of the
gradient function is not always sufficient, due to saturation effects.

Furthermore, edge pixels have to be connected into contour chains, as
required by our stereo matching procedure. Different approaches to this
problem have been investigated in our consortium and the adopted solu
tion (5] has been selected mainly on the basis of hardware implementation
constraints. It is performed in two steps: the first one consists in a 3 X 3
neighbour analysis of the edge samples, to collect together the connected
pixels into a number of labelled lists. The second step is a list handling
process to carry on hysteresis thresholding on the selected terms by keep
ing only those lists which contain at least one sample with local contrast
above threshold S2. Moreover, these lists are arranged into ordered edge
chains which contain the spatial position of the edge samples (z, y) and
their contrast attribute (magnitude of the gradient).

Next, to obtain a linear segment description of the contour, an algorithm
for polygonal approximation [6] is used. Clusters of edge points which are
well approximated by a line segment, in the mean square sense, are grouped
and represented by the line equation. Each segment is characterized by its
endpoints, its length, orientation and contrast, as the average contrast of
the individual edge points.

Furthermore, to simplify the addressing problem in stereo matching, the
neighbourhood structure of the set of line segments is made explicit, using
the technique of bucketing |7]. The image is divided into a number of square
windows; to each window is associated the list of line segments intersecting
it and to each line segment is associated the list of square windows which
are intersected by the segment.

4 TV CAMERA CALIBRATION
This operation is required by the configuration of the acquisition system

where the optical axes of the cameras are arbitrarily oriented with respect
to each other. The precision of these calibration parameters may signif
icantly affect the following process of stereo correspondence. Two main

857

alternatives have been developed and investigated in our project, and are
both essentially based on the estimation of the parameters of rigid motion
according to different approaches, which are briefly recalled in the following.

4.1 Multiple views of a grid patterns.
The first approach consists in the estimation of parameters of rigid

motion by looking at a known regular grid pattern. The basic technique
consists in recording at least two different views of this pattern by setting
a fixed known displacement of the imaging system, so that to put in corre
spondence two sets of non-coplanar points. Using the constraints of rigid
motion it is possible to estimate the translation and rotation of the TV
camera with respect to a reference system fixed to the pattern itself. The
calibration algorithm is fully explained in [8], where Kalman filtering is also
used to reduce uncertainty effects in the localization of the intersecting grid
points in the image planes. In this approach each camera is calibrated with
respect to the reference system, including its intrinsic parameters like the
focal length, vertical v.s. horizontal aspect ratio, distortion parameters,
etc. Satisfactory results have been found in the mobile vehicle application,
with an estimated angular accuracy of less than one degree and half cen
timeter in the localization of the calibration grid. Further experiments are
planned using a robot manipulating arm where the controlled movements
are expected to be more accurate and reliable.

4.2 Use of vanishing points.
In this second approach the calibration process is decoupled in two steps.

The intrinsic parameters of the cameras are estimated once for all using off
line geometric and mechanical tests. The spatial position of the imaging
system is computed again with respect to a reference pattern, using the
well known properties of vanishing points in perspective geometry. A set of
parallel and orthogonal lines on a planar surface represent the calibration
pattern and the perspective distortion from a slant view allows to estimate
the position of the vanishing points in the image plane [9]. Henceforth,
from a single registration is possible to recover the necessary rotation and

858

translation parameters of the TV camera. The precision of this method
has been experimentally tested in-computing the length of a given line
on a table, and the obtained precision has been of less than 0.5cm over
a length of more than 30cm., irrespective of the line orientation. Main
advantages of this approach are the simplicity of the method and the single
view requirement for updating the relative position of the camera with
respect to the environment.

Further experiments are planned to verify the most efficient solution for
the project; anyway a standard procedure has been developed to make it
possible to use either one of the methods and share the obtained results
within our consortium.

5 STEREO MATCHING
Different stereo matching algorithms have been investigated during the

first year of our project.
On one side individual edge point matching have been considered along

conjugated epipolar lines using a two camera system. In this case simi
larity measures were based on local gradient magnitude, orientation, local
intensity values. Weak ordering constraints have been also introduced, to
make it possible to recover very difficult situations of inversion and occluded
edges [10].

On the other hand trinocular vision have been experimented using a
special arrangement with parallel optical axes, using a translation of the
camera to the three vertices of a rectangular triangle. In this way all the
possible orientations of the edge features could be successfully handled,
increasing the number of edge point matching along epipolar conjugated
lines (either horizontal or vertical) [11].

Another approach was based on using line segments as tokens to be
matched, so that reducing the number of tokens involved (data compres
sion). A first method was based on two cameras and used a strategy of
hypothesis prediction and verification in which each hypothesis of correct
matching was based on the descriptive features of each line segment, po
sition, length, orientation, contrast. Each hypothesis is then verified by
propagating the initial match to the neighbours of the segments, using the

859

bucketing technique [10]
Further improvements have been obtained using a trinocular system

where the third camera was used to verify the potential matches [7]. In fact,
according to the triangular constraint of such configuration, any correct
match should be verified in the three rectified images, by suitably scaling
the reference triangle made by the optical centers of the three cameras
(see fig.l). This geometric constraint has proved to be very powerful so
that to overcome most of the matching problems found in a two camera
configuration.

The selected solution is essentially based on this last results with some
relevant improvements to deal with complex curvilinear shapes. In par
ticular there will be no more a single master couple of views, with the
third image simply used for consistency check. In fact, there is no reason
to privilege one orientation of the edge features with respect to the oth
ers. Hence, the reference image will be coupled alternatively to one of the
other two, depending on the local orientation of the considered segment to
increase both density and accuracy of stereo matching. Moreover continu
ity constraints along edge chains will be considered to correctly propagate
matching hypothesis and recover broken segment correspondence.

5.1 Epipolar transformation
As already mentioned, the general arrangement of the three cameras is

supposed to operate with arbitrarily oriented imaging sensors and a pro
cedure for epipolar transformation is required. The proposed solution of
our consortium has ben to use a technique of reprojecting the image fea
tures onto a virtual plane, parallel to the plane of the three optical centers,
and passing through a suitable position, at normalized distance from the
optical centres [12]. In this way, with a very simple scheme and just 5
operations per image sample, it is possible to obtain the same conditions
of an equivalent configuration with parallel optical axes. By choosing an
appropriate reference system on the virtual plane one set of epipolar lines
will become parallel to an axis, to simplify the matching process. Using this
approach it is possible to reproject either the individual intensity values of
the input images, or the edge samples belonging to the selected chains, or

860

b)
/ /

/ /
/ /

/ /
/, / Ji.°'. V

\ v

\ Oj

\-/_ A
Fig.l a) Geometry of trinocular stereovision; b) rectified images and

normalized triangular geometry.

861

Fig.2 Robot arm manipulator used in our experiments.

862

863

Fig.S Stereo matching between the three cameras (a,b,c); simple exam
ple of camera translation where corrected matches are shown by putting the
same number on the corresponding segments; only the common area which
is visible by all cameras is displayed, d) result of polygonal approximation
for one picture.

864

the endpoints of the linear segments, as required by our stereo matching
procedure. In this way the number of operations involved turns out to be
extremely low, without affecting the overall process.

6 ROBOT SYSTEM CONFIGURATION
Fig.2 shows the robot manipulator which will be used in our experi

ments. In the proposed experimental configuration one TV camera will be
placed on the robot wrist and moved around the object to be described.

Three different views will be taken at different positions and the rela
tive motion parameters used to calibrate '•.he system within the precision
of the robot movement. The optical calibration procedure which has been
developed in our project can also be used to check for data consistency.
Endpoints of the selected segments are rectified so that epipolar lines be
come horizontal in two of the images (as shown in fig.l).

A preliminar example is referred in fig.3 where a lot of circular structures
were present. The purpose of this result is to demonstrate the correct cor
respondence, in the different views (a,b,c), of the selected segments which
are labelled by a numeric code. It is worthwhile to observe that using
a fine polygonal approximation it was possible to obtain, in this case, a
reasonably good description of the curved contours in the scene.

Additional and more complete results will be referred at the Conference,
for both environments of the mobile vehicle and the robot manipulator, to
demonstrate the effectiveness of the results obtained in 3-D object recon
struction from passive stereo data within the Esprit project P940.

7 CONCLUSION AND FUTURE TREND
OF RESEARCH

The natural development of the research on stereo vision is concerned
with 3-D data representation starting from the obtained 3-D segments. The
most promising solution consists in performing data interpolation using De-
launay triangulation. 3-D spline interpolation is also investigated to refine
surface description. Another topic under investigation is the segmentation

865

of the scene, in order to detect homogeneous objects which are then de
scribed in terms of building surface primitives like planar surfaces, cones,
cylinders, spheres. The subject of motion analysis is becoming more and
more central to our project. Many algorithms have been already developed
for 3-D structure estimation from motion parameters starting from point
matches and line matches in the temporal sequence. A key problem under
investigation is the development of an edge token tracker, to be able to
track a linear edge feature during its temporal evolution. 3-D token tracker
is also studied by matching 3-D line segments coming from stereo recon
struction. Major emphasis is now put in the cooperation of motion and
stereo, where motion information is planned to be used to simplify stereo
matching and viceversa 3-D stereo data may improve accuracy in motion
estimation.

As a conclusion, the paper describes the major results and achievements
of ESPRIT project P940, with particular attention to the stereovision ap
proach. In particular we have adopted a trinocular system which makes
use of linear segments as descriptive tokens in the scene. More detailed re
sults of its performance in office scene reconstruction and industrial object
representation will be presented at the Conference.

REFERENCES

\1] Technicai Annex ESPRIT Project P940, Depth and Motion Analy
sis, Dec. 1985

j2] Canny J.,Finding edges and tines in digital images, MIT Artificial
Intelligence lab., Cambridge, MA, Rep. AI-TR-720, June 1983.

(8] Deriche, R., Optimal Edge detection using recursive filtering, Pro
ceedings of the First Int. Conference on Computer Vision, pp.501-
505, June 1987, London.

14} L.Borghesi, E.Giuliano, G.Musso, F.Cabiati, P.Ottonello, Program
mable modified systolic array for fast one- and two-dimensional con
volutions, J. Opt. Society of America, vol.3, N.9, 1986, pp.1561-
1568.

866

[5] G.Giraudon, An efficient Edge chaining algorithm Internal Report
INRIA, 1986.

/6/ M.Berthod, Polygonal Approximation of edge chains, INRIA Inter
nal Report, 1985

[7] N.Ayache, F.Lustman Fast and reliable passive stereovision using
three cameras Int. Workshop on Industrial Applications of Machine
Vision and Machine Intelligence, Tokyo, Feb. 1987.

[8] O.D.Faugeras, G.Toscani, The calibration.problem for stereo, CVPR
'86, June 1986, Miami.

[9] B.Caprile, V.Torre, A TV camera calibration technique using the
vanishing points, Internal Report, Dept. of Physics, Genoa Un.,
May, 1987.

[10J Comparison of Stereo Algorithms, Report R 1.3.2., ESPRIT P940,
June 1987.

[11] D.Ferrari, A.Pardo, A 3-D contour description using range data,
Proceed, of the 2nd Int. Workshop on Time-varying Image Pr. and
Moving Object Recogn., Firenze, 1986.

[12] B.Caprile, Epipolar transformation by perspective projection, Inter
nal Report, Dept. of Physics, Genoa Un., Apr. 1987.

867

Project No. 393

DIALOGUES WITH LANGUAGE, GRAPHICS AND LCGIC

Ewan KLEIN

Centre for Cognitive Science, University of Edinburgh, 2 Buccleuch Place,
Edinburgh EH8 9LW, Scotland.*

We describe work-in-progress on developing a system which allows the
integration of natural language with graphics in knowledge base query and
update. Achievements to date include the development of a logic-oriented
semantic representation language for English, French and German, and the
linking of deictic words (e.g this, there) to mouse hits. The system is
implemented in Prolog, and consists of five major modules: Parsers,
Dialogue Manager, Graphics System, Knowledge Base and Text Generator.
In this paper, emphasis is placed on the natural language module, and we
briefly discuss a proposal for the reduction of ambiguity in parsing
prepositional adjuncts, in order to illustrate the utility of sorted logic in
semantic representation. Prospects for adapting dialogue tableaux theory to
theorem-proving, and for developing a syntax and semantics for graphics,
are also outlined.

1. INTRODUCTION

You are looking at a video screen which displays a schematic map of Europe. Pointing
at a node labelled Stuttgart, you ask "How much storage is available there?" The
system responds with a bar chart showing the amount of free storage for refrigerated
goods, liquids, and dry goods. Since you plan to unload 500 hectoliters of white wine
in Stuttgart, you graphically manipulate the appropriate bar chart column so that it
shows the reduced space available. As a result, the system's knowledge base is
updated with a new value for liquid storage capacity at Stuttgart.

This kind of human-computer interaction is beyond current capabilities, but it is not
unrealistic to imagine that we might approach it in the next few years. The ACORD
project is intended to provide some of the fundamental conceptual tools which will
enable the kind of mixed-medium dialogue illustrated above. In particular, ACORD
is concerned with the task of integrating natural language and graphical
representations at the level of common meaning structures. The problem is being
attacked in the context of constructing a demonstrator where the update and
interrogation of a knowledge base can be carried out in English, French or German in
conjunction with interactive graphics; the domain of application is the logistics of

This paper reports collaborative research by the following teams in ESPRIT Project
393 (ACORD): Laboratoires de Marcoussis; Section de Linguistique, Universite de
Clermont-Ferrand II; Centre for Cognitive Science, University of Edinburgh;
EdCAAD, University of Edinburgh; Triumph-Adler AG; Fraunhofer Gesellschaft
IAO; BULL; and Institut fur Linguistik, Universitat Stuttgart.

868

road transport. Logic plays a primary role in the project for at least two reasons: first,
because the system is being implemented in the logic programming environment of
Prolog, and second, because ideas from logic inform the theoretical underpinning of
practically all the components. Finally, we note that one vital prerequisite for the
easy integration of deictic gesture (i.e. pointing) into natural language dialogue is
good speech recognition capacity, something which falls outside the remit of ACORD;
we assume that the efforts of others will bear fruit in this area.

In this paper, we will give a general overview of the progress made to date. Like
many other ESPRIT projects, ACORD involves the complex interaction of a large
number of different organizations and individuals. The perspective offered here does
not pretend to reflect this complexity in all its detail, but will be biased towards the
natural language parsing components of the project.

2. DIALOGUE MANAGEMENT

The hub of the whole system is the Dialogue Manager (DM), since it controls
communications between the other four subcomponents of the ACORD system,
namely the Parsers, the Graphics System, the Knowledge Base, and the Text
Generators.

To begin with, the DM mediates between the Parsers and the Graphics System, on the
one hand, and the Knowledge Base on the other. This link allows the DM to channel
Parser output and mouse events to the Knowledge Base, and also allows a certain
amount of information to feed back the other way, since the Parsers have restricted
access to Knowledge Base object-hierarchies and part-of relations in the course of
resolving definite noun phrases. At present, only Prolog deduction is available to the
DM, but further theorem-proving capabilities are under development, in order to aid
with anaphora resolution and other disambiguation tasks. In addition, the DM is
responsible for integrating graphics selection-events into the semantic output of the
Parsers. This involves correlating deictic expressions such as this, that, here, and
there with the identifiers of objects which have been referenced by mouse hits.

The other main logical connection concerns the flow of data between the DM, the
Graphics System, and the Text Generators. The DM translates the results returned by
the Knowledge Base into messages that can be conveyed to the generator devices for
graphical and textual output. In addition, the DM has to decide on the kind of
response that will be generated (graphics, text, or both), and on the amount of
information that will be displayed to the user. In the current prototype, the DM only
carries out 1-1 translations of Knowledge Base identifiers into Graphics System
identifiers, and supervises the correspondence between the structure of objects
displayed on the screen and the internal access paths to these data.

3. NATURAL LANGUAGE PARSING

There are sub-modules for each input language, namely German, French and
English. The different teams involved in parsing have adopted somewhat different
syntactic frameworks and parsing tools, though there is a common commitment to
the general methodology of unification grammar (cf. Shieber [1]), according to which
complex feature structures are a basic component of the formalism, with unification
being the basic operation over such structures. Moreover, the task of parsing can be

869

viewed as a process of constraint satisfaction with respect to both syntactic and
semantic requirements. Flexible parsing, in the sense of coping with agrammatical or
otherwise corrupt input is not a goal of the project, but the treatment of anaphora and
ellipsis is a major focus.

3.1. Semantic Representation

A notable feature of ACORD is that all the parsers deliver output in a common
semantic representation language. Our starting point for semantic representation
was the work of Kamp [2] on Discourse Representation Theory (DRT). Despite being
translatable into first order logic, DRT offered a novel theory of quantifiers and
pronouns which promised to allow a unified treatment of inter- and intra-sentential
anaphora. We have now developed a sorted logic, InL, which retains Kamp's analysis
of quantification and also incorporates a Davidsonian treatment of events.

A fundamental feature of InL is that each well-formed expression is of the form
[a]A, where A is the body of the expression, and a is a distinguished variable, called
the index. (1) illustrates the (simplified) InL formula for A lorry is waiting:

(1) [s][[x]lorry(x),wait(s,x)]

Here, s has the sort of states, and x has the sort of singular objects; conjunction
between clauses is indicated by ','• Indices correspond to Kamp's [2] reference markers
which have been entered into the universe of a discourse representation; except
where they fall within the scope of universal quantification/implication, indices are
implicitly subject to existential quantification. Thus, (1) says that there is an s and a
lorry x such that s is the state of x waiting.

The index plays two important roles: since it is a sorted variable, it can provide a kind
of typing information. Thus, we know that [x]A is a nominal expression, and denotes
a property of individuals, while [s]A is verbal expression, denoting a property of
states. (Of course, the sorting regime allows many other distinctions, say between
singular and plural objects, or events and processes.) Moreover, the index marks an
argument place that is open to further semantic specification, and thereby plays a role
analogous to that of lambda-bound variables in conventional approaches to the
compositional construction of semantic representations.

The parsers have a reasonably wide syntactic coverage, including constructions such
as prepositional complements and adjuncts, obligatory control verbs, relative clauses,
interrogatives, partitives and pseudo-partitives. As an illustration, let us briefly
consider the analysis of prepositional adjuncts. Both the English word in and the
French a are ambiguous (at least) between a locative and a temporal reading; thus, for
example,

(2) Jean arrivera a Paris / a dix heures.
Jean will arrive in Paris / in ten hours

Consequently, we might suppose that the lexical entry for a contains a disjunctive list
of semantic relations in the following manner:

(3) a, Prep, [spat_loc, tempjoc,....]

At lexical lookup, the semantic representation of d will be added by a clause of the
following form:

870

(4) adjunct([spat_loc, tempjoc,....], x, y)

where x is the 'subjecf of the preposition (in (2), the event introduced by the verb
arrivera), and y is the object (i.e., either Paris or dix heures). In the case at hand, we
can select the right reading at parse time by reference to the sort of the object
argument. That is, suppose that Pan's is entered in the lexicon as possessing a
representation of sort SPATIAL, and suppose we have a general constraint of the
form

(5) adjunct([spat_loc,...], x, y):- SPATLAL(y)

This allows us to derive the conclusion that a spatial reading of d is compatible with
an NP such as Paris, but not with dix heures; in the best case, the disjunctive list of
prepositional interpretations can be narrowed down to a single item.

3.2. English, French, German

Parsing of English and of French is being carried out within a version of categorial
grammar which makes heavy use of techniques from unification grammar; this has
been dubbed UCG [3]. As a grammatical framework, UCG departs from standard
categorial grammar in two major respects. First, the grammatical object to the right of
the categorial slash is not simply a syntactic category, but a complex of information
(including semantics, syntax and phonology) which, following Pollard [4], we call a
sign. Second, the use of unification allows us to build under-specified feature
structures which in effect constitute polymorphic functions over the relevant
grammar domains. Unbounded dependencies and pronominal anaphora are dealt
with by gap-threading techniques (cf. [5], [6]).

The teams working on French grammar have devoted considerable attention to a
variety of problem areas, including the syntax of clitics, auxiliaries, obligatory control
verbs, interrogative constructions [7], and the semantics of ellipsis [8]. One novel step
has been to extend UCG with a restricted form of function composition (cf. [9]) to
handle o>/z-interrogatives and the interaction of clitics and auxiliaries. Parallel
research is investigating the utility of using the attribute-value framework for the
implementation of generalized phrase structure grammar, and of interfacing string
grammar with DRT.

Parsing of German is being carried out within the framework of Lexical-Functional
Grammar; thus each sentence receives a f(unctional) structure before being mapped
into a semantic representation. It was decided to construct an extra level of syntactic
representation in order, for example, to have the means to encode a variant of
Chomsky's binding theory, to relieve the semantics of the burden of word order
variations in German, and to get an appropriate starting point for the generation of
different possible scope assignments to quantifiers and operators. Let us make the last
point a little bit clearer. F-structures are acyclic graphs, i.e. their edges are not ordered
with respect to each other. On the other hand, different scope assignments to
quantifiers can be seen as the result of different orders of functional application. The
algorithm (cf. [10], [11]) which we use for the mapping of f-structures to InL is based on
this fact, i.e., it imposes different orders among the predicate and its arguments,
thereby generating different readings without invoking different syntactic analyses or
a device like Cooper-storage [12]. The fact that LFG, in contrast to the other linguistic
theories employed, builds an extra level of representation allows for interesting
comparisons between monostratal and multistratal analyses in the overall system.

871

Other topics of concern have been the analysis of non-finite constructions, separable
verb prefixes, measure constructions, and the relatively free constituent order of
German [13]. The current parser combines Tomita's generalisation of LR-parsing and
the main ideas of the implementation described in [14].

4. THE KNOWLEDGE BASE

The KB has to support a number of functions. The foremost of these is to act as a
repository for domain-specific knowledge, and to provide a mechanism by which
user-supplied updates are incorporated into long-term storage. Another important
function is to allow individuals to be incrementally defined by a series of partial
specifications which are accumulated and propagated within the object hierarchy. As
is now usual, frequently-used taxonomic and default reasoning is precomputed by
classifying entities in an inheritance semi-lattice, based on the class/instance
paradigm.

Objects and relations may be combined to form 'states-of-affairs' (which are either
dispositions, events, or 'general'); these are encoded as straightforward Prolog facts
[15]. The resulting inference system is a hybrid, in the sense that inheritance and
resolution theorem-proving are both available; however, there is no need for an
extra level of meta-inference control.

5. PROSPECTUS

A large part of future work will involve extensions to the functionality of the
Dialogue Manager. For example, on the output side we wish to provide a capacity for
over-answering, for the generation of references to graphical objects, for the use of
elliptical expressions or even single word responses, and for the selection of the
appropriate graphical representation.

5.1. Deduction

As a further aid to resolution, we have been developing a deductive capacity for the
Dialogue Manager [16]. Since Kamp's Discourse Representation Structures are
logically similar to semantic tableaux, we have focussed on tableaux methods for
theorem proving, particularly dialogue tableaux theory. This views the logical
deduction of a formula <|> from a database T as a debate involving two idealized
dialogue partners. The Opponent, having conceded r , attacks <j>; the deduction
succeeds if the Proponent manages to defend <)> against these attacks. Dialogue
tableaux theory is preferable to conventional semantic tableaux in that it allows the
characterization of more logical calculi (intuitionistic and minimal, as well as
classical logic), and is more readily implemented.

5.2. Graphics

The bulk of work on graphics that has been implemented so far is a Prolog/GKS
binding [17]. A primary goal of this work has been to reconcile the declarative style of
Prolog with the inherent procedurality of GKS.

Research is now underway in attempting to determine the extent to which drawings
can be analyzed like expressions of a language, possessing both a syntax and

872

semantics. Given a set of syntactic rules which are used to generate or interpret some
range of drawing objects, it should be possible to arrive at a domain-independent
semantics for the relationships between the constituents of the drawings, and to
operate on the meanings in a way that is familiar from syntax-driven algebraic
semantics. However, the syntactic structures of drawings are not directly relevant to
their domain-specific meanings, since they are subject to a variety of semi-
conventional interpretations which are related in only an unsystematic manner to
their spatial-representative aspect. We are aiming to identify the basic syntactic
constituents of drawings by reference to the communicative context, rather than by
reference to formal structure alone. This context is often significantly determined by
explicit textual annotations of drawings, but also depends on the history of the
ongoing dialogue between user and system.

ACKNOWLEDGEMENTS

Although Klein is nominally the author of this paper, it represents contributions
from many participants in the ACORD project. Thanks are particularly due to Jo
Calder, Annick Corluy, Werner Frey, Gerhard Heyer, Jaap Hoepelman, John Lee,
Mark Moens, Celestin Sedogbo, and Henk Zeevat.

REFERENCES

[1] Shieber, S. M., An Introduction to Unification-based Approaches to Grammar
(University of Chicago Press, Chicago, Illinois, 1986).

[2] Kamp, H., A Theory of Truth and Semantic Representation, in: Groenendijk, J.
A. G., Janssen, T. M. V. and Stokhof, M. B. J., (eds.) Formal Methods in the Study
of Language, Volume 136, (Mathematical Centre Tracts, Amsterdam, 1981) pp.
277-322.

[3] Zeevat, H., Klein, E. and Calder, J., Unification Categorial Grammar, in:
Haddock, N. J., Klein, E. and Morrill, G., (eds.) Edinburgh Working Papers in
Cognitive Science, Volume 1: Categorial Grammar, Unification Grammar, and
Parsing (Centre for Cognitive Science, University of Edinburgh, 1986), pp. 193-
222.

[4] Pollard, C. J., Lectures on HPSG, unpublished MS. (CSLI, Stanford University,
1985).

[5] Pereira, F. C. N., Extraposition Grammars, American Journal of Computational
Linguistics 7 (1981), pp. 243-256.

[6] Johnson, M. and Klein, E., Discourse, Anaphora and Parsing, in: COLING86,
Institut fur Kommunikationsforschung und Phonetik, Bonn University (1986)
pp. 669-675

[7] Baschung, K., Bes, G. G., Corluy, A. and Guillotin, T. Auxiliaries and Clitics in
French UCG Grammar, in: Proceedings of the Third Conference of the European
Chapter of the Assocation for Computational Linguistics, Copenhagen (1987).

[8] Sedogbo, C , Extending the Expressive Capacity of the Semantic Component of
the Opera System, in: COLING86, Institut fiir Kommunikationsforschung und
Phonetik, Bonn University (1986) pp. 23-28.

[9] Steedman, M., Dependency and Coordination in the Grammar of Dutch and
English, Language 61 (1985) pp. 523-568.

[10] Reyle, U., Grammatical Functions, Discourse Referents and Quantification, in:
Proceedings of the Nin th International Joint Conference on Artificial
Intelligence, University of California at Los Angeles (1985), pp. 829-831.

873

[11] Frey, W. Syntax and Semantics of Some Noun Phrases, in: Laubsch, J., (ed.)
Proceedings of GWAI1984 (1985).

[12] Cooper, R., Quantification and Syntactic Theory (D.Reidel, Dordrecht, 1983).
[13] Netter, K., Getting Things Out Of Order: An LFG Proposal for the Treatment of

German Word Order, in: COLING86, Institut fur Kommunikationsforschung
und Phonetik, Bonn University (1986) pp. 494-496.

[14] Eisele, A. and Dorre, J. A Lexical Functional Grammar System in Prolog, in:
COLING86, Institut fur Kommunikationsforschung und Phonetik, Bonn
University (1986) pp. 551-553.

[15] Heyer, G. PROLOG for Processing Natural Language Semantics.and Data Bases,
ESPRIT Conference on Databases (Venice, 1986).

[16] Hoepelman, J. and Machate, J. Dialogue Theory, Theorem Proving, Database
Questioning and Natural Language, in: Katz, P. (ed.) ESPRIT '85 (North-Holland,
Amsterdam, 1986).

[17] Krishnamurti, R. and Sykes, P., A Graphics Interface to Prolog, in: Katz, P. (ed.)
ESPRIT '85 (North-Holland, Amsterdam, 1986).

874

Project No. 311

A D K M S: Advanced Data and Knowledge Management System

Juergen Peters
Nixdorf Computer AG, EDBS 4 2
Berliner Str. 95
D-8000 Muenchen 40

Abstract
The main goal of ESPRIT project 311 is the design and the
prototypical development of a system which manages very
large databases and knowledgebases in an integrated way.
The system under development has the following main modu
lar components:

a rule-based Natural Language Handler for convenient
and flexible access using different knowledge sources
(lexical, grammatical, domain, application, world know
ledge) ,

the BACK system (Berlin Advanced Computational Know
ledge representation;, a further development of KL-ONE,
with restricted, but efficient inference mechanisms,
a Knowledge to Data Transformation System for genera
ting automatically the Logical Schema of a Relational
Database Management System (RDBMS) from the knowledge
representation of the BACK system,
a RDBMS with an extended SQL as its data manipulation
language which can compute certain recursive queries
(e.g. the transitive closure) more efficiently than a
"traditional" Inference Machine when the amount of data
is very large and when the data first has to be fetched
from secondary memory.

The integration of these components into an advanced data
and knowledge management SYSTEM will be shown formally by
presenting the used principles of software engineering,
and in substance, by presenting the main system components
and their contributions in creating the data and knowledge
bases and in evaluating a natural language query using the
inferential capabilities of the system.

Introduction
Since December 1984 three major European computer manufacturers,
namely Nixdorf Computer (prime contractor), Olivetti, and Bull,
and computer science departments of four European universities,
namely, TU Berlin (partner) and Bologna Turin, and Hildesheim
(subcontractors) are involved in ESPK.II project 311.

875

In the design and realization of the system different approaches
are used for the different components. In particular, a fruitful
cooperation has been started between researchers and system deve
lopers educated in the traditions of Artificial Intelligence,
Database Engineering, Logic Programming, and Software Engineering.
With such a hybrid approach a clean system design was necessary to
be able to integrate successfully the components into the ADKMS.
As we shall outline in the following a new paradigm of system
development, the corner- to-corner-approach, had to be invented to
cope with the problems of system integration of such different
components.

Overall idea of the system
We consider the following parts of the system's idea to be the
central part of the project which we are about to realize:

1. Design and implementation of a knowledge representation for
malism which takes the conceptual/terminological structure
of the domain as the structuring principle of the database
scheme to be developed, which is able to inherit attributes
of concepts and therefore is suited to understand natural
language queries, which is able to represent knowledge and
draw inferences upon the stored data, which supplies a
mechanism to input data into a database, and which supplies
a query language for the stored data.

2. Design and implementation of natural language interface
capabilities able to translate a natural language query into
an unambiguous semantic query and transfer the latter one
into a query of the knowledge representation formalism.

3. Design and implementation of an extended relational database
which has acceptable access time with very large amounts of
data.

4. Design and implementation of algorithms which automatically
transfer the knowledge representation into the extended
relational database query language.

Design Principles
The general objective of the project concerns the design of a com
plex data and knowledge management system that can be inquired
through natural language. The project presents both knowledge
representation and knowledge management problems. The former pro
blem deals with the kind of semantics that is made available to
the natural language handler for solving interpretation ambigui
ties. They are the' same semantics that can be used to answer user
queries and to constitute the dictionary of the underlying data
base of instances. The latter problem deals with optimal knowledge
and data organization into a relational database schema takin i
into account the DBMS feat ares and having in mind expectations on
the use of the knowledge base.

876

The two kinds of problems refer to different research fields and
their solution calls for different cultural backgrounds. In other
words, a good approach in the design of the overall system seems
to be an initial separation of the studies in the two fields, and
a recursive integration of proposals and results to obtain a com
plete, homogeneous system.
This can be done provided that an intermediate interface is esta
blished between the two parts in the early phase of the project.
The interface must be the real cornerstone of the project, so as
to represent, at the same time, a formalization of the normal lan
guage handler output and a significant input to the KB design pro
cess. Furthermore, its definition must be already available at the
beginning of the project (at least, to a sufficient extent) to
avoid delays in performing the tasks, which mainly depend on it.
The KL-ONE representation formalism has been identified as an
interface that satisfies the above needs. Its management, the
introduction of possible extensions to meet the project require
ments, as well as the performance of inference operations, have
been considered activities of one of the project's tasks.
Natural language handling now becomes an autonomous research acti
vity, with the only constraint to express KB requests in terms of
expressions of the knowledge representation formalism. The choice
of developing three separated prototypes for the three languages
of the project partners is discussed elsewhere (f. Here we can only
notice that all of them are built having available a language for
issuing requests against the KBMS.
On the other side, the KB access requests constitute inputs to the
KBMS. They must be translated into sequences of DB operations to
be performed by the DB management system which stores concepts and
instances. In managing long files of instances no real new problem
must be faced with respect to those examined in the database lite
rature. Instead, many problems arise, when concept files are
accessed to answer user queries. In particular, the problem of
performing frequently transitive closures on concept fillers has
been identified as fundamental at the very beginning of the pro
ject. In few words, it has been recognized the necessity to intro
duce a second interface to separate material DB management from
conceptual-to-relational KB mapping.
An augmented relational database language, XSQL, which includes
operations for transitive closure and other navigations along
direct acyclic graphs has been adopted as the second corner inter
face of the project. Thus, two last tasks remain to be performed:

- bridge the gap between knowledge representation and selectio-
nal schema formalism, and

- design an efficient augmented DBMS to be used in storing and
managing a knowledge base.

877

In conclusion, the Advanced Knowledge and Database Management
System which is mentioned in the title of this project is not
designed as a whole, but as the integration of modules, each
covering one segment of the path that goes from the natural lan
guage to the elementary access operators to the secondary storage.
Then a unique design methodology cannot be conveniently adopted
for all the modules. It has been preferred an approach that esta
blishes two corner interfaces, thus dividing a multi-disciplinary
problem into single- field sub-problems. Now the project consists
in covering the space that divides one corner from the other and
the extreme interfaces (natural and relational) from the near cor
ners.

Layered Architecture
A data flow analysis of this architecture shows that the different
modules of the system cope with different kinds of data; every
module handles data with a different semantic content. This obser
vation shows that we can think about the systems in terms of
abstract layers, where every layer connects two different levels
of expressiveness in the processed statement. Such layers are
shown in table' 1.

This kind of analysis can help to understand how the system is
organized, where the knowledge about the various component resides
and how it is used.
We can see the system as a set of pipelined modules. The data flow
starts from the NLH and goes through all the modules to the exten
ded data base. However it is not a one-to-one query translation
process: every module elaborates the incoming query in a complex
way, and more than one query are generated for the below level.
So the query processing is a one-to-many translation, performed at
the various levels.

The system is able to answer to a query with inherently complex
semantics. This is achieved through a number of analyses on the
incoming query; every step translates the query in a less expres
sive language, i.e. in a language that handles objects simpler
than the objects of the previous language.
The first form of the query is the natural language: the NL query
represents a question made to the knowledge base by a user.
This query is analyzed by the appropriate NL handler; in this pro
cess the syntax tree of the query is obtained, and a semantic ana
lysis is performed, obtaining a representation of the semantics of
the sentence in terms of the BACK formalism.

Note that the transformation Natural langage -> Syntax ->Semantics
is performed inside every NL module, and every module uses its own
strategy, so the two step schema is only an abstraction: in the
actual modules the two steps are intermixed, and possibly other
intermediate representations are used.

878

The semantic query (represented in terms of the BACK Tell/Ask-
Interface) is then analyzed from the BACK module: depending on the
query this task may require a considerable amount of deduction.
These deductions are implemented in terms of operations on a com
plex data structure built using the Object-Oriented primitives
provided from the knowledge management level.
These operations are actually implemented by the run time support
transaltering them in extended relational database operations,
performed by the data base module. So from the expressive power
point of view the 0-0 oriented layer* provides a more network
oriented implementation language for BACK.
In the following table 1 the different levels of
outlined:

abstraction are

1 1 — 1

1 Representation 1 Abstraction layer 1

1 Natural language 1 Human knowledge. 1

1 NLH internal 1 Syntactic and linguistic 1
1 1 dependent semantics. 1

1 BACK Tell-Ask-Query 1 Domain dependent semantics. 1

1 0-0 operations* 1 Data structure semantics. 1

1 Ext. Relational DB 1 Relational algebra semantics. 1

Table 1: ADKMS Abstraction Layers

One important point to stress is that not all transformations are
done at run time; i.e. not all the modules are interpreters: in
particular the 0-0 operation* called by the BACK system will be
compiled directly in database operations; only data format conver
sion will be performed at run time. Compilative techniques may be
applied in other modules, too.
Various knowledge sources are needed to process completely a
query.
These sources may be used at run time or compile time, depending
on the modules. The following table 2 sketches the various know
ledge sources used, and their approximate size:

879

1 From 1 To 1 What 1

1 NL 1 Syntax tree 1 Syntax rules (70) 1

1 Syntax tree 1 Ling. dep. knowledge 1 Semantic rules(70) 1

1 Surface Know. 1 Deep Knowledge 1 Transl. rules (-) 1

1 Deep Knowledge 1 0-0 query* 1 BACK metaschema, 1
1 1 1 domain model(200) 1

1 0-0 query* 1 Ext. relational 1 ABox-,TBox- concept 1
1 1 queries 1 schema, logical 1
1 1 1 schema. (200) 1

Table 2: ADKMS Knowledge Sources
To these should be added the heuristic knowledge needed by the
compiler on BACK and on the domain modelled.

Load Balancing and Computational Power
It was observed before that the queries are Knowledge base queries
and not data base queries: this implies that some deduction acti
vities are involved in the query answering process: This conside
ration is important when the load balancing between modules is
considered: we consider here two different kinds of "load balan
cing", given one from a pragmatic point of view, the machine-time
load balancing, and the theoretical one, the computational power
distribution between modules.
Of course we consider here only the actual "inference engine" of
the KBMS, and not the NL modules. There seem to be two contradic
tory goals in the project (from this point of view): first we want
to use the data base as a work horse, in the sense that we want
the data base to perform most of the computation of the system to
be able to handle very large amount of data. Secondly we want to
obtain the expressive power of a knowledge representation system
over the stored data.

The result is a compromise between these different goals: increa
sing the computational power of the data base to the transitive
closure power, and a careful implementation both of the TBox and
the ABox over the-data base.
In particular the mapping to the data base is performed in such a
way that all the informations on instances are stored as in a tra
ditional db application so that the full power of a data base is
available for queries on instances.

880

However, it seems that the computational power of the extended
data base is not sufficient to implement all the BACK deductions.
So' a part of the computational power is to be implemented in BACK,
using the capabilities of Prolog. Therefore the job of the know
ledge management level is to map part of the BACK computation on a
data base, with the main goal that all the computations performed
on large amounts of data (usually computation on instances) are
actually performed by the data base.

Integration Planning
In the following we show which efforts have been spent to ensure
that integration can take place successfully:

- the organization of the system is modular
- the functional layer structure, and
- the functional dependency structure,

give the framework to avoid the duplication of labour at different
levels and components.
So, it is assured that one task is done only once at a well defi
ned place. The integration is possible because of the strategy
chosen and described above. It is also possible at the formal
implementation level, because as one can see from the following
picture that all the "upper" components are implemented in a com
mon dialect of PROLOG (P311-Core-Prolog) which is an extension of
the PROLOG described in Clocksin / Mellish. This makes ADKMS inde
pendent of specific operating and computer systems and allows to
port the programs of the different project sites and to interface
the modules.

Functionality Dependency of the
Components of P311

881

French
Natural Language
Handling (Task 3)

German
Natural Language
Handling (Task 3)

_ J

I I I I

Knowledge
Handling
(Task 2)

1 1 1 u
P311Core
Prolog

r~~
Module 2

Assembler

Italian
Natural Language
Handling (Task 3)

T

Complex Object
Handling
(Task 4 + 5)

Extended Data
Base Handling
(Task 6)

«J n
j

Operating
System Legend:

~J Functions

► it Using the Functionality of

— — *> is Impismsntsd in

Fiqure 1: ADKMS Architecture with Functional Dependencies

882

The extensions of the DBMS (on the top: the interface language,
Extended SQL, within the DBMS), the new data structures (DAG) and
operations on them are implemented in Modula-2 in the first proto
type, such that the integration with the upper level has to be
done under the operating system. Fortunately, there exist in all
standard operating systems (UNIX, VMS, VM/CMS, MS/DOS) conventions
to combine runtime systems of different programming languages.

The German Natural Language Handler
The NLH takes a typed-in natural language expression (e.g. a Ger
man sentence) as input, analyzes it syntactically, transforms it
into a wellformed expression of the Semantic Representation Lan
guage SR, controls the interaction of different knowledge resour
ces and reduces the final SR-expression to a BACK-formula.
The input routine accepts all German conventions of orthography
(e.g. lower and upper cases) and transforms the input string into
a list of words tractable for PROLOG-clauses.
The analyzer is based on Chomsky's "Barriers"-model and driven by
a depth-first left-corner-parser. It builds up a syntactic struc
ture according to X-bar-theory as given in "Barriers" and takes
case-marking cross-read with theta-expectations as main clues for
the indication of thematic relations.
Single words (or idiomatic expressions) are mapped either on logi
cal operators (and, or, not a.s.f.), on BACK-relations/-concepts
or on procedural commands ("print", "sort", "calculate" and the
like). Depending on the result of the syntactic analysis a proper
SR-expression is produced.
SR is based on first order predicate logic (PL1) with a kind of
enlarged vocabulary to allow for calling procedures and/or single
system components as well as for doing arithmetics (non-PLl quan
tifiers) .
There are similarities to SR like the ones used by LOKI or PALA-
BRE.
Certain lexical ambiguities, for instance, are resolved on this
level by checking the context against interpretation rules. Those
procedures are controlled by an annex of the SR, the SSV (Semantic
Supervisor).
Finally the result of all SR-processes is changed into a BACK-
formula (by the socalled Knowledge Interpreter KI) and handed
over to the BACK system.

The Italian N'atural Language Handler
The parser of the Italian NLH is based on the production rule for
malism. It is mainly deterministic, although in some cases the
backtracking mechanism is still used. The rules that embody the
linguistic knowledge (syntax) aim at building a dependency tree
representing the relationships existing between the words appea
ring in the input sentence.

883

The dependency tree is composed of nodes of different types, the
most important of which are REL (RELation, mostly containing
verbs), REF (REFerent, containing nouns and pronouns), CONN (CON-
Nector, for prepositions; a special filler - UNMarked - is used to
indicate that the CONN node connects an unmarked case to its
verb), ADJ (ADJectives) and DET (DETerminers). When an input word
is analyzed, its category is retrieved from the lexicon (of
course, the word can be ambiguous - i.e. it may belong to diffe
rent categories; the NLH is able to handle this situation, but we
will not consider it here for the sake of simplicity). On the
basis of the category, a packet of rules is triggered; the precon
ditions of the rules belonging to the packet are tested; they
involve elementary predicates that inspect the current situation
of the dependency tree and possibly require a lookahead (two-word
maximum) on the following piece of sentence. The action part of
the rules involves the creation of new node instances, their
attachment to a specific node of the existing dependency tree and
the insertion of data into the nodes.
For instance, in a query starting with the word "Which", the ana
lysis of this word would make the system verify (by means of a
lookahead) whether it is a pronoun (as in "Which is ...") or a
question adjective (as in "Which employees . . . ") . In the first
case, it is assumed to be a case of the main verb, so that a new
CONN node is created, it is attached to the main REL node (exi
sting from the very beginning) and it is filled with the keyword
UNM (see above); then a new REF node is built and it is filled
with the input word. Then the next input word is scanned and the
process continues in similar way.

The semantic processing is synchronized with the syntactic one. As
soon as two nodes containing content words (this is not the case
of the "Which" example discussed above) are attached, either
directly or by means of a CONN node, the semantic interpreter is
triggered. It verifies that the connection is semantically accep
table and, in the affirmative case, it returns some bindings that
express the word senses compatible with the phrase (more preci
sely, a binding for the upper word and a binding for the lower
one). These bindings will consist (when the NLH will be fully ope
rational, i.e. in version 2) in nodes of the BACK net, thus speci
fying which are the BACK concepts referred to in the input expres
sion.

In case no binding is possible, the connection which the check
referred to is not acceptable; in this case the system attempts to
restructure the tree in order to produce an alternative interpre
tation. This is done by means of "Natural Changes", a set of spe
cialized rules we will not describe here, which have a function
similar to the one of "well-formed substring tables" in more stan
dard parsers. If the Natural Changes do not succeed, then the
system resorts to backtracking to try to restart the analysis from
a previous choice point.

884

A Short Overview of the BACK System
This section gives a short overview of the BACK (Beriin Advanced
Computational Knowledge representation) system. The BACK System
is a hybrid presentation system. It has some similarities to well-
known hybrid systems like KRYPTON and KL-TWO. It also consists of
two main formalisms, one foNr representing the terminological know
ledge of a domain, the TBox, and one for representing the asser-
tional knowledge, the ABox. The TBox is further development of KL-
ONE with emphasis on computational tractability of the selected
and implemented language constructs, the epistemological primit
ives. The ABox is a development of TU Berlin which incorporates
the possibility of representing incomplete knowledge in a limited
but tractable manner.
The main emphasis in developing BACK is on the balance of the TBox
and the ABox language constructs. A balanced hybrid system differs
from competing approaches based on the 'the more the better'-
philosophy in this way, that each construct proposed as a language
construct should play its role in drawing inferences and ensuring
consistency by tractable algorithms, designed for realistic
amounts of knowledge.
This direction of development resulted in a first prototype imple
mentation of the BACK system with major differences to similar
approaches like KRYPTON or KL-TWO as well as to e.g. OMEGA. This
implementation was undertaken with a selected subset of PROLOG
(KIT CORE Prolog) for ensuring portability of the BACK system and
it is running- at present on IBM with Waterloo Core Prolog and M-
Prolog, on Symbolics with LM Prolog, and on Nixdorf Targon with M-
Prolog and Ifprolog. It was evaluated with some domain models
with promising results.
The further development of the BACK system is directed in enlarge-
ning the inferential capabilities of the system by techniques for
which tractable algorithms are known. This will result in a furt
her inspection and refinement of the language and further develop
ments of the underlying inference engine.
One field of research in this direction will be the analysis of
control- and meta-knowledge as a source for direction of lines of
inferences to ensure efficiency of the inference engine in coping
with realistic amounts of knowledge.

Connection BACK - Data Base Management System
The task consists of realizing a mapping between the BACK-System
and a Relational DBMS. An approach based on a structural mapping
from the primitives of the BACK language into DB relations (simi
lar to the one investigated with the KEE-System) is under develop
ment and will serve as a starting point for further investigation
on extending this line by a partial conceptual mapping between
BACK and the DB.
The division of the work into subtasks is the following :

- Structural mapping from BACK language primitives into DB
relations

885

- Mapping the TBox taking into account the classifying task
- Mapping the ABox without the contexts taking into account the
constraint propagation technique

- Selecting the appropriate structure and optimization techni
que and achieving the mapping of the ABox partitioning (con
texts)

Conceptual mapping between BACK and RDBMS
General objective of this subtask is to achieve system efficiency
by mapping high-level knowledge representation into KB relational
representation. This is obtained in two steps:

1. Design: the design of the KB relational schema for the TBox
and ABox component are obtained starting from a formal
description of the knowledge representation formalism (BACK)
and take into account application dependent information (the
TBox content and the TBox and ABox usages).

2. Run-time support: user queries issued against the KB are
translated into XSQL operations. The translation is referred
to the KB schemata produced in the previous step and takes
into account the effects of the addition of new concepts to
the TBox, due to the classification and realization mecha
nisms of BACK.

We can identify four main goals to be reached within this task:
- Definition of a design methodology to derive the TBox logical

schema from a formal description of the TBox structure, con
tents and from the expected operations to be performed.

- Definition of a design methodology to derive the ABox logical
schema from the contents of the TBox and taking into account
the ABox semantics and operations.

- Design of the Run-time support module which translates the
BACK operations into XSQL operations.

- Implementation of a Run-time support prototype, to be inte
grated with the BACK system and the ORACLE relational DBMS.

TBox relational design
The design methodology proposed has been developed taking advan
tage of previous experience on design methodologies for database
applications and is applicable to knowledge representation models
based on KL-ONE, as it is the case of the BACK system.
The methodology consists of two major phases:
(1) conceptual design and (2) logical design.

886

In phase 1 the designer has, as input, a description of the meta
concepts of the knowledge representation model adopted. The meta
concepts are expressed by means of a formalism based on an exten
sion of the Entity—Relationship model. This extension has been
developed to allow more flexibility in the knowledge organization
with respect to the standard E-R models used in the database
design environment. The result of the first phase is a conceptual
schema. This kind of output is particularly suitable for the
second phase of the methodology, which generates the logical
schema.
In phase 2 the logical relational schema is generated, starting
from the conceptual schema. To this purpose, a set of rules has
been identified. The rules are designed to operate with two types
of input:
a) an EER conceptual schema of the meta-concepts;
b) a qualitative description of the most frequent operations on

the schema and quantitative information on the use of the
above operations.

On the basis of this types, we have two levels of input:
level 1 - only type a) input
level 2 - both type a) and type b) input.
For each input level, a relational schema can be derived. Level 1
produces a very general schema, based only on application domain
independent informations, where the way of using the knowledge
base is not considered. Level 2 is available only when the appli
cation domain and its usage has been defined. This latter level
generates a relational schema optimized with respect to the number
of logical accesses to the relations storing the knowledge base.
System performance can be further improved by a physical design
step, where the choice of the file structures and the access met
hods to the stored information is performed.

ABox relational design
Our aim is to design a ABox relational schema which guarantees
efficient knowledge base interaction.
The structural mapping approach proposes a storing of the ABox
consisting in a small number of standard relations whose structure
is independent from the contents of the TBox (i.e. a relation to
store all the role links between concept instances, another rela
tion for all the concepts instances and so on).
Usually, an interaction with the knowledge base, especially for
the assertional component, involves only a small part of the sto
red knowledge (i.e. retrieving the instances linked to a given
concept instances by a given role). For this reason it would be
useful to have a partitioning of the knowledge, so as to limit the
search space for each retrieval operation.

887

This requirement becomes crucial when facing with very large know
ledge / data bases. In fact, the relations generated by the struc
tural mapping are very large and the access to a small part of the
large relation can be very expensive (i.e. the retrieval of the
instances linked to a given concept instance by a given role
requires the sequential scan of all the role links).
A first possible solution might be the adoption of indexing tech
niques, as it is usual in the DB environment (i.e. we could build
an index on the pair <concept-type-identifier, role-name> to
address all the instances linked to each instance of a given con
cept by a given role). This approach would improve system effi
ciency, for the retrieval operations, even if it generates some
additional costs <index structures require additional storing
space and maintainance costs in case of update operations).
For an alternative solution, we can observe that TBox contents
define a natural way of partitioning the ABox. In fact, it sug
gests to generate one or more relations to store the instances of
each TBox concept. In the literature we find few, recent propo
sals on this guideline and we feel it is very promising for our
project, since:

- it provides an effective partitioning criterion based on the
application domain semantics and can improve system effi
ciency;

- the resulting structure is flexible enough to support dynamic
enrichment of the TBox contents (as done by BACK during the
classification operation), since the creation of new relati
ons does not present real problems.

This solution can give raise to some complications due the very
high number of relations generated when the TBox contents
increase. For this reason we shall investigate an improved solu
tion which reduces the number of relations. In the resulting
schema the concepts which are close in the concept hierarchy are,
if possible, clustered in the same relation, on the basis of their
common roles.
The conceptual mapping of the ABox into a relational schema will
be generated by using an extension of the design methodology which
has been developed for the generation of the TBox relation schema.
This is a kind of compilation process which considers the TBox
contents as input information. Moreover, the compilation process
generates a mapping table recording the correspondences between
the TBox items and the relations where their instances are stored.

The compilation approach appears feasible, -since the application
domain structure is supposed to be completely described and stored
in the TBox before the ABox relations are filled. It is task of
the run-time support to deal with the subsequent extensions of the
TBox determined by the classification activity.

888

Run-time support design
The aim of this subtask is to define a communication language bet
ween the BACK module and the DB and to translate the operations on
data issued at run-time by BACK into extended relational operati
ons. The guidelines are the following :

- classify the operations on data issued by BACK and single out
precisely their semantics.

- allow the dynamic extension of the TBox when the new concepts
are added.

Prototype for the run-time support
The realization of the prototype is necesssary to verify appro
aches and techniques developed in the previous subtasks. Moreover,
integration of the run-time support prototype with those concer
ning the BACK system and the underlying augmented relationa DBMS
allows demonstration of the feasibility of a KBMS for large
amounts of knowledge.
Expecially the BACK system has incorporated mainly two inferential
capabilities:

- For the TBox inferences the classifier process serves as the
implementation of the taxonomic inferences .

- For the ABox inferencies the constraint propagation process
serves as the implementation of the ABox completion inferen
ces.

According to the demands of the conceptual mapping process these
two implementations of basic inferences has to be adopted.

Database and Database Query Language
Common relational query languages like SQL lack some of the
expressive power required for knowledge base applications.
In particular, we argue that a substantial and frequently used
part of the inferential power should be directly supplied by the
underlying database system.
Analyzing a collection of examples we intend to support various
types of (normally recursively expressed) queries on graph relati
ons. Thus we defined a graph manipulation kernel as an extension
of SQL. This extended language, called XSQL, has features to gene
rate a basic set of paths (in a directed graph), to select the
relevant paths from it by some conditions (including those refer
ring again to a pathset) and to produce the desired output. We
proposed an implementation of XSQL based on careful adaptions of
graph algorithms, im particular of algorithms for computing the
transitive closure. Supporting a huge amount of data the algo
rithms are to be tuned to minimize access to secondary storage.

889

Internal Operators for XSQL
We shall define a state diagram the nodes of which represent
internal structures of database relations and the edges of which
represent algorithms (internal operators) marked with cost estima
tes.

Runtime simulation XSQL and Demo Preparation
In order to rapidly demonstrate the express
its usefulness within ADKMS the XSQL langua
means of a common relational database syst
purpose a subset of the proposed XSQL will
cedures that call SQL routines. The simu
further experiences with the language and
of its role within ADKMS. Furthermore, thi
be used for the connection of the BACK
DBMS.

ive power of XSQL and
ge will be simulated be
em, ORACLE. For this
be translated into pro-
lation should provide
enable a demonstration
s simulation will then
system with relational

Implementation of XSQL
XSQL and some parts of SQL will be implemented using the internal
operators as they are proposed in previous deliverables Some pre
liminary studies on calculation along paths and on optimization
will also be attempted.
The final implementation should demonstrate the feasibility of our
approach to move inferential power to the underlying data base
system. It will also indicate how to incorporate the implementa
tion into common relational data dase systems.

Conclusion
The impact of the research in ESPRIT project
because there is an urgent need

311 is very great

- to enhance DBMS with greater functionality without loosing
efficiency ("intelligent database systems"),

- to make feasible the use of sophisticated knowledge based
system in case when large amounts of data and knowledge are
involved ("expert database systems"),

- to make available not restricted natural language handlers
which can cope with the large variety of linguistic and dia
logue handling problems, which are transportable, that is,
not tailored for one specific domain.

The chances that our project will be able to meet the requirements
of the user are good because we base our research and development
on solid grounds of already accepted standards in A.I. and data
base research and engineering.

890

At present the project may be ahead of the industrial schedule of
commercially exploiting systems like ours, but, firstly, there are
still many tasks to be done until the ADKMS is ready, and,
secondly, the industrial schedule may well speeden up because of
users' demands. It goes without saying that even if we me meet
all our requirements there are still many efforts to be spent
until something like a product will be available.

see deliverable D4 of P311 (available to other ESPRIT projects)
The work on the French Natural Language Handler was finished wit
hin ESPRIT after delivery of a first prototype. It is not descri
bed in this paper.
* The plan of compiling knowledge and to use compiled knowledge at
run time is no more included in the new workplan of the project
valid for the time span until May 1988.
Acknowledgement
The project is partially funded by the ESPRIT Programme of the
C.E.C. (Advanced Information Processing, P311).

891

P r o j e c t No. 96

The Expert System Builder (ESB)

Finn R. Jensen, Seren T. Lyngse A/S
Lyngsa Alle,

DK 2970 Horsholm, Denmark
Tel: +45 2 572500 ext 4365.

Alessandro Dionisi Vici, CSELT
Via G. Reiss Romoli 274,

10148 Torino, Italy
Tel: +39112169252.

1. INTRODUCTION

Two crucial elements in the development of large Expert Systems are the Domain
expertise and Al expertise.

Domain Experts are usually not familiar with Expert Systems, and have only used
computers as a requisite. They often find it difficult to articulate their own expertise,
especially in the terms usually used by computer programmers.

That is why a knowledge engineer, experienced with computers and also a skilled
communicator, is needed. He or she has to extract the expertise from the Domain
Expert and from that create the Expert System knowledge.

There are two problems. Good knowledge engineers are scarce and Domain Experts
are hardly available for interviews.

The ESB (Expert System Builder) will automate the process of building Expert Systems
(ESs) by offering a number of powerful modelling and architectural facilities not
found in previous Al-systems.

This paper first introduces the principles and tools contained in the Expert System
Builder (ESB), describing the progress achieved in terms of knowledge engineering
methods suitable for an industrial environment. The paper then discusses the issue
of controlling non determinism in production systems and describes the Basic Expert
System Builder (BESB) control architecture, which provides flexibility ease of
specification for different problem solving strategies in Expert Systems.

2. AN APPROACH TO EXPERT SYSTEM BUILDING

Today Expert System Building is a complex engineering task requiring a large
amount of knowledge of the internals of Expert Systems. In order to allow less
experienced persons to create Expert Systems we have derived an approach to Expert
System Building which is different from todays systems. Before going into more
details on this approach we shall first take a look at some of the background for the
selected approach.

892

2.1 Expert System Building

The task of building an expert system can be viewed as the mapping of the real life
problem into machine representation. The real life problem often contains the
following elements:

- Problem description.
This includes both a structural and a functional description. E.g. if we want to
make a diagnosis of a power plant, we must describe the power plant in terms of
its structure (pumps, boilers etc.) and its functionally (creation of electricity by use
of steam production).

- State description
This includes a description of the actual state of the problem to be reasoned
upon. E.g. the power plant does not produce enough electricity, and the
production is continuously decreasing. This description might include many
sensor based values coming from a real life application.

- Problem solving specification
This part is usually identified as the expert knowledge. It gives declarative
instructions on how problems in the problem area migth be solved. E.g. this
knowledge is entered in the form of rules or predicates.

The above elements must be mapped from the users mental perception into a
machine understandable form.

This mapping involves the following steps:

- Identification of the conceptual world for the problem.
The problem must be described in a precise and consistent way to allow it to be
mapped into a machine representation.

- Description of the problem structure using the defined concepts. This description
can cope with the structure of the problem but normally not with the
functionally aspects, which must be expressed using rules or even procedural
attachments to the structural specification.

- Definition of the problem solving task:
This requires mapping of the problem solving methods into rules and predicates.
This part is required for almost all expert system builders that exist as Expert
Systems usually reason by use of rules. A problem not covered by many Expert
System Builders today is the specification of control in the Expert System, e.g.
often the user making an expert system want to express some specific sequence in
which to solve the problem.

2.2 The P96 - Expert System Builder Approach

The goal of P96 is the following:

"To investigate to which extent the building of
Expert Systems can be industrialized"

To reach this goal the general principle for the design of the Expert System Builder is
to keep the mapping between the users mental model of the system and the
machine representation as easy as possible. This means that we want to allow the
user to be able to visualize his mental view of the system onto the machine by use of
a set of graphical tools. These tools allow the user to define the model by himself, or
by use of a predefined model lanquage. Further he can maintain an expert system
architecture, modeling tasks and strategies, in a graphical manner allowing to model
the problem solving architecture on a high abstraction level. This set of tools are
supported by a system for which the conceptual universe of the domain can be
defined on the machine.

893

Another important way to reach the goal is the reusability of knowledge already
stored in the ESB. This is supported by a structuring facility for expert systems
invented by this project. By use of this facility the tasks to be performed by an Expert
System can be extracted and saved as a commonly available "knowledge
subroutine", which can be used in other ES's needed for the same task in another
context.

The complete building process for an Expert System can then be seen as a set of steps
that can be iterated during maintenance of the system. Initially the ESB is empty and
contains only the Al building facilities.The steps are explained in the fol lowing:

1. Definition of the domain.

This phase is the mapping of the conceptual universe of the domain into the
ESB. The domain expert has facilities to define the various objects and their
attributes that exist in the domain. This includes the difinition of possible
value range for attributes of the objects. As it can be seen this
conceptualization requires an object oriented mapping of the users mental
view, which we find is a reasonable and finite task.
As part of the definition of the domain, the user can also define the graphical
representation of the concepts so that instances of the concept later on can be
visualized in a well known way.
The primary purpose of this first step is to "teach" the ESB about the domain
so it will understand the users input during the rest of the building process.
Updates to this part are expected all over the Domains life time.

2. Creation of Shells.

In this phase the domain expert defines Al reasoning elements that can be
used by many expert systems - common reasoning tasks (e.g.modeling tasks,
strategies, specializing object representation). Further he defines expert
system shells for classes of products which later can be instantiated to form a
specific product. These two parts of this phase are very important as they form
the basis for rapid development of Expert Systems for a range of products.

The creation of the reasoning elements and the ES shells makes use of

?|raphical structure editors to build the ES architecture and knowledge editors
or entering and maintenance of rules.

Any shell or ES can be associated with a model area for modelling of the
"wor ld" on which the reasoning can take place. This model area is
automatically customized to the conceptual universe during the building of
the domain. By use of the model area the user can graphically create a
structural model of the "world". By use of a special graphical language
developed in the project it is also possible to model the functionallity of the
system.

These tools will follow the Expert System during its life time allowing to
maintain structure and knowledge.

3. Creation of a Product.

The shells defined in a domain can be instantiated to form products which can
be further filled with product specific knowledge. It is normally at this stage
the model of the "wor ld" is added, as this usually is specific to the product.
Often very little has to be added in order to have a running expert system
based on the shells defined in the domain.

894

4. When a product specific expert system exists it can be applied to the problem
at any time for inspection of correct functioning. As the knowledge and
architecture editors forms an integrated part of any ES, the knowledge and
the architecture can be modified as appropriate during the test runs.

At any phase of the building process a save of the domain and ES's to background
storage can take place. This is important as the building process is an interactive task
not involving any file system maintenance at the user.

At the current stage of the project this is the support the ESB can give in the building
process. What is further needed is facilities to extract an Expert System to form a
stand alone application, and of course to port it to a delivery environment.

In the next section you will find an overview of the design of the ESB and some more
details on the various tools.

3. OVERVIEW OF THE EXPERT SYSTEM BUILDER

This section gives a overview of the various elements of the Expert System Builder.

3.1 The layers of the ESB

In order to get a modular and well structured system the Expert System Builder is
based on a layered approach:

 Domain 3 *

' < _ USP
1 PROGRAMMER
I

Al LAYER / j ^_ AIEXKRTA

DOMAIN LAYER / \ "j "•"ISER
1
" \

PRODUCT LAYER ^S \ ^ ♦ " ' S J E R T X

USER INTERFACE / l^_ ESB
I END USER

* Domain t

The ESB Layers

The layers are:

The Al layer:
This layer provides the basic Al facilities in form of building blocks that can be
mixed together to form expert systems and other "intelligent" parts of the ESB.
We also name this part the Basic Expert System Builder (BESB) as it is possible to
build expert system at the LISP level by using the building blocks.

The domain layer:
The domain layer contains the domains known by the ESB. A domain is the basis
for a number of products storing the conceptual universe for the domain plus
predefined ES shells.

895

- The product layer:
The product layer contains the final expert systems within each domain. A
product specific expert system is a system to solve a problem for a specific
product, e.g. a power plant.

The BESB will be described in section 4 of this paper and the domain/product layer is
covered later in this section.

3.2 The users of the ESB

In P96 we see the building of Expert Systems as a cooperation between many
categories of persons each contributing to the building of the ES but on different
levels of abstraction. The users are associated with the layered approach of the ESB:

- The Al Expert:
This person shall provide the other users of the ESB with sufficient Al tools for
solving their problems. This will typically be specialisation of knowledge
representation and reasoning mechanism. It is not foreseen that the Al expert
shall be very active after the ESB is customized for a specific domain.

- The Domain Expert:
This person has knowledge about the domain and solving of specific problems
within the domain. The domain expert will define the conceptual universe for the
domain. Further he will build Expert System elements for specific tasks which can
be reused by the next level of users. He will create a number of Expert System
shells already filled with knowledge for specific problems which then can be
instantiated to form a final Expert System for a given product.

- The Product Expert:
The product expert defines the actual problem for which the expert system shall
be used. This means that he defines the structures and functionalities of the real
world that the system shall reason about. This definition is based on the
conceptual universe defined by the domain expert. Further he can add some
problem solving knowledge specific for the product.

3.3 The Domain/Product layer

The design of the ESB is based on the use of object oriented programming. This
influences the mapping of the layers into an implementation based on objects in the
following way. We consider all "Domains" to reside in an enviroment supporting the
interface towards the BESB. The figure below shows the result of this mapping:

Concept
Base

Icon
Library

i
1

Expert
System
Shells

1 l

Products

1 1
Reasoning

Task
Shells

DOMAIN

Domain objects

896

The figure indicates that domain contain objects for:

- The Concept Base:
The concept base forms the conceptual universe for the domain in form of a data
base which support the creation and retrieval of domain specific concepts. The
primary purpose of the concept base is to support the interfaces to the various
objects in the domain with respect to terms, structure, value types etc. The
concept base is common to all objects in the domain and therefore supports the
reusability of domain specific knowledge, i.e. the concept base is build only once
per domain and then just maintained with new concepts.

Most concepts of the "wor ld" can be described in terms of objects which have
become the primary way of describing a concept in the ESB. Some objects will
become part of a model, so to this end it is possible to define the visual
representation for instances of concepts in the form of icons.

- Icon Library:
The icon library contains the icons defined for the domain. The user can create
and maintain the icon library via an icon editor, allowing to do graphic editing on
the icons. A powerful set of commands support the user in that work.

- Reasoning Task Shells:
In order to allow the user to reuse part of earlier defined expert systems the
system maintains a user defined set of reasoning task shells. These shells can
either be created from scratch by the user or be a kind of generalisation taken
from an already existing Expert System. These shells can during the creation or
maintenance of an Expert System be instantiated and inserted into the Expert
System Architecture.

- Expert System Shells:
Another level of reusability is supported by a set of user defined Expert System
Shells. By shell we mean a predefined Expert System Architecture with some tasks
already defined by the domain expert. The user can create an Expert System Shell
by use of a set of editors viewing the Expert System architecture from different
points: One is at the structural level where the user graphically can define the
architecture by manipulating reasoning task into the required architecture. It
shall be mentioned here that the ESB supports modularisation of the expert
system in many levels both on application and on control. This is covered in more
depth in section 4 and 5.

An Expert System (and Shell) can be attached with a model area which allow for
creation and maintenance of a model of the "world" which the Expert System
shall reason upon. This model is created and maintained by use of a graphical
editor which makes use of model elements defined as concepts in the concept
base.

The Expert System shells are intended for instantiating products which then can
be specialized in further details.

- Products:
The products are as menbtioned above instances of Expert System shells defined
in the domain. The product inherits the same facilities as the Expert System Shell
so the product expert can do the same manipulation with the Expert System.

All these objects are accessible through an interface guiding the user to the object
which he wants to work upon. For each object a well defined set of commands are
defined to manipulate the object in the proper manner.

The figure below shows the steps in the building process using these objects. It shall
be noted that any step can be iterated any number of time as the application
requires.

897

Domain Expert

Domain Expert

Domain Expert

Domain Expert Product Expert

Legend
, .k Knowledge Flow

~"* Data for Customization

Domain Expert

The Building Processes

898

4. THE BASIC EXPERT SYSTEM BUILDER (BESB)

Main goals of the BESB are a modular organization of knowledge, flexible problem
solving mechanisms and a clear distinction of control knowledge from descriptive
knowledge. All the above goals aim to make easier knowledge engineering by
allowing clean design of knowledge bases and user control of reasoning behaviour.

Expert systems can be decomposed into modular Reasoning Systems (RSs) whose
interaction achieves overall problem solving. The BESB supports the construction of
complex ESs and the cooperation of different reasoning agents by means of a
modular ES architecture. The critical feature is that different problem solving
organizations are supported and easy to specify.

The goal of a reasoning mechanism for BESB is to use knowledge in problem solving.
The Reasoning Engine (RE) of BESB provides a variety of reasoning techniques,
including search and inference, backward and forward chaining. A key feature is to
allow for heuristic, i.e. not only exhaustive, strategies to be specified.

Flexible strategies for inference and search are available, expressed by control
knowledge, separated form descriptive (application) knowledge, to determine the
behaviour of RSs. The specification of control allows a user to define different
reasoning directions, conflict resolution policies and to express heuristics for making
choices.

The current implementation of BESB, also referred to as BESB2, is the third prototype
version of the Basic Expert System Builder. Functionalities avaible in BESB2 are
described below.

4.1 Modular Architecture

ES architectures in BESB2 allow to organize any number of modules called Reasoning
Systems (RSs) in a hierarchy. RSs contain rule-like operators and a structured working
memory, called the Problem Space. Rule-like operators can be either a rule or an RS.
This means that an RS, as any production rule, has triggering conditions and actions.
At run-time an RS constitutes a node in the RSs hierachy, created by instantiated
operators, as shown in the figure below:

899

RULE 21
RULE 22
RULE 23

RULE31

RULE 51
RULE 52

RULE 41
RULE 42

RULE 61
RULE 62

An ES architecture

4.2 Knowledge Representation

BESB2 supports a formalism for representing knowledge as production rules, objects
and facts. All entities are objects. Rules can describe patterns about both objects and
facts, so that the reasoning process operates both on structured objects, and logic
like predicates e.g. (pump is stopped). The representation language can express
meta knowledge, i.e. Knowledge about other knowledge used in problem solving, to
be used in control strategies. As we will describe in the following sections, meta
knowledge describes properties of goals, states and operators, i.e. the objects of the
Problem Space.

A special aspect of knowledge representation in BESB is the direct way to integrate
shallow heuristic knowledge with deep knowledge describing structural and
functional models of a device. This capability makes BESB a useful kernel for
developing diagnostic and planning ES's.

900

4.3 Reasoning

BESB2 allows to reason forward from evidence to conclusions and backward from
goals to preconditions. The innovative feature is that reasoning can integrate search
and inference, in order to develop alternative search paths and to reason within
each state. Integration is achieved when an RS performs forward reasoning by
operators that either develop a tree structure of states or perform assertions within
a state. When reasoning backward, operators develop a tree structure of subgoals.
Both structures are explicit and users can manage through them control of the
reasoning strategy, as described below. The two reasoning directions can be used in
a same ES by RSs with different attributes.

4.4 Control Specification

BESB2 allows to express control strategies as attributes of an RS and to define
heuristic control rules in Control RSs which can be associated to any RS. When
inference and search mechanisms produce candidate GOALS, STATES and
OPERATORS, their selection must be decided. In BESB2 it is possible to run either
hardwired procedures for this purpose or to take decisions by means of heuristic
CONTROL RULES entered by the user in a Control RSs containing rules for selecting
among GOALS, STATES and OPERATORS. The Control-RS is invoked during reasoning
when control problems arise, e.g. selection among candidates. The interaction of a
controlled and a controlling (structurally identical) RS gives rise to an introspective
capability, i.e. the capability of RSs to reason about their own behaviour and control.

The "Introspective" capability of RSs in BESB will be discussed in the next sections
and compared to other research approaches on this knowledge engineering
technique, important for designing complex systems.

5. CONTROL IN EXPERT SYSTEM REASONING

Expert knowledge about an application domain is the power of an expert system. An
underlying reasoning mechanism, the interpreter for domain knowledge, applies
the expert heuristics, often provided as production rules, while searching for the
solution of the application problem. The qualitative analysis done by Stefiket al. (1)
on different problem solving architectures for different uses of knowledge for
problem solving suggests to adopt different problem solving architectures for
different problem features. When the problem description is small, all solutions may
be searched exhaustively. When the size of the problem space grows, heuristic
techniques are required and search strategies can organize the space in sequences of
"islands"; in complex synthesis problems planning techniques find solutions in
hiearchies of abstractions. The classification considers additional requirements to
handle interdependent subproblems, contradicting hypotheses, forking and joining
multiple lines of reasoning, problems represented on multidimensional blackboards.

The design of a general tool, capable of helping in exploring expert system design,
should support a good degree of flexibility with respect to the above problem
solving architectures. A good part of the skill of knowledge engineers consists in
understanding which problem solving architecture is suitable for the solution
offered by an expert. This skill can be exploited by separating domain knowledge
from control knowledge, guiding the behaviour of the problem solver.

The current generation of "large hybrid tolls" for building expert systems, e.g. ART
[11], KEE [16] and Knowledge Craft [17], allows for rich amalgations of knowledge
representation formalisms and powerful reasoning techniques. Nevertheless the
issue of control specification is either severely limited or opaque and cumbersome.
The design of BESB attempts to overcome limitations and complexity by providing a
framework where knowledge engineers can determine a wide range of problem
solving architectures by specifying control knowledge, separately from domain
knowledge.

901

5.1 Survey

Al research investigates the issue of control knowledge, proposing the explicit
representation of metaknowledge. The use of metaknowledge is surveyed by Aiello
[3] covering an area of impact for this knowledge engineering technique broader
than just the issue of control. A specific proposals for embedding metaknowledge in
rule based systems was formulated by Davis [4] for heuristic control of productions
invocation.

A key issue in effective use of metaknowledge for control is that of connecting a
controlling system to a controlled system in an architecture for introspection that
can inform and modify their behaviour. Introspection is the capability of a system to
reason about itself. The current research on introspective systems is surveyed by
Maes [5], with a discussion of:

a) which situations trigger introspection
b) what representations it manipulates and
c) how it affects the behaviour of the system.

Production systems are a widely used paradigm for representing heuristics in expert
systems, therefore in the following we will focus on their interpretation mechanisms
to discuss on control of reasoning. Nevertheless some of the approaches we survey
are based on different paradigms.

The investigation of control issues by Laurent [2] carefully analyzes the behaviour of
production interpreters and their capability to perform a wide variety of search and
inference tasks under different control regimes. Typically the interpreter behaviour
is affected

a) by rule invocation/selection, a control problem relevant to conflict solution
in inference, and

b) by state or goal selection, a control problem relevant to search and
backtracking.

Most advanced "large hybrid tools" tend to ignore the user specification of conflict
resolution strategies; some provide a capability of simultaneous exploration of
multiple lines of reasoning where search is not under control, as discussed by [18].

The Al approach to represent control knowledge in production systems was
suggested by Davis [4] and was based on the idea of representing explicitly
metaknowledge, i.e.knowledge about other knowledge prescribing how to use it.
The basic idea of Davis, with the goal of controlling rules invocation, was to have
metarules expressing what makes a piece of knowledge interesting in a particular
context of problem solving. More precisely, metarules for controlling (base) rules
invocation express what is useful or useless in the knowledge matched by (base) rules
patterns and then prescribe appropriate invocation.

Other research, following the original work of Weyrauch [7], has identified the
utility of using meta language: Bowen etal . in the context of logic programming [8]
to avoid use of non-monotonic logic, Attardi et al. in the context of the description
system Omega [9] to reason about viewpoints. A common goal of the systems above
is to manage reasoning in different contexts of problem solving. The main
differences are their specialized reasoning methods, their degree of flexibility and
the ease of expressing domain and controfknowledge.

5.2 Goals for RS Control

The above arguments led to focus BSB design on two objectives: providing RSs wtih
introspective capabilities, achieving flexibility of reasoning behaviour by a control
language where heuristics specified by a user prescribe now to decide on some
control problems, i.e. what to do next.

902

In introspective systems, i.e. systems which can reason about their own state and
goals, the key design issue are:

- access to representations that allow to modify behaviour, i.e. a communication
problem.

- a mechanism that allows domain reasoning to interact with control reasoning,
i.e. a control problem.

The actual capabilities of introspection determine the flexibility of a problem solver
and ease of expressing control knowledge.

In BESB we aim at modelling the architecture on limited control issues for an RS. The
typical control issues encountered in expert system deal with selection of goals,
states and operators within a reasoning agent. BESB provides users with a control
language for deciding when selecting goals, states and operators. The expected
benefit is to be found in the clarity of representing control knowledge in ES
prototypes, either for rapid experimentation of diverse problem solving behaviours,
or for building large rule bases.

5.2.1 Control Flow in the Reasoning Engine

The BESB engine for using knowledge in problem solving is called Reasoning Engine
(RE). As a starting point we have integrated in the RE the functionality of search and
inference within a uniform mechanism. An interesting inference analysis of problem
solving paradigms was developed by Simon [10] in order to exploit the
commonalities and differences of search and inference metaphors (Simon uses the
term reasoning where we use inference). Simon characterizes inference as a process
of knowledge "accumulation" in search of a proof, while characterizing search as
evaluation of alternatives inferred by a concise representation of problem states.

The two metaphors are somehow complementary and non exclusive; BESB adopts
both as primitive problem solving mechanisms in the RE. The RE uses productions to
perform a) logic-like inferences and b) to create a search space of alternatives.
When we use inference we intend to have means for adding new knowledge, e.g.
asserting new facts or creating subgoals. When we use search we intend to have
means for exploring alternatives, i.e. finding a possible path to a solution.
Integrating the two means to exploit when knowledge is useful during exploration
sharing a common framework.

Integration of search and inference is not original perse.

The original feature is that the structures internally developed by the RE are
accessible for inspection and modification by metareasoning. The RE represents an
object, the Problem Space, storing candidates for decisions, i.e. provable goals,
expansible states and applicable operators. A Control RS is then reasoning about
such "controlled" objects.

The Reasoning Engine goes through a match/select/execute cycle, where the non
deterministic "select" computation is to choose one out of possible many
candidates, a typical situation in search and, in inference, originated by pattern
matching and unification. Selection of goals, states and operators, embedded in the
match/select/execute cycle, provides a model of the reasoning process, while the
Problem Space provides a representation of the reasoning enviroment. These two
aspects are generelly crucial for introspective systems [5], since metareasoning about
a computational processs requires an accessible representation of the enviroment
and continuation of the process. Once a decision is taken the cycle continues
applying search/inference operators.

903

Decisions about selections can be taken via hardwired methods, e.g. a
straightforward depth first search procedure or via metareasoning. In the latter case
another reasoning process, described in a later section, uses heuristic rules written by
the user to decide. Note that the effect of hardwired or metalevel control are the
same, i.e. to update the Problem Space and resume the basic cycle. This uniformity of
representation allows the interleaving of the two control regimes.

Execution of the selected operator causes assertion and retraction of new facts,
whose effect will incrementally update a compiled representation of rule patterns
and their matches.

5.2.2 Reasoning Strategies

A few user-defined attributes specify the behaviour of RSs: direction, reasoning
mode, search strategy and conflict resolution strategy. From the combination of
their values arise diverse problem solving strategies. Direction can be forward or
backward, reasoning mode can be inference, search or reasoning, i.e. the
integration of the two. Search and conflict-resolution can be either hardwired
procedures or "RS", i.e. based on control reasoning.

In this section we give a simple example of how the third reasoning mode can
significantly prune search by an early posting of constraints. For other problems it
would be suitable to use an opposite strategy, i.e. delaying the posting of
constraints. This is not difficult in BESB, since it is enough to specify, via the conflict-
resolution strategy, whether we want to schedule search operators before inference
operators (here used for representing constraints), or the other way around.

The example aims to solve the following problem suggested by Wos[19]: N persons
must be allocated one out of N jobs, under the constraint that some of the jobs are
advisable for persons of a given sex. Find a job allocation respecting the constraint.
The problem gives rise to a large number OT alternatives; furthermore, once a job is
allocated, the state of the world changes, therefore if we represent the knowledge
about a job allocation to a person by a rule and the constraint by another rule, a
monotonic inference process may fail to reach a solution. So the normal way to
reason about this problem is to search for all possible rule sequences, which
quarantees that a solution will be found. Nevertheless a blind search process may
explore unnecessary paths to the solution. In conclusion the simple strategy that we
suggest is to represent:

- by a search operator knowledge about job allocation, in order to span all possible
job-person pairs;

- by an inference operator knowledge about the constraint which prevents to
allocate a job to a person of the unadvisable sex;

The reasoning strategy will be specified in order to apply the inference operator
before the search operator, resulting in a reduced search space, since only the legal
alternatives would be expanded. The two figures below show the search space
generated by the blind search strategy and the one generated by the "reasoning"
strategy for the simply case of two persons.

904

(ADVISABLEJOB NURSE MALE)
(SEX SUSY FEMALE) ^

(ASSIMtDJOB NURSE ROBY)
(JOB TEACHER)

(JOB NURSE)
(S « ROBY MALE)
(PERSON ROSY)
(PERSON SUSY)

(ASSIGNEDJ08 TEACHER SUSY)
(NO! Al LOWEDJOB NUR5[SUSY)

'If,

K V I E U C I H S S 15S23612>
(PERSON ROBY)
(PER60H SUSY)
(SEK ROBY MALE)
(SEX SUSY FEnfiLE)
(JOB TEACHER)
(JOB MURSE)
(ADVISABLE JOB ftURSE MALE)
MIL
(ASSIGNEDJOB MURSE SUSY)
Done

lew[200] view[201]

v l e w t i a s] ^
6

^
2 0 2

!
-

^
2 0

^
\^view[204]—view[205]«

\ i e w [2 0 6] view[207]«

u l « u (l 9 9] ; Subtree (i MERGED P P0I60MED)

<•)
SESSZ Litp Liltentr

ESPRIT PROJECT 96 Expert System Builder

i._JjJ_!_
BESB2*

Vicw (1711

LOCAL FACTS
OLOBAL FACTS

RETRACTED FACTS
SEARCH FENDING TASKS

SEARCH APPLIED TASKS FROM ROOT
SEARCH AFFLIED TASKS FOR SONS

PARALYZED TASKS'^
LOCAL FARALY2ED TASKS

ANTECEDENT STATE
SUCCESSOR STATES
MERGEIN STATES
MERGETO STATE

MATCHES
GRAPHIC SUBTREE
NON EXPANDIBLE

FOISONED
EXPLAIN ...

■V: *'Wk$®®FW

vtaw[t l7& —

> vitvllb?}: S.

 > [I7 I •
1 ' v iaw [17 t]

<wtawt I I I] * ..;,.„
 . y t o w l l l l l '

[1 l l | « ^ r . | I I J | '

vl««| t»n) '

. U . | i i / . | '

„6t ree (I ntlfCED P POISOHED)

HFi

g t n e r t t l n u v iew [1 7 3]

and o b t a i r i l n u t r ie f o l l o w i n g l o c a l f a c t a

{ntsKIKIM II "») i t l ik. l PHRY)

SiMich Q| j * r « t a r wa« appl led t o I n * T u l l o

RULE C:

(IF
(and)

(PERSOM SUSY)
(SEK SUSY FEflflLE)
(JOB MURSE)
(ADVISABLEJOB MURSE MALE))

THEM
(and*

(aproot
(HOIflLLOUEDJOB MURSE SUSY)))

g e n e r a t i n g v i e v [174]

and o b t a i n i n g t he f o l l o w i n g l o c a l f a c t :

(MOI ALLOuEDJOB MURSE SUSY)

(iiSSlCMEDJOB MUR6E ROBY))))

ffi3t%3gff3«l

BE5B2 Lisp L stinu

I ESPRIT PROJECT 9 6 * Expert System Builder

905

5.3 Control Reasoning

In order to describe how control reasoning is designed in BESB, we will first overview
its architecture, then analyze how communication is ensured between a controlling
and a controlled RS, define the means for invoking control reasoning and conclude
by outlining work now in progress.

5.3.1 Control Architecture

Two main problems are considered in the RE in order to provide an introspective
architecture:

- a control problem, i.e. allowing decisions about candidate goals, states and
operators selection, triggering a jump to the meta level;

- a communication problem, i.e. connecting the Problem Space of the controlled RS
to the reasoning process of the Control RS.

We introduce the control problem by discussing architectural concepts taken from
the SOAR system [12]. The introspective architecture of SOAR recursively calls the
interpreter for each problem that cannot be solved at one level of interpretation
creating a new subgoal. Eventually SOAR distinquishes among automatic
subgoaling, i.e. when the interpreter does not know how to solve an impasse and
uses weak methods at the recursive level, and deliberate subgoaling, i.e. when a
subgoal is created directly in order to use heuristic capable of solving it.

In BESB we are interested in using heuristics entered for the deliberate user purpose
of controlling decision; metareasoning is only possible when a Control RS is created
and related to the controlled RS. If the user specifies hardwired control strategies,
e.g. depth first search as in the example of the previous section, a procedure pops a
state from the stack of expandible states. If the user specifies heuristic control
strategies, the controlled RS invokes its Control RS. At each decision point in the RE
match/select/execute cycle, it is possible to jump to the meta level and resume when
the Control RS has made a choice. This leads us to consider the communication
problem.

The rationale for the communication problem originates from the fact that typically
control heuristic specify that some of the candidates to selection is valuable by
describing some interesting property of its contents. This idea was originally
proposed by Davis [4] and described as "content reference". Fig. 1 shows an example
of a BESB control rule identifying the relevance of a state containing a desired
pattern of knowledge (a "yes-predicate"). The rule prescribes to select the state with
a related matching operator.

(defruleselect-state-and-operator
(and*

(expandible ?state)
(applicable ?state ?operator ?bindings)
(state ?state (yes-predicate ?var-x ?var-y))
(expandible ?state1)
(applicable ?state1 ?operator1 ?bindings1)
(state ?state1 (no-predicate ?var1-x ?var1-y)))

(selected ?state ?operator 'bindings))

- Heuristic rule about contents of states -

906

The key points for an introspective control architecture can be stated as follows:

- the RE at each cycle updates the Problem Space and inputs a new situation to the
Control RS, whose goal is to decide "what todonext" ;

- the control rules match against the updated situation accessing the contents of
the controlled Problem Space.

The efficiency of the resulting behaviour depends for the latter aspect by the
capability of reasoning about obejcts and for the former by an incremental
compilation of changes occurred in the controlled RS onto the patterns of the
control rules.

When the Reasoning Engine activates the Control RS, it communicates the set of
candidate goals, states or operators currently available for the choice; when
resuming, the Control RS answers with the selected element. The controlling and the
controlled system thus communicate by means of messages implemented as "control
facts", e.g. facts telling which instance of operator is applicable in an expandible
state. The two interacting systems exchange declarative facts between them, i.e.
statements such as:

(applicable ?state ?operator?binding)
or

(selected ?state ?operator ?binding)

which connect the controlled Problem Space to the controlled RE. They are
dynamically created when the two systems need communication and are the key to
allow control rules to refer to the contents of the objects to be selected.

As a concluding remark, let us note that there can be any number of levels of meta
reasoning, but the user can determine a simple criterion for deciding at the highest
level he has specified, possibly the first.

5.3.2 Meta level Sensors and Effectors

The communication problem is to provide practical means to inform the controlling
system and modify the controlled system, i.e. to allow metareasoning to be informed
by and to affect domain reasoning. The issue of "causally connecting" the levels in
an introspective system was introduced by Batali [13] in his investigation, and can be
simply stated as the need to provide access capabilities affecting the resulting
behaviour. Access from the meta level is directed to "sense" the controlled
environment, i.e. the Problem Space and its contents. Design options for connecting
the metalevel are discussed by Genesereth in [14]. For "sensing" the base level from
the meta level one can use "semantic attachments" as in FOL [7]. Furthermore the
base level may be extended to update the meta level.

For this purpose BESB provides specific meta level sensors reaching object in the base
level. The previous rule selecting state and operator shows the pattern

1) (state ?state (yes-predicate ?var-x ?var-y))

which looks for the pattern

2) (yes-predicate ?var-x ?var-y)

inside any of the states which match the pattern

3) (expandible ?state).

The"state" pattern in 1) is a meta level "sensor", informing the Control RS about the
contents of states belonging to the controlled RS.

907

5.3.3. Control Invocation

BESS allows an adaptable method for control invocation, which enhances the one
described so far. Attributes specifying how a RS behaves can select either a
"hardwired" procedural strategy or a Control RS for heuristic strategies. Since the
use of heuristic strategies may only be relevant to some specific situation, the new
BESB design allows to interleave a default procedural strategy with the one provided
by a Control RS, triggered by the presence of a desired situation. The adaptable
mechanism is justified by two different reasons:

- to limit the overhead of Control RS computations;

- to allow a user to specify critical situations, and associated heuristics for making
decisions, occuring in the "routine work" of problem solving.

The capability of adaptable control seems to capture the essence of a strategy, since
a strategy aims at forecasting critical decisions points and at making relevant
knowledge to be available exactly when needed.

6. CONCLUDING REMARKS

The P96 project is currently in its fifth year of the five year contract. At this stage the
third version of the BESB is running together with the first version of the ESB. The
ESB has been used to build a number of sample expert systems for testing purposes.

Currently an "industrialization" phase is taking place in order to build a more robust
and stable system, which can form the basis for better competition against Japan
and USA.

A "b ig" demonstrator Expert System is beeing build in parallel with this
"industrialization" in order to make a complete testing af the facilities of the ESB.
This demonstrator is a complete online diagnosis system for the Boiler system of a
power plant.

7. REFERENCES

1. Stefik, M.etal . "The Organization of Expert Systems, a Tutorial"
Artificial Intelligence 18 (1982)

2. Laurent, J. P. "Control Structures in Expert Systems"
Technology and Science of Information, vol. 3, nr. 3
(1984)

3. Aiello, L. "The Uses of Metaknowledge in Al Systems"
Proc. ECAI 84: Advances in Al - Elsevier Science (1984)

4. Davis, R. "Meta-rules: Reasoning about Control"
Artificial Intelligence 15 (1980)

5. Maes, P. "Introspection in Knowledge Representation"
Proc. ECAI 86.

6. Jensen, F. R. "Flame Reference Chart"
ESPRIT Project P96, Report 381-WP-03204-535.

7. Weyrauch, R. W. "Prolegomena to a theory of Mechanized Formal
Reasoning"
Artificial Intelligence 13 (1980)

908

8. Bowen, K. A.

9. Attardi, G e t al.

10.Simon, H. A.

11.

12. Laird, J. E.

13.Batali,J.

14.Genesereth, M. R.

15.McDermott, D.

16.

17.

18.DeKleer,J.et al.

19.Wos, l .etal.

"Amalgamating Language and Metalanguage"
Logic Programming, Academic Press (1982)

"Metalanguage and Reasoning across Viewpoints"
Proc. ECAI

"Search and Reasoning in Problem Solving"
Artificial Intelligence 21 (1983)

"Inference ART Reference Manual"
Inference Corporation, Los Angeles, California (1986)

"Universal Subgoaling"
Carnegie Mellon University, Department of Computer
Science, Technical Report CMU-CS-84-129, Pittsburgh,
Pennsilvanya(1984)

"Computational Introspection"
Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, Al Memo no. 701, Cambridge
Massachusetts (1983)

"An Overview of Metalevel Architecture"
Proc. AAAI83

"Generalizing Problem Reduction: a Logical Analysis"
Proc. 8.th IJCAI Karlsruhe (1983)

"KEE,the Knowledge Engineering Environment"
Intellicorp, Menlo ParkCA

"Knowledge Craft, an Environment for Developing
Knowledge Based System"
Carnegie Group, Pittsbourg PA

"Back to Backtracking: Controlling the ATMS"
Proc. AAAI 86

"Automated Reasoning: Introduction and
Applications"
Chapter 3, section 3.1. Prentice Hall, Englewood Cliffs
NJ.

909

Project No. 387

INDUSTRIAL CONTROL : A CHALLENGE FOR THE APPLICATIONS OF ARTIFICIAL
INTELLIGENCE

Some Lessons Learnt and Results from the KRITIC Esprit Project (P387)

Authors : F. Arlabosse (+), J. Biermann (++), E. Gaussens (+),
T. Wittig (++)

(+) FRAMENTEC S.A. (France)
(++) KRUPP ATLAS ELEKTRONIK GMBH (West Germany)

ABSTRACT

Based on the work conducted in the framework of the KRITIC Esprit Project
(P387), some results concerning the application of knowledgebased systems
to industrial control are described.

Two main aspects are dealt with :

1. The importance of knowledgebased system control, to address this kind of
application.

Two significant illustrations of this are :

*how control engineers are effectively using a representation of their
actions and abstract control for their decision processes ;

*how the latter must be reproduced by any KBS application in industrial
control.

This methodological attempt is one of the achievement of the KRITIC
project.

Based upon detailed analysis, two viewpoints have been developed inside
the project team :

*classification

♦contraints satisfaction search

These are sketched in the last part of CHAPTER ONE.

2. The construction of a KBS for load management in electrical power stations
based on constraint satisfaction search.

This is illustrated by a planning system used in the demonstrator built
by Krupp Atlas Elektronik (KAE).

This part of the paper also briefly describes various tools built in the
course of the KRITIC project.

The classisfication viewpoint and its application to the diagnosis of a
telecommunications switching system is described in [1].

910

To conclude, the results of the KRITIC project are summarized, in particular :

. A methodological framework for KBS development in industrial control applica
tions ;

. The architectural and control specifications coming from that methodology ;

. And finally , that the decision processes involved solve problems by using
heuristics which, in some cases, either are synthetized or "shortcut" mathe
matical algorithms of automatic and optimal control theories.

ACKNOWLEDGMENTS

The autors would like to acknowledge many valuable discussions and sharing of
of experience with :

The Queen Mary College KRITIC Team :
E. Mamdani, J. Bigham, V. Khong, S. Varey ;

The British Telecom KRITIC Team :
G. Williamson, J. Butler, S. King ;

And, from Framentec :
V. Duong, P. Le Page.

INTRODUCTION

Based on the work conducted in the framework of the KRITIC Esprit Project
(P387), some results concerning the application of knowledgebased systems
to industrial control are described.

Two main aspects are dealt with :

1. The importance of knowledgebased system control, to address this kind of
application.

Two significant illustrations of this are :

*how control engineers are effectively using a representation of their
actions and abstract control for their decision processes ;

♦how the latter must be reproduced by any KBS application in industrial
control.

This methodological attempt is one of the achievement of the KRITIC
project.

Based upon detailed analysis, two viewpoints have been developed inside
the project team :

♦classification
♦constraints satisfaction search

These are sketched in the last part of CHAPTER ONE.

2. The construction of a KBS for load management in electrical power stations
based on constraint satisfaction search.

This is illustrated by a planning system used in the demonstrator built by

911

Krupp Atlas Elektronik (KAE).

This part of the paper also briefly describes various tools built in the
course of the KRITIC project.

The classification viewpoint and its application to the diagnosis of a
telecommunications switching system is described in [1].

To conclude, the results of the KRITIC project are summarized, in particular :

. A methodological framework for KBS development in industrial control applica
tions ;

. The architectural and control specifications coming from that methodology ;

. And finally, that the decision processes involved solve problems by using
heuristics which, in some cases, either are synthetized or "shortcut" mathe
matical algorithms of automatic and optimal control theories.

ACKNOWLEDGMENTS

The authors would like to acknowledge many valuable discussions and sharing of
experience with :

The Queen Mary College KRITIC Team :
E. Mamdani, J. Bigham, V. Khong, S. Varey ;

The British Telecom KRITIC Team :
G. Williamson, J. Butler, S. King ;

And, from Framentec :
V. Duong, P. Le Page.

CHAPTER ONE : CONTROL OF KNOWLEDGE-BASED SYSTEM FOR INDUSTRIAL CONTROL
AN ESSENTIAL ISSUE

One of the achievement of the KRITIC project was to highlight the role that can
be played by knowledge-based systems in industrial control applications.

The relatively recent penetration of knowledge engineering techniques in the
field of industrial control raises new problems for the artificial intelligence
(AI) researchers and developers.

This is because of the complexity of the problems to be solved and the many
"classical" approaches to solutions, from pure mathematic fields (control
theory, differential games, dynamics) to purely technical areas (sensors,
actuators, automatic control devices), all of them often being integrated
into a computer structure and embedded in the very general problem of
"decision-making" in non-nominal or even critical situations.

The use of knowledge engineering techniques in this field is more or less
justified by the fact that control "decisions" are based in fact on human
experience and judgement, using the variety of techniques, designs or theories
previously mentioned.

Also, the knowledge used by industrial process control engineers keeps evol
ving as their experience with the industrial system grows.

912

In some ways, the KRITIC project is an attempt to study this decision-making
process and build AI tools to demonstrate how parts of it can benefit from
this new approach.

The concrete examples analysed are a telecommunication switching system and
load management of an electrical power distribution network.

1] Some Basic Characteristics of Industrial Process Control

Industrial control means the way a process is supervised and kept within its
operating limits.

Thus, industrial process control (IPC) systems need to be able to evaluate a
situation, then make the appropriate decisions.

The situation is theoretically defined by the process state, given by sensors,
and formal models of the design, complemented by exact knowledge of the rele
vant environment.

In practice, however, it is evaluated through a partially known/controllable
environment, and a REPRESENTATION of the process based on : previous actions/
reactions, encompassing but synthetic information (e.g., a unique integrated
curve of consomption for a whole network), and finally, the engineer's expe
rience (induction/deduction - taxonomy - informal models - personal notes,
e t c .) .

In general terms, a control system must be able to recognise dangerous or
potentially dangerous situations, to be capable of optimizing a situation
(or its evolution), to plan a sequence of actions to avoid a critical situa
tion, to plan a sequence of action to escape a critical situation, and finally,
to plan a sequence of actions to optimize (the evolution of) a situation.

The process representation provides the basic background knowledge used by the
process control engineer.

Since process representations are, as we have seen, dependent on the actions,
the synthetic information and the heuristics, it is essential that they are kept
coherent as the process goes on. This implies that the engineer cannot take
isolated decisions ; they have to be incorporated into a plan, to avoid destro
ying the informal model being used.

Somehow this model acts as a cohercive solving process for the decision model.

Industrial process control system operation is based on :

a - building a sequence of actions relying on the representation(s) and their
evolution(s) ;

b - being able to reason and select a solution to a problem that is under-
constrained, either because of unpredicted behavior of the process or of
the environment, or due to the imprecision of the plausible representa
tion^) ;

c - being able to relax a problem that is over-constrained either because of
a crisis situation or due to the rigidity of the representation(s) ;

d - performing these actions and comparing the results with the available
observations (sensors, or synthetic process curve, etc..) ;

913

e - in case of discrepancies or contradictions that lead to risky situations,
taking the appropriate remedial actions immediatly ; and

f - simultaneously replenning future actions, to keep the consistency of the
overall sequences and of the various representations.

This implies that the various problems need to be solved under a coherent and
encompassing framework or problem solving scheme : at the action level, at the
action-planning level and at the model/representation/plan level.

Although classical approaches are often very efficient, it is plausible to
believe that in case of "open processes", dealing with such external inputs as
the actions of power consumers, the reasoning heuristics, as well as the repre-
tational modes of the control, give to AI techniques an opportunity to demons
trate their usefulness (not in a "stand-alone" fashion but integrated with
other appropriate techniques).

2] Some Basic Features of KBS Control

To introduce our analysis, we might think of control as being the means by
which problem solving strategies are selected, and even further, by which
problem-solving methods to use in the face of a situation are choosen. Let us
quote B. Hayes-Roth [2] :
"The control problem is : which of its potential actions should an AI system
perform at each point in the problem solving process ? [...]
in solving the control problem, a system determines its own cognitive beha
vior. [...]
people do not simply solve a problem. They often know something about how
they solve the problem, how they have solved similar problems in the past,
why they perform one problem solving action rather than another, what problem-
solving actions they are likely to perform in the future, and so forth."

This clearly points out what process control using KBS has to achieve, namely
use the problem-solving knowledge to operate the knowledge-based system itself,
which in a way creates a new problem to solve.

Obviously this is not easy, since, as stated by de Kleer-Doyle-Steele-
Sussman [3] :

"Verily, as much knowledge is needed to effectively use a fact as there is in
the fact".

If we think about control in terms of the classical "fetch-execute" cycle in
computers and its interpreter-agenda formalization, then all the knowledge
mentioned above should be incorporated into the interpreter.

Then we face the problem quoted by Hayes [4] :

"We have now come full circle, to a classical problem-solving situation.
How can the interpreter decide what order to run the process in ? it doesn't
know anything about any particular domain, so it can't decide. So we have to
be able to tell it. [...] This is exactly the situation which [...] procedu-
ralists attacked. In removing the decision to actually RUN from the code and
placing it in the interpreter, advocates of [agenda structures] [...] have
recreated the uniform black-box problem-solver."

To overcome this problem, several solutions are proposed : define a standard
order for running tasks (priorities), define a semiadaptative scheme for run-
ring tasks (set priorities and "find proper knowledge sources based on facts,
sort them according to fixed priorities, run the first one, but no heuristics

914

are incorporated into each basic action of the cycle"), or even define, like
Lenat [6] totally dynamic priorities based on the accumulation of reasons to
run a task.

However, still citing Hayes analysis [4] :

"A somewhat more sophisticated idea is to allow descriptors for subqueues and
allow processes to access these descriptors.
But none of these ideas seem very convincing. And we have moved down another
level, to the interpreter of the interpreter-writing language of the represen
tation language.

The only way out of this descending spiral is upwards.
We need to be able to describe processing strategies in a language at least
as rich as that in which we describe the external domains, and for good en
gineering, it should be the same language."

So, since control is a problem overlaying other problems we once again face the
difficulties in qualifying its attributes and goals, enhanced by the inherent
complexity of the notions of "meta levels" (see eg [5], [6], [7].

like any problem-solving framework, the control problem has three facets :

- objectives of the control : the problem to be solved

- behavioral goals of the control

- representation of the control solving strategies.

The last facet is tackled within part 3 and chapter 2.

A very clear description of the behavioral goals is given by B. Hayes-Roth in
[2].
In our systems, the control objectives are split into three levels : the
inference strategies level (level 1), the resolution steps coordination for a
specific problem (level 2), and finally the choices on what problems to solve
now (level 3).

To illustrate this taxonomy, let us go back to our industrial process control
applications.

As we have seen in part 1, the various overall problems to be solved can be
grouped into three classes : plan actions, act on the system, observe its
reactions.

In a KBS for such applications, a "problem-solving module" will be attached to
each of these problems.

The firi decisions to be taken are then : what module to run now, if such is
the situation, what modules to run at the same time (multitasking, multipro
cessing) ? Together with the management of requests to external resources
(databases, knowledge bases, etc...), these decisions are the ones to be taken
in level 3.

Having decided to run, for example, the planning module, control level 2 is
targeted toward coordinating the different steps (or "planning islands" in the
Minsky termonology [21], to achieve the goal assigned at the higher level.

915

Level 2 might have to solve problems such as : loop detection, coherency mana
gement, consistency checking, backtracking, completeness, contraints relaxation,
etc... Inside each step, one has to decide what ruleset to use, with which
strategy, eventually to select backward or forward chaining modes, in order to
achieve the goals related to it.

These problems are solved at the lowest level of control- namely level 1.

The way this taxonomy could be implemented is explained in chapter 2.

3] Classification and/or Constraint Satisfaction Search Viewpoints ?

The process control architecture could be defined by using Agenda mechanisms
in each of the layers, following the B. Hayes-Roth proposals.

This might sound very useful in case where control mechanisms should behave
opportunistically, and when the industrial process control mechanisms are
innovative most of the time, or when the flow of information coming from the
process very often contradicts the actual reasoning.

In these the cases, KBS control should reproduce this flexibility by giving a
high degree of freedom in the sequences of choices of actions.

Basically, it is then a classification problem using multiple modes of clas
sifications (depending on the abstraction needed), based on a single percola
tion mechanism, possibly specialized.

This viewpoint comes from diagnostic problems, or planning of experiments
(Stefik [8], speech understanding (HASP [9], or finally multitask planning,
where the problem is to reconcile constrained schedules with unconstrained
actions, such as errands (0PM, B. Hayes-Roth [2]).

The overall architecture could be defined by explicitely separating the layers
as objects, and explicitzly defining the classification-percolation mechanisms
inside each object.

Another, more traditional approach is to use a single classification (i.e., a
single blackboard) linked to the domain and providing the input or justifica
tion for the control decisions. This approach has the potential danger noted
by Hayes (see [2]).

In the KRITIC project these approaches have been followed in the Telecommuni
cation switching domain (which is essentially a diagnostic problem).

Another approach, used for the other application studied in the KRITIC project,
based on constraint satisfaction, is developed in CHAPTER TWO.

This approach could be integrated, at the conceptual level with the works of
Lansky [10] and Georgeff [11].

The practical approach being followed is to formalize the analysis of the
application, emphasising the dynamic, time-dependent links within each module,
providing a descript of the required synchronization.

916

CHAPTER TWO : LOAD MANAGEMENT PLANNING USING A KNOWLEDGE-BASED "EXPERT SYSTEM"

1] Introduction

This chapter describes the planning component of an expert system for assisting
in the load management of an electrical power distribution network. Load manage
ment is important for electrical power generation and distribution to maintain
an optimum load for the overall system. Instead of performing ad hoc-actions
whenever the need arises (cutting off certain consumers or increasing power
generation), a plan for tacking such actions is usually prepared in advance.

This planning can be done using conventional techniques, but since it is
difficult to incorporate uncertain knowledge - such as consumer behavior - into
such algorithms, an expert system approach is suggested.

The expert system described here is a prototype, not yet connected to a real
power distribution utility, but operating with a simulation of the load behavior
of a full-size distribution net. In this test-bed, the system operates in
closed-loop fashion, without any simulated operator interventions. We want
to state very clearly that such closed-loop operation is not foreseen when this
system is actually installed in a plant control room. Too many issues of
knowledge-base integrity and security have to be solved first, before any
closed loop operation can possibly be considered.

After having described the implemented application, we shall stress in part 6
the correspondance with the general descriptions of CHAPTER ONE.

2] Load Management

Among the many tasks that the control-room personnel have to accomplish, such
as maintenance of line fault tracing, load management is one of the most impor
tant, since it has a direct impact on the economic results of the electrical
utility. From the point of view of the work described here, there are two fair
ly different structures of such utilities. One is really pure distribution, in
the sense that these utilities buy all of their electricity from outside sup
pliers. The only thing they have to be concerned with is not to exceed a given
limit, of energy, as described in more detail later on. The other type of dis
tribution utility - besides buying some electricity from outside sources, also
run their own power stations to back up peak demand or to supply the base
load. So they have the further load management objective of economically ope
rating their power stations.

Figure 2-1 shows a typical load curve of a large distribution network on a cold
winter day with its peak areas at breakfast, lunch, and dinner time. The sharp
increases and decreases around 6:00 h and 22:00 h are due to the switching on
and off of two major storage-heater groups, respectively.

2.1.] Main Constraints

Typically, an electrical utility distributing power to its customer has to
operate under the following basic constraints :

There is a strict maximum limit, which under no circumstances must be
exceeded. This limit is determined by the contract between the distribution
utility and the electricity supplier. Its level determines the cost of the
electricity to the distributor.
The complete day (24 hrs) is divided into 15-minute time slots (96 in all).

917

At the end of every time slot the total energy consumed is calculated and
compared against the predetermined maximum limit. Exceeding this limit
invokes high supplementary costs for the distribution company (contractual
penalty), which are not recoverable from their consumers.

. To reduce the overall cost it is desirable to minimize the margin between
the allowable limit and the actual consumption.
Since the overall consumption, i.e. the integral over a day, cannot be in
fluenced by the distribution utilities, the only way to achieve this aim is
to try to shift certain consumers into low demand times and thereby flatten
the load-curve over the full day.

If the operator considers, or judges from experience, that the maximum limit
will be exceeded, there are certain actions that he can take to avert this.
Because the energy used is measured every 15 minutes, it is possible to take
evasive action. If, on the other hand, the instantaneous power were measured
there would be no question of controlling the process, as the system response
can be considered to be quite slow. The process of taking evasive action is
highly dependent on the human operator and hence is an area where knowledge-
based techniques could prove very useful.

3] Objectives and Means

Based on the previously mentioned constraints, three main objective of load
management can be identified :

a - Prevent the consumed power from exceeding a certain (dynamic) limit ;

b - Optimize the actual power consumption, i.e. shift power consumption from
peak load times to low demand times ; and

c - Satisfy the various tariff conditions (e.g. some consumers are only allowed
to be switched on during nighttime, i.e. in the low-tariff period).

To achieve these objectives, the control room staff has certain ways to influ-
ce the power consumption. These are essentially switching some groups of spe
cial sonsumers on or off during some times of the day. Typical consumers that
may be centrally controlled are :

- industrial consumers

- storage heaters

- direct heaters

- heat pumps

- various individual consumers.

Consumer types that consist of a very large number of individual consumers,
like storage heaters, are split into several groups which are treated indepen
dently by the distribution company. For each type of consumer or each group
of consumers there exists an individual tariff contract, which can be quite
complex. These contracts lay down conditions referring to switch-on and switch-
off times and/or timespans, the number of times such consumers may be switched
off, for how long it has to be switched on again after a switch-off, etc...

918

2-1: Load dis tr ibut ion over a cold winter day

Idealized
Agents

Causal learning

r Shallow learning 1

/ r
/

"i i

Rulebased_
Inference

j Outside
influences

Model of agent's behaviour

♦
Expcctat ion
Prediction

Observable
System's
Behaviour

— m

1 1

Control

~L

Modelbased Control

31 : Concept of Modelbased Control

919

3.1.] The control Paradigm

To avoid emergency situations and unwelcome surprises, short and long term plan
ning of power demand (in most cases this actually refers to power production
planning) is carried out.

The actual control of the distribution then follows this plan, and as long as
nothing unforeseen is happening, the control itself is simple and straight
forward.

Unfortunately, the planning itself is not that straightforward, as it is based
on assumptions with varying and unknown degrees of uncertainty. Therefore,
quantitative prediction is not possible, basically because of two reasons :

a - The outside influence as the weather cannot be predicted in a definite form
b - The behavior of consumers, i.e. their reaction to these influences cannot

be predicted, as this would require a complete model of their behavior.

The behavior of consumers can only be described by a qualitative model. To
construct such a model, a distinction is made between an idealized consumer
- or more generally an idealized agent - and the outside influences. In these
terms, behavior is understood as the reaction of an agent to an outside influen
ce. Thus, to model the idealized agent's behavior means modelling his behavior
without outside influences. Since this behavior is not known and in practice is
not observable, this model must be based on assumptions.

Outside influences are observable incidents, so they can be considered as known
but of course not necessarily as predictable. Furthermore what is not known and
also influences and the idealized agent's behavior. The best way to express
this seems to be by a rule based inference mechanism, the outcome of which could
then be considered as the qualitative model of the behavior of the collection
of all the agents, figure 3-1 gives the conceptual overview of this approach.

This qualitative model of the agent's behavior would then lead to the expec
tation of the power demand for the near future and therefore form one of the
two inputs for the control process. The other input is of course the observa
ble system's behavior, which in this application is the actual load of the
distribution network. Based on these two parameters the control decides if and
how to react to either avoid overload or to establish more economical distri
bution.

The first steps towards constructing such a qualitative model have been taken
by investigating some typical functions relating outside influences to consu
mer's behavior.

One of the main influences is without doubt the outdoors temperature with res
pect to the energy demand of private houses. In the context of electricity dis
tribution, this of course relates only to houses using electrical means for
heating, such as storage heaters, direct heaters, or heat pumps. Based on this
functional model a first, simple qualitative model has been "handcrafted", not
yet built on rule-based inference but on predetermined dependencies. Neverthe
less, the current architecture and solftware development is targeted towards
such a rule-based model.

This simple qualitative model provides one of the inputs for the system's
expectation and prediction module, the other being "historical" information,
i.e. available data about load demand of previous days and years for similar
situations.

920

The expectation module is basically a planning module, which is based on the
control objectives and the existing load-distribution. It takes into account the
functional model of consumer behavior together with the outside influences and
produces guidelines for the plant control together with a new load-distribution,
constituting the expectation.

The control guidelines, which consist of a switch plan, together with the obser
vable system's behavior, which in this application is the actual load of the
distribution network, form the basis for the control during the day.

The output of this planner - the plan - contains a sequence of single switch
action entries, each consisting of the time of day, when the action is to be
performed, the name of the consumer group concerned, and the kind of switch
(on or off).

The plan is used by the control component of the entire expert system, which
besides supervising the network carries out the actions suggested by the plan,
unless anything unexpected is being detected.

4] Planning

For the remainder of this chapter we will concentrate on the planning module
and not so much on control, simulation, and real-time requirements, which are
described elsewhere ([12], [13]).

Due to the first two objectives stated in part 3, the planning can be subdivi
ded into two different subtasks. One is responsible for overload situations,
i.e. has to plan the switching off of consumers, and the other is responsible
for area. i.e. it has to plan the switching on of consumers. The third mentio
ned objective, namely to meet the various tariff conditions can be seen as an
overall constraint for both planning tasks.

Irrespective of the specific objective of the two subtasks, the general con
cept that both follow can be described by the following steps :

a - Find a "critical" situation. This is not done in a time sequential fashion,
starting in the morning and proceeding to the end of the day, but by
looking at the overall states of the expected load and then focusing
directly on those areas where such situations can be expected, employing
a multi-planning strategy in terms of [14]. What "critical" means is deter
mined by the objective of the relevant module, either referring to a
possible overload or to an undesirable underload.

b - Select a corrective action and assess the effect of that action.

c - Find the next "critical" situation.

Since each planned action changes the overall situation, the subsequent situa
tion selection has again to be approached from an overall viewpoint. Further
more, each planned action constitutes a constraint on the further planning.
Since such planning strategies, due to the various constraints, might easily
lead into blind alleys, effective means of backtracking have to be established
(see part 4.2.).

921

4.1.] Planning Strategies

Two modules for planning have been developed :

The Switch Off Planning (SFP). This module selects and orders actions in
order to avoid overload.

The Switch On Planning (SNP). This module selects and orders actions in
order to avoid underloads and to satisfy the minimum supply times in accor
dance with the tariff rules.

Both modules follow the basic stragegy outlined above. But the first question
clearly is, which to start first ? This question concerns the overall strategy
and is independent of the internal strategies of the two modules. As will be
shown later, this distinction is clearly reflected in the architecture of the
system. Currently there are two different strategies for applying the two mo
dules to a given problem situation. They are :

Strategy 1 :
Apply SNP first, as this deals with tariff constraints that have to be follo
wed anyway. Since it tries to shift load into low-demand areas, it is quite
likely that it reduces some load in the peak areas.
Then apply SFP to concentrate on any remaining critical areas.

Strategy 2 :
Apply SFP first if substantial overloads are to be expected. Reduce only the
most critical ones, not necessarily ending with a "clean" situation.
Now apply SNP as above.
Apply SFP for any remaining overloads, if some remain, otherwise terminate.

The decision on which of these two strategies to follow is dependent on the
actual situation. The overall strategy module contains rules that describe
the condition for each strategy and the system monitors the application of the
strategy.

4.1.1.] SFP Module

The main difficulty lies in selecting an action. An action is a tuple consis
ting of an interval and the name of a consumer that has to be either switched
on or off during this interval. Selecting such an action really means achie
ving two subgoals simultaneously, taking into account that choosing an inter
val and selecting an appropriate consumer for this interval are not indepen-
dant tasks.

The first step in selecting an interval is done in an overall way, based on
such criteria as :

- length of an interval of likely over - or underload

- absolute height of such interval

- area of that interval (integration over time).

Once such an interval has been established, a suitable consumer must be found.
First, a candidate list of possible consumers is drawn up. All candidates are
constrained by their tariff rules, which, for example, determine the maximum
timespan for switch-off periods. If these allowable intervals are shorter than
the selected one, the full interval has to be split into subintervals. So this
step ends with a set of suitable consumers with overlapping subintervals.

922

Some higher level strategies or heuristics then decide the priority ordering
of these actions - consumers are weighted. Such heuristics take into account
the type of consumer (industrial consumers usually have the lowest priority for
a switch-off actions), the time of day or weather conditions. As soon as an
action has been definitely selected, its affect on the overall situation is
checked by simulation. If it is no positive, this action will be rejected.
Depending on the actual case, this might lead to abandoning the current inter
val and looking for another, coming back to the first afterwards. This is done
by means of dependency-directed backtracking.

4.1.2.] SNP Module

The switch-on planning has to schedule the consumption periods of those con
sumers, that are only to be switched on for certain parts of the day according
to their tariff contracts. Thereby it has to "fill up the troughs" of the
overall power consumption curve.

In order to achieve its goals the SNP requires a slightly more complicated
control strategy than the SFP. This refers to the control cell built to over
lay the basic switch-on planning cycle as described above. The strategy
pursued by this control procedure can be divided into the following three
steps :

First choose those consumers, that have to be switched on anyway during one
or several fixed time intervals. For example some groups of storage heaters
must be switched on exactly between 10 o'clock in the evening and 6 o'clock
in the morning.

Secondly satisfy the minimum switch-on period constraints. At this step the
switch-on planning cycle is run. However, the final goal is only to plan
actions to make sure that a consumer that has to be switched on between N
and N+K hours will be on at least N hours. It may be, that this step ends
without having achieved its goal, the reason being that there are no more
intervals during which the consumption curve is sufficiently below the
limit-curve, while there are still some consumers for which the minimum
switch-on is not covered by the plan. In this case the control restarts
this step giving it a new temporary limit curve that has been slightly
augmented in comparison to the original one.

Thirdly, satisfy the optional switch-on period constraints. Here, the proper
switch-on planning loop is started again, now having the goal of trying
to satisfy the amounts of time some consumers can be switched on but do not
have to be. In other words, for a consumer, that has to be switched on bet
ween N and N+K hours, this step tries to establish a suitable interval for
the remaining and optional K hours. This step will end when there are no
more time intervals during which the required actions can be taken without
exceeding the overall limit.

If the control had to perform a restart of step 2 after a temporary limit in
crease raising, one consequence would be that some planned actions of the SNP
will cause exceeding the (original, still valid) limit curve. This will be
reported by the control to its superior, overall control level.

923

4.2.] Backtracking

4.2.1.] General

An important component of the planner is the backtracking mechanism. Back
tracking gives the planner the flexibility that is essential for performing load
control over the power distribution network. Of course, one of the advantages
system is the possibility of backtracking actions, together with their supposed
effect on the network, since the actions are only virtual until their really
executed. Contrast this to the performance of actions directly after their
selection without the use of any plan. In the latter case, an action that
places the network in an unsatisfactory state can be revised, but it might
not be possible to correct the impact it had on the system during the time
between its execution and its revision or only by means of great efforts.

The backtracking facility of the planner in the load management system can
incorporate two backtracking functions. Due to the events they are triggered by,
they will be called "internal backtracking" and the "external backtracking".

4.2.2.] The Internal Backtracking

Internal backtracking is backtracking in the sense mentioned above. It is
applied as the planner builds up the plan. If the plan is only partly created
and the planner cannot find any possible way to go forward it, it has to go
back. It has to remove one or several actions from the part of the plan already
existing and try to find a better course to accomplish the plan.

To be able to perform backtracking in the indicated manner, it must be possible
for the planner to recognize, that some obstacles to proceeding with the plan are
caused by actions planned earlier. Furthermore, it must be possible to identify
these actions, and realize how the consistency of the plan can be maintained
when actions are withdrawn. Therefore, during the creation of the plan a depen
dency network is constructed, describing the causal relationships between the
actions stored in the plan and the reasons for their selection as well as their
assumed influences on the system being forecasted. Thus all information needed
when backtracking can be readily obtained. The mechanism applied closely follows
TMS-like solutions ([15], [16]).

4.2.3.] The External Backtracking

External backtracking of parts of the plan is initiated from "outside the
planner". While the control is already executing the plan it may happen in two
ways :

a - The control discovers that the system is about to enter a prohibited state,
i.e. it has become very likely, that the power limit will be exceeded in the
near future, although up to that moment the plan has been followed correct
ly. Such situations may arise since the plan is based on uncertain knowled
ge about the future and there always will be small deviations of the reali
ty from the prediction. In this case, the plan has to be extended by adding
one or more actions to it.

The extension of the plan is triggered by the control, which at the same
time chooses actions helping to prevent the emergency state of the system.
Afterwards, the planner integrates these new actions into the plan, which
basically means checking the consistency of the extended plan. The integra
tion of given new actions into the plan may involve the revision of some
other planned actions, due to conflict with the new ones. This handled by
means of the same techniques as in internal backtracking.

924

b - This kind of backtracking is rather a replanning than a proper backtracking.
It will be applied when the control gets information about unexpected
events which the planner could not be aware of ; e.g. the outside tempera
ture might drop unexpectedly. In this case the plan is based on at least
partly wrong assumptions. Now it would not make sense to try to solve the
problem by only modifying the plan slightly. Rather from a certain point
in time tO onward, a completely new plan must be created having all the
actions in the plan executed before tO as a constraint. At tO the con
trol switches over from the old plan to the new one.

Type a) of external backtracking is the preferred one, as it is accomplished
faster and causes less time problems.

However it is not always an easy task to decide whether type a) - the plan
correction - is really sufficient or whether type b) - the total replanning
from a certain point of time on - is required. Hence the control relies on a
rule-based knowledge source indicating in each case which type should be favo
red.

5] Implementation and Results

The planner together with the entire load management control system has been
implemented on a Lisp-machine. This system controls a simulated power distri
bution network, which consists of numerous simulated consumers and is based on
real data obtained from an existing power distribution network.

5.1 J basic Tools

The basic tools of any knowledge-based system are a suitable represenation
language and an efficient inference engine. Both have been jointly developed
in the KRITIC project, especially oriented towards systems to be built for
industrial applications.

The knowledge representation language called AVALON [17] has been designed to
meet the special requirements of industrial applications. It is a frame-based
language building on structured objects defined in a type-hierarchy.

Its main features are :

It allows the creation of large knowledge bases. For example, the network
representation for the distribution network currently contains over 15000
instances and is likely to increase to 50000 in real applications. To handle
such large sets requires very efficient means.

To speed up inference procedures working on this representation, AVALON
allows partitioning of the knowledge base so that only a small part of it
needs to be loaded at any one time.

It not only allows inheritance of attributes but also of relations. Rela
tions exist in a type hierarchy jus as objects do, and relation instances
associate object instances with other object instances.

The inference engine, called MIKIC ([18]) is based on the object oriented para
digm. It allows forwards and backward chaining, definition of rulesets and the
specification of various "evaluation styles" for such rule sets.

925

One of the more important features is that it has a compiler to increase the
execution speed of the rule interpretation (in the prototype environment des
cribes here, up to 300 rules per second).

The other important aspect of MIKIC is the handling of generic rules. Generic
rules allow a very abstract way of formulating knowledge. They are connected
to object-types. If such a generic rule is invoked, it will automatically be
applied to all instances of this object. Furthermore it is inherited by lower
levels of the object-type hierarchy. Thus extending the knowledge base by fur
ther objects or instances does not require any change in the generic rules.
This is an important feature especially for industrial applications, since any
plant generally consists of large numbers of "objects" or elements belonging
to the same class. Instead of addressing them individually with a tremendous
amount of (very similar) rules, only one generic rule is required.

5.2.] High-level Control

As noted in CHAPTER ONE, the structure of control seems to us an important sub
ject as well as a major step in solving the control problem.

The approach cited in part 3 of the first chapter is called "Cell/Tissue".

Cell/Tissue comes in part from deep studies of the literature on blackboards
as well as blackboard implementations and in part from techniques for control
of large database system as well as operating system theories.

The Cell/Tissue approach ([19], [20], [30], [31]) is based on on defining inde
pendent control clusters, or "problem-solving islands" (to be compared with the
works of Stefik [8], Minsky [21]. The structure of each cluster follows a
three-level hierarchy of control objects for expressing its specific problem
solving goals. The underlying claim is that these three levels are sufficient
to express any well-defined task. In other words, each complex problem can be
hierarchically structured so that on each level of the hierarchy such three
level cluster can be defined.

Basically, this means splitting up a problem according to different, ordered
objectives and, on each level, concentrating only on this objective.

The objects of these control levels in Cell/Tissue are called tissue, cell,
and task respectively. Basic actions to be executed on the lowest level are
called subtasks. Figure 5.1 shows these three levels and how the clusters
can be nested.

The two higher objects, tissue and cell, have local knowledge bases attached
to them, which, similar to the agenda in BB system, determine the sequence
of control over the lower objects.

a - The tissue
The tissue is the highest control object, expressing the general problem
solving strategy. In this sense, it is reponsible for planning the problem
solving process. In the planning system of our application, the tissue
represents the overall strategy, deciding in which order the SNP and SFP
modules have to be scheduled.

b - The cell
The cell is responsible for ordering the problem solving steps, once the
strategy has been determined by the tissue. On this level, the overall
problem is already decomposed to identifiable steps such as interval se
lection. The cell itself does not know how to achieve such a goal, but it
identifies this goal as a task that can be scheduled.

926

OOtD <$&<£<&&(£

L = I ASK

S-l : Principal CELL/TISSUE structure

927

b-2: The Planning Control Cluster

928

c - The task
The task orders the final execution. It can be either described through
rulesets, where each rule or rule subset, is considered a subtask that is
simply run, or they can be procedures. To demonstrate the flexibility of
this approach some tasks in the planning systems have been implemented as
rules and some as procedures.

The important fact is that the way a specific task is implemented does not
concern the next higher level.

On the cell level, it is irrelevant how the lower levels tasks are implemented.
Likewise for a tissue it is irrelevant how a cell is implemented.

In fact as shown in fig 5.1, a cell might be represented by a complete control
cluster itself. Depending on the viewpoint this cluster would be either seen as
a cell - from its own tissue - or as a tissue - from within this control clus
ter.

Internally, each tissue and cell consist of a number of actions called either
tissue actions or cell actions. They can be hierarchically ordered but their
scope and their results are confined to the corresponding control levels.

As will be shown later, the planning tissue has to carry out various actions
such as initialisation, dealing with basic certainty functions, resetting
planned curves etc., before it passes control to the lower cell-level.

The planning system has been implemented in one control cluster as shown in
figure 5.2. The generic control structure of the planner is described in figu
re 5.3.

The types of the control objects on the three control levels are tissue, cell
and task. The relations between the drawn objects are e-R (eval rule), r-a (run
action, for starting submodules of cell or tissues, so called cell and tissue
actions), s-c (start cell), r-t (run task), and r-st (run subtask).

The generic control hierarchy of the planner is described in figure 5.4.
The root PLAN-CONTROL of this tree is a tissue, using some rules for performing
control over the whole planner. One recognises the two cells SNP-CONTROL and
5FP-C0NTR0L, started by tissue action ACTIVATE-PLAN via s-c and each control
ling one component of the planner. The name of the relations are described at
figure 5.3.

As one can see from figures 5.5 and 5.6, the SFP control and SNP control are
differently implemented : the task TASK-5FP-WEIGHTING uses a rule set, as do
APPLY-SNP-ACTION or OBSERVE-SITUATION (SNP module), while the remaining tasks
are encoded as procedures.

6] Links with Chapter 1

As we have seen, it is essential in KBS applications for industrial control to
define, prior to any implementation, a taxonomy of the problems to solve.

In the application described, this taxonomy covers the following particular
topics :

- planning or Power-load-control

- external backtracking

- SFP or SNP planning

929

 » CELLACTON

 » TISSUE ACTION —
 « CELLACTON

»TBSUEACTON

53: Generic Structure

PLANCONTROL

» RESTART*P
» q u r r * p
»ITARTJNP

REJTART1NP
 » STARTPLANCONTROL

► AOOPLANPOWERTOPOWERCURVE
•RESETCURVES

54: General Control Hierarchy

»0CTCOITAMTYCURVtVP

► UPnATEwaumi

rmmn-twnamto-icnm

*PCONTROL

 » S T M T V P

► IKITART1FPTT

5 - 5 : SFP Control

930

PCONTROL—

 » STARTJW ■ » » p P R O C E S S

-» OCT-CERTANTY-CURVE-MP
- » MP-DAIA-MANAOMQ

 ► M T O r ACELEVEL

L« ,.

M T A C T I M
UKlATEWMnwS
UPOATEWMDOWS1
'■n-nmcwB. ACTON

 » TASKSNP2 ► APflY-WT- ACTON

 » A m Y A C T O N l N M

»TASK3NP1 . ► OtSERVESTTUATON

* RUNWITHSNPSTRATEOY

»RE3TART

5-6: SNP Control

931

- internal backtracking

- interval selection, consumer selection, action selection.

In fact, basically three decision problems have to be solved :

1 - Decide when, and how to start planning or power-load-control

2 - Decide how to accomplish power-load-control

3 - Decide how to do planning.

In the Cell/Tissue framework, these decision problems correspond to three dif
ferent hierarchical clusters, each represented by a Tissue-Cell-Task control
structure. Problem 1 is essentially a problem of control over the decision-
problems 2 and 3 which are themselves independent, while problem 1 is not con
cerned with the specific ways problems 2 and 3 are solved.

The corresponding modules, or problem solving islands, generates EVENTS that
are used by the top-most control level to generate a plan : run the planning
module, then run the power-load-control module. This will generate other
EVENTS such as "a discrepancy is observed", which in turn will motivate another
decision, namely to re-plan, to wait, or any combination.

The first analysis to perform in order to be able to implement the KBS control
is thus to :

- IDENTIFY the problem-solving clusters

- IDENTIFY the EVENTS that need to be controlled

- USE these clusters and events to define the basic control loops or mechanisms
needed.

To accomplish this, the works of Lansky [10] on specification language for tasks
synchronisation seems to be very relevant. A similar work, although with major
technical differences, but conceptually near this approach, is the one by
D'Ambrosio-Fehling-Forrest-Raufels-Wilber [22].

A very interesting discussion on Planning probles which addresses problems that
are essential but not talked about in this paper is the R.E. Korf paper [32].

When the problems to solve have been well defined, one has to go further in
the analysis by specifying the kind of control is needed to implement the correct
problem solving methods.

Basically, what the control, here, has to perform at this level is :

a - Choose a subproblem solving island if needed (the Tissue level) ; in the
previous example, "planning or power-load-control" for the top-most clus
ter, or "SNP-plan, SFP-plan" for the planning cluster ;

b - Inside a subproblem (the Cell level) decide on the sequences of solving
tasks to be achieved, in the previous example "select interval, select
consumer, select final action" ;

c - Inside an elected task (the Task level), decide on the basic ordering
of final computing actions (the Subtask level).

This hierarchy is reflected through the Cell/Tissue structure and specified by
using the general framework of problem solving islands and events previously

932

explained.

FURTHER DISCUSSION AND CONCLUSION

The mechanisms involved in "replanning" or constraints problems introduce dif
ficult challenges in the development of KBS for industrial process control, to
understand them, one has to think in terms of classical Optimal control
theory (Belmann, Pontryaguin [23] [24], as well as more advanced studies such
as viability and cognitive process [Aubin, Changeux [25] [26].

The goal of Optimal control is to optimise a criterion (such as power load) by
finding a control function (or map) over a dynamic system.

In fact, this system is parametrized by a control space, where the control map
is defined, and allows building a constraint space identical to the one intro
duced in non-dynamic optimization.

The discretized version of this problem is exactly to define an optimum sequen
ce of control actions (a plan) as the solutions of an optimization problem
under evolving constraints.

Viability theory precisely studies the dynamic evolution of the constraints set
defined by the dynamics, which represent the model of the system to control.
When that model is well-defined and satisfies mathematical assumptions, the
theory gives algorithms to build the optimal plan. In such cases, the "replan
ning" problem is not relevant, except if the dynamic model used is not good
enough. Part of the algorithms used are based on constraint satisfaction.

In our case, either due to the complexity of the process or its size, full
mathematical models are out of reach. They are replaced by the qualitative, or
experimental representations previously mentioned. In fact the rules used to
achieve a plan can be seen as a synthetic representation of the analytical
algorithms, or as "shortcuts" in the incremental steps of such methods. But
since the representations cannot be seen as a well-defined exact model, the
constraint sets could suffer from incompletude or be ill-defined.

Evolving in a logical framework, the qualitative representations, in the face
of these problems, can only be ckecked by coherency/completeness methods in
their reasoning environment models.

In case of discrepancies, the plan can only be adapted by going back into its
creation (the various planning islands involved) to incorporate the relevant
observations and replan. The planning process cannot be self-adaptative unlike
the case in many well-defined optimal control problems.

That is why the mechanisms involved in constraints problems and replanning are
as described below.

- For the "replanner control" the main problem is with the backtracking decisions,
it could involve a complex process such as dependency directed backtracking
(see de Kleer, Mc Allester, Forbus [27] [28] [29]) possibly essentially defi
ned by algorithms with few heuristics.

- The detection of constraints problems (incompletude or need for relaxation)
is a mixed mechanism. Basically it is relevant to the de Kleer ATMS (see [16])
for the first problem, and to classical TMS for the second one. However, once
the detection is made, the viewpoints to propose to the planning islands can
not be built other than by using strong heuristics.

933

To conclude, we believe that this work shows the feasibility of a KBS for
real time process control of an industrial system. Moreover, it also demonstrates
the role that KBS can, and perhaps should, play when the mathematical modelling,
although conceptually essential, comes up against the difficult problem of effec
tively solving in real time a large-scale industrial control application.

BIBLIOGRAPHY

[1] G. Williamson - J. Butler - E. Gaussens - S. King - V. Khong
"Using a KBS in Telecommunications"
Proc. Esprit Conference 1986 - North Holland - 1986

[2] B. Hayes-Roth
"A Blackboard architecture for control"
AI Magazine 26, pp 251-321, 1985

[3] J. de Kleer - J. Doyle - G.L. Steele - G.J. Sussman
"Explicit control of reasoning"
AI Memo 427, June 1977

[4] P.J. Hayes
"In defense of Logic"
IJCAI-77, pp 559-565, 1977

[5] M.R. Genesereth - D.E. Smith
"Meta-level architectures"
Stanford Heuristic Programming Proj., Draft - Memo HPP-81-6 - 1981

[6] D.B. Lenat
"BEINGS : Knowledge as interacting experts"
IJCAI-75, pp 126-133, 1975

D.B. Lenat - F. Hayes-Roth - P. Klahr
"Cognitive economy in Artificial Intelligence systems"
IJCAI-79, pp 531-536, 1979

[7] E.D. Sacerdoti
"A structure for plans and behavior"
Elsevier-North Holland New York, 1977

[8] M. Stefik
"Planning and Meta-Planning (MOLGEN : Part 2)"
Readings in AI Webber & Nilsson ed. TIOGA pub., pp 272-286, 1981

[9] J.J. Anton - E.A. Feigenbaum - H.P. Nii - A.J. Rockmore
"Signal-to-symbol transformation : HASP/SIAP'case study"
AI Magazine Spring 1982, pp 23-35, 1982

[10] A.L. Lansky - S.S. Owicky
"GEM : a tool for concurrency specification and varification"
Proceedings of the 2nd annual ACM Symp. on Principles of distributed
computing, pp 198-212, 1983

[11] M. Georgeff
"The representation of events in multi-agents domain"
Proceedings AAAI 86 (Science), pp 70-75, 1986

[12] H.W. Fruechtenicht - T. Wittig
"Ein ansatz fur echtzeit - Expertensysteme (an Approach to real-time E.S.)"
INTERKAMA '86, Springer Verlag, 1986

934

[13] T. Wittig
"Power distribution falls under KRITIC's eye"
Modern Power System, January, London, 1987

[14] J. Hertzberg
"Plannerstellungs-methoden der KI"
Informatik Spektrum, pp 149-161, 1986

[15] J. Doyle
"A Truth Maintenance System"
Artificial Intelligence (12), pp 231-272, 1979

[16] J. de Kleer
"An assumption based truth maintenance system"
Artificial Intelligence, pp 127-224, 1986

[17] S. Varey
"AVALON"
Technical memo nb 8, Esprit project 387, Krupp Atlas Elektronik - Bremen,
1987 (forthcoming)

[18] V.H. Khong
"A study of rule-based, frame-based and constraint representation in AI"
Phd Thesis, University of London, 1985

[19] R. Davis - R.G. Smith :
"Negotiation as a metaphor for distributed Problem solving"
Artificial Intelligence 20 (1), pp 63-109, 1983

[20] E. Gaussens et al
"Cell/Tissue"
Technical memo nb7, Esprit project 387, Krupp Atlas Elektronik - Bremen,
1987 (forthcoming)

[21] M.A. Minsky
"A framework for representing knowledge"
In P. Winston (Ed.) The psychology of computer vision, Mac Graw Hill, 197

"Steps toward artificial intelligence"
In E.A. Feigenbaum 4 J. Feldman (eds.), Computers and Throughts, Mc Graw
Hill, 1963

[22] B. D'Ambrosio - M.R. Fehling - S. Forrest - P. Raulefs - B.M. Wilber
"Real time process management for materials composition in chemical
manufacturing"
IEEE EXPERT Summer 1987, pp 80-93, 1987

[23] R. Bellman
"Introduction to the mathematical theory of control processes"
Academic Press, 1967

[24] L.S.Pontryaguin - V.G. Boltiansky - R.V. Gamkrelidze - E.F. Mischenko
"Mathematical theory of optimal processes"
Interscience, 1962

[25] J.P. Aubin - H. Frankowska
"Viability and control of systems with feedbacks"
Personal communication, CEREMADE, Universite Paris IX Dauphine
Place du Marechal de Lattre de Tassigny, 75116 PARIS, 1986

935

[26] J.P. Changeux - P. Courreges - A. Danchin
"A theory of epigenesis of neuronal networks by selective stabilisation
of synapses"
Proc. National Academy of SCIENCES OF usa, 70-2974, 1973

[27] D.A.Mc Allester

"An outlook on Truth Maintenance"
MIT AI Memo Nb 551, August 1980

[28] D.A. Mc Allester
"The use of equality in deduction and knowledge representation"
MIT AI-TR550, January 1980

[29] K. Forbus - J. de Kleer
Tutorial AAAI 1986

[30] D. Corkhill - K. Gallagher - K. Murray
"GBB : A Generic Blackboard Development System"
Proceedings AAAI 86 Engineering, pp 1008-1014, 1986

[31] E. Durfee - V. Lesser
"Incremental Planning to Control a Blackboard-based Problem Solver"
Proceedings AAAI 86 Science, pp 58-64, 1986

[32] R.E. Korf
"Planning as search : a quantitative approach"
Artificial Intelligence (33) September, pp 65-88, 1987

936

Project No. 387

USING KBS IN TELECOMMUNICATIONS 2
Authors: George I. Williamson *

John Bigham +
John W. Butler *
Simon G. King *

1. INTRODUCTION
1.1. The Scope of this Paper - The Telecommunications Domain
This paper describes primarily the work leading to a demonstrator Knowledge
Based System (KBS). The KBS is targetted at operation and maintenance of
advanced telecommunications switching systems. The work described here
builds on that discussed in [17].

The KRITIC project as a whole has broader objectives than that of operation
and maintenance of telecommunications switching systems. Therefore, in order
to place this work in context, a brief overview of the project is given below.
The results obtained in other work areas within the KRITIC project, for
example load control of electricity distribution networks (Wittig [18]), will
be and have been described separately.
1.2. Overview of Project 387 - KRITIC
The overall objective of the KRITIC project is to make possible the develop
ment of KBS for complex industrial application areas. The collaborators in
this project are: Krupp Atlas Elektronik - prime contractor (West Germany),
British Telecom (U.K.), Framentec (France) and Queen Mary College (U.K.).
The KRITIC project addresses the task of constructing KBS for use in indus
trial control application areas. It has been argued that these applications
define a class of KBS not yet researched sufficiently well. The major
attributes of this class of KBS are:

t high levels of organisational complexity in an engineering domain
• large numbers of input and output interactions
• time dependent reasoning
t learning/adaptation

The project extends over 3 years and will absorb 36 man-years of effort
amongst the four collaborators.
The project plan has two main stages. The first is intended to produce a set
of tools and facilities constituting a KBS development environment. The
second involves the use of the development environment to produce two

* British Telecommunications pic, TA12.2.2, 151 Gower Street,
LONDON WC1E 6BA, U.K.

+ Dept. of Electrical and Electronic Engineering, Queen Mary College,
Univ. of London, Mile End Road, LONDON El 4NS, U.K.

937

significant KBS representative of this class of KBS. One of these is tar-
getted at operation and maintenance of telecommunications switching systems
and the other at load control of an electricity distribution network.
The project started in February 1985 and the major project milestones are
listed below:
PHASE DATE DESCRIPTION
Phase 1 June 1985 Literature Survey
Phase 2 December 1985 Initial Research
Phase 3 July 1986 Two Prototype KBS

(Domains 1 and 2)
Phase 3 March 1987 KBS Development

Environment
Phase 4 December 1987 Two Full Specification

KBS (Domains 1 and 2)
The project is currently divided into three work areas: Domain 1 which is
principally interested in the application of KBS to telecommunications switch
operation and maintenance; Domain 2 which is principally concerned with KBS
in control of electricity distribution networks; and, Kernel which takes a
more top down approach to investigate domain specific methodologies and to
generalise domain independent approaches from them. Domains 1 and 2 are
staffed by British Telecom and Krupp Atlas Elektronik respectively. The
Kernel work area is staffed by Queen Mary College and Framentec.

2. TELECOMMUNICATIONS DOMAIN REQUIREMENTS AND OUTLINE OF PAPER
The tools produced in the KRITIC project are intended to be generally appli
cable to control problems in industrial systems. A more general description
of the aims of the KRITIC project is given in [8]. This paper focusses on
recent experience gained using tools appropriate to the telecommunications
switching domain. In particular, it focusses on experience gained with tools
applied to the problem of maintenance of a telecommunications switching
system.
2.1. Background
In the broadest definition the telecommunications switching domain could in
clude maintenance, operation and aspects of design of advanced digital
switching systems. In these systems maintenance activities include: diag
nosis of faults to replaceable units (usually printed circuit board level);
processor maintenance (reloads, patches etc); and, exchange line and circuit
testing. Operations activities include: billing and accounting; analysis of
exchange statistics; provision of subscribers facilities and circuits; and,
network administration. Design of telecommunications switches is a more am
bitious target than either operation or maintenance; however the KBS develop
ment environment tools have been constructed bearing in mind their applic
ability to design for operation, maintenance and testability. The particular
sub-domain chosen for the project work to date has been that of maintenance
of the Monarch IT440 PABX.

938

The use of KBS in telecommunications switching domains is increasing. The
need for KBS technology in the field has been described by other workers.
Seviora [14] stated that the ultimate solution to the problem of field de
bugging of current generation telecommunications switching systems may come
from the introduction of KBS debug systems. Goya! et al [6] describe a
expert system for maintenance of an earlier generation telecommunications
switch. In an earlier paper [17] we described the architectural requirements
and results from construction of a prototype KBS.
2.2. Outline of Paper
This paper describes progress and results achieved in the application of KBS
technology to the problem of telecommunications switch maintenance as a first
step toward the more ambitious overall exchange management task.
The ways in which a layered blackboard architecture has been applied to the
problem are described. The blackboard system has been integrated with infer
ence mechanisms which allow forward and backward chaining and truth mainte
nance capability. A motivation for this approach has been the desire to ac
comodate flexible input of test and exchange status information relevant to
ongoing diagnostic threads. Such information may include aspects of non-
monotonicity. Further motivations are: the recognition of and the ability to
cater for inconsistencies which arise out of the invalidity of underlying
assumptions or incorrect user input; and, provision of greater flexibility
and structure in inference control.
The blackboard system has been linked to a model of the exchange based on a
knowledge representation language. The model comprises a number of distinct
views of the exchange. These are: the physical units of the exchange
(printed circuit boards, shelves etc.); the functional blocks, which map onto
the physical units at various levels of detail; and, views which model the
control behaviour of the exchange.
Furthermore, recent work, based on models of the exchange, has shown how the
models may be used to provide examples for rule induction. Such techniques
are expected to greatly ease the acquisition of domain knowledge.
2.3. Basic AI Techniques Employed in Problem Solution
The work described in [17] used a limited repertoire of basic AI problem
solving techniques: for example, search, forward/backward chaining and frame
representation schemes. The more recent work to be described here has intro
duced non-monotonic reasoning and truth maintenance, more flexible blackboard
control and a more generally applicable knowledge representation language.
In addition, an induction algorithm similar to ID3 has been applied to domain
data in order to ease the knowledge acquisition bottleneck.
2.3.1. Basic Inferencing
Last year we described [17] how a simple forward/backward chaining rule based
inferencing system called MIKIC stemming from work by Khong [8] had been
applied to the Monarch PABX diagnosis problem. This system was well
integrated with the object oriented base language [16] facilitating
structuring of the rule base and integrating MIKIC with other tools. Indeed
the object oriented aspects of MIKIC have eased its integration with a
blackboard system called BBF.

939

2.3.2. Blackboard Architecture and Control
BBF is a blackboard system constructed for the project influenced by the work
of Nii [11],[12] and Hayes-Roth [7]. MIKIC rulesets may form the knowledge
sources associated with BBF. Aspects of BBF control have also been linked to
a truth maintenance system (TMS) based on the work of McAllester [10].
2.3.3. More Advanced Inferencing
The TMS is logic based and is described in Bigham et al [2]. With this TMS,
MIKIC rules may be represented as a network of nodes (propositions) and
clauses (the relationships between nodes). The nodes have associated truth
values which may be true, false or unknown. The network serves as a memory
of partially computed results. The TMS will automatically propagate truth
values through the network and identify any contradictions found. The TMS
has been integrated with MIKIC providing a capability known as MIKIC/TMS.
The TMS has also been linked to the management of hypotheses at one layer of
the blackboard. TMS has also been used to perform state change propagation
through a dependency network of exchange components.
MIKIC/TMS provides an integrated inferencing system which retains the basic
simplicity and structuring of the MIKIC system but with the additional flexi
bility and power of the TMS. When a MIKIC backward chaining rule set is in
stantiated a TMS proposition network is automatically created. As the MIKIC
control fires rules, truth values in the TMS network are updated and their
consequences propagated. In operation the user may volunteer information at
any time rather than waiting for MIKIC to ask a question. Furthermore truth
values may be retracted at any time and any contradictions will be exposed.
2.3.4. Knowledge Representation
In the prototype KBS described in 1986 [17] the inferencing parts of the sys
tem were written so as to be generally applicable to types rather than in
stances. Details about the particular configuration of an exchange instance
were recovered from a frame-like representation scheme called BALDRIC; more
recent work has used a representation language called AVALON [20].
Such frame systems have a natural role in representing the relatively well-
defined structural and functional information about the domain. Representa
tions of functional blocks and physical parts of the system controlled are
required at multiple levels of detail and generality. Representations are
required which are able to handle the various replicated elements of the sys
tems controlled. A number of discrete "views" of the exchange system con
trolled are also required including, the physical units, the functional
blocks and models of the behaviour of the system under fault conditions.
These views may be combined in a single model using a generalised object
based representation system, such as AVALON [20] (with BALDRIC like capabil
ities added as domain specific enhancements).
2.3.5. Learning
The exchange models constructed using knowledge representation schemes such
as AVALON and BALDRIC may be used in simulation mode to generate examples
which link fault 'events' to symptoms. These have been used to generate
decision trees using algorithms similar to ID3 [13]. Such rules are gener
ated off-line. This approach to automation of knowledge acquisition has
already been described by Bratko [3] in the medical domain. Decision trees

940

thus generated may then be used to form parts of knowledge sources in the
overall blackboard architecture. So far this approach has been applied to
simulations of two kinds, firstly to functional models of the exchange where
the protocols of the exchange built-in diagnostic tests are encoded and
secondly to dependency network models where models of the control and power
dependencies have been encoded as a directed graph.

3. OVERALL DOMAIN ARCHITECTURE
The overall KBS architecture is based on a layered blackboard system, these
layers correspond to abstract steps in the overall diagnostic problem solving
strategy. The blackboard system also permits the increased modularity
required by a large KBS.

Each layer on the blackboard system has a number of knowledge sources (KS)
associated with it and each of these may access detailed information con
cerning the configuration of a particular exchange. Such a knowledge repre
sentation is encoded using the AVALON language. The overall architecture of
the system is given in figure 1.

BLACKBOARD

CONTROL
BLACKBOARD

KNOWLEDGE

SOURCES

Overall

Controller

Hypotheses
Controller

Clustering
Controller

Fault Reports
Controller

HrpotAaW*

C t w l t r

Implicated Obj*eU

Fault MtperU

Fault
Report
Generator

ooo

Knowledge
Representation
System

FIGURE 1 Overall Architecture

When faults occur in the Monarch PABX (and this is typical of other switching
systems) fault symptoms are presented to the user by the built in diagnostic
capabilities of the exchange. When they have been presented the general aim
is to generate a minimal number of hypotheses corresponding to possible fault
causes which may then be checked either sequentially or (in future develop
ments) in parallel. It is desirable to allow flexible ordering of the
hypotheses both to satisfy the users requirements and to permit adaptation
mechanisms. In addition it may be necessary to integrate new events into
existing diagnostic sequences and to take account of that new information
accordingly. A layered blackboard structure has been devised to allow this
kind of functionality, this is shown in figure 2 below.

941

3.1. Blackboard Layer Structure
Within this structure there are a number of steps.

1) Fault reports from various sources (e.g. diagnostic tests and lamp
conditions) are translated to their implicated objects (i.e. the
objects suspected as faulty).

2) These implicated objects are then clustered (since numbers of
symptoms may be related to the same cause).

3) Then a number of separate hypotheses (possible faults and the
maintenance procedures required to verify and repair them) are
generated (for each cluster) and executed.

In normal operation the inference control has been constructed so that data
will percolate up the blackboard through the layers until a solution is
found. These steps correspond to the layers on the blackboard and to major
steps in the general problem solving strategy. KS are implemented as MIKIC
rulesets or as Lisp procedures and are allocated to each layer of the black
board.

Hypotheses

Implicated Objects

Fault Report Buffers
Background Lamps

FIGURE 2 Blackboard Layer Structure

The general approach to KS control and execution uses the notion of KS
priority. The blackboard has two control levels, one for overall control and
another for control of the individual layers of the blackboard (see
figure 3). There is now a much clearer separation of the control from the KS
(inferencing) level than was present in the KBS described in [17].
Each layer controller has its own agenda, current list of KS activation
records (KSAR), and list of associated KSs. The top layer has some methods
for ordering the running of the layer controllers. The controllers are
organised in a Flavor [16] hierarchy so that appropriate methods and
instance variables are inherited by controllers from a prototypical
controller. Such structuring of the control limits search by focussing at
the layer and its associated knowledge sources. Furthermore, it allows
greater flexibility in control by permitting different strategies to be
implemented on each layer if necessary. For example at the clustering layer
it is appropriate to execute all triggerable knowledge sources in one cycle
and to merge results, whereas at the hypothesis layer only the first knowl
edge source is executed in one cycle.

942

The way that a layer on the blackboard works is basically this. At each
cycle pre-conditions for each of the knowledge sources at a layer will be
matched to the blackboard contents at that layer. If there is a match a KSAR
is created. Once all KSAR's are created the list of KSAR's at a layer is
sorted according to priorities at that layer. This sorted list forms the
agenda at that layer. The KS are run in agenda order as controlled by the
general scheduler. Generally KS at lower layers of the blackboard will have
higher priorities. This strategy permits opportunistic scheduling of the
KS. Future work may allow quasi-concurrent working of non interacting knowl
edge sources, and background processing of knowledge sources which require no
dialogue with the user.

3.2. Examples of Knowledge Sources
The Monarch rulesets for the 18 month prototype [17] were used as the start
ing point for the blackboard development. However each diagnosis and therapy
KS from [17] has been replaced by a number of hypothesis/test KS's (hypo
thetical fault events and checking procedures). There is now greater flexi
bility in control of the individual KS than was available previously.
Each distinct hypothesis/test may be executed as a separate backward chaining
knowledge source. By way of an example some of the KS (implemented as MIKIC
rulesets) at the hypothesis level are as follows.

Area-Level Fault Hypothesis KS
CSI-CARDS - Powering Hypothesis-1

CSI card Hypothesis-2
Line Cards of CSI Hypothesis-3

CSI-LINKS - CSI sig/speech Hypothesis-4
CSI Edge Connectors Hypothesis-5
Line Unit Edge Connectors Hypothesis-6

Line-Shelf - Backplane Hypothesis-7
Piecewise Card Replacement Hypothesis-8

The layer control uses information to allow it to select the most appropriate
hypothesis. So that each hypothesis/test will have additional information to
aid control and scheduling e.g.

scheduling information
level (subsystem, system etc)
likelihood - from fault report info.
manpower cost
cost in time to replace
spares availability
cost - locality to test desk

control information
triggerability marker
identified-fault marker

So far, these are preset but in future these additional items of information
may be updated dynamically as the diagnosis progresses. The details of this
mechanism are currently under review. Research is in progress to identify
the best mechanism with which to take advantage of new information volun
teered via the TMS capability.

943

At the hypothesis layer of the blackboard the knowledge sources implemented
in MIKIC rules have been integrated with the TMS (see section 4). The propo
sition nets used by the TMS are set up as hypothesis rule-sets are generated
(or invoked). These are effectively identical to the proposition networks
corresponding to concatenated backward chaining rulesets with separate hypo
theses OR'ed (or XOR'd) (see figure 3). For each hypothesis in a cluster a
root hypothesis TMS node is automatically created by the blackboard control.
Root hypothesis nodes in a cluster are linked by TMS clauses so that the
hypotheses are 'ORed'. As knowledge sources are activated the TMS networks
created by MIKIC/TMS for the backward chaining rulesets (hypothesis KSs) are
linked to the hypothesis root nodes

Fault in CSI4

Hypotheses (HI

Lin* Piecewlaa
Shelf Card
Backplane Replacement

FIGURE 3 TMS OR'ed Hypothesis Tree

in the cluster. Once the network has been created, the user of the system
may either answer questions as directed by MIKIC or volunteer information
concerning leaf node states at any time via a menu. The control will react
appropriately to this information as it is input. This allows much more
flexible handling of the user dialogues at the hypothesis layer of the black
board. If any nodes in the TMS are common between knowledge sources (either
within or outside the same cluster) then common TMS nodes are created and the
two TMS networks may be linked. For example node in two rulesets may corre
spond to a question about the state of the same unit e.g. "is the lamp on
power supply psu-D red".
In future the TMS may be more closely integrated with the overall control of
the blackboard. This means that a TMS network will be set up to maintain the
links (justifications) between nodes on the blackboard (i.e. links between
fault reports, implicated objects, clusters and hypotheses).

944

Once again as in the 18 month prototype [17], rules in the various knowledge
sources have been written so as to be applicable to types of units. Particu
lar details of instances of units are recovered from a separate frame or
object based information source (such as AVALON). This means that the TMS
nodes have to be specialised to take account of the instantiation of a
generic ruleset to a specific instance. In figure 1 this is shown by the
interface to "Knowledge Representation System".

4. INFERENCING COMPONENTS
In this section the various inferencing techniques used by the diagnostic KBS
are described, these are MIKIC, TMS and MIKIC/TMS.
4.1. Basic Inferencing
MIKIC was constructed using many of the ideas described by Khong [8]. MIKIC
is an object oriented, forward/backward chaining rule based, inference
mechanism. MIKIC integrates a rule interpreter with the Flavors object
oriented language system such that rules are invoked by message passing just
as procedural methods are. MIKIC rules may be grouped in rule-sets where
rule-sets may represent a "purpose", a goal or a subset of the knowledge
base. Rule-sets may be considered similarly to methods in the object
oriented base language ie as procedural attachments to the system objects
[16]. In MIKIC there are two types of methods. The first is the procedural
Lisp method, standard in the base language which may be defined within an
object corresponding to a rule-set. The second type is the rule method which
is a rule-set with its own control information and local variables.

MIKIC was constructed as a very flexible tool with a view to its inclusion as
a basic building block in many possible future architectures e.g. structured
knowledge base, blackboard, distributed process etc. The simple forward/
backward control strategy employed by MIKIC has meant that it may be used
easily with overall control passed to other systems. MIKIC's integration
with other systems may follow an incremental style with systems at various
levels tested independently. Further the inference engine may easily be
integrated with object representation schemes either directly (using the
object oriented base language message passing interface) or indirectly, e.g.
via a blackboard.
Rules in MIKIC may be written generally so as to allow them to be applied to
data held in separate frame or object based systems, generic rules are also
supported (J Biermann (KAE) private communication). The rules may embed
calls for information from object representation schemes and external systems
as and when required. This makes the rules more generally applicable and
therefore more powerful.
Rules may be structured in rule-sets which correspond to individual Flavors
[16]. In the prototype KBS described in [17] the structure was mapped onto
the structural decomposition (has-parts) of the systems being diagnosed and
the types of faults possible. This leads to a methodology for the construc
tion of KBS in large domains where the KBS may be modularised into small and
manageable parts. These parts may also be introduced into the active diagno
sis threads dynamically only as and when required. This is done by creating
an instance of the ruleset Flavor as it is required. This structure will be
reflected in the levels and areas of knowledge sources at the hypothesis
layer in the blackboard system to be produced during phase 4 of the KRITIC
project.

945

Incremental methodologies for the implementation and test of KBS have been
developed [17] which allow systems to be built up as simple (unstructured)
rule based systems, then structured rule based systems and then to allow such
rule based systems to be integrated into more complex control structures such
as blackboard etc.
It was realised through the work in the application domains that while the
rule bases and structural and functional information held in the knowledge
representation scheme, comprise a considerable amount of pertinent knowledge
there were aspects of knowledge and inference capability which were not cap
tured. In particular, there was a need to introduce more flexible control of
rule execution and to allow the system to recover properly from inconsistency.
Progress in these issues has been made with the introduction of TMS and
MIKIC/TMS.

4.2. More Advanced Inferencing
In order to overcome some of the limitations of MIKIC, development of a TMS
and its integration with MIKIC to form a hybrid inferencing system MIKIC/TMS
were undertaken.
A logic based TMS of the type described by MacAllester [10] stemming from the
work of Doyle [5] has been implemented and evaluated. The TMS itself and the
ways in which rules are encoded as TMS networks are described in detail by
Bigham et al [2]. The TMS has been integrated with the MIKIC inference
engine in such a way that backward chaining rules may be more flexibly con
trolled. In particular non-monotonic actions within the backward chaining
rule-set(s) may be handled (by dependency directed backtracking). Of course
the TMS may also be used in stand alone mode see 4.2.2.
4.2.1. MIKIC/TMS
MIKIC/TMS is a system where TMS is used principally to provide propositional
deduction as a service to the MIKIC inference engine.

CSI4 Shelf / " "
Power Supply (

Fault in f \
PSUC I J

(or)

Bulbar

f \ C5Hf\
K J LED!^ J

lv J

(and)

Buibu
Repair

Fault In
CS14

(or J

Components f ^ \
of CSI4 V ^ > L

Line f
Teju 1
PauedV,

Fault In f
CSI4 Shelf \ ^

Check /^*N
Component* (J
of CS14 v _ y

CST4 (\
Fault \ J

(and)

CSI4 (
Re ploceme n t V ,^

(or)

Une f~*\
Cart f 1
Tault \^S

(and)

\ Faul ty / '^N /
JLine I J 1

- 'Unltt v ' N

*\ Faulty /
J Line Unlu I
' ReplacementN

FIGURE 4 TMS Proposition Network for CSI Shelf Ruleset

946

In order to clarify this use of TMS, the behaviour of the TMS is outlined.
The TMS has two major data structures the node and clause. Propositions are
represented as nodes, relations between propositions (or nodes) are repre
sented by clauses. For example suppose the propositions A and B are repre
sented by the nodes Nl and N2 respectively, and also suppose that A and B are
related by A -> B. The proposition A -> B is represented by another node N3
which may itself have a truth value. The following clauses derivable from
consideration of the truth table for -> (implies) relate the three nodes in a
network: —iN3 v-iNl v N2; N3 v Nl; N3 v—iN2. When the truth value of a node
is asserted the clauses are used to propagate beliefs through the network.
In MIKIC/TMS when a backward chaining MIKIC ruleset is instantiated (or a
number of hypothesis KS in the blackboard system), a TMS proposition network
is created. Rules in MIKIC are represented as a clauses in disjunctive
normal form. The TMS uses unit clause resolution to perform deduction,
whilst incomplete it is quite fast. The nodes in the TMS network may have
truth values of true, false or unknown. As a MIKIC ruleset is instantiated,
MIKIC/TMS creates the TMS nodes and clauses automatically.
See figure 4 for an example taken from a backward chaining rule set for
Monarch maintenance. As the MIKIC backward chaining control fires the rules
the results of the actions are used to update the current state of the TMS
proposition network. In operation any new relevant propositions may be
entered at any time. The TMS will propagate the changes through the network,
and MIKIC will modify its behaviour accordingly by skipping branches for
which truth values exist. What this means is that new relevant information
may be entered into a diagnostic sequence at any stage and may be used to
redirect the focus of attention appropriately. Since the control of rule
execution is now much more flexibly organised the use of the TMS allows the
user to use the KBS in a much more flexible, more dynamic and therefore more
user friendly manner. The TMS will of course also allow retraction of truth
values to allow non-monotonic reasoning.
Furthermore any contradictions exposed will be identified by the TMS.
Currently contradictions exposed have to be resolved by the user by retract
ing invalid premises via a menu. Future work may allow these contradictions
to be resolved automatically. When contradictions arise 'characteristic
error' knowledge held in the system will be brought in by TMS and used to
resolve the contradictions. The analysis of characteristic errors will use
knowledge about the underlying assumptions associated with given premises.
When a contradiction is exposed then the underlying assumptions associated
with premises may not be valid. An example from the diagnostic domain
follows. A test of a hypothesis may involve use of a replacement printed
circuit board (PCB). Of course when this PCB is used an underlying assump
tion may be that the new PCB is working. If the replacement PCB is itself
not working then at some point a contradiction will be exposed by the TMS.
The underlying assumptions may then be examined and their proper treatment
used to resolve the contradiction (and rectify the fault).

Care has to be taken to ensure that the TMS is applied only to a proposition
network of appropriate size to ensure satisfactory response times. This is
because the computation is potentially expensive. The unit clause resolution
is linear with numbers of nodes but processing to handle contradictions by
identifying and retracting assumptions is potentially more expensive. How
ever fully acceptable response times have been achieved by focussing atten
tion on a limited number of hypotheses corresponding to possible faults.
Furthermore the TMS may be applied to a number of disjoint fault clusters
each limited in size which may be executed quasi-concurrently. For this
domain it should always be possible to limit the size of the active TMS

947

network to that which is computationally practicable. Further analysis of
the details of the complexity of this program is required.
The TMS has been interfaced to a graphical display which may be used by a
system developer to monitor the state of the nodes in the TMS network. This
has been used in debugging the TMS and to ensure that the systems developed
using TMS and MIKIC/TMS are working properly.
The TMS has been applied to the diagnosis of faults in the Monarch tele
communications switching system (see the example in figure 4). It may be
applied to sets of backward chaining rules derived for use (and tested) in
the relatively simple depth first strategy employed by the basic MIKIC. This
enhances the power of the inferencing system considerably by allowing numbers
of diagnostic steps to be shortcut. This MIKIC/TMS integration may be
improved if the TMS can be used to direct more flexible forward rule and goal
ordering in MIKIC. Work is under way to identify mechanisms by which the
costs of remaining goals and sub-goals may be used to optimally redirect the
order of goal execution (N.B. this has to be linked to the execution of
knowledge sources via the blackboard control).

It is obvious that further work has to be carried out but the initial results
have shown that the addition of TMS to MIKIC has made the latter much more
powerful.
In particular the ability to assert and retract facts will,

1) limit MIKIC's search at run time by eliminating the need to query
certain branches,

2) allow the user to input data at any time during a diagnosis thus
making data input more flexible and user friendly,

3) may allow the user to dynamically shift the focus of attention,
4) may be used to identify contradictions in rules or in the current

state,
5) may be used to permit aspects of non-monotonic reasoning.

4.2.2. The Use of TMS in Functional Dependency Network Modelling
TMS may also be used independently of MIKIC. TMS has been used to handle
state change propagation in dependency networks which model an exchange's
control behaviour and behaviour under certain fault conditions. Dependency
networks associate resources at a particular, level of detail by directed
linkages. These directional linkages imply dependency, examples are
"controlled by" and "powered by". An example network for the Monarch
exchange is given in figure 5. Where replication for security (redundancy)
is present, this may be handled by the inclusion of the appropriate logical
construct in the network (for example "OR" may be used to denote a worker/
standby arrangement). The dependency network is used as a TMS proposition
network. The TMS will propagate state changes. For example if a resource in
the network is not working then none of its dependents can work, similarly if
a resource is working we may infer that its parent resource is working also.
The TMS will also identify inconsistencies in state, useful in identifying
cases where the exchange model is out of step with the exchange itself.

948

CONTROLLER A CONTROLLER B

ENp

,>

•

CSIO

XA i "

Other Line Shelves

Key:
Generally the functional units higher up the page are the more
important for the integrity of the system as a whole. The directed
lines indicate dependencies. Dependent units require that their
parents are working for their own functionality. Dependencies may
be modified by appropriate logical operators, eg 'OR' is used to
denote a worker / standby arrangement.
CSIO - Concentrating Shelf Interface 0.
ENp - Equipment Number p (customers).
LCn-m - Line Card n-m.
SIGIN - Signalling Input.
SIGOP - Signalling Output.
SVCS - Services.
TSWIN - Time Switch Input.
TSWOP - Time Switch Output.

FIGURE 5 Schematic of Part of Monarch Dependency Network

949

In work described previously (BALDRIC [17]) state changes were propagated
only downwards through the network. The TMS allows propagation of states
upwards also. This improves the utility of the model considerably since
knowledge about which parts of the exchange are working (which naturally
propagate upwards against the direction of the dependency links) is often
more discriminating than knowledge about parts not working. For example in
diagnosis if we know that a unit is working we may infer that its parent
units are working and therefore the search space of non-working units is
reduced considerably. This type of state change propagates both working and
not working states. This is very useful when a limited amount of information
is presented to the user concerning the working state of an exchange. The
consequences of that limited information are propagated allowing deduction of
a better picture of the overall state of the exchange. Initially this part
of the model has been used within a knowledge source at the clustering layer
in the blackboard system as part of the clustering and hypothesis generation
stage. This model forms a working memory of the current state of the
exchange system.

5. KNOWLEDGE REPRESENTATION SCHEMES
Frame systems have a role in representing the relatively well-defined struc
tural and functional information about the domain. Representations of func
tional blocks and physical parts of the system controlled are required at
multiple levels of detail and generality. Representations are required which
are able to handle the various replicated elements of the systems controlled.
A number of discrete "views" of the exchange system controlled are also
required, these include:

views of the physical units e.g. shelves, racks, slide-in-units, parts
of slide-in-units, connectors, cables etc;
views of functional blocks of the system which map on to physical units
at various levels of detail e.g. controllers, CPUs, line units, and
their test and normal functional behaviour (representations of
inter-module messages and protocols);
and, views which allow models of the behaviour of the system under fault
conditions or maintenance state e.g. the dependency network implemented
using BALDRIC [17]. N.B. This dependency network will be generalised to
include a greater range of dependencies e.g. powering, control, clock.
TMS has been used to implement the state change propagation.

These views have been combined in a single model using a generalised object
based representation system called AVALON [20], part of the representation is
shown below in figure 6. Such models are used at several stages in the diag
nosis KBS. Examples are in symptom clustering and in provision of informa
tion required by knowledge sources to test hypotheses. Using this approach
the diagnostic rules may be written to be general to types of units with
exchange or unit specific data taken from the instances in the knowledge
representation scheme. Maintenance of another exchange instance would
require only new instances in the knowledge representation scheme. The model
may also be used in simulation to provide a training set for use by the rule
induction algorithms.

AVALON is a general purpose object oriented knowledge representation system
constructed by S. Varey (QMC). AVALON provides the means to construct knowl
edge representations of objects with relationships such as Sub-class and
Instance-of with associated inheritance mechanisms. In addition, more
general relationships between objects may be specified by the user to meet

950

specific user requirements e.g. has-parts, depends-on, powerec'-by, is-
connected-to. Relationships may themselves be organised in hierarchies.
AVALON has also been used to represent some of the behavioural aspects of the
PABX such as the message protocols for built-in diagnostic tests.

has-parts
is -a
instance-of
dependent-on
pouered-by

— functional link

FIGURE 6 Part of Monarch Representation

The model implemented for the Monarch system has used representations of the
physical hardware as well as the functional blocks and resources of the
system. For example see figure 6 above which shows a small part of the
representation scheme. In total some 5000 objects (400 class objects and 250
class relations) and more than 4500 instances (relations and objects) have
been represented to date.
The range of object inter-relationships that AVALON supports is powerful.
The flexibility with which one can walk through networks using a built-in
browser has proved important when trying to construct complex data struc
tures. Some fairly large representation schemes have already been
constructed using AVALON, data is input largely via command files. Once
stable the representation scheme may be saved and retrieved from dump files
which may be either binary or ascii.
Some of the basic node and link display and browsing functions provided by
G-Mod (a graphical input and output tool [17]) have been integrated with
AVALON. This allows the user to view the object structures he is creating in
a much more direct manner than is possible with the AVALON browser. G-Mod
diagrams may be produced which are similar to those with which the user is
familiar. This greatly eases data input and consistency checking. The
representation scheme may also be browsed using V-graph [19] which allows
networks to be displayed as a tree displayed on a virtual screen.

951

6. OFFLINE RULE LEARNING
Knowledge acquisition in domains such as telecommunications switching opera
tion and maintenance is a difficult problem. Some of the reasons for this
difficulty are given in [17]. In order to alleviate some of these problems
techniques have been developed by which "design" knowledge can be used to
induce rules and thereby automate some of the knowledge acquisition.
Simulations of telecommunications switches may be used to generate examples
linking fault symptoms to faults. These examples may be used as input to
"learning" programs. N.B. the purpose of applying the induction algorithms
to the training sets created through the simulations is to summarise in
relatively simple rule form the results of many simulations.
Other workers [3], [15] have suggested the need to use models of system
behaviour as the basis for KBS, such systems are often called second genera
tion expert systems. In the telecommunications switch case data about the
design is more readily available than heuristic knowledge, particularly when
systems are deployed before experience is gained in their use.
Two approaches have been studied, one using simulations of the built-in
diagnostic tests in an exchange and the second using functional dependency
networks. The induction algorithms used are similar to ID3 [13]. Two
"evaluation function" algorithms used have been based on chi squared and
Gini[4]. This Gini algorithm also incorporates probabilities based on the a
priori probability of failure of unit(s) (related to the mean time between
failure of the unit(s)). A bottom up approach to the learning work has been
taken where the results of a large number of experimental runs on various
data appropriate to the domain are taken and analysed. The details of this
work and the algorithms used will be described elsewhere, but some of the
domain specific aspects are discussed below.

6.1. Rule Induction from Simulations of Built-in-tests
In the first approach the design information includes data concerning the
objects (including communication links) which make up the functional blocks
of an exchange, and the messages and their protocols which make up the built-
in diagnostic tests of the system. The success or failure of these messages
has been made conditional on the working state of the blocks. Such a model
may be run in simulation mode to produce examples of symptoms (tests failed
and passed) for simulated faults (both singly and in combination). The
examples may then be used as input data for an induction algorithm.
G-Mod [17] has been used to capture design knowledge about units and their
interconnections, diagnostic tests and normal function task protocols. This
information is now encoded in AVALON, it may be used to model behaviour of
the system, in particular the relation between fault symptoms and suspect
units. Fault symptoms are typically the result of a failed background test
(part of the built in test equipment of the exchange) or a call failure.
These may be simulated using G-Hod as sequences of messages passing through
the various functional objects of the system.
The induced rules link the symptoms (in the form of observable diagnostic
test results) to suspect parts of the exchange (PCBs, connectors, cables etc).
This work is still at an early stage of development, however a number of
possible applications are foreseen. This algorithmic approach to knowledge
acquisition for very large problems may be more applicable than the more con
ventional KBS methods. The possible applications include the following:

952

finding the optimal order for the application of diagnostic tests - that
is applying the next most discriminating test, given the result of
previous tests;
looking at the correlation between tests to identify tests which are
redundant and parts of a system not fully covered;
looking at the correlation between faults - so that when the most likely
fault is found not to be applicable the next most likely fault can be
identified and considered.

This approach requires a large amount of data about the structure and func
tional information of an exchange. A knowledge base of this kind requires
effort to construct. To be fully cost effective the induction system will
have to be linked to the CAD system used to construct the original system.
Nonetheless the results described here have demonstrated the viability of the
approach.

6.2. Rule Induction from Functional Dependency Network Models
The second method uses the more abstract notion of dependency network as the
basis for simulation (see figure 5). Similar approaches to this have been
described by other workers [9]. Such dependency network data is more compact
than a full functional model as above and may be readily available from
exchange data builds [1]. One or more faults may be simulated in the model
and the symptoms generated are defined by the states of the observable
resources (only certain of the resources are denoted observable). The rules
identify the possible areas where faults may be present considering both
single faults and double faults, in future this will be extended to handle
multiple faults generally. One problem associated with this work has been
the need to identify the states of all observable resources as input to the
induced rules, in addition it is not desirable to input impossible states to
the induced rules, what may be done is as follows. Certain of the known
resource states may be input directly to the TMS model. The TMS will deduce
other states as a result of this. The TMS will also prevent inconsistent and
impossible states. The unknown states remaining are assumed working (since
no fault reports have been received from them).

The simulation and rule generation is important to ease the acquisition of
diagnostic rules from more readily available design information. Rules link
ing symptoms to simulated faults were generated from a simulation containing
the exchange's resources. The rules form the basis for some of the cluster
ing knowledge sources in a complete diagnosis system. This use of design
information is important where no single expert is likely to have all the
necessary knowledge and exchanges have to be maintained from the day they
are deployed, before experience is gained in their use.

7. DISCUSSION OF RESULTS - LESSONS LEARNT AND FUTURE WORK
The blackboard architecture allows flexibility in control. It allows the
integration of multiple knowledge sources which may co-operatively solve a
specific problem. At the implementation level it allows development of
systems in a modular, incremental and iterative fashion. These techniques
have proved appropriate to the telecommunications switching domain diagnosis
problem. Future improvements and generalisations of the blackboard system
will be sought. This will include: examination of the organisation of KSs,
exploitation of parallelism, examination of alternative control strategies,
and provision of help to the systems user. Such future work is linked to the
work of a control task force within the consortium where blackboards are
being compared and contrasted to another approach called CELL/TISSUE.

953

The TMS is a general tool with a good theoretical foundation. It is a good
prototyping tool, with an underlying network representation which is easy to
understand. The TMS is applicable in a number of areas in different ways
e.g. MIKIC/TMS, and in the propagation of fault states in a functional
dependency network. Future work in this area includes the incorporation of:
the capability to handle numerical values, error analysis when contradictions
are exposed, methods of representing persistence (over time) of truth
values. In future it is also possible that an ATMS approach will also be
considered.

MIKIC/TMS was developed to overcome some of the limitations apparent in the
early MIKIC work. In particular it allows flexible handling of input of
information to MIKIC rulesets. It also allows proper recovery if something
inconsistent happens or if beliefs are changed. Future work will allow more
general translation of MIKIC rulesets to a corresponding TMS network
representation. It is also possible that more dynamic control of MIKIC goals
and sub-goals will be attempted to take proper account of information
currently available.
Although the work on rule learning is still at a relatively early stage it
holds considerable promise for the automation of knowledge acquisition. This
is particularly valuable for large 'designed1 systems where specific
heuristics may not be available and no single expert exists. Good progress
is being made on induction of rules for clustering fault symptoms. Some of
the early work has produced rules which have been incorporated into the
blackboard based KBS as clustering KSs. Future work will attempt to define
more general rules and methodologies.
AVALON has allowed the construction of a large but economic model of an
exchange comprising a number of 'views' of the system at multiple levels of
detail and specificity. Such a model forms the basis for existing, mixed
heuristic and design-based rule induction approaches to diagnosis. In future
the model may form the basis for experiments on other more general approaches
to switch diagnosis and for other aspects of the tele- communications
switching domain e.g. operation and design. Future work on AVALON includes
partitioning and dumping of the database to allow much larger models to be
accommodated and improved knowledge representation management functions.

8. CONCLUSIONS
Considerable progress has been made both in the definition of an architecture
and KBS development for solution of diagnostic tasks in telecommunications
switching systems. Considerable progress has also been made in the develop
ment of software tools and techniques to allow such developments. These
tools have been developed entirely within the consortium as part of the
KRITIC project.
Work will continue on the production of a demonstrator KBS based on the work
described above which is expected to be complete in September/October 1987.
The KRITIC project finishes in December 1987.

ACKNOWLEDGEMENTS
The authors acknowledge the many valuable discussions held with all members
of the consortium which have helped in this work. Special thanks are due to:
Vee H. Khong (QMC) who worked on MIKIC and MIKIC/TMS; Erick Gaussens
(Framentec S.A.) for comments and suggestions on the early blackboard work;
and, Stephen Varey (QMC) for work on AVALON.

954

REFERENCES
[I] Baty, R.H. and Sandum, K.N., System X: Maintenance Control Subsystem,

British Telecommunications Electrical Engineering Journal Vol.3 Pt.4
(1985).

[2] Bigham, J. et al, Inference Tools for KBS in Industrial Application
Areas, to be published (1987).

[3] Bratko I., Mozetic I., and Lavrac N., Automatic Synthethis and
Compression of Cardiological Knowledge, Expert Systems, Edited by
J.M. Richards.

[4] Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J.,
Classification and Regression Trees (Wadsworth International Group,
Belmont, Calif. 1984) pp. 93-129.

[5] Doyle J., A Truth Maintenance System, Artificial Intelligence Vol. 12
No. 3, (North-Holland 1979).

[6] Goyal, S. et al, Compass: An Expert System for Telecommunications Switch
Maintenance, Expert Systems Vol. 2 No. 3 (1985) pp. 112-126.

[7] Hayes-Roth, B., A Blackboard Architecture for Control, Artificial
Intelligence Vol. 26 No.3, (North-Holland 1985).

[8] Khong, V.H., A Study of Rule Based, Frame Based and Constraint
Representation in Al, Ph.D. Thesis (University of London, 1985).

[9] Kramer M.A. and Palowitch B.L., A Rule Based Approach to Fault Diagnosis
Using the Signed Directed Graph, AIChE Journal (1986).

[10] McAllester D.A., An Outlook on Truth Maintenance, Al Memo No. 551,
(MIT 1980).

[II] Penny Nii H., Blackboard Systems: The Blackboard Model of Problem
Solving and the Evolution of Blackboard Architectures, Al Magazine
Summer, (1986).

[12] Penny Nii H., Blackboard Systems: Blackboard Application Systems,
Blackboard Systems from a Knowledge Engineering Perspective, Al Magazine
August (1986).

[13] Quinlan, J.R., "Learning Efficient Classification Procedures and their
Application to Chess End Games.", Machine Learning: An Artificial
Intelligence Approach, R.S. Michalski et al. (Tioga,Palo Alto, 1983).

[14] Seviora, R.E., Field Debugging of Telecommunication Switching Machines,
Globecom 83 (IEEE Global Telecommunications Conference 1983) Vol. 3
pp. 1480-1485.

[15] Steels, L., Second Generation Expert Systems, Future Generations
Computer Systems Vol.1 No. 4, (North-Holland 1985), pp. 213-221.

[16] Weinreb, D. & Moon D., Lisp Machine Manual, (MIT, Cambridge, Mass 1981).
[17] Williamson, G.I. et al, Using a KBS in Telecommunications, Proc. ESPRIT

Conference 1986 (North-Holland 1986).
[18] Wittig, T., Power Systems fall under KRITIC's Eye, Modern Power

Systems, (London 1987).
[19] Wittig, T., Virtual Graphic Browser, Esprit Project 387, Standard

Deliverable 5, pp. 47-54.
[20] Varey, S.R., Ph.D. Thesis (Univ. of London, in preparation).

955

Project No. 280

KNOWLEDGE REPRESENTATION FOR INTELLIGENT HELP SYSTEMS

John van der Baaren

Courseware Europe BV, Ebbehout 1, Zaandam, The Netherlands

The provision of intelligent help to a user of an interactive
information processing system (IPS) requires the ability to follow
and interpret the user's interaction with the system and actively
support the user's task performance. In this paper a framework is
presented for representing the knowledge about an IPS. This
framework supports the planning, plan recognition and explanation
giving in an intelligent help system.

1. INTRODUCTION

The overall goal of the EUROHELP project is to provide a development
environment for intelligent help systems for interactive information
processing system (in the remainder of the paper abbreviated as IPS), like
editors, spreadsheets etc.. The function of a help system is to provide
information about the IPS when the user needs it. This need can be expressed
by the user, but also inferred by the help system itself (Breuker (1)). The
representation of the knowledge about the IPS is the basis for a help system
for a specific IPS.

The representation of the knowledge about the IPS must support very divers
functionality present in a help system. Different types of questions must be
interpreted and suitable answers constructed. E.g. "How do I delete the last
word on this line?", "What is a binary file?", "What is the difference between
print and list?" etc.. The user's interaction with the IPS must be
interpreted. The current state of the system must be accessible and
explainable. Inefficient or erroneus user actions must be discovered and
interpreted in terms of lacking knowledge or misconceptions. It must be
possible to assess and update a model of what the particular user knows about
the IPS. Moreover it must be possible to construct from the representation a
curriculum for learning the IPS and to find suitable occasions for teaching.

Furthermore there are a number of "non-functional" requirements for a proper
representation of an IPS. It is important to prevent that similar knowledge is
represented twice, e.g. a component that constructs the answers to "How do I
....?" questions should use the same representation of plans as a plan

recognition component. A requirement for the final help system development
environment would be that it is possible to construct a representation for a
specific IPS without a profound understanding of the principles underlying the
intelligent help system, being a very experienced user of the IPS should
suffice.

During the pilot phase of the EUROHELP project a prototype of an intelligent
help system was developed for a specific IPS (Unix mail). While satisfying
most of the functional requirements mentioned above, the non-functional

* The research reported in this paper is funded by ESPRIT as project P280.
Partners in the project are CRI A/S (Deniark), DDC (Deniark), ICL (UK),
University of Leeds (UK), University of Aasterdai and Courseware Europe (The
Netherlands).

956

requirements were more problematic. The research since aims at providing the
three essential components for constructing a knowledge representation of an
IPS. The first component is the knowledge representation environment, which
can be seen as a specialized knowledge representation language that already
contains the representations of the concepts and relations that form the
generic basis of information processing systems. Much research has been
conducted on this subject within the EUROHELP project over the last two years
(Duursma (2), Holgaard (3), van der Baaren (4)). Secondly tools are needed
that support the actual construction of a representation for a specific
application. Various tools are being considered at the moment, ranging from
editors, graphical browser, libraries with concept definitions found in many
domain (e.g. menus, command line, mouse), consistency checkers, compilers
etc.. The last component is the methodology that guides this specification
process. This paper concentrates on the first topic and only touches upon the
other two.

2. AN EPISTEMOLOGICAL DESCRIPTION OF INFORMATION PROCESSING SYSTEMS

At a first glance making a representation of an IPS doesn't seem to be much of
a problem. It is always possible to give a complete description of an IPS;
it's a closed world. One can even say that a perfect representation already
exists in the form of the program itself and the interpreter. There are
however a number of problems with this view. An IPS is a closed world, but a
representation of the knowledge about it is not. An unlimited number of
different models are possible. Moreover a complete representation of what you
can do with an IPS is not possible, e.g. an IPS might be used for tasks the
designers had not in mind. Although the sourcecode of an IPS is a perfect
representation, it's computer language dependent (at least) and therefore not
suitable as the basis for the construction of help systems in general.
Moreover when using the source code there will be a considerable distance
between the user's intentions and the representation of the IPS.

In this chapter an overview is given of the abstract, generic concepts that we
think are needed to describe the functionality of any IPS (Breuker 4 de Greef
(1)). In chapter 3 we consider another point of view and try to represent in a
general way how an IPS is used when performing a task.

2.1. Objects

The most important class of objects in any IPS are information containers.
Information containers are organized in a consist-of hierarchy and are usually
ordered. An example:

directory
\
file
\
record

\
character

In the end each information container contains an ordered set of primitive
objects (generally characters). Each program, sub-program or mode can have
it's own (organisation of) information containers. Information containers have
additional information associated with them, e.g. the size, the name and the
creation date of a file. When this information can be used to reference a
specific information container we call it an identifier, e.g. the name of a
file.

957

The set of information containers constitutes only a small subset of all the
objects that are manipulated in an IPS. Dependent on the specific application
a considerable amount of objects which are dynamically constructed when an
action has to be carried out (word, sentence, cursor_to_end_of_word etc.). We
want to be able to talk about these objects too; we want to be able to
describe, or at least name, the objects that are manipulated. We refer to
these dynamically constructed objects with object references.

Classes of object references are organized into an hierarchical structure,
organized according to increasing constraints upon the class of objects
described. In Fig. 1 and example is given of a part of such a structure.

Any_OR
before = anything
after = anything
content-restrictions = nil

Include_Return_OR No_Return_OR
before = anything before = anything
after = anything after = anything
cnt-r. = (member Return object) cnt-r. = (not

(member Return object))

Rest_Paragraph_OR Rest_Block_OR
before = anything before =
after = paragraph-seperator
cnt-r. = (not (member paragraph-separator object))

Fig.l An example of object references. OR stands for object reference. The
definition is given in terms of constraints on the objects before and on the
objects after the object reference, and a set of restrictions on the primitive
objects contained in the object.

This structure would be sufficient when system procedures only operated on one
object at the time. To include for example global replace commands it is
necessary to have references to sets of objects. Specialisations can be added
for other purposes as well. For instance we might want the user to be able to
refer to these "objects" when interacting with the help system or we might
want to register a specific limited use of a system procedure. E.g the
represention for the specialisation "last word on a line":

Last_Word_OR
before = word sep
after = line_sep
content-restrictions = (not (member wordsep object))
explain = "the last word on a line"

Now we can handle questions like "How do I delete the last word on a line?"
even though there is no command that manipulates this specific kinds of
objects. By moving up the constraint hierarchy we can find object references
that have a system procedure associated with them. This way we are able to

958

give answers like: "You can use the D-coramand to delete the rest of the line."
or "To delete a word move the cursor to the beginning of the word and type
"dw.".

2.2. Actions

In the previous section we dealt with the representation of the objects in an
IPS, in this section the other major class of concepts is described: the
actions that are performed on the objects by an IPS. To see where actions fit
in with our representation I'll give some informal definitions of command and
system procedure. A command is the activation of a system procedure, while a
system procedure is the representation of the effect a command can have.
Effects are described as sequences of actions on objects.

It is at the level of actions that we try to provide the generic building
blocks for representing the effects of system procedures in general. The key
idea is to provide a relatively small set of primitive actions that are
sufficient to describe the effect of any system procedure. For example to
select, create, delete, show or change an object. Each primitive action is
defined in terms of a before and after state:

Primitive action
IsA: Action
Name: (a string)
Before_state: (a system_state)
After_state: (a system_state)

The primitive actions can be used to build more complex or specialized
actions. These are always defined in terms of the primitive actions:

Composed action
IsA: Action
Name: (a string)
Effect: (a primitive_action_sequence)

For example a "move" could be defined as a composed action which has as effect
the primitive actions "delete" and "create". Actions can be refined by placing
restrictions on the type of objects they take as arguments. E.g. "send" may be
a specialisation of "copy" in the case of messages. The primitive actions
enable use to include general inference capabilities in our help system
development "shell" (e.g. for planning or emulation). The composed and
specialized actions are more suitable to provide concise and well explainable
effect descriptions of commands.

3. GENERAL STRUCTURE FROM AN OPERATIONAL PERSPECTIVE

Undoubtedly the most important perspective on the representation of the IPS is
that of task performance. An intelligent help system must be able to do both
planning (e.g. for answering enablement questions) and plan recognition (e.g.
for recognizing inefficient task performance) with the IPS. From this
operational perspective the user is performing tasks by means of plans. So the
basic items in our representation will be tasks and plans. The user's task
performance consists of entering a context, this can be a program, subprogram
or mode. In this context one or more tasks are performed that are specific for
this context. Each such task consists of the application of one or more system
procedures. Applying a system procedure entails the application of one or more
interaction tasks (pressing a key, clicking a mouse etc.).

959

So the user's task performance can be described at four levels of abstraction:

A. mode_Context_Task (e.g. Change text using editor)
B. mode Task (e.g. Delete a piece of text)
C. system_Procedure_Task (e.g. Apply delete_word system procedure)
D. interaction_Task (e.g. Type "dw")

Tasks at the levels A to C can be refined to plans consisting of subtasks. For
each task all possible refinements are represented. In addition it is
specified which refinements are applicable in a specific situation. This
structure has the following characteristics. First it's hierarchical in the
sense that going up the levels provide a more abstract description of the same
task. Second the description at each level is complete. Third all subtasks can
be further refined independently. In this way it is not necessary to refine a
task all the way down to the interaction level. It also provides the
possibility of mixing the descriptions of the different levels. For example:
"Move the cursor to the line and type "dd"", which mixes a modeJTask
description of the first subtask with an interaction Task description of the
second.

3.1. Mode context tasks

A mode context task is the top level description of the user's intention. This
follows the top level breakdown of functionality as provided by the IPS in
terms of programs, sub-programs and modes. Contexts can be organized
hierarchicaly and entering the succesive contexts is like zooming in on the
information containers. E.g.:

Operating system

I* Text edi I Insert mode
With each mode_Context_Task a set of all possible mode_Context Plans is
stored, together with a ruleset that selects the applicable planTs) in a
specific situation. A plan specifies an ordered sequence of subtasks
(mode_Tasks in this case) to be carried out.

3.2. Mode tasks

At this level the basic functionality of the context (i.e. program, sub
program or mode) from the point of view of the user is represented. It can be
seen as a description of the operations the user wants to have carried out on
one or more objects. Each task is an abstraction from a set of system
procedures. From a planning point of view we need this level to represent how
the user can use the IPS in task performance. From a plan recognition point of
view we need to be able to track down the users intentions. An example of a
mode task:

Delete_Object
IsA: mode_Task
Operation: delete
Arguments: (an object_reference)
Planset: "A list of mode_Task_Plans"
PlanRuleSet: "A ruleset to pick a plan"

960

Operations are abstractions of the effects of system procedures, comparable to
the primitive and composed actions described in 2.2.

The representation at this level is restricted to the set of tasks which is
needed to cover the basic functionality provided by the system procedures of
the IPS. When every system procedure has a task associated with it at the mode
task level we consider the level to be complete. Further extensions are always
subjective. It is up to the help system developer when making a help system
for a specific application (and maybe a specific user population) to determine
how many, more complex, tasks to include.

3.3. System procedure tasks

The set of commands available with an IPS determines completely the
possibilities of the system. However they are not suitable as a level of
abstraction as such. A command can have different effects in different
situations (e.g. the delete-character-command in the VI editor normally
deletes a characters and moves the cursor to the next, but at the end of a

-line the cursor is placed at the previous character). In some cases different
commands have exactly the same effect (e.g. the type and print commands in
Unix mail both display the contents of a mail message on the screen).

Instead of using the commands we choose to decompose the mode tasks in terms
of system procedures. A system procedure is the effect of a command in a well
defined set of situations. A system procedure task can be defined as:

Name_Of_Task
IsA: system_Procedure_Task
Effect: (a system procedure)
Arguments: (an object_reference)
Plan_set: "a list of system_Procedure_Plans"
Plan_Rule_set: "a rule set to choose a plan"

Name Of Plan
IsA: system_Procedure_Plan
Command: "a command"
Arguments: "the arguments for the command"

Attached to the plan is also the procedural knowledge needed to determine the
value of the arguments for the command from the actual object references given
in the task. Also the inverse operation is supplied in order to enable plan
recognition. E.g. a search command in a text editor takes as arguments a
string and the options ignore_Case and only_Whole_Words. The effect of the
system procedure we aim at might be described as: place the cursor at the
first character of the object reference and update the screen. In this case
the relation between the object reference in the system procedure task and the
arguments supplied to the search command is quite complicated.

The structure of the actual interaction between user and IPS is represented
with the commands. Combining this information with the system procedure plan
yields a sequence of interaction tasks. E.g.:

(Display: Prompt)
(Type: "delete")
(Type: Space)
(Type: "file_name")
(Type: Return)

961

3.4. Interaction tasks

At the interaction level a description is given in terms of a sequence of the
physical user and system actions. The structure and content of the dialogue
between user and system is defined by the commands. The basis for our
description of the interaction between user and system was Moran's (6) Command
Language Grammar.

At the level of the system procedure tasks it is only specified how the
command will be interpreted, i.e. what will be the effect of executing the
command. What still needs to be represented are the order in which the various
parts of the command should be specified, the physical user actions that are
required to specify the parts, the systems prompts and responses to the
different parts of the command. Moran (6) describes a set of generative rules
that needed only minor adaptations to suit our needs.

The plan of interactions tasks covers all actions of both user and system
until the interpretation of the command. Next the system procedure is
executed. This is the whole effect of the command, including the necessary
interface actions, i.e. redrawing the screen, beeping etc..

The representation outlined above can be used for both planning and plan
recognition. Moreover the levels of abstraction give a large flexibility to
the explanation facilities.

3.5. Alternative approaches

The representational framework outlined above has some disadvantages. For
instance all possible plans for a task are explicitly enumerated including the
knowledge needed to be able to select the correct plan in a given situation.
For a project which develops a general help system development system a more
generative approach to planning and plan recognition seems to be preferrable.
To justify our approach an alternative is described and the kinds of problems
involved shown.

First the representation of an IPS is separated in two parts: the technology
space, which is a pure and objective description of the IPS and the task
space, which is represents what the system can be used for in terms of real
world task. The task space can be seen as a large and/or tree where the leaves
of the tree have a description of the task in terms of before and after state.
Given this description a general purpose planner could browse through this
objective system description and come up with a plan. A problem with this is
that most system procedures will have effects that are not described in the
task. E.g. a command that deletes a line of text might also put this text in a
undo buffer, update the screen etc.. It turned out to be impossible to give
general guidelines about which effects can be ignored and which effects should
be taken into account in planning. The only way out is to intertwine the
subjective task space and the objective technology space. For instance by
including relevant effects of system procedures in the state descriptions of
the tasks or by typing the effects of system procedures as intended or side
effects as Brachman (7) does with his representation of the Hermes mail
system. By including the mode_Task level in our system description we claim to
have found a cleaner solution, that is also much easier to apply when
constructing a representation of a specific IPS.

962

4. CONCLUSION

A representational framework was presented that is generic for information
processing systems and is powerful enough to support the functionality
required of an intelligent help system. Planning and plan recognition are
supported using basicly the same datastructures. It also seems feasible to
associate additional knowledge with the generic concepts in the
representation. This enables diagnostic modeling of the user, to find a lack
of knowledge or misconception (van der Baaren (8)). Also it is possible to
generate answers for different types of questions (Hartley (9)) and to
construct automatically a curriculum for teaching the IPS (van der Baaren
(4)).

Building a representation of a specific IPS along the lines described in this
paper is very complicated and probably not possible without a thorough
understanding of the functioning of an intelligent help system and the general
knowledge representation issues involved. Because the Eurohelp project aims at
developing a help system development environment that can be used without
specialized knowledge in these areas we now concentrate on tools and a
methodology that support the knowledge representation process.

REFERENCES

(1) Breuker, J.A., A Shell for Intelligent Help Systems, IJCAI 87, 1987.
(2) Duursma, C. & Maas, S., A report on the Development of a domain

representation for EUROHELP, University of Amsterdam, 1986.
(3) Holgaard, L., Mortensen, P. & Stausholm, L., Domain Representation,

Report CRI/EUROHELP/046, 1986.
(4) van der Baaren, J, Duursma, C., Hijne, H., Romeijn, T. & van der Vlugt,

D., Generality Test, Report C0E/EUR0HELP/021, 1987.
(5) Breuker, J.A. & de Greef, P.H., Information Processing Systems and

Teaching & Coaching in HELP Systems, deliverable 12.1, Esprit project
280, 1985.

(6) Moran, T.P., The Command Language Grammar: a representation for the user
interface of interactive computer systems. International Journal of Man-
Machine Studies, 1981, 15, pp. 3-50.

(7) Brachman, R.J., A Structural Paradigm for Representing Knowledge, BBN
report 3605, 1979.

(8) van der Baaren, J., Diagnostic Modeling in Intelligent Help Systems,
Report C0E/EUR0HELP/020, 1986.

(9) Hartley, J.R., Smith, M.J. & Carr, I.G., The Rationale of Explainer,
Report ULE/EUROHELP/024, University of Leeds, 1986.

963

P r o j e c t No. 280

Coaching Strategies For Help Systems: EUROHELP

Joost Breuker, Radboud Winkels, Jacobijn Sandberg

University of Amsterdam, Dep. of Social Science Informatics
Herengracht 196
1016 BS Amsterdam, The Netherlands
breuker@swivax.uucp

Abstract

The research reported here is part of a project aimed at the construction of an
environment for building intelligent help systems. Core of this environment is a
shell that contains all domain independent knowledge and procedures. A help system
supports the user in handling and mastering an information processing system.
Therefore, it should not only answer questions of users, but it should also 'look
over their shoulders' and interrupt when appropriate. Part of the shell and focus
of this paper is a generic coach. In a help system a coach has two functions: to
assist the user with a current problem and to teach the user about the information
processing system.

1. The EUROHELP Project.

The research reported here is part of the EUROHELP Project *) This project is aimed at
the construction of an environment for building intelligent help systems for 'information
processing system' (IPS). Core of this environment is a shell which contains all domain
independent procedures and knowledge. The major task of a developer of a help system for
some specific IPS will be to load the shell with a representation of the domain concepts (tasks,
objects, commands, syntax, methods of object reference, etc). It is expected that the development
of an IPS will proceed in parallel with the development of its help functions, but providing
help systems as 'add-on's for existing IPS is more of a challenge which we have taken up
at the start of the project. It is often believed that well designed IPSs have such a self-evident
structure and such 'understandable' (metaphoric) interfaces that help seems superfluous. A good
user interface is supposed to have help implicitly wired in. For instance, the famous Apple
Macintosh interface looks so self evident, that novice users soon feel quite comfortable. However,

*) This research is partially funded by the ESPRIT programme of the European Community
under contract P280. Partner! in this project are: CRI (Denmark), DDC (Denmark), ICL (U.K.),
University of Leeds (U.K.), Courseware Europe (Netherlands) and University of Amsterdam
(Netherlands). It encompasses an effort of about 100 man years over a period of 5 year, of
which 2 have been spent now.

964

experienced users complain about its modularity and inaccessibility of its elementary processes.
In other words, the Mac is hiding the fact that the electronic world is differently shaped
from the real world. The real world metaphors break down very soon and even impede the
acquisition of skill and insight into an IPS. More detailed reasons why help systems will always
be needed is presented in Breuker (in press).

The EUROHELP shell is under construction now; specifications have been written. The
specifications are based upon experiences with building a prototype add-on help system
(EUROHELP.PO) for Unix-Mail (Breuker, in press). Implementation is in LOOPS on a Xerox
1186, which is connected to a system running Unix. The specifications are moreover based
upon empirical studies in various IPS domains (e.g. the Unix-Vi editor, MacWrite, spread-sheet
packages, etc.), using i.a. mock up studies in which human experts act as coaches who
communicate with various types of users via terminals (e.g. Winkels et al., 1986; Breuker et
al., 1987). These experts monitor the performance of the user, interrupt for advice, and answer
questions of the user. These empirical studies are supported by more analytic studies on
knowledge representation of IPS, user modelling, planning, diagnosis, coaching and question
interpretation, for which prototype modules have been developed or will be developed to support
the construction of the shell. The EUROHELP shell will be constructed in a more transportable
implementation formalism (CommonLisp/-Loops). In this article we will focus on the construction
of one of the components of the shell: a generic COACH, Before discussing this COACH,
a short overview of the shell is presented (see also Breuker et al., 1987).

2. What's in a help system.

The function of a help system is to provide information about the use of some IPS when
needed by any type of user. The need can be expressed by the user or inferred by the help
system. This means that a help system should have the role of a human coach, who looks
over the shoulder of the user to interpret performance, who interrupts when things go wrong
or when there is an opportunity to extend the repertoire of the user, and who is able to
answer questions in the context of current use of the IPS.

Monitoring on line the performance of the user entails many conceptual and computational
problems, but these are not qualitatively different from those in intelligent teaching systems
in general. Because user needs may either be identified by the system or by the user, EUROHELP
contains a QUESTION INTERPRETER and a PERFORMANCE INTERPRETER, or a passive
and an active side (Fischer et al., 1985). Both communicate with a DIAGNOSER which tries
to identify the actual ('local') need of the user. This local need can always be stated in terms
of a specific lack of knowledge or misconception. This lack of knowledge may not only refer
to concepts, but also to current states of the system. Many local needs are identified by the
fact that the user makes an error.

The tracing of errors in using an IPS is simplified to some extent by the fact that many
erroneous actions of the user are not executable. However, the variety of causes of executable
errors is as complicated as in any 'natural' domain, because users may acquire all kinds of
misconceptions, ranging from wrong models of the underlying 'virtual machine' to not knowing
about a side effect of some command. The identification, or diagnosis, of problems of users
is not only complicated by the fact that lack of knowledge may lead to executable errors,
but particularly by the fact the system has to infer what the intentions of the user are. The

965

system can look over the shoulder of the user, but it would become a real nuisance if it
would ask what the user is up to all the time. In intelligent teaching systems this is a minor
problem, because the system itself prescribes what goals the user should accomplish: it presents
specific problems to the user/student, and makes safe assumptions about at least the global
goals. This means that in a help system there is a great emphasis on plan recognition in
interpreting the performance of the user. Because the skill (not the insight) in handling an
IPS consists mainly of planning actions, a planner is also an important component of the
performance interpreter. The planner may work in close cooperation with the plan recogniser
to provide top-down constraints on the interpretation of user intentions, but may also work
independently. This is for instance required when the user makes an executable error and an
unintended state is created. Help does not only imply to tell the user about what a correct
action would have been, but also how to undo this current state. Figure 1 gives a global view
of the architecture of a help system.

QUESTION
INTERPRETER

E
U
R
O
H
E
L
P

< I m m e d i a t e "^
Cause J

PERFORMANCE
INTERPRETER

C Local "\
Need I

CORCH

(Tactic ^
I Structure J

UTTERANCE GENERATOR

^
User

Model

Didactic
Goals

» Data that can be used at seueral places.

Figure 1 : Architecture of EUROHELP

966

3. The COACH.

Once a problem (local need) of a user has been identified, the COACH comes into action.
In a help system a COACH has two functions: to assist the user with a current problem and
to teach the user about the IPS. These two functions support one another: correct performance
facilitates learning; knowledge about the IPS enables (better) performance. However, the scope
of these functions is different. Learning goals are long term goals, while the 'HELP' function
is a very local one. Therefore we distinguish 'global needs', i.e. the knowledge to be acquired
about a particular IPS, and local needs, which state the current problem of the user. Whenever
a local need can be related to a global need, i.e. the user is supposed to be able to learn
from the information presented, the COACH should teach; otherwise it simply presents the
required information (HELP), without expecting this information to be remembered.

Presenting information consists of a sequence of 'speech acts' or tactics. This sequence is the
result of a planning process that takes into account what to say when and how, given the
identified problem of the user (i.e. the local need). This is what a 'teaching strategy' is about.
Current intelligent teaching systems (ITS) contain more or less fixed, prewired teaching strategies
(e.g. Sleeman & Brown, 1982; Self, in press). In the EUROHELP.PO -a help system for
Unix-Mail- coaching strategies were also prewired in the form of fixed frames in which topics
(what to say) could be inserted. However, the large variety of potential local needs requires
a more generative approach. As literature (e.g. Ohlsson, in press) and empirical data show:
there are no fixed coaching strategies. They are flexibly generated as a function of the current
problem and state of knowledge of the user. Therefore, there is a very recent tendency to
construct flexible, multileveled 'discourse planners' for intelligent coaching systems (e.g.
Elsom-Cook, 1987; Macmillan, 1987).

The structure of the COACH consists of the following three layers, which are similar to those
proposed by Woolf & McDonald (1984), but with more functional differentiation.

(1) The DIDACTIC GOALS. Didactic goals are concepts in the domain representation,
structured in such a way that they provide a didactic view on the domain. They form
the curriculum in the same way as genetic graphs (Goldstein, 1982) specify sequence
and (didactic) relations between topics for teaching. Because the HELP system has
to serve all types of users (from naive to expert) with widely different states of
knowledge, the DIDACTIC GOALS are generated dynamically on the basis of the current
state of the user model and principles of 'optimally effective learning' in which the
distinction between 'operational' knowledge (skill) and 'support' knowledge
(understanding; cf Clancey, 1982) plays a major role. Support knowledge allows for
generalisations, etc, while operational knowledge specifies what to do when to achieve
a goal. The DIDACTIC GOALS are the basis for expanding the current knowledge
of the user of the system and can be viewed as specifying the 'global needs' of the
user.

(2) The second layer contains a (discourse) STRATEGY PLANNER. Planning consists of
selection and top-down refinement of skeletal plans (cf. Friedland & Iwasaka, 1985)
which represent typical didactic strategies or substrategies. Selection and refinement
are based upon data in the LOCAL NEED. A local need identifies the immediate
cause (e.g. question type, error, occasion for expanding the user's knowledge, etc.)
and the assumed underlying cause (lack of some knowledge; misconception) of some

967

user action. For a further description see chapter 5.

(3) The third layer contains the TACTICS. TACTICS are the terminal elements ('executable
methods') of strategies. They are elementary communication actions, consisting of a
communication act (e.g. "To give you an example"), embedding a proposition that is
the content of a TACTIC (e.g. "2dd deletes two lines from the current cursor position").
TACTICS are the input for a simple natural language generator (UTTERANCE
GENERATOR, cf Stausholm, this volume), which takes care of lexical, syntactic and
text-semantic issues like pronominalisation and ellipsis. In fact, the output of the
COACH which is some sequence of tactics specifies already major pragmatic aspects
of the discourse.

An overview of the architecture of the COACH is presented in figure 2. The components
of the Coach are in capitals.

i n p u t p r o c e s s o u t p u t

Layer 1: Domain ^ / DIDACTIC GOHL
Representation '\GENERRTOR

User Model-

Layer 2: (Planner, etc.)

Local Need

Layer 3: TACTICS

DIDACTIC
GOALS

User Model
Update

STRUCTURE
OF TACTICS

Utterance
Generator

Figure 2 : Input, Output, and Processing of the Coach

968

4. Research Methodology.

Research has taken 2 parallel routes. An empirical route and a model construction route. The
former tries to identify in a bottom-up way how human coaches plan their strategies and
what tactics are employed. The model construction approach is top-down: it is aimed at the
development of prescriptive notions about effective coaching, i.e. it specifies '(psycho)logical'
concepts, derived from notions about optimising knowledge acquisition (cf. DIDACTIC GOAL
generation). Model construction consists of designing and implementing a domain independent
COACH which fed with a local need and access to knowledge structures (domain representation,
user model, performance and coaching histories, current state of the IPS) constructs a strategy,
which bottoms out in a sequence of tactics.

The two approaches complement one another. The empirical data keep the model 'honest' and
'ecologically valid'. The model construction not only provides an interpretation framework for
the empirical data, but also 'criticizes' these data, in the sense that human coaches are not
necessarily behaving in an optimal way for two reasons. The first reason is time constraints.
The on-line coaching does not allow the coaches to carefully plan their actions. There is often
backtracking. This leads us to the second reason: the coaches are not expert in
coaching-by-teletype. They are limited in their 'normal' way to express their explanations.
Moreover, there are large individual differences between coaches, and we want to have some
semi-external criterion to select styles and strategies that appear to work. This can partially
be abstracted from the empirical data, because the users provide thinking aloud protocols, which
show in which way the actions of the coach are understood. The 'ideal model' is another
framework to evaluate the usefulness of these empirical data.

Various empirical studies have been conducted (e.g. Bison & van der Pal, 1985 on Unix Mail;
Sandberg, Winkels & Breuker, 1986; Hartley & Pilkington, forthcoming, on Unix Vi) leading
particularly to a refinement and modelling of TACTICS. A number of typical coaching strategies
have been identified, most of which focus on correcting and expanding operational knowledge.

The model construction has lead to an initial design and implementation of the STRATEGY
PLANNER in Prolog (Winkels, 1987). A new version in Lisp is under construction, which
will be integrated in the shell and empirically tested both against data from the empirical
studies (see below) and from evaluations of an experimental help system for Unix Vi. Below
we will present a more detailed description of the discourse STRATEGY PLANNER of the
COACH.

5. Discourse strategies and strategy planning.

The selection and refinement of strategies is based on the local need. The local need consists
of parts which specify different types of knowledge elements. The 'immediate cause' part in
general contains a subset of the most recent performance history, i.e. the (sequence) of commands
that caused an error, or occasion for expansion, feed back, etc. The 'diagnosis' part contains
the specific lack of knowledge or a description of a misconception in terms of the domain
representation.

969

First it is decided whether the local need should lead to coaching or to pure help. The difference
is that the latter provides only ad hoc information, which is assumed not to be remembered,
because -according to the DIDACTIC GOALS- the necessary conditions for expanding this
particular knowledge are not present. Therefore, help is a stripped version of coaching. Next,
a top level strategy is selected to tackle this local need. Top strategies are: remedial, expansion,
state feed back. Each of these strategies can at some lower level be inserted in a strategy,
i.e. function as a substrategy. For instance, many remedials imply an expansion of the knowledge
of a user.
The top level strategy choice is based on the type of local need, and corresponds to the three
major functions of a Help system:

Type of local need Function Strategy

error remediate remedial
occasion for expansion expand knowledge expansion
lack of feedback provide feedback state feed back

Once a top level strategy has been chosen, a selection and refinement process starts: If the
local need is one that has been tackled successfully before by use of a specific plan this plan
may be stored in a library of skeletal strategies (cf. Friedland & Iwasaki's "skeletal plans",
1985). If so, this skeleton will have to be instantiated to the current situation, and the planning
is finished. In other cases, a more general plan is chosen, and will be refined hierarchically
by applying refinement rules until the subgoals of the didactic plan are directly met by tactics
(see 3.3). Conditions of these refinement rules may refer to the local need, the user model,
the didactic goals, the current state of the system, and the state of the coaching dialogue
thus far.
An example of such a rule is the following:

IF error (executable) & error (seriousness (high)) THEN
insert-next-to (strategy (repair), strategy (context))

which means that after the context-strategy (which, for instance explains the immediate cause
of an error) a repair strategy is inserted. A repair strategy consists of a plan to undo the
effects of an executable error. In case the error is a serious one, the user may worry about
undoing its effects, so the repair is provided first; in case the error is not a very serious
one such a repair strategy is better delayed until the user has a full understanding of the
(immediate) cause of the error.

The selected and refined strategies are in general comprehensive ones, which may have to be
pruned by deleting branches containing information that is 'obvious' to the user, or -in case
of pure help- that overloads the user with (new) information. An example of a simple strategy
is presented in figure 3. The local need is of type error because the user accidentally typed
' p \ which is a command he is not supposed to know and has never used before. The error
is executable - the delete buffer gets inserted in the text - and considered moderately serious.
Therefore the top level strategy chosen is REMEDIAL. The final tactic structure is presented
in the first column of figure 3. The next column shows the text produced by the planner

970

which can be compared to that of one of our human tutors in reaction to the same error
during an experimental session.

The first local need is:

local_need(error(executablef seriousness(moderate)), [performance_history([p])],

[diagnosisdackofknowledge, topic(concept(p), support (unknown),

operationaUunknown), [main_effect(p)]))]) .

Tactic structure Text Human Tutor

remedial(locaI_need6)
clarify
announcement
drawing_attention
[interruption(prop22)]

context
clarification(perf_hist6)
[instantiation(prop23)]

new_information
describe(topicll)
describe_support(topic 11)
informationl(topicl 1)
[description(prop24)]

describe_operational(topicl 1)
concretion(topic 11)
[operationalisation(prop25)]

state_feedback
describe_state_change(topicl 1)

check_assumption
[elicitation(prop26)]

repair
describe(topicl2)
information2(topic 12)
[direction(topicl2)]

May I have your attention
please.

You used a particular
You just did [p], that is what command, namely the p
went wrong. command.

"p" is put buffer in text.
Practically "p" means what
you deleted last will be
inserted in the text.

Is this you intention?

|: no.

To undo do [crsr_up, dd].

that puts back the
last piece of text
you have deleted before
the cursor.
Hence you get back here
the line you just deleted
with dd.
Was that your intention?
If not, what then?
> It was not intended.
Everything has to be removed.

You can just place the
cursor on the line
and do dd.

Figure 3: Output of Strategy Planner and Human tutors.

The output provided by the planner has been compared to the tutoring texts provided by human
tutors for about sixty different local needs. This comparison revealed first a remarkable agreement
between the planner and the tutors. Secondly, the output of the planner is often 'better' in

971

the sense that new information is more explicitly linked to prior knowledge and no superfluous
information is presented. Human tutors are inclined to give pure help, even when there is
an occasion to expand the user's knowledge. And human tutors do often present information
that is not applicable at that time. This last kind of information is easily forgotten by the
user. Although the planner functions reasonably some aspects have to be developed further,
in particular the management of simple dialogue.

6. Conclusions

The results described in the previous sections may appear natural and for all practical purposes
adequate. However, the design and construction of the DISCOURSE PLANNER didn't follow
a smooth path. When our investigations on coaching strategies started about 2 years ago, there
was ample recognition of the fact that such strategies were hard or impossible to identify.
Educational research had little to offer (cf. Ohlsson, 1986); the state of the art in constructing
intelligent teaching systems consisted of fixed solutions * ; empirical data of human tutorial
dialogues -as we have collected these ourselves- showed an almost endless variety, which lent
itself to an almost similar variety of interpretations. It appeared that coaching is not some
fixed expertise, where for each problem there is a ready made solution, as in analytic problem
solving (Clancey, 1985), but coaching requires much more flexibility and rather consists of
the synthesis (planning) of solutions. This has been recognised recently and there is an important
trend in designing coaching systems which are planning systems (Elsom-Cook, 1987, Macmillan,
1987, Woolf & Murray, 1987).

Although this approach appears to be viable and leads to practical results, the theoretical basis
is still not sufficiently established yet to allow for generic solutions. Coaching strategies are
a subset of discourse strategies. Research in human discourse has a long and respectable tradition
(e.g. rhetorics), but only in the last decade theoretical frameworks have emerged which focus
on the selection and sequencing of the topics of discourse, i.e. the 'what' and 'when' to say
things, which is preliminary to syntax and discourse semantics. The principles of topic selection
and sequencing are probably not uniform. Some appear to be related to the semantics of the
domain of discourse (e.g. McKeown, 1985); others are based upon the information management
required for human serial processing (e.g. Reichman, 1981, Clark & Havilland, 1977). Besides
many other issues for further investigation in the EUROHELP project, establishing the relations
between these principles of didactic discourse planning is not only of theoretical interest, but
may have many practical consequences, such as the construction of a 'multi-purpose' didactic
discourse generator.

References

Bison, P., & van der Pal, F., (1985). Using UNIX-mail: an experiment in on-line tutoring.
University of Amsterdam, Department of Social Science Informatics.

Breuker, J.A.P., (1987). Coaching in Help Systems. In: J. Self (Ed), Intelligent Computer-Aided

* With the notable exception of the design of 'Socratic dialogues' (Stevens & Collins, 1977).

972

Instruction. London: Chapman & Hall (in press).
Breuker, J.A.P., Winkels, R.G.F., & Sandberg, J.A.C., (1987). A shell for intelligent help systems.

Paper accepted for proceedings of the IJCAI-conference, 23-28 August, 1987 (Science Track).
Clancey, W.J., (1982). Tutoring rules for guiding a case method dialogue. In: D. Sleeman E,

and J.S. Brown (eds), Intelligent Tutoring Systems. New York: Academic Press.
Clancey, W.J. (1985). Heuristic classification. Artificial Intelligence , 27 215-251.
Clark, H.H., & Havilland, S.E., (1979). Comprehension and the Given-New Contract. In: R.O.

Freedle (ed), Discourse Processes: advances in research and theory. Norwoord, NJ, Ablex.
Elsom-Cook, M., (1987). Discourse for Tutoring. Paper presented at the Third International

Conference on Artificial Intelligence and Education, 8-10 May 1987, Pittsburgh.
Fischer, G., Lemke, A., & Schwab, T., (1985). Knowledge based help systems. In: Proc. CHI

85: Human factors in computing systems, ACM, New York, pp. 161-167.
Friedland, P.E., & Iwasaki, Y., (1985). The concept and implementation of skeletal plans. Journal

of Automated Reasoning, I, 161-208.
Goldstein, LP., (1982). The Genetic Graph: a representation for the evolution of procedural

knowledge. In: D. Sleeman, and J.S. Brown (eds), Intelligent Tutoring Systems. New York:
Academic Press.

Hartley, R., & Pilkington, R. (1987). Report on question answering in a help system, forthcoming.
McKeown, K.R., (1985). Discourse Strategies for Generating Natural-Language Text. Artificial

Intelligence, 27, 1-41.
McMillan, S.A., (1987). Dynamic Instructional Planning: Global Planning. Paper presented at

the Third International Conference on Artificial Intelligence and Education, 8-10 May 1987,
Pittsburgh.

Ohlsson, S., (1985). Some principles of intelligent tutoring. University of Pittsburgh. To appear
in: Instructional Science.

Reichman, R. (1981). Plain Speaking: A theory and Grammar of Spontaneous Discourse. Doctoral
dissertation. Bolt Beranek and Newman inc.

Sandberg, J.A.C., Winkels, R.F.G., & Breuker, J.A.P., (1986). Coaching strategies and tactics
of Unix-Vi consultants. UAM/EUROHELP/05. University of Amsterdam (The Netherlands).

Self, J., (ed), (in press). Intelligent Computer-Aided Instruction. London: Chapman and Hall.
Sleeman, D., & Brown, J.S., (eds), (1982). Intelligent Tutoring Systems. New York: Academic

press.
Stevens, A., & Collins, A., (1977). The goal structure of a socratic tutor. In proceedings of

the Association for Computing Machinery Annual Conference. (Also available as BBN Report
No. 3518 from Bolt Beranek and Newman Inc., Cambridge, Mass., 02138).

Woolf, B., & McDonald, D.D., (1984). Context dependent transitions in tutoring discourse.
Proceedings of AAAI 1984. Los Altos: Kaufmann.

Woolf, B., and Murray, T., (1987). A Framework for Representing Tutorial Discourse. Paper
accepted for proceedings of the IJCAI-Conference, Milano, 23-28 August, 1987.

973

Project No. 857

M A R G R E T - A PRE-PROTOTYPE OF AN 'INTELLIGENT'
PROCESS MONITORING SYSTEM

P. Elzer, H. W. Borchers, H. Siebert, C. Weisang, K. Zinser
Brown Boveri & Cie
Central Research Laboratory
ZFL/L3
POB 101332
D-6900 Heidelberg 1
F.R.G.

1. INTRODUCTION
In the ESPRIT-Project P857 'GRADIENT' new techniques for Man-Machine
Dialogue and Operator support in dynamic systems are developed and/or
evaluated. The aims and general principles of this project have already
been described several times, e.g. in /l/. Since the start of the
project in October 1985 two years have now passed and several of its
goals have been reached. The respective results are described in
separate papers, e.g. /2/, /3/, /4/. This particular paper deals with a
successful experiment concerning the integration aspects of a GRADIENT-
System. The approach chosen was to construct a pre-prototype of the
entire system, realizing the essential components with limited
functionality, using a powerful development tool. This method conforms
to the meanwhile established procedure for the development of knowledge-
based systems. The results so far have fully justified the effort.

In particular it was regarded necessary to gain experience with the
following aspects of a GRADIENT system:
- Applicability and user acceptance of modern and alternative

presentation techniques in industrial control, like information
zoom, multi-windowing, panning etc.

- Possibilities and user acceptance of new operator input techniques
like soft-keys, mouse, sensitive areas, etc.

- Details concerning the functionality of support tools for the
preparation and design of picture contents and dialogue sequences,
especially the GRADIENT 'intelligent Graphical Editor' series.

- Methods and problems concerning the connection of knowledge based
systems in realtime to dynamic systems.

- Methods and problems of cooperation and data exchange among knowledge
based systems and between these and other computational processes,
especially with respect to distributed systems and the definition of
the 'composite objects' within GRADIENT.
Capabilities and limitations of commercially available support
software and 'A.I.-oriented' hardware.

974

The pre-prototype was developed at the BBC Central Research Laboratory
in Heidelberg, F.R.G. For easier reference it was named 'MARGRET'
(Multifunctional All-puRpose GRadient Experimental Test Environment).
It will be used as a vehicle for test, integration and demonstration for
the whole duration of the GRADIENT project. This of course implies that
it will have to be upgraded and structurally improved in regular
intervals according to experience with its use and new technical
insights.

2. ARCHITECTURE OF MARGRET
2.1. The GRADIENT System
The GRADIENT System as a whole is intended to demonstrate qualitative
improvements in a wide variety of rather complex subtasks in S & C of
dynamic processes. These subtasks can be described as intelligent fault
diagnosis support (Quick Response Expert System (QRES) and Support
Expert System (SES)) and intelligent graphical interfacing of process
information (Graphical Expert System (GES) and Presentation System
(PS)). Fig. 2.1 illustrates the interrelations between these components.

GRADIENT

Fully Intelligent
Process Control System

Design Dase Knowledge Pool

PROCESS SUPERVISION
S comnou

SVS1EM

T T

QRES

SES

RESQ

Knowledge Pool

Fig . 2 . 1 : The S t r u c t u r e of t h e GRADIENT System

975

2.2. The MARGRET Preprototype
2.2.1. Overview
The pre-prototype consists of models of the following important
components of the GRADIENT project:
- Quick Response Expert System
- Dialogue System
- Graphical Expert System
- Presentation System
Figure 2.2 presents a schematic structure of the pre-prototype with the
above-mentioned components, drawn as rectangles, and the data exchanged
between them, drawn as circles. According to the terminology developed
within the GRADIENT consortium these data are called 'Composite Objects'
('CO's').

PS GES

DA

DA
DIS

DA

DA

QRES

(SYMBOLICS)

Process
Simulator

(VAX)

Fig. 2.2: The Internal Structure of the MARGRET Pre-Prototype

In the next phase of the project parts of MARGRET will be ported to a
SUN workstation in order to benefit from the graphical capabilities of
this hardware. Then the data to be exchanged between modules residing on
different machines will be encoded according to the 'Composite Objects'
convention and sent to the receiver, which will decode the data again
into its internal representation.

976

2.2.2. Implementation
MARGRET has been implemented in KEE3 on a Symbolics 3640 running
ZetaLisp under Symbolics' operating system 'Genera 6.1'. MARGRET relies
on the use of KEEpictures, RuleSystem3 and Symbolics' specific process
handling mechanisms. These tools do not yet guarantee a totally
realistic system behavior, especially with respect to response time, but
have proven to be valuable for rapid prototyping.
The process simulator models a conventional power plant. It is written
in FORTRAN and runs on a MicroVAX II under VAX/VMS. For the time being,
the simulator submits a set of 26 analog values describing the state of
the power plant. Every five seconds an updated set of simulated process
values is sent from the MicroVAX II via Ethernet (under the DECnet
protocol) to the Symbolics.
2.2.3. Functionality
The functionality of MARGRET's components is best described in terms of
their interaction. With reference to Figure 2.2 the following list
illustrates a sequence of actions in MARGRET:
o Data values are read asynchronously from the process simulation on a

VAX into 'Measurement Unit CO's', and also transmitted to the PS
directly.

o ORES reads 'Measurement Unit CO's', and
- creates 'Failure State CO's', and
- informs its Dialogue Assistant (DA).

o GES is informed by its Dialogue Assistant to read 'Failure State
CO's'.

o GES creates 'Graphical Presentation CO's' and
- displays appropriate messages directly, and
- informs its Dialogue Assistant.

o DIS waits for Operator Actions, and (in case)
- informs PS of selected actions through DA's.

o PS displays selected Graphical Representation CO's.
The synchronization of all modules of the GRADIENT system is in MARGRET
mainly handled by the rudimentary implementation of the DIS module.

3. USER INTERFACE
Fig. 3.1 shows a complete screen layout with all tne windows which are
available to the user of the MARGRET preprototype system, though they
need not necessarily appear on the screen all at the same time.
3.1 The 'Process Monitor' window
The 'Process monitor' window is the operator's window to the process. It
looks at a complete picture of the plant. The operator can 'move'
through that picture and cause the system to display more details of the
plant by zooming in. The picture is organized to support 'additive' as
well as 'alternative' 'information zoom'.

977

Fig. 3.1: The Complete Set of Windows in MARGRET

978

'Additive information zoom' means that more details are added to the
picture when its zoom factor exceeds some predefined limit. Figure 3.2
shows an example from the feedwater system. In this case the flow and
temperature measurement values are added when the operator zooms in.

ia;w«u«.».i<wi»ii;:iw

(

®K
)

) c >
J

^i
1

A

'■BTsrig*T±55S*ffi

h
K

^ 2
V

Fig. 3.2: Additive Information Zoom

'Alternative information zoom' (Fig. 3.3) means that the graphical
representation e.g. of a subsystem is completely replaced by a more
detailed representation when the zoom factor exceeds an appropriate
predefined limit.

979

E E E s ^ E m a i i

15.07 KG/S

400.0 CEL[

590.0 KG/S

263.0 BAR

605.07 KG/S

-x-G-

IJ.I.;.JJJ.II.I.-I.CTI

504.76 C E L j i o 0 7 K G / S

473.73 CE1JT34.15CEL

508.54 C E L T 5.0 KG/S

431.85 CELj~ 0.15 CEL

432.0 CEl7[0.0 KG/S

0 CEL I 0.0 KG/S I T 1

S L ,
-txl
-ex n

Fig. 3.3: Alternative Information Zoom:
Details from the Steam Generator System

980

3.2 'Process overview' window
This window at the bottom right of the screen is always present and
contains an overview picture of the entire process. The failure states,
which are discovered by the QRES (Quick Response Expert System), are
signalled there by gray rectangles displayed at the appropriate
position.
If there is more than one failure state detected, the system determines
the smallest rectangle containing all the failure state rectangles and
displays this rectangle within the 'Process overview' window in light
gray, as shown in Fig. 3.4.

Fig. 3.4: Overview Window with Indication of Failure Syndromes

Each of these small rectangles represents at the same time the system's
proposal to the user as to which portion of the plant picture should be
looked at to retrieve further information on the failure state in
question. The user can follow the system's suggestion by invoking the
function 'SHOW.ONE' (cf. section 3.3 and Fig. 3.5).
If the operator invokes the function 'SHOW.ALL', the portion of the
plant picture covered by this light gray rectangle will be displayed in
the 'Process monitor' window using the smallest possible zoom factor.
Fig. 3.6 shows the effect of this function.
3.3 'Operator functions' window
At the right margin of the screen there is a window containing eight
subwindows titled 'OVERVIEW', 'CENTRALIZE', 'LARGER', 'SMALLER',
'SHOW.ONE', 'SHOW.ALL', 'IMPACT' and 'DONE'. These subwindows are mouse
sensitive and serve as 'soft-keys' with the following functionality:
OVERVIEW : An overview picture of the entire plant will appear in the

'process monitor' window.

981

Fig. 3.5: The Effect of the 'SHOW.ONE' Function

Fig. 3.6: The Effect of 'SHOW.ALL'

982

'CENTRALIZE': The component, which is selected by the operator (either
in the operator's window or in the overview window) will
be moved to the center of the 'process monitor' window.

'LARGER': Causes the picture in the 'process monitor' window to be
enlarged by increasing the zoom factor one step.

'SMALLER': Reduces the zoom factor one step.
'SHOW.ONE': Causes information about one failure state which can be

selected by the operator to be displayed in the 'process
monitor' window (c.f. 3.2).

'SHOW.ALL': Causes information concerning the entire detected failure
syndrome to be displayed in the 'process monitor' window
(c.f. 3.2).

'IMPACT': Automatically opens an additional window and displays in
it information about possible consequences of a failure
situation.

'DONE': Indicates that one of the functions has been carried out.

3.4 'Impact' window
This window is not necessarily open all the time. It will be opened
automatically by the system and can be placed by the user at any
position on the screen, after 'IMPACT' has been activated (cf. also
section 3.3). The operator can select one of the active failure states
by clicking on the according gray rectangle in the 'Process overview'
window. This rectangle will then be repeated in the 'impact window', and
the subsystems that might suffer from the failure state in question are
indicated by displaying them in 'reverse video' in the 'impact window'.
Figure 3.1 e.g. shows the impact of a failure state in the feedwater
system.
3.5 'Zoom factor' window
This window shows the currently applied zoom factor as a positive
number. It has turned out to be a valuable aid for the operator
indicating his position in the 'scale dimension'.

4. KNOWLEDGE-BASED COMPONENTS WITHIN 'MARGRET'
When it was decided to implement a preprototype of the GRADIENT system,
it was clear that not all of its knowledge based components could be
implemented as expert systems.
For constructing the pictures representing the process a simple, object
oriented graphical editor was used which was part of the development
tool set. The graphical objects produced by this editor can be easily
accessed by reasoning processes without any interface problems.
The Support Expert System, which will enter the GRADIENT system only
later, was completely dispensed with. The Dialogue System was substi
tuted by a synchronising mechanism, because the DIS is being developed
at another partner's site (University of Strathclyde, Glasgow)
and no prototype was available at the time of development of MARGRET.

983

But at least two knowledge based components are necessary to keep the
prototype running, one to detect failure states from (abnormal) process
values, the ORES, the other to display information about known failure
states, the GES. Of these, only QRES was implemented as a rule-based
expert system because:
a) there was inhouse knowledge available concerning failure states of

power plants, and
b) the expert system development tool KEE at the moment does not yet

support two reasoning processes running in parallel on one machine.
Therefore, the operations of the graphical systems were implemented as
LISP functions in an object oriented programming style.
For purposes of the preprototype, GES was designed as a set of graphical
operations. Some of the operations are running in sequence every time a
new failure state has been detected by the system or an old failure
state has been recognized as not being valid any more. Others are
triggered by the operator interactively. A description of the effect of
these operator functions has been given in section 3.
The QRES has been implamented in a pretty straightforward manner. It
contains only a few rules, covering mainly failure states in the
feedwater system.
At a later stage it will be replaced by an adaptation of the QRES
development at CRI.

5. CONCLUSIONS
Although MARGRET originally had only been planned for experiments with
graphical aspects of GRADIENT, it turned out to be a highly valuable
source of experience in other areas as well. Two of these shall be
briefly mentioned here:
a) Input to the discussion about 'Composite Objects' within GRADIENT. As

the components of GRADIENT are developed at different sites and
will run on different computers it has turned out to be necessary to
define a uniform data exchange mechanism between these components.
The best method seems to be the exchange of standardized objects
which contain all the necessary information to be transmitted between
GRADIENT components or subsystems. Within MARGRET, the following
types of composite objects were tried out (c.f. 2.2.3):
- Measurement Unit CO's
- Failure State CO's
- Graphical Representation CO's

b) Synchronization and Scheduling in an A.I.-Tool based environment.
Synchronization and Scheduling of parallel processes are of prime
importance in realtime systems, but little experience exists as yet
concerning their implementation and application in an 'A.I.-typical'
tool environment. However, in order to come to a really working
MARGRET system, it was necessary to implement the synchronization and
scheduling mechanisms with a realistic functionality. The result of
this work provided valuable and decisive insights into the
possibilities of the underlying hardware and support software and
will definitely influence the future design of GRADIENT.

984

Of course a lot of problems have still to be solved in order to arrive
at a fully functional GRADIENT system like e.g.:

Computer-aided development of the large overview pictures within
MARGRET (which is one of the tasks of the 'intelligent Graphical
Editor', to be developed within the GRADIENT project),

- Inclusion of colour and improvement of speed,
- True parallelism of rule based systems etc.
But the results so far have confirmed our confidence in the
achievability of these goals. After all, to our knowledge MARGRET is
the first system in Europe with this particular functionality and all
demonstrations to potential users have indicated that it would be
regarded as a significant improvement over the current state-of-the-art.

REFERENCES
/l/ Alty.J., Elzer,P., Hoist,0., Johannsen.G., Savory,S., Smart,G.

Literature and User Survey of Issues related to Man-Machine
Interfaces for Supervision and Control Systems;
ETW 1985, pp.719-729

/2/ Christensen.B.:
The Development of QRES - A Real Time Experrt System
for Process Monitoring;
paper submitted for ETW 1987

/3/ Hollnagel.E., Sundstroem,G., Weir,G.:
User Modelling in GRADIENT;
paper submitted for ETW 1987

/4/ Alty.J., Weir.G.:
Dialogue Design for Dynamic Systems;
paper submitted for ETW 1987

985

Project No. 820

A TOOLKIT FOR BUILDING KBS APPLICATIONS FOR PROCESS
CONTROL. FIRST ACHIEVEMENTS OF THE PROJECT.

Alberto Stefanini (CISE)
Francois Arlabosse (FTC)
Alfonso Cavanna (ANS)
Pierre Courtin (AER)
Mogens Levin (FLS)
Roy Leitch (HWU)
Pierre Martin (CAP)

(CISE) CISE s.p.a., Milano, (I)
(FTC) Framentec, Paris, (F)
(ANS) Ansaldo, Genova, (I)
(AER) Aerospatiale, Cannes La Bocca, (F)
(FLS) F.L. Smidth & Co. A/S, Valby, Copenhagen, (D)
(HWU) Heriot Watt University, Edinburgh, (GB)
(CAP) CAP Sogeti Innovation, ZIRST, Meylan, (F)

ABSTRACT
Project 820 is aimed at prototyping and experimenting a
KBS development environment for applications in the
domain of industrial control. During the first year of
work, the basic development environment (termed the 'ker
nel toolk.it') has been specified and is currently being
implemented. It takes the form of a toolkit, i.e. a set
of modular, integrated tools plus a design methodology.
As two basic approaches exist for modelling a system to
be controlled, i.e.:

empirical: based on relationships expressing
observed associations;
ontological: based on relationships that derive from
a theoretical understanding of the domain, and fol
lowing the approach of qualitative modeling,

the kernel toolkit provides knowledge engineering tools
suitable for both these approaches to system modelling.
Development of the toolkit takes place in parallel with
three large demonstrator applications (relevant to con
trol of a power plant, a satellite, and a cement manufac
turing plant) where the tools will be experimented and
validated.
This paper provides motivations for the main design
choices of the toolkit as well as an overview of the most
important features of the three demonstrators.

986

1. INTRODUCTION
Among the most demanding areas where expert systems are

expected to play a major role within a few years, process control
is attracting a significant interest. Expert systems in process
control environments appear of particular importance for predict
ing faults in technical and chemical processes, as well as for
providing guidance and planning for actions meant to repair or
prevent faults. In the frame of ESPRIT an exploratory study con
tract on the subject was funded in 1985 (Project P256: Time
Dependency and System Modeling in Knowledge-Based System Design
for Process Applications). The study focused on a set of
requirements for a knowledge-based system (KBS) development
environment for process control applications. It examined a set
of new techniques for knowledge representation and inference,
whose suitability was tested on a sample of case studies, and
outlined a reference architecture of the KBS development environ
ment. The actual development of the environment is the subject of
a further and larger ESPRIT project, whose contract has been
awarded in the 1986 group of projects in the area "Advanced
Information Processing", reference number P820.

2. THE TOOLKIT CONCEPT
The large spectrum and specific nature of the envisaged

application area, and the different approaches to knowledge
representation we will overview hereinafter, are motivating our
main design choice, i.e. to structure the KBS building environ
ment as a toolkit comprising a design methodology and a set of
special-purpose tailorable building modules. With respect to
traditional KBS shells and building tools, the toolkit approach
offers a much more flexible and specialised working environment,
enabling the KBS designer to build his own target application by
selecting from the toolkit the appropriate modules, and by
tailoring and composing these to meet individual requirements.

A toolkit comprises:
* A general system architecture that will serve as a common

reference framework. The architecture specifies the basic
structure and function of the main component modules. These
include: knowledge bases, external interfaces, working
memories and inference mechanisms. The architecture speci
fies how the modules interact and defines the flow of com
munication information between them.

A A set of special-purpose building modules, that can be
tailored and assembled together to construct the target KBS
building tool. This set will include all modules necessary
for the implementation of the inference mechanisms and spe
cial facilities (e.g., explanation and justification) speci
fied in the reference architecture.

* A set of engineering support tools to aid the system
designer in the construction of the knowledge bases (i.e.,
editing, debugging, refining, and updating the represented
knowledge).

* A set of specifications for the construction of external
interfaces towards traditional programming environments

987

(e.g. DBMS, simulation packages etc.) and towards the indus
trial process (data acquisition, sensors, instrumentation
actuators etc.).

* A KBS analysis and design methodology for supporting the
correct and effective use of the toolkit over the range of
tasks covered by the application domain.
The paradigm of the toolkit allows high flexibility to

explore different architectures for structured and efficient
knowledge organisations, and still retains the classical advan
tages of open-ness of the toolkit approach. The toolkit concept
embodies a good compromise between the contrasting exigences of
generality and specific, effective usability.
2.1. Main approaches to system modeling

The central motivation for this project is the firm convic
tion that the construction of an artificial system capable of
interacting with the complex dynamic processes found in indus
trial environments requires a sophisticated blending of empirical
(inductive) and analytic (deductive) techniques.

Two main approaches to system modelling can be identified.
One, currently being developed in the KBS area, takes the world
as we find it, examines the various systems that exist in it and
then infers relationships and regularities about the observations
that can be made. This method is essentially empirical and
intuitive. It has the basic advantage that it remains close to
reality and that the models are readily accessible and understood
by people. On the other hand this approach lacks mathematical
elegance and deductive strength, and can appear little sys
tematic. Models obtained by empirical observation are special
ised, and often lack generality. A second method, the deductive
approach, takes the opposite view. Instead of studying a particu
lar system, it goes to the other extreme and considers the set of
all conceivable systems with common properties, usually in the
form of fundamental physical principles. Equivalence classes are
thus formed and used to classify a particular system. Once a sys
tem is assumed to belong to a given class, it inherits the pro
perties of that class. Both approaches have their relative advan
tages.

We propose a novel architecture capable of supporting both
of these approaches to system modelling: an empirical model which
uses established knowledge from observation of the systems
behaviour and an ontological (analytic) model based on the appli
cation of general physical laws to obtain an explicit qualitative
model of the process.

Empirical models consist of relationships, often in the form
of condition-action pairs, that have been acquired through
first-hand experience with the system at hand, or from a more
experienced expert. These relationships allow inferences to be
made in a given situation, but do not provide any kind of
inherent reason for the relationship itself. These relationships
are shortcuts through, or partial compilations of, a deeper
understanding of the problem domain. They tend to be experiential
and model the decision making process rather than the process
itself. However, when applicable, such knowledge is extremely
efficient.

988

Ontological models, on the other hand, provide the detailed
causal, functional and physical information about the operation
of the system. Such knowledge is essential for coping with new
situations or for developing diagnostic systems based upon the
internal structure of the system. Ontological knowledge is, how
ever, more complex to represent and requires sophisticated infer
ence procedures. The goal of our project is to combine the speed
and efficiency of empirical knowledge with the generality of
ontological knowledge obtained from "first principles'. This
requires a co-ordination and control strategy such that, when
applicable, the empirical model is used, resorting to the onto
logical model only when required.

The above considerations determine a toolkit architecture
consisting of three sets of tools: for expressing and using onto
logical models, for expressing and using empirical models, and
for structuring communication between, and control over, dif
ferent models.

Ontological models require a representation language and
associated inference mechanisms allowing:
a) the representation of the structure of the system in terms

of fundamental primitives and the constraints between them.
A number of alternative approaches exist to represent the
structure of physical processes, essentially characterised
by the basic unit of representation;

b) to determine the flow of causality in the structural model,
i.e to generate a causal net expressing qualitative influ
ences among the physical parameters;

c) to determine the dynamic behaviour of the system, i.e simu
lation of the evolution (over time) of the system. This is
essential for the modelling of dynamic systems, and for
reducing the ambiguity in the propagation of disturbances in
static models of dynamic systems.

Empiric knowledge is mainly declarative and fragmentary in
nature, and KBSs have achieved up to now major successes in those
application domains where knowledge involved is empiric. In
these domains, the rule-based paradigm typical of ESs has offered
a basic advantage over traditional programming, in that it allows
the programmer to tackle problem solving at a higher level of
abstraction and in a more flexible and natural way. Many classes
of problems however exhibit, in addition to empiric declarative
knowledge, well structured chunks of procedural knowledge (still
mainly of empiric nature) that should be represented and used in
the form it is naturally available. Consider, for example, tasks
such as decision making, fault detection and diagnosis, sensory
data interpretation, monitoring of industrial processes, all
relevant to the intended application area of the toolkit. In
these cases, it is highly inconvenient, for many reasons, to
disperse the available procedural knowledge into a flat declara
tive representation; it is thus necessary to introduce an ade
quate formalism for representing procedural knowledge, and an
appropriate inference mechanism, allowing the combination of the
structured coding of procedural knowledge with the declarative
representation typical of a pure rule-based system. Therefore
empirical models can require separate languages for representing
both procedural and declarative associational relationships.

989

The overall operation of KBSs using different models of the
controlled system, expressed by means of different representation
paradigms, requires a sophisticated control and co-ordination
framework performing the following functions:

management of inter-module communication, reflecting the
existing dependency among different representations;
management of the interaction among different views of the
system, expressing the viewpoint of a particular agent in
charge of performing a particular task, with the aim of
integrating their contribution to achieve a specified goal.
An additional issue posed by complex process control appli

cations, where time and space constraints may impose a distri
buted computing architecture, is control of co-operative problem
solving in a distributed environment.

3. INTENDED APPLICATION AREAS
The field of industrial process control is currently

attracting much attention from KBS designers as an area offering
significant potential for improved efficiency and safety of
operation. This impetus stems from the recognition that many
industrial control tasks remain outside of the scope of current
automatic control methods. KBS technology provides the potential
for extending automation to cover a wider range of tasks by using
symbolic processing methods similar to those used by humans.

Typical tasks that can be envisaged for KBSs in the indus
trial process control environment include:

Situation assessment and fault detection:
Assessment of the operating conditions of a physical system,

that is, complete (or partial) identification of the system state
starting from incomplete and scattered data, taken from present
and past observations (measurements). This task also includes
identification of possible deviations from normal (desired)
operating conditions, i.e. fault detection.

Prediction:
Evaluating the dynamic trend of a physical system, i.e.

identifying a sequence of future system states, once the present
state and input perturbations to the system are known. Essen
tially, this is a simulation task, but can also be used for fault
propagation and for determining appropriate (feedback) control
action.

Fault diagnosis:
The identification of the mechanisms which caused a differ

ence between a (partially known) actual state and an expected
state whose prediction was based on an explicit or implicit model
of the process. At present this is the most significant task that
currently lies outside of automatic control systems.

Regulation:

990

The manipulation of control variables (actuators) to alter
the behaviour of a physical system in order to keep it close to
desired one. The task here is to maintain a given equilibrium
condition in face of system disturbances. Continuous feedback
control is the main method used to achieve process regulation.

Tracking
The manipulation of control actuators in a way as to follow

a prescribed state trajectory or path. This task arises during
plant start-up or shut-down or during a significant change in the
desired operating region, e.g. product throughput or different
product campaigns. This task employs a mixture of continuous
feedback control and sequential or supervisory control. This
task shares many similarities with planning problems.

Some of the above tasks can already be adequately automated
for many industrial processes. In particular, regulatory feedback
control, generally known as process control, has a range of
sophisticated theories that have shown many spectacular
successes, and some lesser known failures. These methods are
based on analytic representations of the process based on real-
valued continuous or discrete time functions. Such methods
require a precision in the specification that in many cases can
not be attained. These methods moreover seek a unique solution
and require a complete specification of the process. Imprecision
or incompleteness cannot be handled using these methods, although
uncertainty, in the form of probability density functions can.

In the case of fault diagnosis, adequate analytic represen
tations are extremely difficult to obtain. This is mainly due to
the large variation in the variables (signals) being processed by
the system during these tasks. Simplified "small signal' models
are not adequate for these tasks. In addition, for the fault
diagnosis task, a fault may induce a change in the system struc
ture requiring a significantly different model of the process.

A general disadvantage with the analytic methods is that
they do not provide a human window through which the operator can
observe the operation of the system. The mathematical description
of the process is far from the mental models of the human opera
tor. The provision of a human window is a defining attribute of
the KBS approach. In industrial control this aspect is essential
for human supervision and safety. Consequently, even those tasks
that can presently be automated by traditional methods can bene
fit from a KBS approach, assuming that the same performance can
be achieved.

The above inadequacies of traditional methods are motivating
current efforts in Artificial Intelligence to establish methods
of formal reasoning about system descriptions expressed in sym
bolic, or qualitative form. Such systems offer the potential of
providing causal explanations of their behaviour in terms readily
understood by a human. Even if a quantitative model is available
and adequate for a particular process, there may also be a signi
ficant advantage in reasoning qualitatively about behaviour. This
can bring computational benefits as well as cognitive ones. How
ever, for many .processes and tasks, quantitative data are just
not reliable or available, in which case qualitative methods pro
vide the only possible automated solution.

991

4. ANALYSIS OF THREE DEMONSTRATOR CASES
As previously mentioned, within the project three demonstra

tor applications in the area of the process control and supervi
sion will be implemented. The demonstrator cases will focus on:
1. malfunction detection and diagnosis in the thermal cycle of

a power plant;
2. data interpretation and control of a spacecraft, including

misposition/attitude detection and diagnosis, and assistance
to correction manoeuvres;

3. startup, on-line monitoring, and control of vital subsystems
in a cement manufacturing plant.

4.1. The power plant case
The experimental application domain considered in the design

of the first demonstrator is the conduction of a power plant.
Among the several different tasks included in this application
domain, we focus on the task of overall plant diagnosis. This
task consists of the identification of malfunctions that affect
major plant components, by evaluating plant efficiency and com
paring it with known reference conditions. Plant efficiency
evaluation is a very complex and knowledge intensive activity.
As a matter of fact, it is not possible to rely upon the plant
efficiency formula. Instead the actual plant performance is
estimated by considering qualitative evaluations of a certain set
of index variables correlated to the subsystems into which the
plant is subdivided. Overall plant diagnosis includes two more
primitive tasks: system state assessment and diagnosis.
The relevant knowledge comes from many different sources, ranging
from heuristics owned by conduction and maintenance staff, to
more formal technical knowledge owned by plant designers. Thus it
includes empirical, incomplete and uncertain knowledge mixed
with qualitative process models. Therefore this demonstrator will
employ an ontological model of the plant together with declara
tive formalisms expressing the above mentioned empirical
knowledge.

4.2. The spacecraft case
This application domain is concerned with supplying expert

support to the operators in the control room of a geostationary
satellite for telecommuncations. A telecommunication satellite
in geostationary orbit, is expected to accomplish several mis
sions. In case of attitude loss the main goal of the control sta
tion is to run the appropriate actions in order to address, as
quickly as possible, the re-starting of the mission. One of the
most important constraints underlying the attitude control
actions, consists of the non-observability (or partial observa
bility) of the internal and external satellite states. This is
due essentially to the satellite's design and the limited number
of available telemeasures. Actions and observations are thus
strictly coupled.
The operator activities consist mainly in the detection of the
satellite misposition/attitude, and in their correction through
suitable correction procedures. These tasks are based on the
interpretation of telemetry data coming from the satellite. In
order to cope with datainterpretation and correction procedures

992

the demonstrator will mainly employ empiric procedural knowledge
representation.
4.3. The cement manifacturing plant case

The third application domain concerns process control and
on-line monitoring of a cement manufacturing plant. A cement
manufacturing plant is constituted by several subsystems. The
control task is very important for the plant because it requires
continuous attention during normal plant operation. We have
recognized three main tasks to be performed within this applica
tion:

regulation of the kiln during operation;
tracking during kiln start-up and shut-down;
regulatory control of the mill;

These objectives involve several kind of knowledge. The kiln and
mill control compell the human operators to take care of a large
amount of signals in the control room. The discrimination over
those signals is carried on by employing empirical knowledge. The
start-up/shut-down of a kiln implies sets of sequential pro
cedural activities to be performed in a parallel but synchronized
way.
The demonstrator will mainly employ empirical models expressed by
declarative formalisms in order to cope with the regulatory con
trol task, while within the start-up/shut-down task it will
employ empirical procedural formalisms to represent the complex
sequences of actions it involves. Moreover, an ontological model
of the kiln, representing well established theories owned by the
plant designers, will be employed for prediction.

5. TOOLKIT SPECIFICATION
The toolkit provides representation languages for express

ing both empirical and ontological models of the process. Three
languages have been specified:
a) a Component-Based Language for representing ontological

qualitative system models;
b) A Rule-Based Language for representing empirical declara

tive relations;
c) an Event-Graph Language for representing procedural

knowledge.
A set of support tools (editors, compilers, interpreters,

etc.) has been identified for each of the above languages. A
basic subset of these tools, that constitute the kernel toolkit,
has been designed and is being implemented. An appropriate com
munication framework has been adopted, according to a methodology
for using the toolkit which is being established. In the next
four subsections we overview the features of each of the above
languages and the relevant tools, and, finally, discuss the
communication framework.

993

5.1. The Component-Based Language
The Component-Based Language (CBL) has been designed for

representing ontologic models of technical artifacts in such a
way as to allow different reasoning activities about the
behavior of the system (like prediction, diagnosis, control,
etc.) to be automated. In particular, a reasoning mechanism is
currently being designed for tasks of prediction and diagnosis.

The basic concept of the CBL is that a physical system is
specified by describing its internal structure as a set of inter
connected components. A model is defined for each component from
which the component's behavior can be inferred, giving the
behavior of the whole system. Thus the CBL provides a defini
tion section, for defining abstract models of components, and a
declaration section, for describing an actual system in terms of
a set of component instances, and their interconnections.

A component type, i.e. an abstract model of a component,
features a definite number of terminals of a given type. Termi
nals are ports through which components are to be interconnected;
a terminal type is a structure whose elements are scalar vari
ables representing measurable quantities. For instance, electri
cal components like resistors, capacitors, coils, etc., shall be
connected through terminals representing an electron flow, and
featuring voltage and current intensity as scalar elements.

The component model is provided as a set of equations con
straining the terminals variables, and some component specific
parameters (e.g., the resistance in a resistor, etc.).

Equations may be interpreted either in quantitative or in
qualitative terms using specified domains. Primitives are avail
able for allowing the user to introduce his own domain defini
tions, however some domains are predefined in the language, in
particular the (quantitative) domain of real numbers, and a qual
itative domain allowing a set of three values: (inc, dec, std) ,
which represent the qualitative rate of chf.nge of a variable with
respect to a reference value.

Moreover, the CBL provides constructs for specifying sub
parts into a component; and for defining different views about
a component, which specify the component behavior respect to dif
ferent physical processes (e.g. the electrical and the thermal
view about a resistor); and for defining a component type as a
specialization of a wider class, having a more abstract descrip
tion.

The basic features of the definition section of CBL are sum
marized in the following example describing an hydraulic circuit
element:

994

DEFINITION-MODULE hydraulic-and-thermal-components
CONSTANTS IN-DOMAIN real

(g =9.8) ; gravity acceleration
(ro =1.) ; fluid density
(c = 1.) ; water specific heat
(u = ..) ; water viscosity

END-CONSTANTS

STRUCTURE hydraulic-characteristics
G ; flow-rate
P ; pressure
T ; temperature
v ; velocity

END-STRUCTURE

COMPONENT-CLASS hydraulic-circuit-element
TERMINALS in, out OF-TYPE hydraulic-characteristics
PARAMETERS

R ; friction parameter
h ; heigth difference between input and

; output section
RELATIONS

IN-DOMAINS real
in.v = out.v
in.G = out.G
out.P = in.P + ro*g*h - R*in.G**2

IN-DOMAINS qual
in.v = out.v
in.G = out.G
out.P = in.P + h - R - in.G

VIEW thermal-dissipation
PARAMETERS

delta ; temperature diminishing
; because of dispersion

RELATIONS
IN-DOMAINS real, qual

out.T = in.T - delta
DEFAULTS

IN-DOMAINS real, qual
out.T = in.T

END-COMPONENT-CLASS

END DEFINITION-MODULE

995

The CBL declaration section allows the user to describe a
specific physical system by declaring its components as instances
of component types provided by means of the definition section;
and to state the connections between component instances. Views
about component behavior may also be instanced (but it is possi
ble to switch on different views at run-time, i.e when the model
is being used).

Current limitations of the CBL are mainly relevant to the
language predefined operators available for quantitative and
qualitative domains. Our discussion will be restricted to the
predefined qualitative domain, a distinctive feature that CBL
inherits from similar representation languages introduced by AI
research in qualitative physics (Bobrow and Hayes, 1984). Quali
tative models have two basic advantages over quantitative
models: they are simpler to compute and provide results far
easier to interpret. However they have some limitations (Kuipers,
1986) which are not completely evaluated in particular with
respect to prediction of system's dynamic behavior. For that rea
son, CBL qualitative equations syntax currently allows expres
sion of algebraic relationships only. Hence the CBL allows
representation of static (equilibrium) system models, and reason
ing about such models is restricted to considering displacements
between equilibrium states. Based on static models, it is how
ever possible to perform diagnosis of system malfunctions in a
large variety of practical cases. It is recognized that such a
variety requires different strategies for performing diagnosis.
Thus we intend to provide the CBL with a number of inference
mechanisms, each one suitable for a particular diagnostic stra
tegy. Similar conclusions apply to control tasks, where, how
ever, the deduction of system's behavior over time is mandatory,
hence an extension of language syntax will be required to include
dynamic operators.

5.2. A diagnostic problem solver using CBL
Currently an in-depth analysis of one class of diagnostic

problems has been performed, where diagnosis consists of deter
mining which variation of a system parameter has caused a change
in the stationary state of operation of the physical system,
using explicit fault models, which correlate each known system
malfunction with variations of known system parameters (Gallanti,
Gilardoni, Guida, and Stefanini, 1986). Explicit fault models
exist, which correlate each known system malfunction with a vari
ation of a system parameter. A suitable inference mechanism has
been designed, and has been implemented within the kernel
toolkit. This is composed of two subsystems:
a) a causal analyzer, performing a static analysis upon system

representation, under the viewpoint of the problem to be
solved (i.e., symptoms observed and fault hypotheses).
Causal analysis allows to ascertain whether the proposed
problem is solvable, and, if it is, to build a net
representing causal dependencies between hypothesized causes
and symptoms. This net drives the subsequent diagnostic
process.

b) The diagnostic problem solver. This subsystem is in charge
of evaluating consistency between the hypothesized fault
causes and the observed symptoms. It is based upon well-
known techniques for performing hypothetical reasoning upon

996

a set of equations: constraint propagation and truth mainte
nance. The relevant modules, a Constraint Propagator (CP)
and an Assumption-based Truth Maintenance System (ATMS),
have been specified and prototyped, following the indica
tions of Sussman and Steele (1980), and De Kleer (1986),
respectively.

We foresee now to design a more general diagnostic problem
solver, for diagnosis of multiple faults, avoiding the use of
explicit fault models, considering instead as a fault any
behavior which is different from the expected one. The task of
the diagnosis is then to find the candidates, i.e. the components
responsible of the fault(s) and consistent with the observations
made so far.
5.3. The rule-based representation language

Over the last decade rule-based languages have attracted
much attention as one practical solution for expressing human
knowledge. Most ESs, and almost all the available ES development
environments, use production rules as a basic representational
tool. Hence, a rule-based language is included within the
toolkit.

However, available production systems differ greatly under
many different respects, which can be roughly summarized as such:
a) the rule syntax (and the implied semantics), a wide range of

solutions is available, ranging from pure first order logic
to several viable solutions for treating uncertainty of
predicates and inference;

b) in particular, predicates in the rule's premise and conclu
sion may refer to a data base where data have either a flat,
unstructured representation (like in first order languages),
or may be arranged into data structures of several kinds.
Under this viewpoint, several KBS development environments
among the most advanced available on the market, e.g. Infer
ence Corporation's ART and Intellicorp's KEE, couple a
rule-based language with an object-oriented language.

c) Moreover, rule interpreters (which in most cases operation
ally define the semantics of the language) offer a great
variety of matching algorithms, conflict resolution and
search strategies.
The definition of the toolkit rule-based language has been

very pragmatic, as we have chosen to basically mirror the solu
tion provided by the environment adopted for prototyping the ker
nel toolkit. This is one of the high level, general purpose, KBS
development environments available on the market mentioned above.
Again, our choice of KEE among the candidate environments that
have been considered, is based on pragmatic reasons like user-
friendliness and availability on a wide range of machines, has
been motivated by the need of rapidly prototyping the kernel
toolkit and the demonstrators during the first phase of the pro
ject.

A further analysis of the demonstrator requirements,
relevant in particular to regulatory control tasks, has allowed
to identify and specify an additional rule-based formalism, very

997

different and far more specialized than the one provided by KEE.
This further formalism is oriented to treat data vagueness and
adopts for this purpose the fuzzy logic approach. It will be
hereinafter referred as the fuzzy rule-based language, while the
general purpose production rule formalism will be named
binary rule-based language. We devote the remainder of this sec
tion to a brief presentation of the task the fuzzy rule-based
language is suitable for, to a discussion of the problem of
treating data vagueness and the fuzzy logic approach, and to a
short overview of some distinctive features of our solution.

We have noticed that many continuous control problems that
defy formal analysis are rather easily controlled by human opera
tors basing on empiric knowledge. This knowledge is often
expressed in vague terms. Let's consider an example taken from
the expertise of operators of the kiln in a cement manufacturing
plant: "if the burning zone temperature is drastically low and
oxygen level in exhaust gas is low, then reduce the kiln speed
and reduce fuel". The continuous aspect of the regulation is
stressed. The experts find it difficult to fix thresholds upon
which the predicates mentioned in the premise of a rule like the
above should be evaluated true; the rule should be checked if not
continuously, at least periodically, and the regulations men
tioned in the rule conclusion should be operated in a way propor
tional to the truth of the premise. Fuzzy logic is a qualitative
approach to the representation of human expertise like the one
mentioned above. Natural language terms, such as low, high, etc.,
are used as labels for membership of variables defined on a
universe of discourses. The membership is expressed as vague or
gradual in contrast to binary logic where the transition between
non membership and full membership is abrupt.

Fuzzy logic is useful when decisions are a set of comprom
ises between several contradictory demands rather than either-or
decisions like in a binary rule-based language.

A fuzzy rule-based language is, like a binary rule-based
language, basicly a set of premise-conclusion rules of the form:

PI & P2 & ... & PN IMPLIES CI & C2 & ... & CN
The premise-conclusion terms PI, P2,..., PN, CI, C2,..., CN

may be considered as a conjunction of fuzzy logic terms evaluat
ing to a membership expressing the degree of truth.

As opposed to binary rules, fuzzy rules always apply, with
some degree of truth. In forward chaining the degree of truth of
the conclusion depends on the degree of truth of the premise. In
backward chaining the degree of truth of the premise depends of
the degree of truth of the conclusion.

The fuzzy rule-based language adopted for the kernel toolkit
is based on the proposal of Zadeh (1973). The language inter
preter features a forward chaining mechanism, which results
better suitable for regulatory control tasks. Implication is
defined as the product of the membership functions of premise and
conclusion, according to a technique that has proven its validity
in fuzzy controllers operated by F.L.Smidth (Holmblad and Oester-
gard, 1982).

998

5.4. The Event-Graph Language
It is recognized that knowledge relevant to many of the

tasks mentioned in section 2.2 is often expressed and manipulated
in a procedural form. For instance, knowledge used to perform
diagnosis involves description of procedures, sequences of test
ing and repairing actions as well as sequences of physical com
ponents to verify, connect or disconnect. It also may include
description of possible evolutions of a physical system, whether
these evolutions are normal or abnormal. These evolutions, which
can be concurrent, need to be checked, recognized and tracked.

A similar need arises in sequential control, where it is
necessary to order and to link together several actions (e.g.,
start-up and shut-down procedures).

In the examples above, knowledge is such that knowledge
items are ordered in a structure, whether this structure is
based on causality, precedence or other ordering criteria. In
this case procedural knowledge is relevant to sequencing and
coordination between several actions.

While it is true that these types of knowledge can be
represented thanks to a rule-based system, it is also true that
in most of these cases, rule-based representations are innatural
and difficult to maintain, and inference mechanisms are unneces
sarily overloaded because the search space is not properly parti
tioned.

In conclusion, if the knowledge is structured, it is always
worth putting this structure explicitly in the representation. An
appropriate representation formalism, in addition to providing a
mean for expressing sequencing between facts and actions, should
cope with the following requirements:
- Concurrency.

Actions can be done either in series or in parallel. Like
wise, sometimes a system can reach some given state either
in sequence or contemporarily. Thus the language must pro
vide primitives for expressing local non-determinism within
a procedure.

- Abstraction.
The language should enable the user to adopt a top-down
approach. The description or specification of a given pro
cedure should be general at first, then each specified
action of the procedure would be further detailed as a
lower-level procedure, and so on. In other words, the user
should be able to give his knowledge at different levels of
abstraction.

- Hierarchy.
One important and peculiar instance of abstraction is the
concept of hierarchical control. That is to say that a pro
cedure can be expressed for looking at, checking, modifying,
managing other procedures.

- Dynamic representation.
For controlling run-time the state of a system, or the exe
cution of a procedure, it must be possible to know step by
step which state the system is into, or which action has

999

just been executed. Thus our representation should allow to
clearly identify the state of execution of a procedure. We
want to remark that most imperative languages do not cope
with such an issue, or cope with it only in an indirect way.
The Event-Graph Language introduced in the kernel toolkit

shares several features with CE Petri nets (Reisig, 1982), a
formalism compliant to all the requirements listed above.

We disregard here the formal definition of an event-graph
and only focus on its basic expressive features.

An event-graph is a directed graph with two types of nodes,
namely places and events, and a marking concept. Nodes termed
places are graphically represented as circles and nodes termed
events are graphically represented as boxes. Directed arcs can
only connect nodes of different types. Events are labeled with
two expressions, specifying a condition and an action respec
tively.

A place can contain a mark. An event-graph can have any
arbitrary number of marks. The set of all marked places defines
the current marking of the event-graph. An initial marking is
defined for each event-graph.

An event is enabled if all its ancestor places, called the
input places, are marked. An event can fire, ie it is active, if
it is enabled and its condition is true. We define as current
conditions of an event-graph the set of conditions labeling the
enabled events. For example, the current conditions of the
event-graph shown in Figure 1 is Cell.

Figure 1 - An example of event-graph
An event-graph is active (respectively enabled) if at least one
of its events is active (respectively enabled). Firing an event
means unmarking its input places and marking all its successor
places, called output places. Firing an event also causes the
execution of the action specified in the event. Current marking
thus evolves by means of event firing.

1000

We stress that the concept of event-graph embodies a static
and a dynamic part. The static part, i.e., the definition of
places, arcs and events with conditions and actions (plus the
initial marking) represents the code of a chunk of procedural
knowledge.

The dynamic behaviour of an event-graph is represented by
the sequence of current markings that the event-graph goes
through as a consequence of successive events firing. Thus, the
static part of an event-graph may be activated in different con
texts and produce several images corresponding to different
current markings, similar to a re-entrant procedure which can be
executed several times in parallel with different parameters.

Hence, the dynamic behaviour of such procedures must be
easily observed and influenced from outside. This meets the
requirement about dynamic representation introduced above, which
is crucial when procedures are important not only for the results
they can compute, but specially for the intermediate computations
they perform.

5.5. Communication within the kernel toolkit
The issue of communication within a composite environment,

like the toolkit, has many different facets. Among the most
important we mention:
a) identifying a communication protocol among the tools pro

vided by the toolkit, in order to enable toolkit users to
structure composite KBSs, making use of several toolkit for
malisms;

b) providing the user with a control policy (and a supporting
mechanism) tor managing the interaction between several
knowledge sources;

c) establishing a methodology for using different models
(empirical and ontological) in order to perform a given
diagnostic or control task;

d) defining a methodology for representing and structuring the
interfaces between several software packages which consti
tute the elementary building blocks of the individual tools
provided by the toolkit.
These different aspects are however so closely related that

it is difficult to cope with each of them separately. On the
other hand, it is overambitious to provide the kernel toolkit
with a complete solution before than sufficient experience has
been achieved with the several formalism provided by the kernel
toolkit, especially coping with real size problems within the
demonstrator projects. This impacts in particular on points b)
and c) introduced above. Therefore it has been decided to pro
vide the kernel toolkit with mechanisms for communication,
instead of policies.

In other words, we have provided a solution to problem d)
above, and ways to cope with problem a), while the most complex
issues relevant to problems b) and c) will be faced in the second
two-years period of the project, when the final toolkit will be
specified. The point can be better understood referring to

1001

Figure 2, illustrating the overall development process, both of
the toolkit and of a composite KBS built using the toolkit:

TARGET
KBS

KNOWLEDGE
SOURCE

KNOWLEDGE
ENGINEER

KBS
ARCHITECT

APPLICATION
TOOLKIT

TOOLS

TOOL
COMPONENTS

COMMON LISP
and
KEE

TOOL
DESIGNERS

TOOL COMPONENT
DESIGNERS

Figure 2 - Layers in the development process.
From the toolkit side, a toolkit designer integrates several

tool components, each one providing a well definite function.

1002

into ready-to-use finished tools. These are complex environments,
providing full support for performing a given task using a defin
ite toolkit formalism. The fuzzy rules interpreter, the Event
Graph processor, the diagnostic problem solver using CBL are
examples of such finished tools, while the causal net generator,
the constraint propagator, and the assumption-based truth mainte
nance system integrated into the diagnostic problem solver are
examples of tool components.

From the application side, we postulate a KBS architect in
charge of defining the overall architecture of a KBS application
as a collection of communicating knowledge sources. The knowledge
base of each knowledge source will be actually provided by some
individual expert or knowledge engineer, and will be represented
with a definite toolkit formalism, thus making use of the capa
bilities provided by some finished tools.

6. OPEN ISSUES
We have already stressed in section 4.2 one of the major

limitations of the component-based language currently being
developed: it does not allow deduction of the system behavior
over time. Many research efforts have been devoted to qualitative
simulation of dynamic systems in recent years: the most
comprehensive work being provided by B. Kuipers (1986). However,
qualitative dynamic simulation methods currently available gen
erate, together with the system's proper behavior, many spurious
solutions that redder qualitative simulation almost ineffective
in most non trivial applications. As prediction of behavior over
time is crucial for almost all control applications, the issue is
the subject of intensive research within P820.

On the other hand, the role of qualitative dynamic simula
tion in diagnosis tasks is still to be completely understood.
More in general, many recent studies in qualitative modeling have
been oriented towards diagnosis (e.g. De Kleer and Williams,
1986), so that it is now necessary to review these newly emerging
solutions, in order to provide the component-based language with
problem solvers able to pursuit diagnostic strategies different
from the one which is now included in the kernel toolkit.

Another task of great importance in process applications is
planning, especially for sequential control. In this sort of
applications, representation of time dependency and reasoning
about time relations is crucial. Among many solutions, the tem
poral reasoner proposed by Allen (1983) is one of the most effec
tive and sound, being based on a classification of time relation
ships and a set of relevant inference rules. Research in P820 is
aimed at providing a time reasoning system upon which to base a
planning module, possibly exploiting the basic inference
machinery already available within the kernel toolkit, i.e., a
constraint propagator and an assumption-based truth maintenance
system.

The above research efforts take place in parallel with the
development of the kernel toolkit and of the demonstrators, in
order to provide results when the design of the final toolkit
will be initiated.

1003

REFERENCES
Allen J.F. (1983). Maintaining knowledge about temporal inter

vals. Communications of the ACM26,(11), 832-843.
Bobrow D.G. and Hayes P.J. (Eds.) (1984). Qualitative reasoning

about physical systems. Artificial Intelligence Special
Volume 24, (1-3).

De Kleer J. (1986). An Assumption Based TMS. Artificial Intelli
gence 28, 127-162.

De Kleer J. and Williams B.C. (1986). Reasoning about multiples
faults. Proceedings of the National Conference On Artifi
cial Intelligence. Philadelphia, PA, 132-139.

Gallanti M. , Gilardoni L. , Guida G. and Stefanini A. (1986).
Exploiting Physical and Design Knowledge in the Diagnosis of
Complex Industrial Systems. Proc. 7th European Conference on
Artificial Intelligence, Brighton, UK, 335-349.

Holmblad P.L. and Oestergaard J.J., (1982).Control of a Cement
Kiln by Fuzzy Logic. Internal Report F.L. Smidth and Co.,
Copenhagen, Denmark.

Kuipers B., (1985). The Limits of Qualitative Simulation. Proc.
Of the Ninth International Joint Conf. on Artificial Intel
ligence (IJCAI-85). William Kaufman. Los Altos, CA.

Kuipers B. , (1986). Qualitative Simulation. Artificial Intelli
gence 29, 289-338

Reisig W., (1982). Petrinetze. Springer Verlag, Heidelberg, FRG.
Sussman G.J. and Steele G., (1980). Constraints - a Language for

Expressing Almost Hierarchical Descriptions. Artificial
Intelligence, 14, 1-40.

Zadeh L.A., (1973). Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes IEEE Transactions on
Systems, Man and Cybernetics, Vol. 3, No. 1, 1973.

1005

Project No. 1542

INDOC - INTELLIGENT DOCUMENTS PRODUCTION DEMONSTRATOR

A. Celentano (1), P. Paolini (1,2)
(1) ARG SpA, Via Fratelli Bronzetti 18

20129 Milano, Italy
(2) Politecnico di Milano, Piazza L. da Vinci 32

20133 Milano, Italy

A large number of applications need to handle documents with the
following distinctive features: complex structure, integration of
text with 'values' (either formatted data or images), relevance of
semantics (mistakes are absolutely to be avoided), range of
complex rules to be followed. Typical application environments
where such documents are found are legal offices, public
administration offices (at any level), large organizations (e.g.
banks). Typical examples of documents are contracts, loan
documents, administrative acts etc. Typical examples of rules are
law, administrative rules, tradition (within an organization or
within a group of professionals), etc.

Current automation technology has devoted a great effort to help
to shape the 'appearance' of documents, while has paid little
attention to the content. The traditional handling of the above
type of documents shows a number of serious drawbacks: only
specialists really understand the semantics of the documents;
skilled people are reguired to fill them; few experts know why the
documents were structured in a given way; changes of rules become
painful; major restructuring becomes virtually impossible (it is
a real life experience that large organizations loose control over
the huge amount of documents, of all the possible sorts, which
they routinely produce;.

INDOC, which is based on a specific industrial experience on
automation of legal offices, has the following objectives:

to allow the definition of document generators, which can
produce, in a data driven fashion, highly sophisticated
documents. This will allow less-expert personnel to produce
high quality (in the sense of semantic complexity) documents
to split the design (and production) of the content of a
document from the design (and production) of its appearance.
This allows: focusing on relevant issues, semantic management
of documents and interchange of documents between different
experts (even if they speak different languages)
to build an expert system, which 'captures' the body of rules
governing the documents; its purpose is to speed up training
of new personnel and support maintenance with explanations
('why do we have this clause in this contract?') and
bindings to rules ('if this law has changed, which documents
should be reviewed and how?').

1006

1. WHICH KIND OF DOCUMENTS
The documents processed in the INDOC environment come from
juridical, legal and business applications. Examples can be
considered legal contracts for sales or for incorporation of a new
company, the documents of a bank concerning a loan, the
administrative papers released by a Public Administration office
etc. These documents exhibit a number of distinctive features
which allow us to use the term intelligent document to refer to
them:

semantic relevance: documents of this kind (for transferring
the property of a real estate, establishing the conditions of
a mortgage loan, expressing a decision of a city council about
new expenses, or establishing the conditions for exporting
goods) embed statements which describe facts of social
relevance, and cause important effects to be taken on the
outside world. Therefore even minor mistakes must be avoided,
since the effects could be very serious (e.g. a wrong word at
the wrong place may cause the invalidity of a contract)
structural complexity: these documents are usually highly
structured. The structure is very often imposed by specific
rules. Legal documents, for example, require a specific order
of sentences and a formal use of words, and in many countries
they require also a specific type of paper form, with a
standard set of formatting rules

rules driven: a large body of rules must be applied; the body
of the rules is often partially formally stated and "official"
and partially informally stated. The formal rules are
reflected in the interpretation of laws and regulations
suitable for the specific situation the documents describe.
The informal rules arise from the fact that every
professional or organization follows a set of "personal"
rules, by experience, habits, or style, which are to be
considered as binding as formal rules
patterns: the documents follow predictable patterns. In a
given application area, they can be subdivided in types, each
type identifying the features which are common to a class of
documents to cover a specific case. The patterns can be very
complex, each type being possibly made of variants, which can
be considered subtypes. The variants, for example, could
specify the inclusion of exclusion of clauses, several
versions for expressing the same concept, different number of
instance for iterative parts, and so on. At the lowest level
of specialization, documents differ only for specific
occurrences of variable data, such as names, prices,
references to other documents, and so on

external information: the documents incorporate a large
quantity of information (e.g. about people, estates, prices,
and dates) which in general have other operational uses,
beside appearing in the documents themselves. These data
could be present in some Information System for purpose other
than producing the document, or could be used in several
(related) documents with different presentation styles. The

1007

information, although in some sense "foreign" with respect to
the documents, carry their actual semantics, and the text has
the main purpose of making this semantics clear to the reader.

In the next section we will examine the process for producing
documents when simple word-processing technology, or no technology
at all is being used.

2. HOW DOCUMENTS ARE PRODUCED
The procedures followed for producing documents, in absence of a
specific information technology, reveal similar patterns in
different organizational environments, such as professional
offices and banks. As an example, we briefly examine the behaviour
of Notary offices, which in our experience is a highly
representative case.
When a new situation reguires a document, the professional fits
the real case into a technical classification: the reasoning
follows patterns such as (in a trivial example) "since Mr. Rossi
wants to sell his house, a real estate sale type of document is
needed, and the clauses for the sale are so and so...". This type
fitting activity is performed at various levels of precision:
first the type "real estate sale" is identified; then, for
example, the subtype "with no mortgage" is selected, and so on. At
this stage two behaviours are possible:

synthesis; the document is synthesized, basically from scratch,
choosing the appropriate sentences which state in a clear way
the concepts appropriate for the identified situation (with
its possible variants and subvariants)

analogy: a model, i.e. a prototype document for the needed type is
selected and modified, in order to fit the specific situation.
We need to distinguish two types of changes of a prototype:
semantic modifications (e.g. introduction of a clause for
mortgage) and factual modifications (e.g. change of a date,
or a name, or a price, etc.), that we assimilate to the
activity of putting data into proper places (see below).

The synthesis is supposed to give the best result, but our
investigations show that it is very seldom used (but in the
schools, for training purpose). The analogy is typical in real
life situations. It should be noted that the handbooks for
professionals (e.g. notaries and attorneys), which collect the
large part of the clauses, in essence are structured as a set of
prototypes of documents. A number of features are common to both
approaches:

a document is made up of chunks which we call clauses; each
clause can be made of other clause
each clause has a content, which expresses its semantics (e.g.
that Mr. Rossi is the seller, that the house is located in
such a place, etc.), and a presentation, which expresses the
specific words used to surround the information (e.g. a
price) and the specific way to display the information (e.g.
digits or letters)

1008

the body of rules, which (more or less consciously) the
professional bears in mind, specifies the (semantics of the)
clauses to be used, the way to present them, the way to
arrange them (that is the logic ordering of the document)
data must be collected and put in proper places within the
document; the choice of which data to collect is (partially)
determined by the type (and subtypes) of the document being
produced).

The expertises needed include understanding the real case, then
identifying the proper prototype along with the semantic
modifications required to adapt it to the specific situation. Also
the identification of relevant data, and their correct positioning
within the document, can be a difficult task if the prototype has
been significantly changed.
A further complication arise from the fact that some of these
activities are performed by the professional (who is supposed to
own all the needed expertise), while some other activities are
performed by the secretary (who usually has clerical skills,
only).

From the above situation a number of problems arise:
PI Prototypes must be kept simple, since otherwise the secretary

will not be able to handle them; therefore the variants within
a prototype must be few and easy to select.

P2 Problem PI has the consequence that a large number of
prototypes must be produced often just to accommodate similar
cases, which, conceptually, could be considered as variants of
the same case.

P3 Problems PI and P2 combined have the consequence that only the
major cases are covered by the prototypes (something like
80%); the other cases are handled as exceptions (modification
of a prototype), although conceptually they could have been
anticipated.

P4 Every time a modification of a prototype is needed, the
activity of the office is significantly slowed down, since a
number of new directives must be given by the professional and
executed by the secretary; some of these directives can be
very detailed such as "write these words right here, and fill
in these data there".

P5 Every modification of a prototype is not only inefficient but
also a possible sources of mistakes. One of the reason is that
the professional must bear in mind several facets of the
modification at the same time:

the concept behind the modification (e.g. we need the
description of the mortgage)
the words to be used to express the concepts
the identification of the new data which must be collected
the positioning of the data within the new clause
the positioning of the new clause(s) within the overall
document
the evaluation of the impact of the new clauses in the
global architecture of the document.

1009

The last item of the above list is probably the main reason
why modifications typically add something and seldom delete
anything.

P6 The deep "rules reasoning" behind the structure of the
prototype could be not completely known to the professional,
mainly if the prototype comes from handbooks or colleagues, or
it has been drawn up from a document; the rules reasoning
behind the modifications is often more under his control.

P7 The professional seldom records his reasoning behind the
modifications, therefore with time he may loose control over
them.

P8 The combination of P6 and P7 makes very difficult to perform
operations such us "cleaning the house",i.e. revising the set
of prototypes and modifications created in a number of years
and rationalize them.

P9 The combination of P6, P7 and P8 makes very difficult to
timely and precisely react to a major modification of the
rules (e.g. new law), evaluating its impact on the prototypes
and on the modification typically used; this is another reason
why legal documents grow with time and never shrink: people
feel safer in adding something than in deleting.

3. DOCUMENT PRODUCTION
The analysis exposed in the previous section leads us to a number
of conclusions:

the notion of a prototype for a class of documents is largely
present both in small organizations like professional offices
and in large organizations like banks and companies. The
production of a document is not a creative activity but it
reflects standards and constraints which are defined once in
the prototypes and consistently used

the dependence of a prototype on the originating rules is not
always clearly stated, nor it is always preserved along the
prototype's modifications
the intermixing of semantics of text and its presentation is a
source of confusion
if an efficient way could be found to incorporate the
knowledge on how a document should be produced, once the case
is identified and the data are available, then the document
production could become a routine task. In essence is the goal
is to substitute a "passive" prototype with a more "active"
schema

a link between the internal rules applied in a schema and the
"external" rules (laws etc.), is needed in order to help the
huge problem of maintenance and revision of large classes of
documents.

Therefore we base our approach upon three leading ideas (notions):
the idea of separating the semantics of a document from its
presentation (appearance), the idea of capturing in a schema all

1010

the rules for generating a class (type) of documents, the idea of
using an expert system to support the handling and the maintenance
of a large set of schemas.
In the following of this section, the first two ideas are
analysed, while the third is dealt with in the following section.
The semantics idea

The description of a document could be done at several levels:
description of the physical appearance of the document
elements with respect to their final layout (e.g. line
numbering and sizing, footers, headers, and so on); this
description is captured by the layout structure in the
standard ODA terminology
description of the structure of document elements (e.g.
introduction, chapters, paragraphs, and so on); this
description is captured by the logical structure in the
standard ODA terminology
description of the semantics of the document, that is to say
the meaning of information carried by the document to the
reader; this description is missing in the ODA classification.

In order to proper model documents, in INDOC, we need to
distinguish between a conceptual model and a presentation model.
A conceptual model is able to convey all the meaning of the
document itself without concerning about (in effect hiding) all
its logical and layout aspects. The presentation model, on the
other hand, captures the way the document looks alike, with little
or no concern to the concepts it expresses.

Since the conceptual model captures the meaning of a document, it
can be used in a number of ways:

as a way to formulate the information requirements of a
document: since I want to express these concepts, which
information need I to collect?
as a vehicle to quickly understand the semantics of the
document: what is the document about?
as a bridge between the actual documents and the application
rules: why this concept is expressed?
as an intermediate step in document production: by separating
semantic aspects from logical structure and style it can
support different logical structures and presentations of the
final document and can also be a suitable vehicle for
exchanges among different organizations or professional
offices.

The last use is the prevalent one in INDOC, and will be further
described.
The information belonging to the conceptual model of a document
can be intuitively split in two parts:

simple factual information; for instance, data about entities
(people, properties, and so on) and their attributes (names,
locations, prices, and so on)

1011

relevant semantic information; for example, stating roles of
persons, that is establishing who is the vendor, who is the
buyer, which form of payment a price describes, and so on.

The distinction between the two types of information is purely
pragmatical: in general there is no unique way to define a border
between simple facts and complex concepts. However, such a border
can be traced on the basis of the following statements:

there is a general agreement, though not formalized, among
the application experts on the assignment of information to
each type
the application experts find easy to make the above
assignments
the modelling activity can be performed more efficiently if a
clear distinction is made between the two types of information

Relevant semantic information can be described by assertions about
entities and values: for example the fact that "in document D
person PI conveys the property of the real estate El to person P2
at price $" could be a set of assertions formally stated as

OBJECTED,El)
VEND0R(D,P1)
BUYER(D,P2)
PRICE(D,El,$)

This the essence of the representation chosen in INDOC, for the
conceptual model of a document. Several real-life examples have
been worked out, using slightly different notations. One of the
encouraging result of this effort has been the reactions of the
"application expert": after a short initial diffidence, they
considered the conceptual models as semantically equivalent to the
original documents, with the advantage of being shorter (1 to 5 is
the approximate ratio), more compact and "easier" to read.
The schema idea

What we have described in the previous section is the framework
for modelling a single document; however models are useful if they
can uniformly be applied to several documents (document
instances). This introduces the notion of schema: a schema defines
the structure and the content of a set of documents. The
composition of a schema combines pieces of text and data (which
are the tools for clarifying the concepts carried by the document)
in order to produce the instance of a document. A schema should
not be intended as "a text with holes, to plug in data"; it is
rather similar to a program which, according to the value of data,
selects pieces of text to be produced (one or more times),
plugging in data properly formatted.
In INDOC we consider two possible types of schemas: conceptual
schemas and presentation schemas. A conceptual schema describes
the transformation operated upon a set of basic information, that
we call Structured Universe of Discourse, to generate a conceptual
model of a document. A presentation schema describes the
transformation operated upon a conceptual model of a document, to
generate the presentation model, which can be thought as a "real"
document, in the usual meaning.

1012

It should be noted that several different presentation schemas
could be applied to the same conceptual model, generating several
different final documents (with the same underlying semantics).
Interesting application seem to arise: the same document generated
in different languages, the same document generated in full
version and in synthetic version, etc.
Operationally speaking, the document
conceived in the following way:

production in INDOC is

define a schema for a class of documents: this activity is
performed only once, at configuration time for a specific
application
provide data for the specific case: this activity can be
performed in different ways according to the data management
solutions adopted. Data bases can exist for other purposes,
and they could have been populated before (Think for example
of the data concerning the customers of a bank, which exist
independently from documents where they are referred). In this
case the process which generate the document. must be
interfaced with the preexisting Data Base. In other cases data
are not necessarily supposed to be collected elsewhere, so the
generator itself could ask for them during the generation
process

execute the composition of a document: this is obtained
applying a schema to a set of data.

The above steps apply both for conceptual schemas and for
presentation schemas.

4. THE UNDERLYING KNOWLEDGE
Behind the structure, the content and the physical appearance of
the documents it can be found a set of motivations which rely both
on official statements, expressed for instance by Laws or
regulations internal to a given organization, and on the rules of
behaviour that are followed in the professional practice. Official
statements or rules of behaviour may describe which sentences or
data must be expressed in a document to get the required effects,
how they must be organized inside the document, and which must be
their physical appearance.

In most cases these motivations are kept implicit in the
documents (except few cases in which some of the legal
motivations must be explicitly reflected in the document, for
instance through the reference to very specific articles of law
which must be applied).

Whether implicit or explicit these motivations represent the
knowledge needed to understand the "deep" semantic carried on by
the documents:" why a given document has a given content,
structure, or concrete lay-out? are there any more practical or
legal effects of the document besides those explicitly stated in
the document? what happen if a given part of a document is
modified, or a mistake occurs in it? when an official regulation
changes, which types of documents are involved with it and which
parts of the documents must be eventually modified?".

1013

This knowledge can be thought at several levels of abstraction. At
the highest level (that we will call deep knowledge or theoretical
knowledge) there are the rules that uses concepts and statements
found in laws, acts of juridical or administrative institutions,
regulations, etc. They are related, at several degree of
abstraction and generality, to the general concepts involved in a
document (for instance, the laws of the civil code which state the
principles about the exchange of property; the regulation of a
bank about its legal responsibility in a mortgage loan contract).
They are expressed in an official and public fashion and, in
principle, they can be formalized in a rigorous way. They do not
prescribe any operative behaviour, even if they should motivate
the operative rules or guarantee their legality.
The lower levels of knowledge (that we will call shallow knowledge
or operative knowledge) are constituted by the operative rules
that express how a document must be built up. For instance, in an
act describing a mortgage loan contract, a rule of this kind
specifies that, if the people involved in the contract agree about
the absence of witnesses, this agreement must be explicitly
described in the act. For the same document, there is another rule
stating that for some particular banks there are particular
addresses which must be used as reference addresses for mortgage
loan acts.

Typically (at least in the operative environments we have
analysed so far), operative rules are not expressed in an official
fashion. They are rules of thumb that constitute the expertise of
the professional or rules of behaviour adopted by a given
organization or group of professionals. They can therefore be
different in different user environments.

In some cases they do have neither any explicit nor implicit
reference to the official statements of regulations or laws, they
may be motivated by reasons due to traditions (thereby related to
no longer existing laws), to practical convenience, to private
(sometimes very reserved) policy rules.
In these cases the motivations of the operative rules are not
theoretical but can be expressed by comments to the rules or by
more general operative rules; this is the reason why the
representation of theoretical knowledge alone is not sufficient
to derive, also in principle, the operative behaviours and
therefore the rules governing the document production activity.

In some other cases it is possible to discover explicit or
implicit connections between shallow and deep knowledge. This
requires to understand the causal or semantic relationships which
links the informations at the two levels, and to uncover out
knowledge at intermediate levels of abstraction.
This maieutic process is not in general a step-by-step logical
procedure. The mechanisms of reasoning are very difficult to be
defined, as well as the heuristic criteria which guide the
experts in the interpretations of regulations and laws.
The solution adopted in INDOC is the creation of a knowledge base,
in which deep and shallow knowledge are formally described,
organized at several level of abstraction, and in which with the
semantic links among their contents are explicitly represented.

1014

This knowledge base, supported with skill strategies for
navigating inside the network of concepts and rules, can be used
as an Expert Dictionary for the following applications:

explanation to the customer for a deeper understanding of the
semantics of a document
consultancy to the customer on alternative types of documents
satisfying its requirements
consultancy to the document productor in the identification of
the generator more suitable in a given situation
training of people who must understand why a schema of a
document has a certain structure and contents (young
professionals, administrative assistants of the professional
etc.)
assessment of the validity of a document schema in a given
situation
consultancy in the construction of new schemas (once the goals
and the rules to be obeyed are established)
maintenance of set of schemas to deal with changes of the
rules; this would imply to be able to answer questions such as
"Since R has become R', which schema may be affected? where?
how? why?"

5. APPLICABILITY AND ADVANTAGES OF INDOC
A few observations can outline the (possible) advantages of the
INDOC approach:

the expertise of the people is mainly used at configuration
time, to define the schemas (both at conceptual and at
presentation level)
the documents produced are highly personalized (according with
the data of the data bases and with the temporary information)
and yet they are correct, in the sense that they are an
instance of the same schema
the operative production of documents essentially consists of
data collection (e.g. loading the data bases or providing
temporary information), which can be performed by low level
clerks, still producing high quality documents. Think for
example of the (real-life) situation where a clerk provides
some raw data (about people,estates,terms of payment) and,
invoking the composition, using the proper schema, is able to
produce a complex real estate sale contract, which is legally
correct (if the originating schema is correct, of course)

several version, derived from the same semantics (conceptual
model) can also easily be generated.

The clear disadvantage of this approach stems from the fact that
the production of a schema is a major task. All the possible
situations must be anticipated and the proper choices must be
made. Therefore this approach is convenient in the cases where one
(or more) of the following cases occurs:

the same schema must be used a large number of times
the documents to be produced are complex
the amount of data to be incorporated in the documents is
large

1015

the semantics of the documents is relevant, in particular in
the sense that a mistake can have relevant consequences.

The above difficulties lead us to the conclusion that the Expert
Dictionary would be a valuable tool:

to keep track of the rules underlying the documents
to train people (at any level)
to help with the problem of revision due to a change of rules
to help to keep the growth (of the set of documents)
consistent with the preexisting situation
to help with the problem of revision due to major
organizational changes.

As concrete application environments, we have analysed so far
Banks (for all sort of documents), large corporations (for the
documents produced by the legal office), offices of professional
dealing with legal documents (notaries). We guess that similar
needs could be found elsewhere.

ACKNOWLEDGEMENT
This paper is a short synthesis of the work being carried on in
the project (started on January 87). We wish to acknowledge the
work of people at INESC (Portugal), Mnemonica (Greece), ARG
(Italy) (D. Contardi, F. Liguori, A. Pellegrini), and Politecnico
di Milano (F. Barbie, S. Danieluzzi, F. Garzotto, S. Mainetti).
We also wish to tank the "experts": Dr. A. Gallizia and Dr. P.
Lebano, Notaries, the National Council of Notaries and the people
at CARIPLO (the sixth largest bank of Italy), for their patience
and their professional support.
A special acknowledgement is due to the supervision and the help
of G. Bracchi (Politecnico di Milano), R. Kowalsky and M. Sergot
(Imperial College of London), J. Myllopoulos (University of
Toronto) and D. Tsikritsis (University of Geneve).

BIBLIOGRAPHY
INDOC - Deliverable Tl/Dl - T2.1/D1: Overall Approach Review,
Application Definition and Functional Specification, Jun. 1987
INDOC - Deliverable Tl/Dl - T2.1/D1: Annex la, A Schema for Deeds
of Sale and Gift, Jun. 1987
INDOC - Deliverable Tl/Dl - T2.1/D1: Annex lb, A Frame
Representation of Deeds of Sale and Gift, Jun. 1987
INDOC - Deliverable Tl/Dl - T2.1/D1: Annex lc, A Schema for Deeds
of Loan Receipt, Jun. 1987
INDOC - Deliverable Tl/Dl - T2.1/D1: Annex 2a, Survey on Knowledge
Representation, Jun. 1987
INDOC - Deliverable Tl/Dl - T2.1/D1: Annex 2b, Survey on
Conceptual Modelling, Jun. 1987
INDOC - Deliverable Tl/Dl - T2.1/D1: Annex 3, Laws as
Specifications of Objects, Jun. 1987

ii i i I I I i in minim

ISBN Part 1 : 0 444 70331 4
ISBN Part 2: 0 444 70332 2
ISBN Set : 0 444 70333 0

	Part 1
	I. MICROELECTRONICS
	Bipolar CMOS ESPRIT Project (P 412)

	1. Process Overview
	Submicron Bipolar Technology II : A 3ns Access Time 4K bit ECL RAM with an Optimized Cell Design (P 281)
	An Advanced Bipolar Process Using Trench Isolation and Polysilicon Emitter for High Speed VLSI (P 243)
	A GaAs 4-Stage Serial Multiplier in Self-Aligned Technology (P 843)
	The Development of a Tungsten Self-Aligned Gate Process for GaAs MESFETs (P 843)
	Towards the 0.7 Micron Spectre CMOS : A 1 Micron Double Metal Process (P 554)
	A European Program on Wafer Scale Integration (P 824)

	2. Basic Technologies
	SOI Materials and Processing towards 3D Integration (P 245)
	New Three-Chamber Reactive Ion Etching System MPE 3003 (P 574)
	High Performance VLSI Interconnection Systems (P 958)
	Technology for GaAs-GaAlAs Heterojunction Bipolar Integrated Circuits (P 971)
	Improvements in GaAs Material for IC's Applications (PI 128)

	3. Application Technologies
	Large Area Complex Liquid Crystal Displays Addressed by Thin Film Transistors, (P 833)
	Poly-Si Thin Film Transistor Technologies for Liquid-Crystal Display Drivers (P 491)
	Advanced Processing Technology for GaAs Field Effect Transistors and Lasers (P 1270)
	Plasma Deposition Technology for Magnetic Recording Thin Film Media (P 334)
	New Horizons for the Chemical Industry in Information Technology (P 443)

	4. High Level Systems Design
	Optimisation Steps in Silicon Compilation (P 991)
	Silicon Compilation of DSP Systems with CATHEDRAL II (P 97)
	Design of Concurrent Sorter Networks for Real-Time Image Processing (P 97)
	Alcatel-BTM Layout and Floorplan Methodology (P 97)
	Open System Architecture of an Interactive CAD Environment for Parameterized VLSI Modules (P 1058)
	ADVICE - Automatic Design Validation of Integrated Circuits Using E-beam (P 271)

	5. CAD for VLSI Design
	AIDA - Advanced Integrated Circuits Design Aids - Aims and Progress Towards a New Generation of VLSI Tools (P 888)
	CAD of Analog Cells (P 802)
	Three Dimensional Algorithms for Robust and Efficient Semiconductor Simulator with Parameter Extraction (P 962)

	II. SOFTWARE TECHNOLOGY
	1. Environments
	Specifying Message Passing and Real-Time Systems with Real-Time Temporal Logic (P 937)
	Implementing the PCTE User Interface on Sun Workstations (P 1277)
	The Sapphire Project : Building Confidence in PCTE (P 1277)
	A Knowledge Based Environment for S/W System Configuration Reusing Components (P 974)
	SFINX : Towards PCTE Based Software Factories (P 1262)

	2. Advanced Environments
	The Use of the Object-Oriented Approach in the GRASPIN DB (P 125)
	ASPIS : A Knowledge-based Environment for Software Development (P 401)
	Integrating Graphics into Prolog (P 973)
	Database Software Development as Knowledge Base Evolution (P 892)

	3. Metrication and Management
	The REQUEST Database for Software Reliability and Software Development Data (P 300)
	SMART : A System Designer Approach to Evaluate the Performance of Complex Fault-Tolerant Systems (P 1609)
	IMPISH : A RDBMS Extended to Handle Logical Rules and Documents (P 938)

	4. Formal Methods
	Software Development in RAISE (P 315)
	A Spreadsheet Specification in RSL - An Illustration of the RAISE Specification Language (P 315)
	Guide-Lines for Building Adaptable Browsing Tools (P 432)
	Formalisation of Developments : An Algebraic Approach (P 390)
	Term Rewriting Systems in the GRASPIN Environment Used for the Verification of Software Development Steps (P 125)
	Towards Reliable Computing (P 1072)
	A Procedure for the Evaluation of Arithmetic Expressions with Guaranteed High Accuracy (P 1072)
	ESTELLE and LOTOS Software Environments for the Design of Open Distributed Systems (P 410)
	A New Language to Describe Analog Circuits (P 881)
	A Compositional Method for the Design and Proof of Asynchronous Processes (P 1033)

	III. ADVANCED INFORMATION PROCESSING
	Phase 2 of the Reconfigurable Transputer Project (P 1085) (Paper presented in Plenary Session)

	1. Knowledge Engineering
	Status and Evolution of the EPSILON System (P 530)
	Introduction to Prolog III (P 1106)
	An Experimental Protocol for the Acquisition of Examples for Learning (P 1063)
	A Production Rule Language for Databases Extended Towards the Support of Complex Domains (P 1133)
	How to Build Knowledge-Based Systems : Techniques, Tools and Case Studies (P 1098)
	The Design of an Information Retrieval Assistant System (P 1117)

	2. Systems Architecture and Design
	Overview of a Parallel Reduction Machine Project (P 415)
	SETHEO : A SEquential THEOrem-Prover for First Order Logic (P 415)
	Multi-Level Simulator for VLSI - An Overview (P 415)
	An Overview of DDC : Delta Driven Computer (P 415)
	A Two-Level Approach to Logic Plus Functional Programmming Integration (P 415)
	DELTA-4 : Definition and Design of an Open Dependable Distributed Computer System Architecture (P 818)
	PADMAVATI : Parallel Associative Development Machine as a Vehicle for Artificial Intelligence (P 967)

	3. Signal Processing, Natural Languages
	User Modelling in the GRADIENT Project (P 857)
	Dialogue Design for Dynamic Systems (P 857)
	Text Generation in the EUROHELP Project : The Utterance Generator (P 280)
	A Control Strategy for a Knowledge-Based Approach to Signal Understanding (P 26)
	Stereo Reconstruction Using a Robot Manipulating Arm (P 940)
	Dialogues with Language, Graphics and Logic (P 393)
	ADKMS : Advanced Data and Knowledge Management System (P 311)

	4. Expert Systems
	The Expert System Builder (ESB) (P 96)
	Industrial Control : A Challenge for the Applications of Artificial Intelligence (P 387)
	Using KBS in Telecommunications 2 (P 387)
	Knowledge Representation for Intelligent Help Systems (P 280)
	Coaching Strategies for Help Systems : EUROHELP (P 280)
	MARGRET - A Pre-prototype of an "intelligent" process monitoring system (P 857)
	A Toolkit for Building KBS Applications for Process Control. First Achievements of the Project (P 820)

	5. Documents Architecture, Storage and Retrieval (part 1)
	INDOC - Intelligent Documents Production Demonstrator (P 1542)

