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1. I�TRODUCTIO� 

Europe needs to act now to deliver sustainable, secure and competitive energy. The inter-

related challenges of climate change, security of energy supply and competitiveness are 

multifaceted and require a profound change in the way Europe produces, delivers and 

consumes energy. Harnessing technology is vital to achieve the Energy Policy for Europe 

objectives adopted by the European Council on 9 March 2007
1
.  

This document provides a comparative analysis of energy sources, production costs and 

performance of technologies for power generation, heating and transport for use in the Second 

Strategic EU Energy Review (SEER). It builds upon the work performed for the first Strategic 

EU Energy Review COM(2007)1, and relies on the capacity of SETIS, the information 

system of the European Strategic Energy Technology Plan (SET-Plan). The comparative 

Tables presented in the previous SEER exercise have been updated. The portfolio of 

technologies considered for the power sector has been also expanded to include carbon 

capture power plants, a large scale oil fired plant and an additional biomass conversion route. 

In addition, two fuel price scenarios have been considered to reflect variations in the future 

price of energy commodities. All reported values in the Tables for electricity generation, 

heating and transport fuels have been calculated following a consistent methodology, hence 

they are directly comparable. The calculations rely on up-to-date available data and 

information on energy conversion technology performance. 

This report consists of two parts. Part I includes the three Tables for use in the 2
nd
 SEER. Part 

II provides a comprehensive description of the implemented methodology and includes the 

technology-related data used for the calculations, accompanied by a reference list.  

2. PART I: MAI� TABLES 

                                                 
1
 European Council conclusions adopted on the basis of the Commission's Energy Package, e.g. the 

Communications: 'An Energy Policy for Europe' COM(2007)1, 'Limiting Global Climate Change to 2 
degrees Celsius - The way ahead for 2020 and beyond' COM(2007)2 and 'A European strategic energy 
technology plan (SET-plan) - Towards a low carbon future' COM(2007)723 
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Table 2-1: Energy Technologies for Power Generation – Moderate Fuel Price Scenario (a) 

Production Cost of Electricity (COE) Lifecycle GHG emissions 

State-of-the-

art 2007 

Projection for 

2020 

Projection for 

2030 

Direct (stack) 

emissions 

Indirect 

emissions 

Lifecycle 

emissions 

Energy 

source 
Power generation technology 

€2005/MWh €2005/MWh €2005/MWh 

�et efficiency 

2007 

kg CO2/MWh kg CO2(eq)/MWh kg CO2(eq)/MWh 

Fuel price 

sensitivity 

Open Cycle Gas Turbine (GT) - 65 ÷ 75 
(b)
 90 ÷ 95 

(b)
 90 ÷ 100 

(b)
 38% 530 110 640 Very high 

- 50 ÷ 60 65 ÷ 75 70 ÷ 80 58% 350 70 420 Very high �atural gas Combined Cycle Gas Turbine 

(CCGT) CCS n/a 85 ÷ 95 80 ÷ 90 49% 
(c)
 60 85 145 Very high 

Internal Combustion Diesel 

Engine 
- 100 ÷ 125 

(b)
 140 ÷ 165 

(b)
 140 ÷ 160 

(b)
 45% 595 95 690 Very high 

Oil 
Combined Cycle Oil-fired 

Turbine (CC)  
- 95 ÷ 105 

(b)
 125 ÷ 135 

(b)
 125 ÷ 135 

(b)
 53% 505 80 585 Very high 

- 40 ÷ 50 65 ÷ 80 65 ÷ 80 47% 725 95 820 Medium Pulverised Coal Combustion 

(PCC) CCS n/a 80 ÷ 105 75 ÷ 100 35% 
(c)
 145 125 270 Medium 

Circulating Fluidised Bed 

Combustion (CFBC) 
- 45 ÷ 55 75 ÷ 85 75 ÷ 85 40% 850 110 960 Medium 

- 45 ÷ 55 70 ÷ 80 70 ÷ 80 45% 755 100 855 Medium 

Coal 

Integrated Gasification 

Combined Cycle (IGCC)  CCS n/a 75 ÷ 90 65 ÷ 85 35% 
(c)
 145 125 270 Medium 

�uclear Nuclear fission - 50 ÷ 85 45 ÷ 80 45 ÷ 80 35% 0 15 15 Low 

Solid biomass - 80 ÷ 195 85 ÷ 200 85 ÷ 205 24% ÷ 29% 6 15 ÷ 36 21 ÷ 42 Medium 
Biomass 

Biogas - 55 ÷ 215 50 ÷ 200 50 ÷ 190 31% ÷ 34% 5 1 ÷ 240 6 ÷ 245 Medium 

On-shore farm - 75 ÷ 110 55 ÷ 90 50 ÷ 85 - 0 11 11 
Wind 

Off-shore farm - 85 ÷ 140 65 ÷ 115 50 ÷ 95 - 0 14 14 
nil 

Large - 35 ÷ 145 30 ÷ 140 30 ÷ 130 - 0 6 6 
Hydro 

Small - 60 ÷ 185 55 ÷ 160 50 ÷ 145 - 0 6 6 
nil 

Photovoltaic - 520 ÷ 880 270 ÷ 460 170 ÷ 300 - 0 45 45 nil 
Solar 

Concentrating Solar Power (CSP) - 170 ÷ 250 
(d)
 110 ÷ 160 

(d)
 100 ÷ 140 

(d)
 - 120 

(d)
 15 135 

(d)
 Low 

(a) Assuming fuel prices as in 'European Energy and Transport: Trends to 2030 - Update 2007' (barrel of oil 54.5$2005 in 2007, 61$2005 in 2020 and 63$2005 in 2030) 
(b) Calculated assuming base load operation 
(c) Reported efficiencies for carbon capture plants refer to first-of-a-kind demonstration installations that start operating in 2015 
(d) Assuming the use of natural gas for backup heat production
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Table 2-2: Energy Technologies for Power Generation – High Fuel Price Scenario (a) 
Production Cost of Electricity (COE) Lifecycle GHG emissions 

State-of-the-

art 2007 

Projection for 

2020 

Projection for 

2030 

Direct (stack) 

emissions 

Indirect 

emissions 

Lifecycle 

emissions 

Energy 

source 
Power generation technology 

€2005/MWh €2005/MWh €2005/MWh 

�et efficiency 

2007 

kg CO2/MWh kg CO2(eq)/MWh kg CO2(eq)/MWh 

Fuel price 

sensitivity 

Open Cycle Gas Turbine (GT) - 80 ÷ 90 
(b)
 145 ÷ 155 

(b)
 160 ÷ 165 

(b)
 38% 530 110 640 Very high 

- 60 ÷ 70 105 ÷ 115 115 ÷ 125 58% 350 70 420 Very high �atural gas Combined Cycle Gas Turbine 

(CCGT) CCS n/a 130 ÷ 140 140 ÷ 150 49% 
(c)
 60 85 145 Very high 

Internal Combustion Diesel 

Engine 
- 125 ÷ 145 

(b)
 200 ÷ 220 

(b)
 230 ÷ 250 

(b)
 45% 595 95 690 Very high 

Oil 
Combined Cycle Oil-fired 

Turbine (CC)  
- 115 ÷ 125 

(b)
 175 ÷ 185 

(b)
 200 ÷ 205 

(b)
 53% 505 80 585 Very high 

- 40 ÷ 55 80 ÷ 95 85 ÷ 100 47% 725 95 820 High Pulverised Coal Combustion 

(PCC) CCS n/a 100 ÷ 125 100 ÷ 120 35% 
(c)
 145 125 270 Medium 

Circulating Fluidised Bed 

Combustion (CFBC) 
- 50 ÷ 60 95 ÷ 105 95 ÷ 105 40% 850 110 960 High 

- 50 ÷ 60 85 ÷ 95 85 ÷ 95 45% 755 100 855 High 

Coal 

Integrated Gasification 

Combined Cycle (IGCC)  CCS n/a 95 ÷ 110 90 ÷ 105 35% 
(c)
 145 125 270 Medium 

�uclear Nuclear fission - 55 ÷ 90 55 ÷ 90 55 ÷ 85 35% 0 15 15 Low 

Solid biomass - 80 ÷ 195 90 ÷ 215 95 ÷ 220 24% ÷ 29% 6 15 ÷ 36 21 ÷ 42 Medium 
Biomass 

Biogas - 55 ÷ 215 50 ÷ 200 50 ÷ 190 31% ÷ 34% 5 1 ÷ 240 6 ÷ 245 Medium 

On-shore farm - 75 ÷ 110 55 ÷ 90 50 ÷ 85 - 0 11 11 
Wind 

Off-shore farm - 85 ÷ 140 65 ÷ 115 50 ÷ 95 - 0 14 14 
nil 

Large - 35 ÷ 145 30 ÷ 140 30 ÷ 130 - 0 6 6 
Hydro 

Small - 60 ÷ 185 55 ÷ 160 50 ÷ 145 - 0 6 6 
nil 

Photovoltaic - 520 ÷ 880 270 ÷ 460 170 ÷ 300 - 0 45 45 nil 
Solar 

Concentrating Solar Power (CSP) - 170 ÷ 250 
(d)
 130 ÷ 180 

(d)
 120 ÷ 160 

(d)
 - 120 

(d)
 15 135 

(d)
 Low 

(a) Assuming fuel prices as in DG TRE6 'Scenarios on high oil and gas prices' (barrel of oil 54.5$2005 in 2007, 100$2005 in 2020 and 119$2005 in 2030) 
(b) Calculated assuming base load operation  
(c) Reported efficiencies for carbon capture plants refer to first-of-a-kind demonstration installations that start operating in 2015 
(d) Assuming the use of natural gas for backup heat production
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Table 2-3: Energy Sources for Heating – Moderate Fuel Price Scenario (a) 

Production Cost of Heat (inc. taxes) Lifecycle GHG emissions 

Fuel retail price 

(inc. taxes) 
Running cost Total cost 

Direct (stack) 

emissions 

Indirect 

emissions 

Lifecycle 

emissions 
Energy source 

EU-27 market share by 

energy source 

(residential sector) 
(b)
 

€2005/toe €2005/toe €2005/toe t CO2 /toe t CO2(eq)/toe t CO2(eq)/toe 

�atural gas 45.4% 625 750 ÷ 950 1050 ÷ 1300 2.5 0.7 3.2 

Heating oil 20.0% 640 800 ÷ 1100 1325 ÷ 2025 3.5 0.6 4.1 Fossil fuels 

Coal 3.1% 375 675 ÷ 750 1500 ÷ 1825 5.4 0.7 6.1 

Wood chips 390 700 ÷ 900 1550 ÷ 2650 0.0 0.3 0.3 

Pellets 580 900 ÷ 1300 1675 ÷ 4125 0.0 0.7 0.7 

Solar - 275 ÷ 300 1350 ÷ 9125 0.0 0.3 0.3 

Biomass, solar 

and other 

Geothermal 

11.6% 

- 525 ÷ 900 1025 ÷ 3625 0.0 0.2 ÷ 5.9 0.2 ÷ 5.9 

Electricity 12.3% 1470 1500 ÷ 1575 1600 ÷ 2475 0.0 0.7 ÷ 15.2 0.7 ÷ 15.2 

(a) Assuming fuel prices as in 'European Energy and Transport: Trends to 2030 - Update 2007' (barrel of oil 54.5$2005) 
(b) District heating has an additional share of 7.6% of the market 
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Table 2-4: Energy Sources for Heating – High Fuel Price Scenario (a) 

Production Cost of Heat (inc. taxes) Lifecycle GHG emissions 

Fuel retail price 

(inc. taxes) 
Running cost Total cost 

Direct (stack) 

emissions 

Indirect 

emissions 

Lifecycle 

emissions 
Energy source 

EU-27 market share by 

energy source 

(residential sector) 
(b)
 

€2005/toe €2005/toe €2005/toe t CO2 /toe t CO2(eq)/toe t CO2(eq)/toe 

�atural gas 45.4% 1010 1125 ÷ 1400 1425 ÷ 1750 2.5 0.7 3.2 

Heating oil 20.0% 1030 1200 ÷ 1600 1775 ÷ 2525 3.5 0.6 4.1 Fossil fuels 

Coal 3.1% 590 975 ÷ 1025 1775 ÷ 2100 5.4 0.7 6.1 

Wood chips 410 725 ÷ 925 1575 ÷ 2675 0.0 0.3 0.3 

Pellets 610 925 ÷ 1350 1700 ÷ 4175 0.0 0.7 0.7 

Solar - 275 ÷ 300 1350 ÷ 9125 0.0 0.3 0.3 

Biomass, solar 

and other 

Geothermal 

11.6% 

- 650 ÷ 1100 1150 ÷ 3775 0.0 0.2 ÷ 5.9 0.2 ÷ 5.9 

Electricity 12.3% 1875 1925 ÷ 1975 2025 ÷ 2900 0.0 0.7 ÷ 15.2 0.7 ÷ 15.2 

(a) Assuming high fuel prices as in DG TRE6 'Scenarios on high oil and gas prices' (barrel of oil 100$2005) 
(b) District heating has an additional share of 7.6% of the market 
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Table 2-5: Energy Sources for Road Transport – Moderate and High Fuel Price Scenario 

Cost of Fuels to the EU 

Moderate Fuel Price Scenario 
(a)
 High Fuel Price Scenario 

(b)
 

Lifecycle GHG emissions 
(c) 

Energy source for road transport
 

€2005/toe €2005/toe t CO2(eq)/toe 

Petrol and diesel 470 675 3.6 ÷ 3.7 

�atural gas (C�G) 
(d) 

500 630 3.0 

Domestic biofuel 
(e) 

725 ÷ 910 805 ÷ 935 1.9 ÷ 2.4 

Tropical bio-ethanol
 700 

(f) 
790 

(f)
 0.4 

Second-generation biofuel 
(e) 

1095 ÷ 1245 1100 ÷ 1300 0.3 ÷ 0.9  

(a) Values are given for 2015, assuming oil price of 57.9$2005/barrel as in 'European Energy and Transport: Trends to 2030 - Update 2007'  
(b) Values are given for 2015, assuming oil price of 83.3$2005/barrel as in DG TRE6 'Scenarios on high oil and gas prices' 
(c) Data subject to revision pending on an agreement on an appropriate methodology for calculating indirect land use change 
(d) Requires a specially adapted vehicle, which is not accounted for in the reported values 
(e)  Ranges is between cheapest wheat-ethanol and biodiesel 
(f) Values are based on an assumed competitive market price of biofuels imported in the EU 
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3. PART II: METHODOLOGY A�D DATA 

3.1. Energy Technologies for Power Generation 

This section describes the methodology and data used for the comparison Table of energy 

technologies for power generation. Table 3-1, Table 3-2 and Table 3-3 summarise the techno-

economic characteristics of the selected state-of-the-art power generation technologies.  

3.1.1. Technologies 

The technologies addressed are: 

1. Natural gas fuelled 

– Open cycle gas turbine  

– Combined cycle gas turbine 

– Combined cycle gas turbine with carbon capture and storage (CCS) 

2. Oil fuelled 

– Diesel internal combustion engine 

– Oil fired combined cycle 

3. Coal fuelled 

– Pulverised fuel 

– Pulverised fuel with carbon capture and storage 

– Circulating fluidised bed  

– Integrated gasification combined cycle 

– Integrated gasification combined cycle with carbon capture and storage 

4. Nuclear fission 

– Water cooled reactor 

5. Biomass fuelled 

– Biomass fired combustion steam cycle: large (>10MWe) and small scale 

(≤10MWe) 

– Biogas from co-digestion and landfill gas 

6. Wind 

– On-shore wind 
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– Off-shore wind 

7. Hydropower 

– Large scale (>10MWe) 

– Small scale (≤10MWe) 

8. Solar power 

– Photovoltaics 

– Concentrating solar thermal power 

It is noted that cogeneration of heat and power is not considered in this analysis. 

3.1.2. Indicators 

For each technology the following indicators are reported: 

(I) Production cost of electricity (current and projected to 2020 and 2030): The levelized 

production cost of electricity, expressed in constant €(2005)/MWh of net power generated, is 

used to compare the economic competitiveness among power generation technologies during 

their life time. The reported values for the production cost of electricity for each technology 

refer to a state-of-the-art facility, assumed to start operating in the indicated year (2007, 2020 

or 2030), as described in Table 3-1. The reported range reflects variations in capital costs 

which depend on specific technology choices, plant location, etc. The reported range does not, 

however, reflect the variability in the fuel retail prices between the Member States
2
.  

The reported production cost values have been calculated using the following formula: 

( )
CTSCCFCVOM

LF

FOM

LF

CRFIDCSCI
COE ++++

⋅
+

⋅
⋅+⋅

=
87608760

1
 

 

Where: 

COE …is the levelized production cost of electricity, in €2005/MWh, 

SCI …is the specific overnight capital investment of the power generation facility, 

in €2005/MW, 

IDC …is the interest during construction, 

CRF …is the capital recovery factor, 

LF …is the annual load factor of the facility, 

FOM …refers to the annualized fixed operating costs during the facility life time, in 

€2005/MW, 

                                                 
2
 An average European fuel price has been considered as discussed below. 
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VOM …refers to the annualized variable operating costs during the facility life time, 

in €2005/MWh, 

FC …refers to annualized fuel costs during the facility life time, in €2005/MWh, 

CC …refers to annualized carbon costs during the facility life time, in €2005/MWh  

CTS …refers to annualized expenditures for transport and storage of captured CO2 

during the facility life time, in €2005/MWh (only applicable to plants with CCS). 

All values are reported in net power capacity (MW) or generated electricity (MWh). 

In more detail, values for SCI were collected from the most recent available literature. The 

reported ranges reflect market variations in investment costs for a given technology within the 

EU and within a same power class. Values reported in the literature in currency other than 

euros were converted to euros based on the Eurostat exchange rates for the reference year of 

the data given in the publication and were converted to 2005 euros (€2005) using the annual 

average inflation rates for the Euro area as reported by Eurostat. Finally, to include the recent 

price increases these values were adjusted to January 2007 using the chemical engineering 
plant cost index3. The SCI values are shown in Table 3-2. Values for future SCIs were 
calculated on the assumption that current prices will decrease due to learning effects. Hence, 

based on the technology learning theory, the future specific cost of a technology, SCIF, was 
calculated using the global installed capacity as a proxy, based on the formula: 

( )
2ln

1ln LR

P

F
PF

C

C
SCISCI

−









=  

 

Where: 

SCIP …is the current specific capital investment cost, 

CP …is the current global installed capacity, 

CF …is the installed capacity of the technology in a future time, e.g. in 2020, 

LR …is the learning rate of the technology. 

Values for CP, CF and LR were collected from the literature and are also shown in Table 3-3. 

Especially, for fossil fuel power plants with CCS, it was assumed that the first-of-the-kind 

installations will start operating in 2015. Furthermore, the global installed capacity of each 

technology is kept constant for the two fossil fuel price scenarios. 

The IDC was calculated considering the construction time for each plant (see Table 3-3) and a 

capital expenditure profile during construction: 

                                                 
3
 For more information see: Updating the CE Plant Cost Index, Chemical Engineering, January 2002, p. 

62. 
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( ) ( )
11

1

1
−+= −−

=∑ kCTCT

k k rWIDC  

 

Where: 

CT …is the construction time, 

Wk …is the fraction of total capital used in year k, 

r …is the interest rate. 

For all technologies an interest rate of 10% was assumed for the calculation of IDC. 

The capital recovery factor (CRF) was calculated from the formula: 

( )
( ) 11

1

−+

+⋅
=

n

n

d

dd
CRF  

 

Where d is the real discount rate and n is the facility life time.  

For all technologies a real discount rate of 10% was assumed. Moreover, it was assumed that 

the economic life time of facility is equal to the technical life time (see Table 3-3). 

It was further assumed that all facilities operate in a base-load mode with a LF of 85%, 

including open cycle gas turbines and diesel reciprocating engines that are used also to meet 

peak load. The following exceptions were made: 

– Photovoltaics: 11% 

– Concentrating solar thermal power: 41%
4
 

– Wind: on-shore 23% and off-shore 39% 

– Landfill: 75%  

– Hydropower: Large scale 50% and Small scale 57%  

FOM costs account for maintenance, which was calculated as a fraction of the total 

investment costs (calculated using the net capacity and SCI values from Table 3-1 and Table 

3-2 respectively) based on standard sectoral costing methodologies; salaries (assuming an 

annual average salary of €55,000 and estimating the number of people employed in each 

facility); and overheads (30% of salaries). The evolution of FOM costs during the life time of 

a facility (due to learning effects, etc.) was considered through an annualizing process, where 

the annual FOM values were discounted to the net present value and then multiplied by the 

CRF. VOM costs account for the cost of consumables, chemicals, auxiliary power, etc. Values 

                                                 
4
 Including thermal storage and natural gas backup. Load factor is assumed constant over time. 
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were obtained from the literature. Table 3-2 shows the total operational and maintenance costs 

(OM)
5
 normalised to the installed net capacity. 

Fuel costs (FC) were calculated for two scenarios, moderate and high. The fuel prices for the 

moderate scenario are derived from the DG TREN publication 'European Energy and 

Transport: Trends to 2030 - Update 2007'
6
, while fuel prices for the high scenario are based 

on DG TREN 'Scenarios on high oil and gas prices'
7
. Moreover, prices for biomass were 

calculated based on values reported in EUBIONET II
8
 and adjusted to reflect the biomass 

price trends considered in the previously mentioned DG TREN scenarios. These values reflect 

the fuel price at the plant gate. Table 3-2 shows the fuel prices assumed for the years 2007, 

2020 and 2030. The evolution of FC during the life time of a facility, due to changes in fuel 

prices, was also considered through an annualizing process, as described above for FOM. In 

the case of nuclear energy, the fuel price encompasses the whole fuel cycle including 

provisions for waste management. For concentrating solar thermal power, FC were calculated 

assuming a constant consumption of natural gas of 385 TJ per year for backup heat 

production. 

Carbon costs (CC) were considered only for the projected costs of electricity in 2020 and 
2030. It was assumed that each tonne of CO2 directly emitted from the facility was charged 

with €41/tCO2 and €47/tCO2 in 2020 and 2030 respectively. CC were also annualized 
similarly to FOM. The annual CO2 emissions during plant operation were derived from the 

IPCC Guidelines for National Greenhouse Gas Inventories
9
, as explained below. It was 

assumed that concentrating solar thermal power does not carry carbon costs. 

In the case of power plants with carbon capture technology, the cost of CO2 transport and 

storage costs was also taken into account for the calculation of the production cost of 

electricity and was treated as an additional operational cost element. A value of €20 per tonne 

of CO2 captured was assumed to account for the cost of transport and storage of captured 

CO2. 

Dismantling costs were not considered except in the case of nuclear plants, where the cost of 

decommissioning was included both in SCI and FOM.  

(II) �et efficiency: The reported values refer to the current state-of-the-art power generating 

facility with the exception of the CCS plants. For the latter, the reported values refer to first-

of-a-kind demonstration installations, assumed to start operating in 2015 (for references see 

Table 3-1). These net efficiency values were used for calculating fuel and carbon costs, and 

hence the production cost of electricity. The net efficiency values used for calculating the 

projected cost of electricity in 2030 are also shown in Table 3-1. 

(III) Life-cycle greenhouse gas emissions: Values for the life-cycle greenhouse gas (GHG) 

emissions for current state-of-the-art facilities were obtained from the pertinent literature 

and/or calculated by the JRC based on in-house life cycle assessment data.  

                                                 
5
 This accounts for FOM and VOM, and excludes fuel and carbon costs 

6
 See reference [80] 
7
 To be published 
8
 See reference [56] 
9
 See reference [127] 
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The lifecycle GHG emissions for fossil fuel technologies comprise the direct (stack) 

emissions from the combustion/gasification process and the indirect emissions originating 

among others from the fuel supply chain and plant construction. Direct emissions were 

calculated according to IPCC Guidelines. In the case of carbon capture, the direct emissions 

are the difference between the produced and captured CO2 amounts. Conservative capture 

rates have been assumed (85% for all CCS technologies), which is the minimum capture 

efficiency proposed by the IPCC Guidelines. The indirect emissions of plants were based on 

an average value provided by the Ecoinvent Life Cycle Inventory
10
 for the supply of each type 

of fuel in Europe. Indirect emissions from other stages of the life cycle (e.g. construction) 

were obtained based on available data for relevant facilities. Finally, the calculated lifecycle 

emissions were harmonized with the life cycle GHG emission values of similar technologies 

available in the Ecoinvent database and other relevant literature
11
. 

For the non-fossil fuel technologies, lifecycle GHG emissions were obtained directly from 

available references listed in Table 3-3.  

It is noted that the pathways for the supply of fuel and raw materials, and the location of 

power generation facilities have a significant influence on lifecycle emissions. Table 3-3 

shows the range of values calculated by the JRC or reported in the literature with the 

corresponding references. 

(IV) Fuel price sensitivity: This refers to the sensitivity of the production cost of electricity 

to changes in fuel prices, which can be estimated by the fraction of fuel costs to the total 

production cost of electricity. In the context of this analysis, the following scale was assumed: 

Sensitivity Fraction of fuel cost to COE - ∆(FC)  

Very high ∆(FC) > 60% 

High 60% ≥ ∆(FC) > 40% 

Medium 40% ≥ ∆(FC) > 20% 

Low ∆(FC) ≤ 20% 

                                                 
10
 See reference [95] 

11
 See reference [103] and [104] 
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Table 3-1: Technology description, installation size, and current and future conversion efficiency 

�et efficiency 
�et capacity 

2007 (2015 for CCS) 2030 Technology Description 

[MW] References [%] References [%] References 

Open Cycle Gas Turbine (GT) Industrial gas turbine 250 [1] 38% [1] 45% [89] 

Combined Cycle Gas Turbine (CCGT) 
Plant with state-of-art heavy duty industrial turbines, optimised heat 

recovery steam generator and anti-NOx equipment 
650 [1],[5],[24],[91] 58% [1] 65% [89] 

Combined Cycle Gas Turbine with CCS As above, equipped with post-combustion capture based on MEA scrubbing 550 [7],[5],[97-98] 49% [5] 55% JRC 

Internal Combustion Diesel Engine Heavy duty reciprocating engine 50 [24] 45% [99] 48% JRC 

Combined Cycle Oil-fired Turbine Plant with state-of-the-art oil-fired industrial turbines  175 [100] 53% JRC 59% JRC 

Pulverised Coal Combustion (PCC) Supercritical power plant, steam at 600ºC, FGD and SCR 800 [1],[5],[24],[91] 47% [91],[101] 54% JRC 

Pulverised Coal Combustion with CCS As above, equipped with post-combustion capture based on MEA scrubbing 500 [7],[5],[97] 35% [5] 42% JRC 

Circulating Fluidised Bed Combustion 

(CFBC) 
Circulating fluidised bed plant 300 [1],][24] 40% [101] 50% [101] 

Integrated Gasification Combined Cycle 

(IGCC) 

Plant with a dry-fed entrained flow gasifier and state-of-the-art syngas 

turbines 
675 

[1],[97],[101], 

[102],[88],[91] 
45% [101],[102] 57% [101] 

Integrated Gasification Combined Cycle 

with CCS 

Mean performance of dry- and slurry-fed IGCC plants with pre-combustion 

capture using the Selexol process 
600 [7],[97],[102] 35% [102] 47% JRC 

�uclear fission 
Generation III water cooled reactor designs (mainly considering 

evolutionary light water reactor designs as EPR and ABWR) 
1600 [19],[15],[33-38] 35% 

[19],[15], 

[33-38] 
36% JRC 

Biomass combustion steam cycle  

– small scale 
Combustion boiler with a steam turbine 5 [54],[55] 24% [42], [54], [55] 25% JRC 

Biomass combustion steam cycle  

– large scale 
Fluidized bed combustion boiler with a steam turbine 30 [54] 29% [42], [54] 30% JRC 

Biogas plant Farm-scale co-digestion biogas plant 0.3 [41],[42],[113] 31% [41], [43] 32% JRC 

Landfill Gas Landfill with a gas engine 4.4 [41] 34% [41], [42] 36% JRC 

On-shore Wind On-shore wind turbine in a farm configuration 2 
[1],[24],[41], 

[64-65],[119] 
- - - - 

Off-shore Wind 
Off-shore wind turbine in a farm configuration, located in shallow waters 

(up to 30m) 
3.6 

[1],[24],[41], 

[77-78],[119] 
- - - - 

20 [41],[63] - - - - 

75 [41],[63] - - - - Hydropower – large scale 

Hydropower plant above 10 MWe, considering different configurations 

from the building of a new facility, the extension of an existing facility and 

the powering an existing hydro scheme 250 [41],[63] - - - - 

2 [41],[63] - - - - 
Hydropower – small scale 

Hydropower plant below 10 MWe considering different configurations 

from the building of a new facility, the extension of an existing facility and 

the powering an existing hydro scheme 10 [41],[63] - - - - 

Photovoltaics System based on crystalline silicon panels 1 JRC - - - - 

Concentrating Solar Power (CSP) Parabolic trough collector with storage and natural gas backup power plant 50 [146] - - - - 
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Table 3-2: Overnight specific capital investment and O&M costs of power generation technologies, and assumed fuel prices 

SCIP (state-of-the-art, 2007) Annualized O&M costs (VOM+FOM) Fuel prices (Moderate / High) 

[€2005/kW]  [€2005/kW]  [€2005/toe] Technology 

REF Range References REF Range References 2007 2020 2030 

Open Cycle Gas Turbine (GT) 310 200 ÷ 400 [2-3] 10 6 ÷ 13 

Combined Cycle Gas Turbine (CCGT) 635 480 ÷ 730 [1],[5],[24],[91] 25 19 ÷ 26 

Combined Cycle Gas Turbine with CCS 1200 1000 ÷ 1300 [7],[5],[97-98] 40 37 ÷ 44 

JRC,[5] 250 
L: 300 

H: 510 

L: 320 

H: 595 

Internal Combustion Diesel Engine 800 550 ÷ 1350 [3],[24] 40 29 ÷ 63 

Combined Cycle Oil-fired Turbine 1000 900 ÷ 1100 [100] 50 48 ÷ 55 
JRC 440 

L: 550 

H: 745 

L: 540 

H: 920 

Pulverised Coal Combustion (PCC) 1265 1000 ÷ 1440 [1],[5],[24],[91] 60 50 ÷ 67 

Pulverised Coal Combustion with CCS 2250 1700 ÷ 2700 [92],[94],[97] 90 76 ÷ 101 

Circulating Fluidised Bed Combustion 

(CFBC) 
1400 1250 ÷ 1500 [1,24] 70 62 ÷ 71 

Integrated Gasification Combined Cycle 

(IGCC) 
1550 1400 ÷ 1650 [1],[97],[101],[102],[88],[91] 65 61 ÷ 69 

Integrated Gasification Combined Cycle 

with CCS 
2100 1700 ÷ 2400 [7],[97],[102] 85 74 ÷ 95 

JRC,[5],[94],[102] 90 
L: 95 

H: 155 

L: 105 

H: 190 

�uclear fission 2680 1970 ÷ 3380 [8-32],[1] 90 74 ÷ 107 [1],[22-25],[27],[31],[38-39] 33 
L: 35 

H: 53 

L: 37 

H: 63 

Biomass combustion steam cycle  

– small scale 
3800 2900 ÷ 5080 [42],[54],[55],[85],[147] 260 235 ÷ 292 [42],[54],[55],[120],[125] 160 

L: 215 

H: 235 

L: 235 

H: 275 

Biomass combustion steam cycle  

– large scale 
2450 2020 ÷ 3220 [54],[42],[55] 135 124 ÷ 161 [54],[55],[120],[125] 90 

L: 120 

H: 135 

L: 135 

H: 160 

Biogas plant 3140 2960 ÷ 5790 
[41],[42],[43],[45], 

[108],[113] 
245 237 ÷ 334 [113] 270 270 270 

Landfill Gas 1530 1400 ÷ 2000 [41],[48],[49] 200 199 ÷ 211 [42],[132] 0 0 0 

On-shore Wind 1140 1000 ÷ 1370 
[1],[6],[19],[24],[40-42], 

[64-70] 
35 33 ÷ 42 

[1],[6],[19],[24],[41-42], 

[64-65],[68-70] 
 -  

Off-shore Wind 2000 1750 ÷ 2750 
[1],[6],[19],[24], 

[40-41],[66],[68],[70],[119] 
80 71 ÷ 105 

[1],[6],[24],[41-42], 

[64-65],[68],[70] 
 -  

2510 1750 ÷ 4500 75 - [24],[41],[119],[132-134]  -  

1800 1230 ÷ 3650 55 - [24],[41],[119],[121],[132-134]  -  Hydropower – large scale 

1350 900 ÷ 3100 

[6],[41],[60],[63],[126] 

40 - [24],[41],[119],[132-134]  -  

4500 2500 ÷ 6600 130 -  -  
Hydropower – small scale 

2900 2000 ÷ 4800 
[6],[41],[60],[63],[126],[147] 

85 - 
[24],[41],[119],[132-134] 

 -  

Photovoltaics 4700 4100 ÷ 6900 [136],[24],[90],[94] 80 72 ÷ 114 JRC,[92]  -  

Concentrating Solar Power 5000 4000÷6000 [146],[6],[19],[24],[137-143] 115 111÷121 [146],[24],[137],[139-143] 250 (a) 
L: 300 

H: 510 
(a) 

L: 320 

H: 595 
(a) 

(a) 6atural gas consumed for backup heat production.
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Table 3-3: Construction time and life time of facility, current and future global installed capacity, learning rate and lifecycle GHG emissions 

Global installed capacity Construct. 

time 
Life-time 

CP C2030 

Learning 

rate, LR 
 Lifecycle GHG emission 

Technology 

[year] [year] [GW] [GW] [%] References tCO2/GWh References 

Open Cycle Gas Turbine (GT) 1 25 225 1110 5.0% [6],[7],[87] 520 ÷ 600 [95],[104] 

Combined Cycle Gas Turbine (CCGT) 3 25 350 790 5.0% [6],[7],[96] 365 ÷ 495 [95],[103-104] 

Combined Cycle Gas Turbine with CCS 4 25 1 61 2.2% [7],[6] 80 ÷ 235 [95],[103-104] 

Internal Combustion Diesel Engine 1 25 200 930 3.0% [87] 670 ÷ 690 [95],[104] 

Combined Cycle Oil-fired Turbine 3 25 350 790 3.0% [6],[7],[96] 570 ÷ 590 [95],[104] 

Pulverised Coal Combustion (PCC) 3 40 300 790 6.0% [6],[7],[96] 800 ÷ 860 [95],[103-104] 

Pulverised Coal Combustion with CCS 4 40 10 235 2.1% [7],[6] 240 ÷ 290 [95],[103-104] 

Circulating Fluidised Bed Combustion 

(CFBC) 
3 40 70 230 6.0% [101],[101] 950 ÷ 980 [95],[103-104] 

Integrated Gasification Combined Cycle 

(IGCC) 
3 40 1 3 11.0% [7] 830 ÷ 860 [95],[103-104] 

Integrated Gasification Combined Cycle 

with CCS 
4 40 10 235 5.0% [6],[7] 240 ÷ 290 [95],[103-104] 

�uclear fission 6 40 3 (a) 100 (a) 3.0% [26],[40],[6] 3 ÷ 40 [95],[129-131],[103-104] 

Biomass combustion steam cycle  

– small scale 
2 30 12.5% [6],[41] 42 [119] 

Biomass combustion steam cycle  

– large scale 
2 30 

62 125 

12.5% [6],[41] 21 [119] 

Biogas plant 1 25 12.5% [6],[41],[46],[47] 245 [119] 

Landfill Gas 1 25 
4 11 

11.0% [6],[41],[46],[47] 6 [119] 

On-shore Wind 1 20 95 960 8.0% [6],[64],[68],[73-76] 7 ÷ 30 [95],[40],[103-104] 

Off-shore Wind 2 20 12 210 8.0% [6],[64],[68],[73-76] 9 ÷ 22 [95],[40],[103-104] 

4 50 

4 50 Hydropower – large scale 

4 50 

770 n/a -0.5% per year [6],[41],[73] 3.5 ÷ 40 [95],[119] 

3 50 3.5 ÷ 10 [59],[119],[95] 
Hydropower – small scale 

3 50 
75 n/a -1.2% per year [41],[73] 

3.5 ÷ 32 [59],[119],[95] 

Photovoltaics 0 25 8 150 23.0% [94],[93],[6],[93] 40 ÷ 110 [40],[95],[103] 

Concentrating Solar Power 2 40 0.4 60 10.0% [6],[138],[144-146]  135 (b) [40] 

(a) Values represent the global installed capacity of Generation III (and 3+) nuclear reactors only, and not the total installed nuclear capacity operating worldwide (370 GW in 2007). 
(b) This includes 15 tCO2/GWh of indirect emissions and the direct combustion emissions from natural gas use. 
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3.2. Energy Sources for Heating 

This section describes the methodology and data used for the comparison Table of energy 

sources for heating. Table 3-4 summarises the techno-economic characteristics of selected 

current state-of-the-art heat generation technologies.  

3.2.1. Technologies 

This analysis focuses on central heating systems for households with heat generation 

capacities between 15 kWth and 100 kWth. The technologies addressed are: 

1. Natural gas fuelled boiler 

2. Heating oil fuelled boiler 

3. Coal fuelled boiler 

4. Biomass fuelled boiler: 

– Wood chips 

– Pellets 

5. Solar thermal system 

6. Geothermal with heat pump 

7. Electricity boiler and heater 

District heating and cogeneration of heat and power (CHP) are not addressed in this analysis. 

3.2.2. Indicators 

The methodology used for calculating the cost of heat generation is similar to the one used for 

the calculation of the production cost of electricity. In this section, only the main differences 

are described.  

(I) Market share: The market shares reported in the updated Table refer to the residential 

sector only. The reported values have been adopted from the publication 'European Energy 

and Transport: Trends to 2030 - Update 2007'
12
. It is noted that district heating, which has a 

share of 7.6% of the market, has not been considered in the analysis. 

(II) Fuel retail price: This refers to fuel prices for households, including taxes. Fuel costs for 

the moderate fuel price scenario are derived from the DG TREN publication 'European 

Energy and Transport: Trends to 2030 - Update 2007'
13
, while fuel costs for the high fuel 

price scenario are based on the DG TREN 'Scenarios on high oil and gas prices'
14
. Moreover, 

prices for biomass were calculated based on values reported in EUBIONET II
15
 and adjusted 

                                                 
12
 See reference [80] 

13
 See reference [80] 

14
 To be published 

15
 See reference [56] 
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to reflect the biomass price trends considered in the previously mentioned DG TREN 

scenarios. 

(III) Production cost of heat: The production cost of heat, expressed in constant €(2005)/toe 

in useful heat produced, is used to compare the economic competitiveness among different 

energy sources for heating. The reported values represent a snapshot of costs in 2007. 

Running costs refer to the annual cost to produce heat without considering the initial capital 

costs. Total costs refer to the production cost that includes the recovery of capital. The 

reported values for each energy source refer to a state-of-the-art heating facility, as described 

in Table 3-4. The reported range reflects different technologies and variations in capital costs 

but does not reflect the variability in the fuel retail prices between the Member States. 

The reported running production cost values have been calculated using the following 

formula: 

FCVOM
LF

FOM
RCH ++

⋅
=
8760

 

 

The reported total production cost values have been calculated using the following formula: 

RCH
LF

CRFSCI
COH +

⋅
⋅

=
8760

 

 

Where: 

RCH …is the running cost of heat production, in €2005/toe, 

COH …is the total production cost of heat, in €2005/toe, 

LF …is the annual load factor of the heating system, 

FOM …refers to the annual fixed operating costs, in €2005/toe, 

VOM …refers to the variable operating costs, in €2005/toe, 

FC …refers to fuel costs, in €2005/toe, 

SCI …is the specific overnight capital investment, in €2005/toe, 

CRF …is the capital recovery factor. 

All values are reported in useful heat produced 

An annual load factor of 10% was used for the calculations for all technologies except for 

solar where a value of 8% was used to reflect resource constraints. The former load factor 

refers to an average of the annual operating time of the heat production facility at nominal 

capacity to meet the heat demand of a typical European house of about 110 m
2
 and of a small 
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residential building of about 550 m
2
, based on an average annual outdoor temperature of 

8.8°C and an indoor temperature of 20/19/22°C
16
.  

FOM costs account for the service, maintenance and repair of the heating facility, while VOM 

costs account for the cost of other consumables, mainly auxiliary power. Table 3-4 shows the 

total operational and maintenance costs (OM) normalised to the installed net capacity. 

The fuel costs were calculated based on the fuel retail prices as noted above for the two 

scenarios. 

The overnight specific capital investment (SCI) for each heating facility refers to the price of 
the heating unit and its installation, excluding the cost of additional infrastructure.  

A real discount rate of 15% was assumed for all technologies for the calculation of the capital 

recovery factor (CRF).  

No carbon costs were considered in the calculation of the cost of heat generation.  

(IV) Life-cycle greenhouse gas emissions: Life cycle emissions were calculated following 

the same methodology and databases as for power generation technologies.  

                                                 
16
 See reference [117] 
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Table 3-4: Technology description, installation size, current conversion efficiency, overnight specific capital investment, life-time and O&M costs of 
heat generation technologies 

Capital costs, 2007 
Annual O&M costs 

(VOM+FOM) Capacity Efficiency 

[€2005/kW], VAT excl. [€2005/kW], VAT excl. 

Life-

time 

Lifecycle GHG 

emissions Technology Description 

[kW] [%] References REF Range References REF Range References [year] tCO2/toe References 

Natural gas fuelled boiler, large size, combi, 

floorstanding 
75 89% 

[112], [117], 

[116] 
110 95 ÷ 135 [112], [118] 9 9 ÷ 10 [112], [118] 17 3.3 [95] 

Natural gas fuelled boiler, medium/small size, 

combi, wall-hung 
20 86% 

[112], [117], 

[116] 
125 100 ÷ 130 [112] 13 11 ÷ 14 [112] 17 3.4 [95] 

�atural gas 

boiler 

Natural gas fuelled condensing boiler, medium 

size, combi, wall-hung 
20 104% 

[112], [117], 

[116] 
145 115 ÷ 155 [112] 11 10 ÷ 12 [112] 17 2.9 [95] 

Heating oil fuelled boiler, large size, combi, floor 

standing, with oil reservoir 
75 86% 

[112], [117], 

[116] 
190 160 ÷ 240 

[112], [110], 

[118] 
12 11 ÷ 14 [112], [118] 17 4.2 [95] 

Heating oil fuelled boiler, medium/small size, 

combi, floorstanding, with oil reservoir 
20 80% 

[112], [117], 

[116] 
325 265 ÷ 355 [112] 18 15 ÷ 19 [112] 17 4.5 [95] 

Heating oil 
boiler 

Heating oil fuelled condensing boiler, medium 

size, combi, floorstanding, with oil reservoir 
20 99% 

[112], [117], 

[116] 
390 310 ÷ 425 [112] 13 11 ÷ 14 [112] 17 3.6 [95] 

Coal boiler 
Solid fuel fuelled boiler, large size, with heat 

buffer 
50 75% JRC 340 310 ÷ 410 JRC 13 12 ÷ 15 JRC 17 6.1 [95],[103] 

Wood chips fired boiler, large size, with hot water 

reservoir and heat buffer 
50 79% [110] 385 325 ÷ 440 

[109], [110], 

[111] 
16 14 ÷ 18 [110] 17 0.3 [59], [95] 

Wood chips 

boiler Wood chips fired boiler, medium size, with hot 

water reservoir and heat buffer 
35 79% [110] 575 490 ÷ 665 

[109], [110], 

[111] 
22 20 ÷ 25 [110] 17 0.3 [59], [95] 

Pellets fired boiler, large size, with hot water 

reservoir and heat buffer, inc. pellets silo 
50 84% [110] 355 300 ÷ 410 

[109], [110], 

[111] 
15 13 ÷ 17 [110] 17 0.7 [95] 

Pellets fired boiler, medium size, with hot water 

reservoir and heat buffer, inc. pellets silo 
35 84% [110] 505 430 ÷ 585 

[109], [110], 

[111] 
19 17 ÷ 22 [110] 17 0.7 [95] Pellets boiler 

Pellets fired boiler, small size, with hot water 

reservoir and heat buffer, inc. pellets silo 
15 84% [110] 940 800 ÷ 1080 

[109], [110], 

[111] 
34 29 ÷ 38 [110] 17 0.8 [95] 

Solar heat Water heating system 3.5 98% [135] 980 340 ÷ 2800 [92] 16 - [92] 20 0.3 [95] 

Large size electrical operated heat pump with 

geothermal heat source 
100 100% [116] 500 200 ÷ 1150 [92] 39 34 ÷ 60 [92] 25 0.2 ÷ 3.7 [95] 

Geothermal 

heat pump Medium size electrical operated heat pump with 

horizontal or water ground heat source 
15 100% [116] 640 550 ÷ 720 [115] 55 54 ÷ 69 [112] 17 0.3 ÷ 5.9 [95] 

Electric combi heating/water boiler, medium/small 

size, wall-hung 
20 100% JRC 75 65 ÷ 90 JRC 5 - JRC 17 0.7÷14.8 [95] Electrical 

heating 
Resistance heaters with fan assisted air circulation 2 97% [123] 140 30 ÷ 300 JRC n/a - [123] 10 0.7÷15.2 [95] 
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3.3. Energy Sources for Transport Fuels 

The techno-economic characteristics of the selected transport fuels reported have been 

calculated by the JRC based on the methodology developed in the Well to Wheel JRC–

EUCAR-CONCAWE study
17
, but using the fuel prices used in this analysis. The time horizon 

considered is 2015. 

Domestic biofuel production encompass ethanol produced from wheat grain with by-product 

credits for animal feed and heat supply from natural gas fired CCGT, and RME biodiesel with 

credits for animal feed. The second generation biofuel pathways are based on ethanol from 

straw and BTL using short rotation forestry as a feedstock. 

                                                 
17
 See reference [4] 
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