

## DIRECTORATE-GENERAL FOR AGRICULTURE

## EUROPEAN COMMUNITY

## FOREST HEALTH REPORT 1987-1988



## EUROPEAN COMMUNITY

FOREST HEALTH REPORT 1987-1988

This publication is also available in:

ES ISBN 92-826-0945-6
DA ISBN 92-826-0946-4
DE ISBN 92-826-0947-2
GR ISBN 92-826-0948-0
FR ISBN 92-826-0950-2
IT ISBN 92-826-0951-0
NL ISBN 92-826-0952-9
PT ISBN 92-826-0953-7

Cataloguing data can be found at the end of this publication

Luxembourg: Office for Official Publications of the European Communities, 1989 ISBN 92-826-0949-9

Catalogue number: CH -56-89-877-EN-C
(C) ECSC-EEC-EAEC, Brussels • Luxembourg, 1989

Reproduction is authorized, except for commercial purposes, provided the source is acknowledged.

## TABLE OF CONTENTS

Background ..... 1
Summary findings ..... 2
Conclusions ..... 3
PART 1 Community forest damage survey 1987 and 1988
Legislative basis ..... 4
Inventory method. ..... 5
1987 and 1988 Community inventory of damage caused to forests ..... 6
Completition of the inventory ..... 6
Main characteristics of the sample trees ..... 6
Presentation and definitions ..... 7
Comparability of 1987 and 1988 results ..... 7
1987 and 1988 results ..... 8
Defoliation of sample trees ..... 9
Discolouration of sample trees ..... 10
Easlly identiflable damage causes ..... 11
Comparison of broadleaves and conifers regarding defoliation ..... 12
Comparison of broadleaves and conifers regarding discolouration ..... 13
Defollation and discolouration by species ..... 14
Defollation by species groups for 1987 and 1988 (table) ..... 15
Discolouration by species groups for 1987 and 1988 (table) ..... 17
Possible relationship between discolouration and defoliation ..... 18
Defoliation and discolouration by age class, broadleaves/conifers ..... 19
Inventory results by climatic regions ..... 20
Defollation and discolouration by climatic regions 1988 (table) ..... 22
Defoliation and discolouration by altitude ..... 23
Defollation and discolouratlon by water avallabllity ..... 25
Defollation and discolouration by humus type ..... 26
Defollation and discolouration by aspect ..... 27
List of tables and figures ..... 28
Tables and figures ..... 29-95
PART 2 : Natlonal forest health reports ..... $96-126$

## Annexes:

1. The research into effects of air pollution on forests in the framework of the Community's Research and Development Programmes
```
2. Initiatives at Community level in relation to reduction of atmospheric
pollution
```

3. Common survey census form

## Background

This report gives the results of national forest health reports and the Community forest damage survey in 1987 and 1988. The alm of the report is to give an overview of the state of forest health in the European Community.

The report is a result of the appllcation for two years of Councll Regulation (EEC) $n^{\circ} 3528 / 86$ of 17 November 1986 on protection of the Community's forests against atmospherlc pollution. Member States have set up a Community wide forest damage inventory and forwarded annual forest health reports to the Commission since 1987.

Under the same Regulation the Commission has granted Community financlal ald for the completion of pilot projects and experiments to improve knowledge of alr pollution in forests and its effects, to improve methods of observing and measuring damage to forests and to devise methods of malntalning and restoring damaged forests.

For the purpose of making the forest damage survey and national reports, a common methodology was used as laid dawn by Commission Regulation (EEC) $n^{\circ} 1696 / 87$ of 10 June 1987. This methodology is based on guidelines for harmonized sampling, assessment, monltoring and analysis of the effects of air pollution on forests, as adopted by the parties to the Convention on Long-range Transboundary Air Pollution participating in the International Cooperative Programme for Assessment and Monitoring of Alr Pollution Effects on Forests.

The Communlty's forest damage Inventory is the first large scale transboundary inventory of its kind to be carried out in accordance with a common method, involving a unified sampling system and centralized data treatment. It enabled comparable data to be collected in respect of more than 37,000 sample trees throughout the Communlty.

The appearance of widespread forest decline, generally attributed to atmospherlc pollution in many regions of the Communlty since the beginning of the 1980's, as well as the rapid spread of forest damage, were at the orlgin of the Community's action for the protection of forests against atmospheric pollution.

## Summary findings

The results of the two years survey provide data on the extent and regional distribution of forest damage. Damage was observed both in the northern part of the Communlty and in the Mediterranean regions. Cartographic representations of the observed defollation, plot by plot, provided an overview of regional distribution and evolution of damage. It appears that plots with high average defoliation were particularily evident in the eastern and south-western parts of the Federal Republic of Germany, Scotland, the Netherlands, north-east and south-east of France, northern and central regions of Greece, the south of Spain and in north-west italy.

Observation of 19,651 trees in 1987 and in 1988 showed that $14.75 \%$ and 12.86 \% respectively had more than $25 \%$ defollation in these two years. The results in 1988 from observation of a much larger sample, including notably many additional Mediterranean sample trees (total sample: 37,600 trees), showed that $10.15 \%$ of trees were clearly defollated that year. Discolouration was less pronounced with $3.75 \%$ and $2.56 \%$ of trees with moderate or severe discolouration in 1987 and 1988 respectively.

Both conifers and broadleaves showed reduced vitality but conifers were more damaged than broadleaves. The tendency as regards the vitallty of trees between 1987 and 1988 was assessed on the results of observations made of 19,651 sample trees in both years. Globally there was a slight decrease of the percentage of trees with moderate or severe defollation (-1.9\%). However, whereas the improvement was significant for broadieaves ( $-3 \%$ of trees with moderate or severe defollation, $+2 \%$ of trees without any defoliation), it was limited for conlfers to a slight transfer of sample trees from defollation class "moderate" to defollation class "slight". At the same time the percentage of conifers without any defollation decreased by $3 \%$.

For all species together, the percentage of trees showing some discolouration decreased by nearly $2 \%$ between 1987 and 1988 . However, whereas conlfers showed no signiflcant variation, the percentage of broadleaves without any discolouration increased by nearly 4\%.

Silver fir, Norway spruce, Beech and deciduous Oaks belong to the most damaged tree species. Whereas the vitality of the three first named specles improved between 1987 and 1988, the condition of deciduous oaks deteriorated.

Easily ldentifiable damage due to known causes have been observed in 1988 on one third of all sample trees and on $62 \%$ of all sample plots. Insect attacks were particularily widespread. Trees without presence of Identiflable damage were generally significantly less defollated than trees with presence of such damage.

Damage showed a general tendency to increase with the age of sample trees. The survey results further confirmed the existence of correlations between site factors such as altltude and water avallabllity on the one hand and observed defoliation or discolouration on the other.

## Conclusions

Because of the non-speciflc character of the observed damage symptoms the inventory results are not sufficient in themselves to draw conclusions on the causes of the observed damage. They however conflrm that the vitallty of the forests is clearly reduced in many regions of the Community.

It has been generally admitted in sclentiflc circles that this reduced vitality of forests, which has been observed in many parts of Europe since the beginning of the 1980 's, is caused by a complex of blotic, abiotic and anthropogenic factors among which atmospheric pollution plays a signlficant role as a destabllizing factor of forest ecosystems. The influence of atmospheric pollution is regionnally varlable. It may have direct and indirect effects on forest trees as well as on other parts of the forest ecosystem.

In order to improve the vitallty of forests and in the same time their resistance to wide spread biotic damage factors and extreme climatic events, the present levels of atmospheric pollution should be reduced. Their continuation or increase may threaten the survival of forests in many regions of Europe.
Where necessary, forest management should be adapted and appropriate syivicultural techniques applied in order to maintaln or restore damaged forests.

The observed damage situation indicates a need for continued monitoring. The observation of the vitality of forest trees should be continued following the common methodology which has already proved its effectiveness. This will enable the evolution of forest damage to be followed over time. Furthermore, the visual observations of sample trees should be completed by a large scale coordinated forest ecosystem monitoring, including systematic identification of atmospheric deposits, soil conditions, chemical composition of leaves and needles and tree growth.

## PART 1 THE COMMUNITY FOREST DAMAGE SURVEY 1987 \& 1988

## LEGISLATIVE BASIS

On 17 November 1986 the Council of Minlsters of the E.C. adopted Regulation (EEC) No 3528/86 on the protection of the Community's forests against atmospherlc pollution, which took effect from 1 January 1987 (1). Within the Regulation, a Community scheme is provided for establishing a periodic Community Inventory of damage caused to forests and the drawing up by the Member States of a perlodic forest health report. It also provides for the development of pilot projects and field experiments in order to improve the understanding of atmospheric pollution in forests and its effects, to Improve methods of observing and measuring damage and to establish methods for the restoration of damaged forests.

Under Article 2, with respect to the Community inventory, the scheme in the above Regulation provides for :

- establishing on the basis of a common method a periodic inventory of damage caused to forests in particular by atmospheric pollution;
- establishing or extending, in a coordinated and harmonious way, the network of observation points required to draw up this inventory.

Following the inventory each Member State forwards to the Commission the data gathered at the observation points of the network.

In addition, in accordance with Article 3 of the above Regulation, each Member State draws up and forwards to the Commission a periodic forest health report based in particular on the inventory data referred to in Article 2.

In accordance with the opinion of the Committee on Forest Protection, established by the same Regulation (No 3528/86), the detailed rules of implementation of the inventory, and in particular the common methodology and the format of presentation of the national forest health reports have been adopted and are laid out in Commission Regulation (EEC) No 1696/87 of 10 June 1987 (2). This common method takes account of the recommendations of the ECE manual (United Nations Economic Commission for Europe, Convention on Long-Range Transboundary Air Pollution - International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests).
(1) OJ no. L 326, 21.11.1986, p. 2
(2) OJ no. L 161, 22.06.1986, p. 1

## INVENTORY METHOD

The common method for establishing a per lodic inventory of damage caused to forests, as described in Annex l of Commission Regulation (EEC) No 1696/87 of 10 June 1987 laying down certain detailed rules for the implementation of Council Regulation (EEC) No 3528/86, applies to both the Community Inventory of forest damage and to the denser grid networks that might be used by the Member States to draw up their forest health reports to be forwarded to the Commission.

The common inventory methodology requires that a network of observation points should be established following a systematic grid covering the entire forest area of the Community. As regards the Community inventory the grid has a density of $16 \mathrm{~km} \times 16 \mathrm{~km}$ for which the latitude and longitude coordinates of each point have been provided by the Commission to each Member State. Member States are however encouraged to collect additional information from denser networks using the common methodology, in order to obtain representative data at national or regional level to be included in their annual reports as foreseen by Council regulation (EEC) No 3528/86.

At each grid intersection point faliing in a forest, a sample of 20-30 trees is selected for assessment according to a stringently defined, objective and unbiased statistical procedure. The sample includes all tree specles provided the sample trees have a minimum height of 60 cm . Only predominant, dominant and co-dominant trees, according to the system of Kraft, qualify as sample trees.

At each observation plot the tree sample is assessed for defoliation and discolouration following the European classification (i.e. Defollation : class 0-not defoliated (0-10\%), class 1-slightly defoliated (11-25\%), class 2-moderately defoliated (26-60\%), class 3-severely defoliated (more than 60\%), class 4-dead. Defoliation is estimated relatively to a tree with full follage, the reference belng a healthy tree in the vicinity or a photograph of a tree with full foliage, suitable for the region of investigation. Discolouration : class $0-n o$ or negligible discolouration ( $0-$ $10 \%$ ), class 1-slightly discoloured (11-25\%), class 2-moderately discoloured (26-60\%), class 3-severely discoloured (more than 60\%)).

Defoliation of trees or crown density is the basic index used in all surveys of forest health carried out throughout Europe in the framework of the Convention on long-range transboundary air pollution. It is influenced by a number of factors, of which pollution is one. The same is true for discoloration of foliage, another index used for evaluating the vitality of trees. Consequently, there is a major problem in separating any changes in crown density or coloration attributable to pollution from those attributable to other factors. However, research in some countries indicates that air pollution plays a significant role in forest decline. In many cases the existence and extend of forest damage cannot be exlained without considering the influence of air pollution.

In addition, for each sample plot, data are collected for the following parameters and classifled into common categories laid down in Regulation 1696/87. These parameters include : country, actual latitude and longitude coordinates, observation point number, altitude, aspect, avallability of water to princlpal species, humus type, mean age of dominant storey, date of observation, tree number, tree species and observations of easily identifiable damages.
For the Community network these data are collected on common census forms (see Annex 1) which are forwarded to the Commission.

## 1987 AND 1988 COMMUNITY INVENTORY OF DAMAGE CAUSED TO FORESTS

## Completition

The alm of the Community scheme, provided for under Article 2 of Council Regulation (EEC) No 3528/86, is to establish a periodic inventory of the health status of forests in the Member States of the EEC by collecting representative and comparable data on the extent and intensity of forest damage and to monitor its development.

The installation of the Community network of observation plots began in 1987 and the first observations of forest damage were carried out during the summer. The Commission has received information from 1009 Community observation plots and for 26390 sample trees in 1987 and from 1526 plots and 37607 trees in 1988. In this two initial years total coverage of the Community's forests has not yet been accomplished; approximately 300 forest observation plots are still to be established. In 1988, about $85 \%$ of the Communlty's forests were covered by the inventory.
The table hereafter gives the numbers of sample trees and plots by Member States for 1988.
In 1988 the grid network has been entirely established over the total forest territorles of all member states except France and Italy. As regards ltaly, most of the territory has been covered and damage data have been received for all reglons except for Sardegna and Sicilia. Only about half of the french forests have been covered by the network. In 1987 the Community inventory did not cover a large part of the forested area of the Community and the 1987 results may therefor not be considered entirely representative of the Communlty's forests as a whole.
The representativity of the survey has been largely extended in 1988 , most of the Member States having by now completed their network.

## Main characteristics of sample trees

Within the sample of trees assessed in 1988, the following species, mentioned in declining order, are the most represented : Picea abies (12,4\%), Pinus sylvestris (10\%), Fagus sylvatica ( $9,1 \%$ ) Pinus pinaster ( $7,6 \%$ ), Quercus ilex $5,8 \%$ ), Pinus halepensis $(4,2 \%)$, Quercus suber $(3,9 \%)$, Quercus robur $(3,8 \%)$, Pinus nigra ( $3,6 \%$ ), Abies alba, Quercus petraea, Quercus cerris ... The total proportion of broadleaves and conifers is $44.92 \%$ and $55.08 \%$ respectively for the 1987 survey and $49,7 \%$ and $50,3 \%$ respectively for the larger and more representative sample of 1988.

In 1988 the great majority of sample trees was situated on plots which have been classified in the water availability class "sufficient" (86\%), 12\% in "insufficient" and 2\% in "excessive".
As far as humus type is concerned, $37.5 \%$ of the trees were on mull type humus, $39 \%$ on moder, $13 \%$ on mor and only $0,5 \%$ and $1.5 \%$ respectively on anmor and peat. For $8 \%$ of all sample trees the humus type was not defined.

As to altitude, $52,9 \%$ of the total tree sample was situated at less than 500 m , $30,3 \%$ between 500 and 1000 m and $16,8 \%$ above 1000 m . As to aspect the plots were generally fairly equally distributed among the classes except for class 9 (flat) which incudes the majority of sample-trees. There was a very sightly higher proportion of north-facing plots. As regards age classes, 59\% of sample trees were located in less than 60 years old stands and 29,5\% in standsof 60 years of age or more. $11,5 \%$ of trees were observed in stands with irregular age distribution.

## Presentation and definitions

The damage results are presented in terms of the percentage of the tree sample assessed falling into each defollation class. In addition certaln tables also indicate the percentage of observed plots within each category; these figures indicate the percentage of all the plots for which at least one sample tree has been classified into the category in question. it is however unlikely that all sample trees within a plot fall into the same class and therefore the plot will be represented in more than one class and the total \% of plots for all the classes will add to more than 100\%. For this form of presentation the percentage of plots in the sence above is useful for obtaining an indication of whether the trees of a certain defollation class are widely distributed or concentrated within a limited number of plots.

A distinction between the first two defoliation classes is often considered subjective and it is debatable whether a tree in the defoliation class 1 can really be described as "damaged" as this may be a natural state for many trees under certain conditions.
However, before trees reach higher defoliation classes, they pass at a certaln phase of development the stage of defollation class 1. This class may therefore be interpreted as a "warning class". Time trends of defoliation class 1 established on the base of recurring inventories can be highly indicative in this respect.
To facilitate interpretation of the results, defoliation class 0 "not defollated " (10\% or less)" and class 1 "slightly defoliated"(10-25\%) have been combined for some tables and interpretations.

Defoliation classes 2,3 and 4 represent considerable defoliation. (Crown density less than $75 \%$ of what would be considered as normal) The total percentage of sample trees classified in those three defollation classes gives a reliable measure for the presence of significant damage. Per definition trees classified in defoliation classes 2, 3 or 4 wlll be considered hereafter as "clearly damaged trees". A sample plot will in this report be considered as "damaged" if the weighted average defollation class of the sample trees of this plot is 2,3 or 4.

## Comparability of 1987 and 1988 results - warning:

As the number of sample trees was largely increased in 1988 compared to 1987 (26390 sample trees in 1987, 37607 sample trees in 1988) the global results of these two first years are not fully comparable.
The increase of the number of sample trees is mainly due to the extension of the inventory grid in Spain, Portugal and Greece.
However in order to allow certain comparisons to be made between 1987 and 1988
results, a sub-sample has been defined which consists of those sample trees which have been observed in 1987 and in 1988. This sub-sample contains 19.651 trees referred to hereafter as common sample trees 1987/1988 (CST's).
All the comparisons between 1987 and 1988 observations given hereafter are based on this sub-sample.
The global results (total sample) of 1988 are largely representative for the Community's forests of which they give a highly interesting picture of their composition and health condition.

The following table gives the main results concerning defoliation for all specles jointly, conifers and broadleaves. These results are based on common sample trees (CST's) for 1987 and 1988.

DEFOLIATION OF ALL TREE SPECIES BASED ON COMMON 1987/1988 TREE SAMPLE

```
Number of sample trees = 19.651 percentage of trees:
Defoliation classes: 1987 1988
not 58,67 57,72
slightly 26,57 29,42
moderately 13,56 11,39
severely 1,07 1,12
dead 0,12 0,35
(see also FIG. 06)
```

DEFOLIATION OF BROADLEAVES BASED ON COMMON 1987/1988 TREE SAMPLE

```
Number of sample trees = 8.809 percentage of trees:
Defollation classes:
1 9 8 7
    1 9 8 8
not
64,71
66,09
slightly
moderately
severely
dead
22,72 24,26
22,72 24,26
11,76
    8,56
    0,60
    0,74
    0,22
    0,35
```

(see also FIG. 07)
DEFOLIATION OF CONIFERS BASED ON COMMON 1987/1988 TREE SAMPLE
Number of sample trees $=10.842$
percentage of trees:
Defoliation classes:
1987
1988
not
53,76
50,92
slightly
moderately
severely
29,71
33,61
15,02
13,69
dead
1,46
1,44
$0,05 \quad 0,34$
(see also FIG. 08)

## Defollation of sample trees

(See Tables TAB. 01, 03 and figures FIG 06, 07 and 08)

Within the Community inventory of damage caused to forests, the percentage of observed all trees classified into defoliation classes 2, 3 or 4 (moderately or severely defollated or dead) was $14,61 x$ in 1987 and $10.15 x$ in 1988. If only the common sample trees are compared, those two values are respectively $14.75 \%$ and $12.86 \%$.

The difference between the two first values in the paragraphe above (total samples) is strongly influenced by the increase of the sample size between 1987 and 1988, whereas the difference between the two last values (CST's) gives an indication on the evolution of damage between 1987 and 1988 based on 19.651 common sample trees.

Comparison of the observed defollation of all tree species jointly between 1987 and 1988 reflects a slight decrease of the percentage of considerably defoliated trees: - 1.91\%. This difference is statistically significant. In 1988 there were however $2.85 \%$ more trees in the "warning" class (class 1) than the year before.
Most of the defoliation in the joined classes 2,3 and 4 refered to here above was "moderate" ( $13.56 \%$ in 1987 and $11.39 \%$ in 1988 , percentages of CST's).

Between 1987 and 1988 the percentage of sample trees, all species taken together, showing less than $10 \%$ or no defoliation (class 0 ) decreased by $0.95 \%$ (CST's).
For conifers this percentage decreased by 2.85\%.
The percentage of broadleaves showing less than $10 \%$ or no defoliation however increased by $1.38 \%$.
This last interpretation thus shows a sllght deterloration of the vitality off trees (all species together), a slight deterioration of the vitality of conifers and a slight improvement of the vitality of broadleaves.

For both, broadleaves and conifers, the percentage of trees classified in damage classes 2,3 and 4 decreased during this periode, but whereas the percentage of trees in defoliation class 0 increased for broadleaves, it decreased for conifers. This means that the improvement in the situation for conifers exclusively consisted of a passage of trees from defollation class 2 to defoliation class 1, and that the situation for conifers silghtly worsened between 1987 and 1988 if the warning class is taken into consideration.
(see figures FIG 06, 07 and 08).

The distribution of the sample trees of different defollation classes in all surveyed plots in 1987 and 1988 was as follows (total sample):
percentage of observed plots with
presence of at least one tree in the corresponding defoliation class:

|  | 1987 | 1988 |
| :--- | ---: | ---: |
| defoliation classes: |  |  |
| none | 87.22 | 93.51 |
| slightly | 66.70 | 65.92 |
| moderately | 47.67 | 41.28 |
| severely | 11.30 | 10.48 |
| dead | 2.87 | 3.41 |
|  |  | 1,526 |

As this table shows, moderate and severe defoliation was observed on fewer plots in 1988 than in 1987. While interpreting these results the Increase in the number of sample plots between 1987 and 1988 , notably in mediterranean regions, must be taken into consideration.

In 1987 there were 129 plots without any tree classified in defoliation class 0 (12.78\% of observed plots), whereas in 1988 only 99 plots had no single tree showing less than $10 \%$ defoliation ( $6.49 \%$ of observed plots).

## Discoloration of sample trees

(see tables TAB. 02, 04 and figures 06, 07 and 08)

With regard to discolouration within the total tree sample, $86.03 \%$ showed no or negligible discolouration in 1987. This was the case for 86.81X In 1988. Comparing discoloration observed on common sample trees, these percentages are respectively 85.6 and $87.4 \%$.

10\% of CST' s showed slight discoloration in both years whereas the percentage of CST's showing moderate or severe discoloration was respectively $3.7 \%$ and $2.5 \%$ in 1987 and 1988.

In 17.64\% of the plots observed in 1987 and in $16.12 \%$ of all plots observed in 1988, at least one tree was moderately or severely discoloured.

The percentage of trees showing discoloration decreased for broadleaves but not for conifers (see TAB 20 and 21).

The global results indicate a silght but significant improvement of the situation between 1987 and 1988.

## Easily Identifiable damage

Table TAB $\frac{28}{}$ indicates the presence of easily identifiable damages for the total 1988 sample.
These have been divided into eight categories : game and grazing (damage to trunk, bark ...), insects, fungi, abiotic agents (wind, drought, snow etc.), direct action of man (poor silvicultural practices, logging, ...), fire, known local/regional pollution (this does not include long-range air pollution), other.
For these categories, only the presence of such damage is indicated and is presented in terms of the percentage of the total tree/plot sample affected; there is no indication of the intensity of the damage. It is quite possible for a tree to show signs of more than one type of damage identifiable to a known cause and therefore to be represented more than once in the damage table.
25.97\% of the total tree sample had one or more identifiable causes of damage attributed to it in 1987 which corresponds to $52.76 \%$ of the plots having at least one tree affected. These two percentages were respectively 33.39\% and 62.19\% in 1988.

As these results show, easily identifiable damage factors were frequently observed on sample trees. Among them, the proportion of insect attack was particulary high with respectively $16.80 \%$ and $19.42 \%$ of the sample trees ( $36.13 \%$ resp. $40.10 \%$ of plots) affected in 1987 and In 1988..

For 6.49\% resp. 4.64\% of the sample fungi was present (17.71\% resp. $15.6 \%$ of plots). For the remaining parameters the frequency percentages are all under 5\%. For $0.48 \%$ of all sample trees observed in 1987 and $0.32 \%$ of those observed in 1988, damage could be attributed to a local pollution source; the percentage of plots affected was $0.72 \%$ resp. $0.66 \%$ which suggests that the damage was relatively concentrated.

In both 1987 and 1988 the defollation pattern of all trees not showing any identifiable damage is quite different of the defoliation pattern of all trees showing some kind of identiflable damage:

> percentage of damaged sample trees: (defoliation classes 2,3 and 4 )

|  | 1987 | 1988 |
| :--- | :---: | ---: |
| trees with presence of some | $\mathbf{2 1 . 4 6 \%}$ | $15.15 \%$ |
| identifiable damage |  |  |
| trees without any Identifiable | $\mathbf{1 1 . 8 4 \%}$ | $\mathbf{7 . 6 5 \%}$ |
| damage |  |  |
|  |  | $26.33 \%$ |
| abiotic agents | $27.32 \%$ | $16.77 \%$ |
| insects | $23.87 \%$ | $15.18 \%$ |
| fungi | $24.02 \%$ | $13.18 \%$ |
| game and grazing | $41.24 \%$ | $9.18 \%$ |
| action of man | $20.52 \%$ | $13.55 \%$ |
| fire | $26.05 \%$ | $13.12 \%$ |
| known pollution | $26.99 \%$ | $13.85 \%$ |
| other damage | $27.44 \%$ | $17.98 \%$ |
| multiple ident. damage | $30.95 \%$ | 37.607 |
| total number of sample trees: | 26.390 |  |

Differences between 1987 and 1988 may be due to a large extend to the extension of the survey notably in mediterranean regions between these two years. Nevertheless there appears in both years a significant difference in the percentages of damaged trees if one considers only sample trees with presence of some identiflable damage cause or if only sample trees without any such damage cause are considered.

The percentage of trees showing damage due to known air pollution and classfied in defoliation class 1 (sligthly defoliated) is particulary high compared to sample trees showing no such damage, wheras the percentage of considerably defoliated trees (defoliation classes 2,3 and 4) is not significantly higher among trees showing damage due to known pollution than among sample trees showing damage due to other identifiable causes :

|  | percentage of sample trees <br> in defoliation class 1 |  |
| :--- | :---: | :---: |
| no ident. damage | $\underline{1987}$ | $\underline{1988}$ |
| any ident. damage | $23.47 \%$ | $19.93 \%$ |
| known pollution damage | $33.78 \%$ | $32.23 \%$ |
|  | $43.65 \%$ | $43.44 \%$ |

Comparison of broadieaves and conifers regarding defoliation
percentages of common sample trees in each defoliation class:

| broadieaves | conifers |
| :--- | :--- |
| $1987 / 1988$ | $1987 / 1988$ |

defoliation classes:
none
slight
moderate
severe
dead
classes
2,3 and 4:
total number of
common sample trees:
64.7 / 66.1
22.7 / 24.3
11.8 / 8.6
$0.6 / 0.7$
$0.2 / 0.3$
$12.6 / 9.6$ 8.809
53.7 / 50.9
$29.7 / 33.6$
$15.0 / 13.7$
$1.5 / 1.5$
$0.1 / 0.3$
$16.6 / 15.5$
10.842

Evolution of the percentage of damaged trees between 1987 and 1988: broadleaves: - 3.0 $\chi$ conifers: - 1.1\%

Evolution of the percentage of trees showing defoliation : broadleaves: $\quad-1.4 x$ conifers: $+2.8 \%$

As the table hereabove shows, conifers were globally more defollated than broadleaves in 1987 and in 1988.

Vitality of both conifers and broadleaves improved between these two years but only the condition of the broadleaves improved significantly. The improvement of the vitality of conifers was however limited to a move of trees from defoliation class 2 to defoliation class 1.

The percentage of coniferous sample trees in defoliation class 0 "no defoliation" decreased by $2.8 \%$, which means that the vitality of conifers between the two years could as well be interpreted as deteriorating.

For both years the percentage of trees with more than $10 \%$ defoliation was high, as well for broadleaves (more than one third affected), as for conifers (nearly half of the sample trees affected):
conifers: $\quad 46.3 \%$ in 1987 and $49.1 \%$ in 1988
broadleaves: $35.3 \%$ in 1987 and $33.9 \%$ in 1988

It should however be noted that about two thirds of all these trees showing some defoliation, as well conifers as broadleaves, have been classified in defoliation class 1, "slightly defoliated".
Most of the trees considerted as "damaged" were classified in defoliation class 2, "moderately defollated".
(Figures FIG. 06, 07, 08 and tables TAB 05, 12, 17,18 give detailed results)

Comparison of broadleaves and conifers regarding discolouration

```
                    1987 1988
Percentage of broadleaves showing discoloration : 15.57 % 11.56 %
(CST's)
Percentage of conifers showing discoloration : 13.46 % 13.53%
(CST's)
Wheras in 1987 discolouration was more frequently observed on broadleaves than on conifers, the opposite was true in 1988. Wheras discolouration remained unchanged on conifers, it significantly regressed on broadleaves.
Figures FIG 07,08 and tables \(\operatorname{TAB} 06,19,20,21,27\) contain more details.
```


## Defollation and discolouration by species

In the field the species of each sample tree was identified and coded following a llst of more than 100 species provided by the Commission. For this report, the species have been grouped and those most frequent within the sample are presented hereafter.

Three categories of oak are included in the following table : deciduous oak, Quercus ilex and Quercus suber. The latter two species are mentioned separately due to their importance in the Mediterranean region and the relative lack of information on the health status of these species. Although Quercus suber is relatively well represented in the total tree sample established for the inventory, only 261 trees had been assessed in 1987 because Portugal was unable to carry out the observations that year. In 1988 a total of 1.478 sample trees of this species were assessed, from which 1.160 were situated in Portugal and 317 in Spain. A fourth category of "other evergreen oak" was abandoned due to poor representation within the sample.

Detalled results are given by following tables:

TAB 12: Defoliation by species group, total sample 1988
TAB 13, 14, 15 and 16: Defoliation by species group and climatic regions for 1988
TAB 17 and 18: Defoliation by species group CST's for 1987 and 1988
TAB 19: Discolouration by species group, total sample 1988
TAB 20 and 21: Discolouration by species group CST's 1987 and 1988
TAB 26: Defoliation by species, total sample 1988
TAB 27: Discolouration by species, total sample 1988

# Defollation by species groups for 1987 and 1988 Survey results for common sample trees 

## Defoliation

| none | slight | moderate | severe | dead |
| :---: | :---: | :---: | :---: | :---: |
| $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| $1987 / 1988$ | $1987 / 1988$ | $1987 / 1988$ | $1987 / 1988$ | $1987 / 1988$ |


| Castanea sativa | $72.6 / 77.7-20.9 / 14.95-5.98 / 4.98-0.33 / 1.50-0.17 / 0.83$ |
| :--- | :--- |
| Nb. $=602$ |  |$\quad$| Eucalyptus sp. |
| :--- |
| Nb. $=274.8 / 94.2-25.2 / 4.74-16.06 / 0.73-0.00 / 0.00-0.00 / 0.36$ |
| Fagus sp. |
| Nb. $=2.226$ |

Quercus sp. (dec.) 71.9/66.6-16.1/20.10-11.27/11.98-0.52/0.89-0.23/0.42 Nb. = 2.129

Quercus ilex
53.8/59.1-28.7/33.49-16.67/6.89-0.80/0.40-0.00/0.08 $\mathrm{Nb} .=1.248$

Quercus suber
$33.8 / 43.5-42.5 / 45.41-23.19 / 9.66-0.48 / 1.45-0.00 / 0.00$
$\mathrm{Nb} .=207$

Other broadl.
75.7/72.9-16.4/20.87-6.69/4.95-0.57/0.71-0.61/0.61
$\mathrm{Nb} .=2.123$

Abies sp.
45.4/47.7-20.8/21.85-27.31/27.10-5.88/2.10-0.63/1.26

Nb. $=476$

Larix sp. $66.5 / 61.5-28.1 / 28.54-5.19 / 9.58-0.00 / 0.00-0.20 / 0.40$
Nb. $=501$
Picea sp. $\mathrm{Nb} .=4.180$

Pinus sp.
$\mathrm{Nb} .=5.311$
Other conifers $\mathrm{Nb}=374$

All broadl. $64.7 / 66.1-22.7 / 24.26-11.76 / 8.56-0.60 / 0.74-0.22 / 0.35$ Nb. $=8.809$

All conifers $53.8 / 50.9-29.7 / 33.61-15.02 / 13.69-1.46 / 1.44-0.05 / 0.34$ $\mathrm{Nb} .=10.842$

All species $58.7 / 57.7-26.6 / 29.42-13.56 / 11.39-1.07 / 1.12-0.12 / 0.35$ $\mathrm{Nb} .=19.651$

TABLE DEFOL TAB 26 gives the detalled results for the total 1988 sample for the dlfferent species taken separately

The comparison of the results for the main forest tree species in 1987 and 1988 allows following statements:


#### Abstract

Ables sp. showed the highest defollation in both years with resp. 33.82 and $30.46 \%$ of CST's in defoliation classes $2+3+4$ Joined. If the total sample of 1988 containing 1188 trees is considered, the percentage of trees in defoliation classes $2+3+4$ Jolned is $21.13 x$. The observed defoliation of Ables sp. is malnly due to the poor vitality of Ables alba for which $27.89 \times$ of the total 1988 sample was classifled as moderately or severely defollated. Furthermore, Ables sp. had the highest proportion of dead trees in 1987 and in 1988: resp. 0.63 and $1.26 \%$ of CST's.

Picea sp. showed considerable defoliation with resp. 20.67 and $19.16 \times$ of common 87/88 sample trees in defoliation classes $2+3+4$ jolned. Of all sample trees observed in 1988 the percentages in these defoliation classes Joined were as follows for the two most represented species of Picea: Plcea ables: 15.73 \% (total number of sample trees: 4.677) Picea sitchensis: 21.43x (total number of sample trees: 843) The vitallty of both Abies sp. and Picea sp. silghtly improved between 1987 and 1988.


Pinus sp. and Larix sp. were less defollated, but for both species groups the percentage of defollated sample trees increased between 1987 and 1988.
Among the different species of Pinus, $P$. contorta showed the highest proportion of trees in the classes $2+3+4$ joined in 1988 with $18.99 \%$ followed by P. pinea with 14.47\%. 11.21\% of P. sylvestrls were classifled in these three classes in 1988. 100\% of P. mugo sample trees showed moderate or severe defoliation in 1988, but the sample size of only 24 trees of this species leads us to ignore that score in this context.

Among broadleaves, Quercus suber showed in 1987 the highest proportion of damaged trees with $23.67 \times$ of CST's damaged. This proportion however strongly decreased in 1988 to reach 11.11x. All those common 87/88 sample trees of the species $Q$. suber were situated in Spain. In 1988 the number of sample tres of $Q$. suber was strongly increased by the extension of the survey to Portugal ( +1160 trees). $97 \%$ of those new sample trees were classified in defoliation class 0 . As a consequence, only $2.09 \%$ of the total 1988 sample of $Q$. suber (1.478 trees) was classified in defollation classes 2,3 or 4.

Fagus sp. and deciduous species of Quercus were in 1988 among broadleaves the two species presenting communitywide the highest proportion of damage with respectively 12.22 and $13.29 \times$ of common sample trees classified in defollation classes 2, 3 or 4. However, between 1987 and 1988 Fagus sp. showed a net tendency to improvement, whereas deciduous Oaks deteriorated:
$+3.6 \%$ of sample trees in defoliation class 0 in 1988 for Fagus sp. - 5.3\% in defoliation class 0 in 1988 for deciduous Quercus sp. Quercus frainetto showed a particulary high defoliation score in 1988 with $\mathbf{2 8 . 9 3 \%}$ of sample trees in defollation classes 2,3 or 4 , and 51.2 \% in defollation class 1.
Q. petraea and Q. robur had resp. 14.41 x and $\mathbf{1 6 . 3 X}$ in defoliation classes 2, 3 or 4 in 1988 (total sample).

Eucalyptus sp. which showed considerable defoliation in 1987 completely recovered in 1988. The common sample trees refered to were all observed In Spain where favorable wheather conditions in 1988 are considered as having caused this recovery. This result is confirmed by the 1988 survey Including Portugese sample trees: $0.51 \%$ of all 979 sample trees
classified in defoliation classes 2,3 or 4 and $3.78 \%$ in class 1.

## Discolouration by species groups for 1987 and 1988 Survey results for common sample trees

## Discolouration

| none | slight | moderate | severe | dead |
| :---: | :---: | :---: | :---: | :---: |
| $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| $1987 / 1988$ | $1987 / 1988$ | $1987 / 1988$ | $1987 / 1988$ | $1987 / 1988$ |

Castanea sativa $75.2 / 80.7-18.6 / 16.78-5.81 / 1.66-0.17 / 0.66-0.17 / 0.83$
$\mathrm{Nb} .=602$
Eucalyptus sp. 65.7/97.8-32.5/1.46-1.82/0.36-0.00/0.00-0.00/0.36 Nb. $=274$

Fagus sp. $93.1 / 91.3-5.44 / 6.20-1.30 / 2.20-0.18 / 0.22-0.00 / 0.09$ $\mathrm{Nb} .=2.226$

Quercus sp.(dec.) 92.6/89.4-3.33/7.05-3.43/2.91-0.38/0.19-0.23/0.42 Nb. = 2.129

Quercus llex 63.9/88.2-26.5/11.62-8.81/0.00-0.72/0.08-0.00/0.08 Nb. $=1.248$

Quercus suber
51.7/73.4-41.1/25.60-7.25/ 0.97-0.00/0.00-0.00/0.00

Nb. = 207
Other broadl.
$87.5 / 87.2-8.1 / 9.75-3.49 / 2.17-0.38 / 0.24-0.61 / 0.61$
$\mathrm{Nb}=2.123$
Abies sp. $89.9 / 78.8-8.6 / 17.86-0.84 / 2.10-0.00 / 0.00-0.63 / 1.26$
$\mathrm{Nb}=476$
Larlx sp. $87.0 / 88.4-11.0 / 9.98-1.40 / 1.20-0.40 / 0.00-0.20 / 0.40$ $\mathrm{Nb} .=501$

Picea sp. $91.4 / 91.1-6.8 / 5.81-1.36 / 2.70-0.36 / 0.38-0.00 / 0.05$ $\mathrm{Nb}=4.180$

Pinus sp. 81.9/83.3-13.3/14.27-4.22/1.68-0.60/0.24-0.02/0.49
$\mathrm{Nb}=5.311$

Other conifers
$\mathrm{Nb} .=374$
All broadl.
$\mathrm{Nb}=8.809$
All conlfers $86.5 / 86.5-10.3 / 10.91-2.71 / 2.01-0.45 / 0.27-0.05 / 0.34$ $\mathrm{Nb} .=10.842$
$93.3 / 87.2-6.2 / 12.57-0.53 / 0.00-0.00 / 0.00-0.00 / 0.27$
$84.5 / 88.4-11.1 / 9.06-3.87 / 1.93-0.34 / 0.22-0.22 / 0.35$

All species
$85.6 / 87.4-10.6 / 10.08-3.23 / 1.97-0.40 / 0.24-0.12 / 0.35$
$\mathrm{Nb}=19.651$

TABLE TAB 27 gives the detailed results for the total 1988 sample for the different species taken separately

In Table hereabove, which presents discolouration by species groups for common 87/88 sample trees, considerable discolouration has been noted for Quercus suber, Quercus llex and to a lesser extent for Castanea sativa.
If one considers the total 1988 sample including also Quercus suber from Portugal, discolouration of this species appears as being less important: $86.5 \%$ of all 1.478 sample trees in discolouration class 0.

Hybrides of Populus sp., Quercus frainetto, Platanus orientalis, Quercus pubescens, Quercus robur and Fagus sylvatica are other important broadleaves showing notable discolouration (see table TAB 27). Most of the observed discolouration was however classifled as "slight". Hybrides of Populus sp. had the highest score in discolouration classes 2,3 or 4 in 1988.

Eucalyptus sp . which showed a high percentage of trees in discolouration class 1 in 1987, fully recovered in 1988. This is confirmed by the results of the total 1988 sample where $99.3 \%$ were classified in discolouration class 0.

Very cautious interpretation of these results is required as the most affected species are mainly from the southern regions of the Community where dry climatic conditions play an important role in forest health.

A notable increase in discolouration between 1987 and 1988 was noted for Fagus sp. and Ables sp.

Hybrides of Populus sp., Quercus fralnetto, Castanea sativa, Platanus orientalis, Quercus robur and Fagus sylvatica are other important broadleaves showing notable discolouration if the total 1988 sample is considered.

Among conifers, Abies cephalonica has with $14.86 \%$ the highest percentage of trees in discolouration classes 2,3 and 4 (total sample 1988) followed by Picea sitchensis (7.94\%) and Pinus contorta (7.58\%)..

## Possible relationship between discolouration and defoliation

Discolouration may be due to a number of causes such as nutrient deficiency, insects, atmospheric pollution and so on. The following table shows that discolouration, besides being a vitality indicator in itself, to some degree can serve as a predictor of the future development of defoliation. While trees presenting discolouration in 1987 generally deteriorated in respect to defoliation, trees without discolouration in 1987 showed no evolution or a slight improvement:

Defoliation in 1988 as compared to 1987

| Discolouration | Improvement <br> in 1987: of trees | Constant <br> Nb. of trees | Deterioration <br> Nb. of trees |
| :--- | :---: | :---: | :---: |
| none | 2.484 | 12.207 | 2.101 |
| silght | 263 | 1.124 | 697 |
| moderate | 77 | 292 | 257 |
| severe | 6 | 37 | 30 |

Defollation and discolouration by age class for broadleaves and conlfers

See Tables TAB 05, 06, 07 and figures FIG 01, FIG 02
A very pronounced tendency for the percentage of moderately or severely defoliated and dead trees to increase with age is apparent in figures 01 and 02. For trees younger than approximately $61-80$ years the degree of defoliation is around $10 \%$ (defoliation classes $2+3+4$ ) and above this age class defoliation begins to increase.

Broadleaved trees appear to deteriorate from 80 years upwards.
For conifers the number of defoliated trees already increases from the age of 60 years and continues to worsen at a higher rate than broadleaves.

Table TAB 05 indicates the proportion of defoliation for broadleaves and conifers of less than 60 years and more than or equal to 60 years. The total defoliation percentages (classes $2+3+4$ ) for broadeaves and conifers are 8.61\% and 11.75\% respectively (total sample 1988). For both broadleaves and conifers of less than 60 years the degre of defollation is roughly of the same order ( 6.7 and 8.4\%) but over 60 years there is a distinct difference with $19.57 \%$ of conifers in defoliation classes 2, 3 and 4 compared to $12.7 \%$ of broadleaves.

Discolouration is fairly similar for broadleaves and conifers under 60 years with $90.08 \%$ and $85.44 \%$ respectively showing no or negligible discolouration; the figures for moderate and severe discolouration are also of the same order. For broadleaves over 60 years there is approximately the same proportion of trees with signs of discolouration as those of the younger category but more of the older trees are slightly discoloured. Irregular stands appear to suffer somewhat more as only $80.03 \%$ of the broadleaves in this category have normal colour (Tables TAB 05 AND TAB 06).

## Inventory results by climatic regions

In the Community survey certain site characteristics are collected at each sample plot, i.e. latitude, altitude, aspect, water avallability and humus type.
Another major site characteristic, the climate type, has been attributed to each plot in the data processing stage in function of the geographical localisation of the plot.

Four large climatic regions are distinguished (see MAP 07):

- Mediterranean
- Atlantic
- Sub-atlantic
- Mountalnous

The mediterranean region comprises areas with rather dry summers and winter rain. Greece, the greater part of Italy, a small part of France, most of Spain and Portugal are covered by this zone. 44\% of all plots belonged to this zone in 1988.

The atlantic region comprises a broad belt along the Atlantic coast, starting at the nothern border of Portugal, running across parts of France and Belgium and covering all of the Netherlands, Denmark, United Kingdom and ireland. The climate in this region is generally moist and windy with moderate temperatures both in summer and winter and with long transitional seasons. $16 \%$ of the sample plots were located in this region in 1988.

The sub-atlantic region comprises Luxembourg, the greater part of the Federal Republic of Germany part of Belgium and France and a small part of Italy.
The climate in this region generally shows bigger differences between summer and winter and less wind than in the Atlantic region. $35 \%$ off the sample plots belonged to this region in 1988.

The mountainous region consists of plots that have been excluded from their original climatic region because of high altitude. In the southern part of the Community (up to the latitude running along the southern edge of the Alps and trough Lyon) plots situated more than 1500 m above sea level have been considered mountainous. North of this delimiting latitude, plots situated more than 1000 m above sea level have been considered mountainous.
$5 \%$ of the sample plots belonged to this region in 1988.
In this attempt to define climatic regions simplicity has been striven at in order to avoid excessive splitting up of the data material and to match the use and collecting method of the data.

The table on page 20 shows defollation observed in 1988 for the total sample and for conifers and broadleaves by large climatic regions. it also Indicates the sample sizes for conifers and broadleaves in each region for 1988.
More information is given by figure FIG 09 and tables TAB 08, 09, 10, 11 (defoliation) and $\operatorname{TAB} 22,23,24,25$ (discolouration).

The 1988 results show little difference in defoliation between the atlantic and sub-atlantic regions if all species are taken together.
Mediterranean and mountalnous regions however show for all species together significantly less defoliation than the two other regions.

Conifers show the highest defoliation in the sub-atiantic region ( $51.79 \%$ of sample trees with more than $10 \%$ defoliation, agalnst 45.18 \% in the atlantic region), whereas broadleaves are the most defollated in the atlantic region ( $42.11 \%$ with more than $10 \%$ of defoliation against $32.6 \%$ in the sub-atlantic region).

Comparison of 1987 and 1988 results shows most evolution in the at lantlc region with $5.3 \%$ fewer common sample trees in defoliation class 0 in the second year ( $44.2 \%$ of CST's showed some defoliation in 1987 and 49.5 \% in 1988).

In the mountainous region the percentage of trees showing some defoliation climbed from 28.2 in 1987 to 31.4 \% in 1988.

In the mediterranean region the total percentage of CST's with defoliation showed no variation between 1987 and 1988, however the percentage of CST's with more than $25 \%$ defoliation (classes 2,3 and 4) decreased from 11.3 to $7.4 \%$.

The percentage of common sample trees in the sub-atlantic region showing no defoliation (class 0) slightly decreased between 1987 and 1988 (from 50.8 to $49.5 \%$ ) but the percentage of CST's showing moderate or severe defoliation decreased too (from 17.83 to $15.8 \%$ ).

As regards discolouration, this was in 1987 most frequently observed in the mediterranean region with $24.0 \%$ of common sample trees showing some discolouration (classes $1+2+3+4$ ). This percentage decreased to $17.3 \%$ in 1988.

The situation in the atlantic region also improved between 1987 and 1988: 16.6 \% of the common sample trees (CST's) showed signs of discolouration in 1987 and $14.2 \%$ in 1988. Between 1987 and 1988 however that percentage increased in the mountalnous region (from $18.4 \%$ to $22.4 \%$ ) and in the sub-atlantic region (from $4.8 \%$ to $6.2 \%$ ).
In 1988 the highest percentage of trees showing discolouration was observed in the mountainous region.
climatic region :
varlation between 1987 and 1988:
defoliation discolouration
atlantic
sub-atlantic
mediterrainean

| + | - |
| :--- | :--- |
| + | + |
| - | - |
| + | + |

## Defollation and discolouration by large climatic reglons

1988

Species group:

```
Climatic region
DEFOLIATION (% of sample trees):
sample size:
    total nb.
```

none slight moderate severe dead

ATLANTIC

| Broadleaves | 57.89 | 30.69 | 9.85 | 1.36 | 0.21 | 2.356 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conifers | 54.82 | 28.98 | 12.90 | 2.69 | 0.60 | 3.495 |
| All specles | 56.06 | 29.67 | 11.67 | 2.15 | 0.44 | 5.851 |

SUB-ATLANT IC

| Broadleaves | 67.40 | 22.23 | 9.76 | 0.50 | 0.12 | 6.033 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conifers | 48.21 | 35.70 | 15.26 | 0.68 | 0.15 | 6.613 |
| All species | 57.36 | 29.27 | 12.64 | 0.59 | 0.13 | 12.646 |

## MED ITERRANEAN

| Broadleaves | 74.96 | 18.00 | 5.79 | 0.98 | 0.27 | 9.785 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Conifers | 74.68 | 19.12 | 5.25 | 0.82 | 0.12 | 7.276 |
| All species | 74.84 | 18.47 | 5.56 | 0.91 | 0.21 | 17.061 |

## MOUNTA INOUS

| Broadleaves | 87.08 | 10.76 | 2.15 | 0.00 | 0.00 | 511 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conifers | 65.02 | 25.68 | 8.71 | 0.33 | 0.26 | 1.538 |
| All species | 70.52 | 21.96 | 7.08 | 0.24 | 0.20 | 2.049 |

EEC

| Broadleaves | 70.70 | 20.77 | 7.49 | 0.85 | 0.20 | 18.685 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conifers | 60.98 | 27.27 | 10.44 | 1.08 | 0.23 | 18.922 |
| All specles | 65.81 | 24.04 | 8.97 | 0.96 | 0.22 | 37.607 |

## Defoliation and discolouration by altitude

Figures $03,04,05$ indicate defoliation (classes $2+3+4$ ) in relation to altitude which is presented graphically with the application of a 150 m moving average to identify the general trend. In general, the lower altitude classes ( 550 m ) are the most represented in the total sample and the number of trees in each class then gradually declines with increasing altitude. The relation altitude-defoliation is represented for three climatic regions separately.

High altitude has frequently been considered as a contributing factor in reducing resistance of stands against damaging agents including atmospheric pollution. The results of the Communlty inventory in fact show a positive correlation between altitude and defoliation in the subatlantlc climatic region as defined above. This increase in defoliation is clearly observed up to 900 m . The same trend is observed in the medlterranean region but here the increase of defoliation with altitude is less pronounced.
However, if the atlantic climatic region is considered, the observed trend is opposite, defoliation showing here a negative correlation with altitude. This fact has not yet been mentioned in the literature and surely merits further investigations in the context of research on cause-effect relations. The above described correlations may be influenced by multiple factors, some being linked to regional differences in age- and species distributions or the confinement of high altitude sample plots to relatively few regions.

The inventory results for the sub-atlantic region further indicate a tendency of defollation to decrease with altitude at levels higher than 900 m above sea level.

Percentages of sample trees in defoliation classes $2+3+4$ jointly by altitude and climatic regions
Altitude Atlanticregion Sub-atlantic region Mediterranean region

|  | \% | sample size | \% | sample size | \% | sample size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-150 m | 16,1 | 3.263 | 7.7 | 402 | 5.1 | 1.756 |
| 151-300 m | 14.4 | 1.227 | 10.1 | 2.406 | 2.1 | 2.736 |
| 301-450 m | 11.7 | 571 | 12.9 | 3.388 | 5.0 | 2.215 |
| 451-600 m | 8.1 | 322 | 16.6 | 2.888 | 8.0 | 1.727 |
| 601-750 m | 10.1 | 256 | 17.0 | 1.522 | 7.9 | 2.091 |
| 751-900 m | 12.1 | 116 | 18.5 | 868 | 8.2 | 1.928 |
| 901-1050 m | 0.0 | 72 | 11.5 | 715 | 8.1 | 1.636 |
| 1051-1200 m | - | 0 | 7.3 | 591 | 12.6 | 1.382 |
| 1201-1350 m | - | 0 | 11.9 | 444 | 7.2 | 900 |
| 1351-1500 m | 0 | 24 | 4.7 | 170 | 7.3 | 660 |
| above 1500 m | - | 0 | 4.2 | 381 | 5.0 | 900 |
| All | 14.3 | 5,851 | 13.0 | 13,775 | 6.6 | 17,931 |

The highest levels of defoliation were observed in the sub-atlantic region of the Community between 450 and 900 m altitude with up to $18.5 \%$ of sample trees showing a defoliation of more than 25\% (defollation classes $2+3+4$ jointly).

A relatively high percentage of moderately or severely defoliated trees was also observed in the atlantlc region at altitudes lower than 300 m with maximum defoliation below 150 m . (16.1\%).

Percentages of sample trees in discolouration classes 1, 2, 3 and 4 by altitude and climatlc regions

| Altitude | Atlantic zone |  | Sub-atlantic zone |  | Mediterranean zone |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | sample size | \% | sample size | \% | sample size |
| 0-150 m | 13.0 | 3.262 | 3.6 | 394 | 12.9 | 1.756 |
| 151-300 m | 21.9 | 1.223 | 10.7 | 2.398 | 7.2 | 2.736 |
| 301-450 m | 20.7 | 571 | 6.8 | 3.378 | 11.7 | 2.215 |
| 451-600 m | 19.9 | 321 | 9.1 | 2.886 | 17.6 | 1.727 |
| 601-750 m | 9.8 | 256 | 13.2 | 1.520 | 20.2 | 2.090 |
| 751-900 m | 12.9 | 116 | 16.0 | 867 | 20.8 | 1.923 |
| 901-1050 m | 0.0 | 72 | 13.4 | 714 | 15.9 | 1.636 |
| 1051-1200 m | - | 0 | 9.5 | 591 | 14.0 | 1.382 |
| 1201-1350 m | - | 0 | 13.6 | 441 | 18.1 | 899 |
| 1351-1500 m | 0 | 24 | 12.4 | 169 | 17.3 | 660 |
| above 1500 m | - | 0 | 12.6 | 381 | 24.9 | 900 |
| All | 15.6 | 5,845 | 10.1 | 13,739 | 15.4 | 17,924 |

As table hereabove shows, the highest percentages of trees showing discolouration are observed

- in the mediterranean region at altitudes higher than 450 m with two peaks, one between 600 and 900 m and another above 1500 m ,
- in the atlantic region between 150 and 600 m .

In the sub-atlantic region the observed percentages of trees showing discolouration are somewhat lower with a peak between 750 and 900 m .

The general variation of discolouration with altitude is similar to that observed for defoliation, except for the lower altitudes in the atlantic region, where discolouration seems to be less frequently observed than in higher altitudes in the same zone.

## Defollation and discolouration by water avallablilty

Inventory results of 1987 and 1988 indicate higher defoliation on sites with Insufficient or excessive water avallablilty than on sites with sufficlent water avallability.
On plots with sufficient water availability (the most represented water avallabillty class within the sample), $9.39 \%$ of the trees had in 1988 a degree of defoliation greater than 25\%. On plots with "excessive" and "insufficient" water supply this percentage was respectively $19.10 \%$ and 14.61\% (See TAB 31). A similar tendency was observed in 1987.

## Percentage of sample trees in defollation classes $2+3+4$ jointly

| Water avallability: | 1987 (total sample) | 1988 (total sample) |
| :--- | :--- | :--- |
| Sufficient | $14.06 \%$ | $9.39 \%$ |
| Insufficient | $18.48 \%$ | $14.61 \%$ |
| Excessive | $17.89 \%$ | $19.10 \%$ |

As regards discolouration as observed in 1988, again the most healthy trees may be observed where sufficient water is available. (Table TAB 32).

Percentage of sample trees showing some discolouration

| Water avallability: | 1987 (total sample) | 1988 (total sample) |
| :--- | :--- | :--- |
| Sufficient | $13.08 \%$ | $12.40 \%$ |
| Insufficient | $18.25 \%$ | $17.90 \%$ |
| Excessive | $21.06 \%$ | $22.80 \%$ |

Defoliation and discolouration by humus type

```
Table TAB 33 presents defollation in terms of humus type for 1988.
In 1987 and in 1988 the lowest percentages of trees in defoliation
classes 2 + 3 + 4 jolntly were observed on mull and anmor. The anmor
type however was not much represented in the total sample with only 4.9
% of sample trees havlng been observed on this type of soll in 1988.
```

```
Percentage of sample trees in defollation classes
    2 + 3 + 4 Jointly
```

| Humus type: | 1987 (total sample) | 1988 (total sample) |
| :--- | :--- | :--- |
| Mulı | $10.58 \%$ | $6.36 \%$ |
| Moder | $13.90 \%$ | $10.59 \%$ |
| Mor | $13.63 \%$ | $13.28 \%$ |
| Anmor | $3.64 \%$ | $1.92 \%$ |
| Peat | $11.96 \%$ | $18.87 \%$ |
| Other | $17.85 \%$ | $19.67 \%$ |

The highest proportion of trees showing discolouration was observed on moder and peat, and the lowest on mull. Sample trees on anmoor showed even less discolouration, but as already mentioned, plots with this humus type were too few in number to allow any conclusions.

Percentage of sample trees showing some discolouration

| Humus type: | 1987 (total sample) | 1988 (total sample) |
| :--- | :---: | :---: |
| Mull | $8.72 \%$ | $9.83 \%$ |
| Moder | $22.32 \%$ | $15.95 \%$ |
| Mor | $15.35 \%$ | $14.53 \%$ |
| Anmor | $6.88 \%$ | $2.56 \%$ |
| Peat | $22.16 \%$ | $37.85 \%$ |
| Other | $15.87 \%$ | $9.82 \%$ |

## Defollation and discolouration by aspect

In 1988 no significant difference in defollatlon was observed between sample trees on different aspects. The percentage of trees in defoliation classes $2+3+4$ jointly varied between 8 and $11.7 \%$. (See TAB 35)
A slight tendency of defollation to be more pronounced on south, southeast and east facing plots however exists.
In 1987, with a reduced sample, the observed range was somewhat higher: Defoliation then ranged from $9.18 \%$ to $19.44 \%$ (percentage of sample trees in defoliation classes $2+3+4$ jointly).
In 1987 the southwest and southeast facing stands were somewhat less defollated than those facing eastwards or on flat ground.

The percentage of trees showing discolouration varied between 9.33 (flat) and $18.98 \%$ (east). As for defoliation there seems to exist a tendency of discolouration to be the highest on plots which are orientated between East and South.

## LIST OF TABLES AND FIGURES

```
No. page
TAB.01 * 49 * Defoliation of sample trees 1988
TAB.O2 * 49 * Discolouration of sample trees 1988
TAB.03 * 50 * Defollation of sample trees and plots 1988
TAB 04 * 50 * Discolouration of sample trees and plots 1988
TAB.O5 * 51 * Defoliation by age groups, broadleaves/conifers 1988
TAB.O6 * 51 * Discolouration by age groups, broadleaves/conifers 1988
TAB.07 * 52 * Defollation by small age groups, broadleaves/conifers 1988
FIG.01 * 54 * Figure: defoliation by age classes 1987
FIG 02 * 55 * Figure: defoliation by age classes }198
TAB.08 * 56 * Defoliation by climatic zone total sample 1987
TAB.09 * 56 * Defoliation by climatic zone total sample 1988
TAB.10 * 57 * Defoliation by climatic zone CST 1987
TAB.11 * 57 * Defoliation by climatic zone CST 1988
TAB.12 * 58 * Defoliation by species group total sample 1988
TAB.13 * 59 * Defoliation by species group atlantic 1988, total sample
TAB 14 * 60 * Defoliation by species group sub-atlantic 1988, total sample
TAB 15 * 61 * Defoliation by specles group mediterranean 1988, total sample
TAB 16 * 62 * Defollation by species group mountainous 1988, total sample
FIG 03 * 63 * Figure: regression of atlantic defoliation and altitude
FIG 04 * 64 * Figure: regression of sub-atlantic defoliation and altitude
FIG 05 * 65 * Figure: regression of mediterranean defoliation and altitude
TAB 17 * 66 * Defoliation by species group 1987 CST
TAB 18 * 67 * Defoliation by species group 1988 CST
TAB 19 * 68 * Discolouration by species group total sample 1988
TAB 20 * 69 * Discolouration by species group 1987 CST
TAB 21 * 70 * Discolouration by species group 1988 CST
TAB 22 * 71 * Discolouration by climatic zone 1987 total sample
TAB 23 * 71 * Discolouration by climatic zone 1988 total sample
TAB 24 * 72 * Discolouration by climatic zone 1987 CST
TAB 25 * 72 * Discolouration by climatic zone 1988 CST
TAB 26 * 73 * Defoliation by species 1988
TAB 27 * 81 * Discolouration by species 1988
TAB 28 * 89 * Presence of identifiable damage causes 1988
TAB 29 * 90 * Defoliation by identifiable damage causes, trees 1988
TAB 30 * 90 * Defoliation by identifiable damage causes, plots 1988
TAB 31 * 91 * Defoliation by water availability 1988
TAB 32 * 91 * Discolouration by water availability 1988
TAB 33 * 92 * Defoliation by humus type 1988
TAB 34 * 92 * Discolouration by humus type 1988
TAB 35 * 93 * Defoliation by aspect 1988
TAB 36 * 93 * Discolouration by aspect 1988
TAB 37 * 94 * Defoliation by altitude group 1988
TAB 38 * 95 * Discolouration by altitude group 1988
MAP 01 * 30 * Percentage of trees damaged 1987
MAP 02 * 31 * Percentage of trees damaged 1988
MAP 03 * 33 * Plot discolouration 1987
MAP 04 * 34 * Plot discolouration 1988
MAP 05 * 36 * Plot defollation 1987
MAP 06 * 37 * Plot defoliation 1988
MAP 07 * 39 * Climatic zones across the community
FIG 06 * 45 * Damage comparisons 1987/1988 for all species
FIG 07 * 46 * Damage comparisons 1987/1988 for broadleaves
FIG 08 * 47 * Damage comparisons 1987/1988 for conifers
FIG 09 * 48 * Damage comparisons by cllmatic zones 1988
MAP 08 * 40 * Changes in plot damage classes
MAP 09 * 42 * Changes in plot defoliation
MAP 10 * 44 * Broadleaves and conifers over the Community
```


## PERCENTAGE OF TREES DAMAGED THROUGHOUT THE COMMUNITY

| MAP | 01 | 1987 |
| :--- | :--- | :--- |
| MAP | 02 | 1988 |

Each spot represents one sample plot.
The spot colour indicates the percentage of trees which on the corresponding plot have been classified into defoliation classes $2+3+4$ jointly. For example: a red point represents a plot on which more than 75\% of the sample trees have been evaluated as moderately or severely defollated or dead.

The circular diagram shows the proportion of sample plots having less than $10 \%, 11$ to $25 \%, 26$ to $50 \%$, 51 to $75 \%$ or more than $75 \%$ of sample trees in defoliation classes $2+3+4$.

## PERCENTAGE OF TREES DAMAGED OVER THE COMMUNITY



## PERCENTAGE OF TREES DAMAGED OVER THE COMMUNITY



## PLOT DISCOLOURATION FOR THE COMMUNITY

| MAP | 03 | 1987 |
| :--- | :--- | :--- |
| MAP | 04 | 1988 |

```
Each spot represents one sample plot. Its colour reflects the
average plot discolouration class. This has been obtained after
attributing to each sample tree a discolouration percentage
corresponding to the average discolouration of its class
(class 0; 5%, class 1: 17.5%, class 2: 42%, class 3: 80%,
class 4: 100%), adding these percentages for all sample trees of
the plot and dividing the sum by the number of sample trees of the
plot. Following the resulting percentage, an average plot
defoliation class was attributed to the plot, according to the
general definition of defoliation classes.
The circular diagram represents the proportion of plots classified
into each discolouration class.
For example: in 1988 12% of all plots had an average discolouration
    class of 1, "slight" and 1% had an average
    discolouration evaluated as "moderate".
```


## PLOT DISCOLOURATION FOR THE COMMUNITY



## PLOT DISCOLOURATION FOR THE COMMUNITY



MAP 04 Source: 1988 Community Inventory of Forest Damage

## PLOT DEFOLIATION

| MAP | 05 | 1987 |
| :--- | :--- | :--- |
| MAP | 06 | 1988 |

Each spot represents one sample plot. Its colour indicates the "average plot defoliation class".

This has been obtained by attributing to each sample tree a defoliation percentage corresponding to the average defoliation of its class (class 0: 5\%, class 1: 17.5\%, class 2: 42\%, class 3: 80\%, class 4: 100\%), adding these percentages for all sample trees of the plot and dividing the sum by the number of sample trees of the plot. Following the resulting percentage, an average plot defoliation class was attributed to the plot, according to the general definition of defoliation classes.

The circular diagram represents the proportion of plots classified into each defoliation class. For example: in 1988, 9\% of all sample plots had an average defoliation evaluated as "moderate".

## PLOT DEFOLIATION FOR THE COMMUNITY



## PLOT DEFOLIATION FOR THE COMMUNITY



## CLIMATIC REGIONS ACROSS THE COMMUNITY

MAP 07

Each spot represents one sample plot. Its colour indicates to which climatic region it was attributed.

## CHANGES IN PLOT DAMAGE CLASSES THROUGHOUT THE COMMUNITY

MAP 08

```
Each spot represents one sample plot which has been observed in
1987 and in 1988.
For both years, "average plot defoliation classes" were attributed
to each plot (see MAP 05 and 06).
The spot colour indicates whether the average defoliation class of
the corresponding plot has evolved from
- damaged (average defoliation class 2, 3 or 4) to undamaged
    (average defoliation class 0 or 1): green spots
- undamaged to damaged: yellow spots
or whether no move of the average plot defollation between these
two defoliation class groups had occurred (blue and red spots).
The circular diagram shows the proportion of plots concerned by
each type of evolution. For example: between 1987 and 1988 the
average defoliation of 8% of plots passed from "damaged" to
"undamaged", whereas the opposite was true for only 4% of the
plots.
```


## CLIMATIC ZONES ACROSS THE COMMUNITY



## changes in plot damage classes over the community



## CHANGES IN PLOT DEFOLIATION

MAP 09

```
Each spot represents one sample plot which has been observed in
1987 and 1988.
For both years an average plot defoliation class was attributed to
each sample plot (see MAP 05 and 06).
The spot colour indicates whether on the corresponding sample plot
the average plot defoliation increased or decreased between 1987
and 1988.
This map reflects for each plot the evolution of the absolute
average defoliation whereas MAP 08 indicates for each plot the move
of the average defoliation class between combined defoliation
classes (0 + 1) and (2 + 3 + 4).
The circular diagram represents the proportion of plots showing no
change, improvement or worsening of the average plot defollation.
For example: in 16% of all plots the average plot defoliation
decreased between 1987 and 1988 whereas it increased in 14% of the
plots.
```


## CHANGES IN PLOT DEFOLIATION OVER THE COMMUNITY



Each spot represents one sample plot. Its colour indicates whether broadleaves (green spots) or conifers (blue spots) dominate on the corresponding sample plot.

Example: conifers are considered as dominating on one plot when they represent more than $50 \%$ of the sample trees of that plot.

## DAMAGE COMPARISION

FIGs. 06, 07, 08 AND 09

These diagrams allow comparison of the percentages of sample trees classified in the different defoliation and discoloration classes in 1987 and 1988.

FIG. 06 gives results for all species together
FIG. 07 gives results for broadleaves
FIG. 08 gives results for conifers.
The numbers at the top of each column give the corresponding sample sizes.

For each year defoliation and discoloration results are given separately for all observed sample trees (total samples) and for those sample trees which had been observed in 1987 and 1988 (common 1987/1988 sample trees, CSTs).

Results for the total samples are marked with a "T". Results for the common $1987 / 1988$ samples are marked with a "C".

Comparison between 1987 and 1988 should be made exclusively on the "C" results based on comparable samples in 1987 and 1988.

## BROADLEAVES AND CONIFERS OVER THE COMMUNITY



DAMAGE COMPARISONS FOR TOTAL SPECIES


FIG 06 Source: The 1987 and 1988 Community Inventories For Forest Damage

## DAMAGE COMPARISONS FOR BROADLEAVES



## DAMAGE COMPARISONS FOR CONIFERS



## DAMAGE COMPARISONS BY CLIMATIC ZONES



FIG 09 Source: 1988 Community Inventory For Forest Damage

TAB. 01 : DEFOLIATION OF SAMPLE TREES 1988

| COMMUNITY | ! OBSERVED TREES ! |  |  | PLOTS |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| ! | ! | JMBER ! | \% | \% |
| ! DEFOLIATION | ! | ! | ! | 1 |
| !------------ |  | ! | ! |  |
| ! NONE | ! | 24748! | 65.81! | 93.51! |
| ! SLIGHT | ! | 9040! | 24.04! | 65.92 ! |
| ! MODERATE | ! | 3375! | 8.97! | 41.28! |
| ! SEVERE | ! | 362! | 0.96 ! | 10.48! |
| ! DEAD | ! | 82 ! | 0.22 ! | $3.41!$ |
| ! TOTAL | ! | 3760\%! | 100.00! |  |

TAB. 02 : DISCOLOURATION OF SAMPLE TREES 1988

| ! EUROPEAN COMMUNITY $!$ | ! OBSERVED TREES |  |  |
| :---: | :---: | :---: | :---: |
| ! | ! | UMBER ! | $\%$ |
| ! DISCOLOURATION | ! |  |  |
| ! NONE | ! | 32648! | 86.81 ! |
| ! SLIGHT | ! | 4028! | 10.71! |
| ! MODERATE | ! | 756! | 2.01! |
| ! SEVERE | ! | 93! | 0.25 ! |
| ! DEAD | ! | $82!$ | 0.22 ! |
| ! TOTAL | ! | 37607! | 100.00! |

TAB. 03 : DEFOLIATION OF SAMPLE TREES AND PLOTS 1988

| ! EUROPEAN CDMMUNITY |  | TYPE OF OBSERVATION |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| ! |  | ! AVERAGE FOR |  | ! INCLUDED IN ! | ! AVERAGE FOR |
| ! |  | ! | ES ! | ! PLOTS ! | ! PLOTS |
| ! NONE | ! NUMBER | ! | 24748! | 1427! | ! 476! |
| ! |  |  |  |  |  |
| ! | !PERCENT | ! | $65.81!$ | 93.51! | ! 51.13! |
| ! SLIGHTLY | INUMBER | 1 | 90401 | 10061 | ! 299! |
| ! |  |  |  |  | 299! |
| ! | !PERCENT | ! | 24.04! | 65.92! | ! 32.12! |
| ! MODERATELY | ! NUMBER | ! | 3375! | 630! | 156! |
| ! | ! ------- |  |  | 630 | ---! |
| ! | ! PERCENT | ! | 8.97 ! | 41.28 ! | 16.76! |
|  |  |  |  |  | -! |
| !SEVERELY | ! NUMBER | ! | $362!$ | 160 ! | 0! |
| ! | !------- |  |  |  | ! |
| ! | !PERCENT | ! | 0.96 ! | 10.48! |  |
| ! DEAD | ! NUMBER | ! | $82!$ | 521 | 01 |
| ! |  |  |  |  |  |
|  | !PERCENT | ! | 0.22 ! | 3.41! |  |

TAB. 04 : DISCOLOURATION OF SAMPLE TREES AND PLOTS 1988

| ! EUROPEAN COMMUNITY |  | TYPE OF OBSERVATION |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ! |  |  |  |  |  |
| ! |  | ! AVERAGE FOR ! INCLUDED IN !AVERAGE FOR ! ! TREES ! PLOTS ! PLOTS ! |  |  |  |
| ! |  |  |  |  |  |
| ! NONE | ! NUMBER | ! | 32648 ! | ! 1490! | ! 794! |
|  |  |  |  | +------------+ | ------! |
|  | !PERCENT | ! | 86.81! | ! 97.64! | ! 85.28! |
| ! SLIGHT | ! NUMBER | $!$ | 4028 ! | ! 623! | ! 116! |
| ! | ! |  | -----+ | -+ | ------! |
|  | ! PERCENT | ! | 10.71! | ! 40.83! | $!12.46!$ |
| !MODERATE | ! NUMBER | ! | 756! | ! 203! | ! 20! |
| ! | ! |  |  |  | ----! |
| ! | ! PERCENT | ! | $2.01!$ | ! 13.30! | ! 2.15! |
| ! SEVERE | ! NUMBER | ! | 93! | ! 43! | $!\quad 1!$ |
| ! | ! |  | ----+ | +-------------+ | ----! |
|  | ! PERCENT | ! | 0.25 ! | ! 2.82! | $!0.11!$ |

TAB. 05 : DEFOLIATION BY AGE GROUPS, BROADLEAVES/CONIFERS 1988

| ! EUROPEAN | COMMUNITY | ! | [JEFOLIATION |  |  | ! | ! |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! |  |  |  |  |  |  | ! |
| ! |  | ! | NOT OR ! | ! | ! | $!$ | ! |
| ! |  | ! | SLICHTLY ! | !MODERATELY! | SEVERELY ! | DEAD ! | TOTAL ! |
| $!$ |  |  |  |  |  |  |  |
| $!$ |  | ! | $\%$ | ! \% ! | \% ! | $\% \quad$ ! | $\approx$ ! |
| ! BROAD- | IMEAN AGE | ! |  | ! | ! | ! | ! |
| ! LEAVES | !------- |  |  | ! | ! | ! | ! |
| ! | ! $<60$ years | ! | 93.30! | $!5.70!$ | $0.73!$ | 0.27 ! | 100.00! |
| ! |  |  |  |  |  |  |  |
| ! | !) 60 years | ! | $87.29!$ | $!11.46$ ! | 1.15 ! | 0.11 ! | 100.00! |
| ! | !---------- |  | 8). | 1 l | d. |  | ------! |
| $!$ | ! Irregular | ! |  | ! | $!$ | ! | ! |
| ! | !Stands | ! | 92.82! | $!6.31!$ | 0.71 ! | 0.16 ! | 100.00! |
| ! |  |  |  |  |  | --- | -------! |
| ! | ! SUB-TOTAL | ! | 91.37! | ! 7.55! | $0.85!$ | $0.21!$ | $100.00!$ |
| !CONIFERS | ! MEAN AGE | ! |  | ! | ! | ! | ! |
| $!$ |  |  |  | ! | ! | ! | $!$ |
| ! | ! $<60$ years | ! | 91.61! | $!7.12!$ | 1.09! | $0.19!$ | 100.00! |
| ! |  |  |  |  |  |  | ! |
| ! | $!\geqslant 60$ years |  | $80.43!$ | ! 18.21! | 0.99 ! | 0.37 ! | 100.00! |
| ! | $\qquad$ |  |  |  |  | ---- | $------ \text { ! }$ |
| ! | ! Irregular | ! | ! | ! | ! | ! | ! |
| $!$ | ! Stands | ! | 89.561 | $!9.01!$ | 1.31! | $0.11!$ | 100.00! |
| $!$ |  |  |  |  |  | 0.231 | ------! |
| $!$ | ! SUB-TOTAL | ! | 88.25 | $!10.44$ ! | 1.08 ! | $0.23!$ | $100.00!$ |
| ! TOTAL |  | ! | 89.80 | ! 9.01! | $0.97!$ | $0.22!$ | 100.00! |

TAB. 06 : DISCOLOURATION BY AGE GROUPS, BROADLEAVES/CONIFERS 1988

| ! EUROPEAN | COMMUNITY | DISCOLOURATION |  |  |  | ! | ! |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| ! |  | NONE ! | SLIGH: ! | !MODERATE! | SEVERE ! | DEAD ! | total |
| ! |  |  |  |  |  |  |  |
| ! |  | п ! | \% ! | $\approx$ | $\%$ | $\approx$ | $\approx$ ! |
|  |  |  |  |  |  |  |  |  |
| ! BROAD- | ! MEAN AGE ! | ! | ! | ! | ! | ! | ! |
| ! LEAVES | !----------! | ! | $!$ | ! | ! | ! | $!$ |
| ! | ! $<60$ years! | $90.80!$ | $6.71!$ | 1.96! | $0.25!$ | $0.27!$ | 100.00! |
| ! | ! |  |  |  |  | -----+ | -----! |
| ! | $!\geqslant 60$ years! | 84.43! | 12.59! | 2.59! | 0.28 ! | 0.11 ! | $100.00!$ |
| ! |  |  |  |  |  |  | ! |
| ! | ! Irregular ! |  | $!$ | ! | ! | ! | ! |
| ! | ! Stands ! | 87.57! | 10.27! | 1.45! | $0.55!$ | 0.16 ! | 100.00! |
| ! |  |  |  |  |  |  | ----! |
| ! | ! SUB-TOTAL ! | 88.40! | $9.00!$ | 2.09! | 0.30 ! | 0.21 ! | 100.00! |
|  |  |  |  |  |  |  | --! |
| !CONIFERS | !MEAN AGE ! | 1 | $!$ | $!$ | $!$ | $!$ | $!$ |
| ! | ! $<60$ years! | 85.44 ! | 12.43! | 1.75 ! | $0.19!$ | $0.19!$ | 100.00! |
| ! |  |  |  |  |  |  | ! |
| $!$ | ! ${ }^{\text {l }} 60$ years! | 86.37 ! | 10.81 ! | 2.33! | 0.11 ! | C.37! | 100.00! |
| ! | !----------+ |  |  |  |  | ----+ | --! |
| ! | ! Irregular ! | $!$ | $!$ | ! | ! | ! | ! |
| ! | !Stands ! | 80.03! | 17.40! | 1.94! | 0.11 ! | $0.11!$ | 100.00! |
| ! | ! |  |  |  |  |  | ------! |
| $!$ | ! SUB-TOTAL ! | 85.20! | 12.44! | 1.93! | 0.20 ! | $0.23!$ | 100.00! |
| ! TOTAL | ! | 86.79! | 10.74! | $2.01!$ | $0.25!$ | $0.22!$ | 100.00! |

TAB. 07 : DEFOLIATION BY SMALL AGE GROUPS BROADLEAVES/CONIFERS 2988

(CONTINUED)

TAB. 07 : DEFOLIATION BY SMALL AGE GROUPS, BROADLEAVES/CONIFERS 1988

| ! EUROPEAN | OMMUNITY | ! | DEFOLIATION |  |  | ! |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! |  |  |  |  |  | ------! | ! |
| ! |  | $!$ | NOT OR ! | ! ! | ! | ------! |  |
| ! |  |  | SLIGHTLY ! | ! MODERATELY | SEVERELY | DEAD | total |
| ! |  |  |  |  |  |  |  |
| ! |  | ! | $\approx$ | ! \% ! | $\%$ | $\% \quad$ ! | NU. ! |
| ! CONIFERS | ! MEAN ACE | $!$ ! |  | $!$ ! | ! | ! | $!$ |
| ! | !-------- |  |  | ! | ! | ! | ! |
| ! | ! 80-100 | ! |  | $!$ ! | ! | $!$ | ! |
| ! | ! years | $!$ | $77.64!$ | ! 21.82! | $0.30!$ | 0.24 ! | 1673! |
| $!$ | ! |  | -----+ | +----------+ |  | - | --! |
| ! | !101-120 |  |  | $!$ ! | ! | ! | ! |
| ! | !years | ! | 76.30! | $!21.90!$ | 1.58! | $0.23!$ | 886! |
| ! | ! | ! |  | +----------+ |  |  | --! |
| ! | ! 120 years | ! | 63.60 ! | ! 33.57! | 2.12! | $0.71!$ | 706! |
| ! | ! |  |  | +----------+ | -----+ | - | ---! |
| ! | ! Irregular | $!$ |  | $!$ ! | ! | ! | $!$ |
| ! | ! Stands |  | 89.56! | ! 9.01! | 1.31! | 0.11! | 1753! |
| ! | ! |  | -------+ | $\rightarrow$ | -.-.--+ | ------+ | ----! |
| ! | ! SUB-TOTAL | ! | $88.25!$ | $!10.44!$ | 1.08! | $0.23!$ | 18882! |
| ! TOTAL |  | ! | 89.80 | $!9.01!$ | 0.97! | 0.22 ! | 37388 ! |


fig. 01 : PERCEN'IAGE OF ALL. 'TREES IN DEFOLIATION CLASSES 2+3+4 PMESENTED QY MEAN AGE

$$
(O=\text { TOTAL } \quad \#=\text { HFOADLEAVES } \quad x=\text { CONIFEITS })
$$



FIG. 02 : PERCENTAGE OF ALL TREES IN DEFOLIATION CLASSES 2 $\mathbf{~} \mathbf{3}+4$
PRESENTED BY MEAN AGE
$(0=$ TOTAL $\quad \#=$ BROADLEAVES $\quad x=$ CONIFERS $)$


## TAB. 08 : DEFOLIATION BY CLIMATIC ZONE TOTAL SAMPLE 1987

| ! EUROPEAN ! | ! | DEFOLIATION |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! COMMUNITY |  |  |  |  |  |  |  |  |
| $!$ | NONE | SLIGHT ! | MODERATE ! | SEVERE | DEAD | ! | TOTAL |  |
| $!1987$ |  |  |  |  |  |  |  |  |
| ! TUTAL SAMPLE: | NO. ! \% | NO. ! \% |  | NO. ! | ! NO. ! \% |  |  |  |
| ! CLIMATIC | . | . | ! | ! | ! |  | . |  |
| ! ZONE | ! | $!\quad!$ | ! | 1 | ! | ! | ! |  |
| !------------! | $!$ ! ! | $!\quad!$ | ! | $!$ ! | $!$ | ! | ! |  |
| ! ATLANTIC | ! 3003!59.1! | 1326!26.1! | 648!.12.7! | 103!2.03! | 4! 0. | $8!$ | 5084! | 100! |
| ! SUB-ATLANTIC! | ! 4831!50.3! | 3114!32.4! | 1553!16.2! | 78!0.81! | 22!0. |  | 9598! | 100 |
| ! MOUNTAINOUS | ! 1113!71.2! | 293!18.7! | 138!8.83! | 17!1.09! | 2!0. |  | 1563! | 100 |
| ! MEDITERRANE-! | $!$ ! ! | $!\quad!$ | $!\quad!$ | $!\quad!$ | ! | ! |  |  |
| ! AN | ! 4486!68.7! | 1311!20.1! | 669!10.2! | 42!0.64! | 1910 |  | 6527! | 100 |
| ! TOTAL | !13433! 59! | 6044!26.5! | 3008!13.2! | 240!1.05! | 47!0 | 1! | 2772! | 100 |

TAB. 09 : DEFOLIATION BY CLIMATIC ZONE TOTAL SAMPLE 1988


TAB. 10 : DEFOLIATION BY CLIMATIC ZONE CST 1987


TAB. 11 : DEFOLIATION BY CLIMATIC ZONE CET 1988


TAB. 12 : DEFOLIATION BY SPECIES GROUP TOTAL SAMPLE 1988

| ! EUROPEAN | $!$ | DEFOLIATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! COMMUNITY | $!$ |  |  |  |  | --! | ! |
| $!1988$ | ! | NONE | SLIGHT ! | ! MODERATE! | SEVERE ! | DEAD! | total |
| 11988 |  |  |  |  |  |  |  |
| $!$ TOTAL SAMPLE | ! | $\stackrel{\square}{0}$ | $\stackrel{\sim}{0}$ | $\cdots \quad$ ! | $\stackrel{1}{0}$ | $\because$ | NO. |
| ! SPECIES | ! | ! | ! | ! | ! | ! |  |
|  | ! | $!$ | $!$ | ! | $!$ | ! | ! |
| ! Castanea sativa | ! | 76.82! | 13.43! | 5.17! | 3.98! | 0.60 ! | 1005! |
| ! Eucalyptus sp. | ! | 95.71! | 3.78! | 0.41 ! | .! | 0.10! | 979! |
| ! Fagus sp. | ! | 59.67! | 28.23! | 11.56! | 0.48 ! | 0.06 ! | 3546! |
| ! Quercus (deciduous) | $!$ | 64.08! | 22.81! | 11.52! | 1.32! | 0.27 ! | 4766! |
| ! Quercus illex | ! | 61.99! | 31.29! | $6.13!$ | 0.54! | $0.05!$ | 2202! |
| ! Quercus suber | ! | 87.55! | 10.35! | 1.89 ! | 0.20 ! | ! | 1478! |
| ! Other broadleaves | ! | $77.98!$ | 16.52! | 4.69 ! | 0.49 ! | $0.32!$ | 4709! |
| !TOTAL BROADLEAVES | ! | 70.70! | 20.77! | 7.49! | 0.85! | 0.20 ! | 18685! |
| ! Abies sp. | ! | 52.78! | 26.09! | 18.86! | 1.52! | 0.76 ! | 1188 ! |
| ! Larix sp. | ! | 65.47! | 26.82! | 7.43! | .! | 0.28 ! | 727! |
| ! Picea sp. | ! | 49.26! | 34.15! | 15.43! | 1.10 ! | 0.05! | 5522 ! |
| ! Pinus sp. | ! | 67.06! | 24.36! | $7.23!$ | 1.08 ! | 0.27 ! | 10727! |
| ! Other conifers | ! | 68.87! | 20.58! | 9.23 ! | 1.19! | $0.13!$ | 758! |
| ! TOTAL CONIFERS | ! | 60.98! | 27.27 ! | 10.44 ! | 1.08 ! | $0.23!$ | 18922! |
| ! TOTAL | ! | 65.81! | 24.041 | 8.97! | 0.96 ! | 0.22 ! | 37607! |

TAB. 13 : DEFOLIATION BY SPECIES GROUP ATLANTIC 1988 TOTAL SAMPLE

(CONTINUED)

TAB. 14 : DEFOLIATION BY SPECIES GROUP SUB-ATLANTIC 1988 TOTAL SAMPLE

(CONTINUED)

TAB. 15 : DEFOLIATION BY SPECIES GROUP MEDITERRANEAN 1988, TOTAL SAMPLE

| !MEDITERRANEAN | ! |  | DEFOLIATION |  | ! |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! | $!$ |  |  |  |  | --- |  |
| ! | 1 | NONE ! | SLICHT ! | MODERATE ! | SEVERE ! | DEAD | TOTAL |
| $!$ |  |  |  |  |  |  | TOTAL |
| ! | $!$ | \% ! | $\% \quad 1$ | 2 ! | $\because \quad$ ! | $\%$ | NO. ! |
| ! SPECIES | $!$ | ! | ! | ! | ! | , | 1 |
|  | -! | $!$ | ! | $!$ | ! | ! | ! |
| ! Castanea sativa | $!$ | $68.54!$ | 17.07! | $5.37!$ | $7.80!$ | 1.22 ! | 410! |
| ! Eucalyptus sp. | ! | 98.10! | 1.54! | 0.24 ! | .! | $0.12!$ | ---! |
|  |  |  |  |  |  |  | -x! |
| ! Fagus sp. | $!$ | 75.11! | 17.16! | $7.03!$ | 0.56! | $0.14!$ | 711! |
| ! Quercus (deciduous) | sp.! | 65.46! | 20.28! | 12.12! | 1.83! | $0.31!$ | ----! |
| ! |  |  |  |  |  |  | ----! |
| ! Quercus ilex | ! | 62.08 ! | 31.20 ! | $6.13!$ | 0.55! | $0.05!$ | 2186! |
| ! Quercus suber | ! | 87.55! | 10.35! | 1.89! | 0.20 ! | .! | 1478! |
| !------------------ |  |  |  |  |  |  | ----! |
| ! Other broadleaves | $!$ | 82.24! | 13.90! | 3.08 ! | 0.21 ! | $0.57!$ | 1914! |
| ! TOTAL BROADLEAVES | ! | 74.96! | 18.00! | 5.79! | 0.98 ! | $0.27!$ | 9785! |
| ! Abies sp. | ! | 54.15! | 34.85! | 9.34! | 1.04! | 0.62! | ---! |
|  |  |  |  |  |  |  |  |
| ! Larix sp. | ! | 100.00! | .! | .! | .! | .! | $3!$ |
| ! Pinus sp. | ! | 76.11! | 18.11! | 4.93! | 0.76 ! | $0.09!$ | 6467! |
| ! Other conifers | ! | 76.54! | 16.05! | 5.56! | 1.85! | .! | 324! |
| ! TOTAL CONIFERS | ! | 74.68! | 19.12! | 5.25! | $0.82!$ | $0.12!$ | 7276! |
| ! TOTAL | ! | 74.84! | 18.47! | 5.56 ! | $0.91!$ | $0.21!$ | 17061! |

## TAB. 16 : DEFOLIATION BY SPECIES GROUP MOUNTAINOUS 1988, TOTAL SANIPLE


(CONTINUED)

## REGRESSION OF ATLANTIC DEFOLIATION AND ALTITUDE

data obtained from a moving average over 150 metres


FIG. 04

## REGRESSION OF SUB-ATLANTIC DEFOLIATION AND ALTITUDE

data obtained from a moving average over 150 metres


## REGRESSION OF MEDITERRANEAN DEFOLIATION AND ALTITUDE

 data obtained from a moving average over 150 metres


(CONTINUED)

TAB. 19 : DISCOLOURATION BY SPECIES GROUP TOTAL SAMPLE 1988


TAB. 20: DISCOLOURATION BY SPECIES GROUP 1987 CST


FOR 1987 FROM TREES COMMON TO 1987 AND 1988

TAB. 21 : DISCOLOURATION BY SPECIES GROUP 1988 CST


FOR 1988 FROM TREES COMMON TO 1987 AND 1988

TAB. 22 : DISCOLOURATION BY CLIMATIC ZONE 1987 TOTAL SAMPLE

| ! EUROPEAN ! | . | DISCOLOURATION |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| !COMMUNITY | ! NONE |  |  |  |  |  |  |  |
| $!\cdot 1987$ ! |  | SLIGHT | MODERATE ! | SEVERE ! | DEAD | ! | total |  |
|  |  |  |  |  |  |  |  |  |
| OTAL SAMPLE! |  |  |  |  |  |  |  |  |
| ! CLIMATIC ! ZONE | $!\quad!$ | $!\quad!$ | $!\quad!$ | ! ! | ! |  |  |  |
|  | $!\quad!$ | ! | $!$ | ! | ! |  | ! |  |
| !-------------! | $!$ ! | $!$ ! | $!$ ! | ! | ! | ! | . |  |
| ! ATLANTIC ! | ! 4345!85.5! | 550!10.8! | 165!3.25! | 20!0.39! | 4!0 |  | 5084! | 100! |
| !SUB-ATLANTIC! | ! 9121! 95! | 365!3.80! | 81!0.84! | 9!0.09! | 22!0 |  | 9598! | 100! |
|  | ! 1283!82.1! | 207!13.2! | 66!4.22! | 5!0.32! | 2!0 |  | 1563! | 100! |
| ! MEDI TERRANE-! | $!$ ! | $!$ ! | ! | $!\quad!$ | ! |  |  |  |
| !AN ! | ! 4951!75.9! | 1132!17.3! | 375!5.75! | 50!0.77! | 1910 |  | 6527! | 100! |
| ! TOTAL ! | !19700!86.5! | 2254!9.90! | 687!3.02! | 84!0.37! | --+- | $1!$ | ----+ | 100! |

TAB. 23 : DISCOLOURATION BY CLIMATIC ZONE 1988 TOTAL SAMPLE


TAB. 24 : DISCOLOURATION BY CLIMATIC ZONE 1987 CST

| $!1987$ | ! | DISCOLOURATION |  |  | $!$ ! |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ! |
|  | ! NONE ! | SLICHT | MODERATE ! | SEVERE ! | DEAD | TOTAL |
| ! CST |  |  |  |  |  |  |
| $!$ ! | ! NO. ! \% | NO. ! \% ! | NO. ! \% | NO. ! \% ! | NO. ! \% ! NO. ! \% |  |
| !CLIMATIC ! | ! ! | ! ! | $!\quad!$ | ! | ! | ! |
| !ZONE ! | $!\quad!\quad!$ | ! | $!\quad!$ | $!\quad!$ | ! | ! |
| 1------------ | $!$ ! ! | $!\quad!$ | $!$ ! | $!1$ | $!$ | $!$ ! |
| ! ATLANTIC | ! 3517!83.4! | 518!12.3! | 160!3.79! | 18!0.43! | 4!0.09! | 4217! 100! |
| ! SUB-ATLANTIC! | +----++---++ | 300! 3.85 ! | 64!0.82! | $-++---+-$ | $5!0.06!$ | 7783! 100! |
|  |  |  |  |  |  |  |
| !MOUNTAINOUS ! | ! 1225!81.6! | 204!13.6! | 66:4.40! | 5!0.33! | 1!0.07! | 1501! 100! |
| !MEDITERRANE-! | ! ! ! | $!\quad!$ | ! ! | $!\quad!$ | $!$ ! | $!$ ! |
| ! AN ! | ! 4673! 76! | 1069!17.4! | 345!5.61! | 49!0.80! | 14!0.23! | 6150! 100! |
| ! TOTAL ! | ! 16822 ! 85.6! | 2091!10.6! | 635!3.23! | 79!0.40! | 24!0.12! | 19651! 100! |

FOR 1987 FROM TREES COMMON TO 1987 AND 1988

TAB. 25 : DISCOLOURATION BY CLIMATIC ZONE 1988 CST

| $!$ ! | ! | DISCOLOURATION |  |  | $!\quad!$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , |  |  |  |  |  | - ! |
| ! 1988 | ! NONE | SLIGHT ! | MODERATE ! | SEVERE | DEAD | TOTAL ! |
| ! CST | ! ----------- | - |  | --------+ |  | ------! |
| $!$ CST | NO. ! \% | NO. ! \% | NO. ! \% ! | NO. ! \% | NO. ! \% | NO. ! \% ! |
| !CLIMATIC | + | ! ! |  | ! ! | ! | -+----! |
| ! ZONE | ! | ! ! | , | ! | ! | $!\quad!$ |
| !------------- | $!$ ! ! | ! ! | $!$ ! | ! | ! | $!$ |
| ! ATLANTIC | ! 3620!85.8! | 430!10.2! | 126!2.99! | 15!0.36! | 26!0.62! | 4217! 100! |
|  |  |  |  |  | --+----+ | $\begin{aligned} & -+---! \\ & 13!100! \end{aligned}$ |
|  |  | 37114 |  |  | 12!0.15! | 7783! 100! |
| ! MOUNTAINOUS | ! 1165!77.6! | 279!18.6! | 48!3.20! | 5!0.33! | 4!0.27! | 1501! $100!$ |
| !MEDITERRANE-! | +-----+ | ! ! | $!$ ! | ! | ! |  |
| ! AN | 5083!82.7! | 901!14.7! | 117!1.90! | 23!0.37! | 26!0.42! | 6150! 100! |
| ! TOTAL | !17166!87.4! | 1981!10.1! | 388!1.97! | 48!0.24! | 68!0.35! | 19651! 100! |

FOR 1988 FROM TREES COMMON TO 1987 AND 1988

TAB. 26 : DEFOLIATION BY SPECIES 1988

| ! EUROPEAN <br> ! COMMUNITY | ! | DEFOLIATION |  |  | ! |  | $!$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| ! | NONE ! | SLICHT ! | MODERATE ! | SEVERE ! | DEAD | ! | TOTAL ! |
| ! |  |  |  |  |  |  |  |
| ! | ---- | NO. ! \% | NO | NO. ! | NO. ! | ! | NO. ! \% ! |
| !SPECIES |  |  |  |  |  |  |  |
|  |  | . | ! | ! | ! | ! | ! |
|  | $!$ | ! | ! | ! | ! | ! | $!\quad!$ |
| ! Acer ! | $!$ ! ! | ! | 1 | ! | . | ! | ! |
| !campestre ! | ! 66!85.7! | 9!11.7! | 1!1.30! | 1!1.30! | .! | .! | 77! 100! |
|  |  |  |  |  |  |  |  |
| 1Acer | $!\quad!$ | ! | ! | $!$ | ! | ! | $!\quad!$ |
| ! monspessula-! | $!\quad!$ | ! | ! | ! | ! | ! | $!$ ! |
| ! num ! | ! 9! 90! | 1! 10! | . 1 ! | .! ! | .! | .! | 10! 100! |
|  | $!14!100$ ! |  |  |  |  |  |  |
| ! Acer opalus ! |  | . $!$ | . ! ! | .! ! | .! | .! | 14! 100! |
| ! Acer ! | $!$ ! ! | ! ! | ! ! | ! | ! | ! | $!$ ! |
| !platanoides ! | ! 4! 100! | . ! . | . 1 ! | .! ! | .! | .! | 4! 100! |
| ! Acer-------- | $!$ | . | + ! | ! | ! | ! | !----! |
| ! pseudoplata-! | $!$ ! | $!\quad!$ | $!\quad!$ | $!1$ | $!$ | , | $!$ ! |
| !nus ! | ! 215!87.4! | 23!9.35! | 6!2.44! | 2!0.81! | .! | .! | 246! 100! |
| ! ------------+ | $66!89.2!$ |  |  |  |  |  | ! |
| !Alnus |  | . | $!$ ! | ! | ! | ! | ! |
| ! cordata |  | 6!8.11! | 2!2.70! | .! ! | -! | .! | 74! 100! |
| !Alnus ! | $155!72.8!$ | ! | $!\quad!$ | ! ! | ! | ! | $!$ ! |
| ! glutinosa ! |  | 48!22.5! | 8!3.76! | 2!0.94! | .! | .! | 213! 100! |
| ! Alnus incana! | 6!---+---+ | 7!46.7! | 2!13.3! | .! . | .! | .! | 15! 100 ! |
| $+$ | +-----+----+ |  |  |  |  |  | -+----! |
| ! Alnus ! | $!\quad!$ | $!$ ! | ! | ! | ! |  |  |
| !viridis - ! | 2! 50! | 2! 50! | .! .! | .! ! | .! | .! | 4! 100! |
|  |  |  |  |  |  |  | -+----! |
| ! Betula | $!\quad!$ | $!$ ! | $!\quad!$ |  | ! | ! | $!\quad!$ |
| ! pendula | 233!73.7! | 67!21.2! | 11!3.48! | 3!0.95! | 2!0 | 3! | 316! 100! |
| ! Betula ! | $38!44.2!$ | $!$ ! | $!$ ! | $!\quad!$ | ! | ! | ! |
| ! pubescens ! |  | 43! 50! | 5!5.81! | .! ! | .! | .! | 86! 100! |
| ! Buxus ! |  | ! | ! ! | +---+ | ! | ! | $+$ |
| ! sempervirens! |  | .! .! | .! .! | .! ! | . | . | 3! 100! |

(CONTINUED)

TAB. 26 : DEFOLIATION BY SPECIES 1988

(CONTINUED)

(CONT INUED)

(CONTINUED)


TAB. 26 : DEFOLIATION BY SPECIES 1988

| ! EUROPEAN <br> !COMMUNITY | ! | DEFOLIATION |  |  | ! |  | $!$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $!-$ |  | MODERATE ! | SEVERE | DEAD |  |  |
| ! | NONE | SLIGHT ! |  |  |  | ! | total |
| ! |  |  |  |  |  |  | ------ ! |
| ! | NO. ! \% | N0 | NO. ! \% | NO. ! | NO. ! |  | NO. ! $\sim$ |
| ! SPECIES | ! | ! | $!$ ! | ! | ! | ! | . |
| !------------! | $!\quad!$ | ! | ! | $!$ ! | ! | ! | $!$ ! |
| ! Other | ! ! | $!\quad!$ | $!$ | $!$ | ! | ! | ! ! |
| ! broadleaves | 150!61.5! | 63!25.8! | 24!9.84! | 7!2.87! | .! | ! | 244! 100! |
| ! Abies alba | 372!52.8! | 136!19.3! | 178!25.2! | 13!1.84! | $6!0$ |  | 705! 100! |
| ! Abies | . | $!$ ! | ! | ! | ! | ! | ! |
| ! borisii- | $!$ ! | $!$ ! | $!$ ! | ! | ! | ! | $!$ ! |
| !regis | 114!60.6! | 65!34.6! | 914.79! | .! .! | .! | -! | 188! 100! |
| ! Abies | ! ! | $!$ ! | $!$ ! | ! | ! | ! | $!$ ! |
| !cephalonica | 120!44.6! | 105! 39! | 36!13.4! | 5!1.86! | $3!1$ |  | 269! 100! |
| ! Abies | ! ! | $!\quad!$ | ! | ! | $!$ |  | $!$ ! |
| ! grandis | $6!85.7!$ | 1!14.3! | .! . | .! . | .! | . | 7! 100! |
| ! Abies | ! ! | ! ! | $!$ ! | ! | ! | ! | $!\quad$ ! |
| !nordmanniana! | 15!78.9! | 3!15.8! | 1!5.26! | .! ! | .! | ! | 19! 100! |
| ! Cedrus | $!$ ! | ! ! | ! | ! | ! | ! | ! ! |
| ! deodara | 1! 100! | .! . | .! ! | ! ! | .! | ! | 1! 100! |
| ! Cupressus | ! | 1 | $!$ ! | $!$ ! | ! | ! | $!$ ! |
| !sempervirens! | 31! 100! | .! ! | .! ! | .! ! | .! | .! | 31! 100! |
| ! Juniperus | $!$ ! | $!\quad!$ | $!\quad!$ | $!\quad!$ | $!$ | ! | $!$ ! |
| ! communis | 16!94.1! | 1!5.88! | . ! ! | .! ! | .! | .! | 17! 100! |
| ! Juniperus | $!\quad!$ | ! | $!$ ! | $!\quad!$ | ! | ! | $!\quad!$ |
| ! oxycedrus | 56!93.3! | 2!3.33! | 2!3.33! | .! . | .! | .! | 60! 100! |
| ! Juniperus | $!$ ! | ! | $!$ ! | $!\quad!$ | $!$ | ! | $!$ ! |
| !phoenica | 18! 100! | .! ! | .! ! | .! . | .! | .! | 18! 100! |
| ! Juniperus | $!$ ! | $!$ ! | $!$ ! | $!\quad!$ | ! | ! | $!\quad!$ |
| ! sabina | 3!42.9! | 3!42.9! | 1!14.3! | . 1 ! | . | .! | 7! 100! |


tab. 26 : defoliation by species 1988



| ! EUROPEAN <br> ! COMMUNITY |  |  |  |  |  | $!$ |  | ! |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $!$ |  | discol ouration |  |  |  |  | ! |
| ! | $!$ | NONE | SLICHT ! | MODERATE ! | SEVERE | DEAD | + | TOTAL ! |
| ! |  |  |  |  |  |  |  |  |
| ! | ! | NO. ! : | NO. ! \% ! | NO | NO. ! ¢ ! | NO. ! |  | NO. ! $\approx$ |
| !SPECIES | ! | ! | $!\quad!$ | ! ! | ! | ! | ! | ! |
| !-- |  | $!$ ! | $!\quad!$ | $!$ ! | ! | ! | ! | ! |
| ! Carpinus | $!$ | $!$ ! | $!\quad!$ | ! | ! | ! | ! | $!$ ! |
| !orientalis | $!$ | 2! 100! | .! ! | .! .! | .! ! | .! | .! | 2! 100! |
| ! Castanea | $!$ | $!$ ! | $!$ ! | $!$ ! | $!$ ! | ! | ! | $!\quad!$ |
| !sativa | ! | 844! 84! | 112!11.1! | 37!3.68! | 6!0.60! | 6!0. |  | 1005! 100! |
| ! Corylus | $!$ | ! ! | $!$ ! | ! ! | ! | ! | ! | $!\quad!$ |
| !avellana | $!$ | 25!96.2! | 1!3.85! | .! . | . ${ }^{\text {! }}$ | .! | .! | 26! 100! |
| ! Eucalyptus | ! | ! ! | $!\quad!$ | $!$ ! | ! | ! | $!$ | $!$ ! |
| ! sp. | $!$ | 972!99.3! | 5!0.51! | 1!0.10! | .! ! | 1!0. |  | 979! 100! |
| ! Fagus | ! | ! ! | $!\quad!$ | $!$ ! | ! | ! | ! | $!\quad!$ |
| !moesiaca | $!$ | 60!52.6! | 47!41.2! | 7!6.14! | . ${ }^{\text {! }}$ | . | .! | 114! 100! |
| ! Fagus | ! |  | -+----+ | -+----+ | - | ! | - |  |
| !orientalis | $!$ | 1! 100! | .! ! | .! ! | ! ! | -! | . ! | 1! 100! |
| ! Fagus | $!$ | ! ! | $!\quad!$ | ! ! | $!\quad!$ | + | ! | -+----! |
| !sylvatica | ! | 3027!88.2! | 315!9.18! | 77!2.24! | 10!0.29! | 2!0. | 06! | 3431! 100! |
| ! Fraxinus | ! | $!$ ! | $!\quad$ ! | +----+ | + | -+ | - |  |
| !angustifolia |  | 2! 100! | .! ! | .! ! | .! ! | .! | .! | 2! 100! |
| ! Fraxinus | ! | ! ! | $!$ ! | ! ! | $!$ ! | ! | ! | $!$ ! |
| !excelsior | $!$ | 344!95.8! | 7!1.95! | 4!1.11! | 4!1.11! | .! | .! | 359! 100! |
| ! Fraxinus | $!$ | $!$ ! | $!$ ! | $!\quad!$ | ! ! | ! | $!$ | $!\quad!$ |
| !ornus | $!$ | 47!95.9! | 2!4.08! | .! ! | .! ! | .! | .! | 49! 100! |
| ! Ilex | $!$ | $!\quad!$ | $!\quad!$ | $!$ ! | $!\quad!$ | ! | ! |  |
| !aquifolium | $!$ | 13! 100! | .! ! | . 1 ! | .! ! | -! | .! | 13! 100! |
| ! Juglans | ! | $!$ ! | $!\quad!$ | $!$ ! | $!\quad 1$ | -+ | ! |  |
| !regia | ! | 1! 100! | .! ! | .! ! | .! ! | .! | -! | 1! 100! |
| ! Olea | ! | $!$ ! | ! ! | $!$ ! | $!$ ! | ! | ! | -+----! |
| !europaea | ! | 98! 97! | 3!2.97! | .! ! | .! ! | .! | .! | 101! 100! |

TAB. 27 : DISCOLOURATION BY SPECIES 1988


(CONTINUED)



(CONTINUED)

| ! EUROPEAN <br> ! COMMUNITY | ! |  | discolouration |  |  |  | ! |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | TOTAL |
| ! | ! | NONE | SLIGHT ! | MODERATE ! | SEVERE | $!$ | DEAD | ! |  |
| ! |  |  |  |  |  |  |  |  | - ! |
| ! |  | NO. ! \% ! | NO. ! \% ! | NO. ! ! ! | NO. ! \% | $!$ | 0.! | ! | NO. ! $\approx$ |
| ! SPECIES | ! | ! | ! | $!$ ! | ! | ! | ! | ! | $!\quad!$ |
| !----------- | ! | $!$ ! | ! | $!\quad!$ | ! | ! | ! | ! | $!\quad!$ |
| ! Pseudotsuga | $!$ | $!$ ! | $!\quad!$ | $!$ | ! | $!$ | $!$ | ! | $!$ ! |
| !menziesii | ! | 355!92.2! | 30!7.79! | .! ! | .! | .! | . ! | .! | 385! 100! |
| ! Thuya sp. | ! | 3! 100! | .! . | .! .! | . | .! | .! | .! | 3! 100! |
| ! Tsuga sp. | ! | 3! 100! | .! . | .! . | .! | .! | .! | .! | 3! 100! |
| ! Other | ! | $!1$ | $!\quad!$ | $!\quad!$ | ! | $!$ | ! | $!$ | $!\quad!$ |
| ! conifers | ! | 19! 95! | .! .! | .! ! | .! | .! | 1!5. | 00! | 20! 100! |
| ! TOTAL |  | 2648!86.8! | 4028!10.7! | 756!2.01! | 93:0.2 | 25! | 82!0. | $22!3$ | 7607! 100! |

TAB. 28 : PRESENCE OF IDENTIFIABLE DAMAGE CAUSES 1988

| ! EUROPEAN COMMUNITY |  | ! | TYPE OF OBSERVATION |  |
| :---: | :---: | :---: | :---: | :---: |
| ! |  |  |  |  |
| $!\quad!$ TREES ! PLOTS |  |  |  |  |
| ! TOTAL | !NO. OF OBSERVATIONS! |  | 37607! | 1526! |
| !GAME AND GRAZING ! | ! NUMBER | $!$ | 273! | $30!$ |
|  |  | !------- |  | --! |
| ! | ! PERCENT |  | 0.73! | 1.97! |
|  |  |  |  |  |
| ! INSECTS | ! NUMBER | ! | 7314! | 612! |
| $!$ |  | !------- | - | ---! |
|  | ! PERCENT | . | 19.45 ! | 40.10! |
| ! FUNGI |  | . | 1746! | 238! |
| $!$ | ! NUMBER |  | ----+ | ---! |
|  | !PERCENT | ! | 4.64! | 15.60! |
| !ABIOTIC AGENTS | ! NUMBER | ! | 1352! | 220! |
| $!$ |  |  | ---+ | ---1 |
|  | ! PERCENT | ! | $3.60!$ | 14.42! |
| ! ACTION OF MAN | ! NUMBER | ! | $1863!$ | 179! |
| $!$ ! |  |  | ----+ | -! |
|  | !PERCENT | ! | 4.95! | 11.73! |
| $!$ | ! NUMBER |  | ----+ | ----! |
| ! FIRE |  | ! | 406! | 32! |
|  |  |  | ---+ | -! |
| ! | !PERCENT | ! | 1.08 ! | 2.10! |
|  |  |  |  | ---! |
| ! KNOWN POLLUTION |  | ! | 122! | 10! |
|  |  |  | ----+ | --! |
| $!$ | !PERCENT | ! | 0.32 ! | 0.66 ! |
| !----- | ! NUMBER | $!$ | 3121! | 313! |
| ! | ! N -------- |  |  | ---! |
|  | ! PERCENT | ! | $8.30!$ | 20.51! |
| ! NUMBER OF ! OBSERVATIONS WITH !SOME DAMAGE | ! NUMBER | ! | 12558 ! | 949! |
|  |  |  |  | - ! |
|  | ! PERCENT | ! | 33.39 ! | 62.19 ! |



TAB. 30 : DEFOLIATION BY IDENTIFIABLE DAMAGE CAUSES, PLOTS 1988

| !eUROPEAN COMMUNITY ! | !AVERAGE DEFOLIATION OF SAMPLE PLOTS! |  |  |  |  | ALL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | !average defoliation of Sample plots! |  |  |  |  |  |
|  | ! | NONE ! | SLIGHT ! M | Jderate! | SEVERE ! |  |
| ! | ! |  |  |  |  |  |
| ! | ! | \% ! | $\%$ ! | $\%$ | $\%$ | NO. ! |
| !GAME AND GRAZING | ! | 43.33! | $46.67!$ | 10.00! | .! | 30! |
| I |  |  |  |  |  | - - ! |
| ! INSECTS | ! | 48.60 ! | 41.05! | 10.02! | 0.33 ! | 609! |
| $!$ |  |  |  |  |  | ! |
| ! FUNGI | ! | 51.95! | 37.66 ! | 10.39! | .! | 231! |
| !ABIOTIC AGENTS | ! | 50.46! | 35.65! | 13.89! | .! | 216! |
| ! ACTION DF MAN | ! | $61.58!$ | 31.07! | 7.34! | .! | 177! |
|  |  |  |  |  |  | --! |
| ! FIRE | ! | 59.38! | 31.25 ! | $6.25!$ | $3.13!$ | $32!$ |
| ! KNOWN POLLUTION | 1 | 20.001 | $70.00!$ | 10.001 | 1 | --! |
| !KNOWN POLLUTION | $!$ | 20.00! | 70.00! | 10.00 ! | . | 10. |
| ! OTHER | ! | 54.19! | 38.06! | 7.74! | .! | 310 ! |
|  |  |  |  |  |  | -! |
| !ANY IDENT. DAMAGE | ! | 53.25 ! | 36.63 ! | $9.80!$ | 0.32 ! | 939! |
| !------------------ |  |  |  |  | ----+ | -! |
| !NO IDENT. DAMAGE | ! | 63.99 ! | 27.63! | $8.20!$ | $0.18!$ | 561! |
| ! |  |  |  | ----+ | --------+ | ---! |
| !MULTIPLE DAMAGE | ! | 49.40! | $40.77!$ | 9.82! | .! | 336 ! |


| ! EUROPEAN | ! | DEFOLIATION |  |  | ! |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! COMMUUNITY |  |  |  |  |  |  |
| ! | ! NONE | SLIGHT | ! MODERATE ! | SEVERE ! | DEAD ! | TOTAL ! |
| ! |  |  |  |  |  |  |
| ! | ! NO. ! \% | NO. ! \% | ! NO. ! \% ! | NO. ! \% | NO. ! \% | NO. ! \% ! |
|  | +-----+----+ |  |  |  |  |  |
| ! WATER | $!\quad!$ | ! | $!\quad!$ | ! | ! | ! |
| ! AVAILABILITY | $!$ ! | ! | $!\quad!\quad$ ! | $!\quad!$ | $!\quad!$ | ! ! |
| ! - ---------- | ! ! ! | ! | $!\quad!\quad!$ | $!$ ! | $!$ ! | $!\quad!$ |
| ! INSUFFICIENT | ! 2477!55.2! | 1350!30.1! | ! 607!13.5! | 40!0.89! | 10!0.22! | 4484! 100! |
|  |  |  | +-----+----+ |  | -+---- | ---+----! |
| !SUFFICIENT | !21806!67.5! | 7486!23.2! | ! 2663!8.24! | 302!0.93! | 70!0.22!3 | 3327! 100! |
| ! EXCESSIVE | ! 338!50.8! | 201!30.2! | ! 105!15.8! | 20!3.00! | 2!0.30! | 666! 100! |
|  |  |  |  |  |  | ---+---- ! |
| ! TOTAL | !24621!65.7! | 9037!24.1! | ! 3375!9.01! | 362!0.97! | 82!0.22!3 | 37477! 100! |

TAB. 32 : DISCOLOURATION BY WATER AVAILABILITY 1988


TAB. 33 : DEFOLIATION BY HUMUS TYPE 1988


TAB. 34 : DISCOLOURATION BY HUMUS TYPE 1988



TAB. 36 : DISCOLOURATION BY ASPECT 1988

| COMMUNITY |  |  | DISCOLOURATION |  |  | $!\quad!$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! | $!$ |  |  |  |  | ! ! |  |
| ! | ! | NONE | SLIGHT ! | DERATE! | SEVERE ! | DEAD | TOTAL |
| ! | $!$ |  |  |  |  |  |  |
| $!$ | ! | $\because$ | $\%$ | : ! | $\%$ | \% | $\cdots$ |
| ! ASPECT | ! | ! | ! | ! | ! | ! | ! |
| ! | ! | ! | ! | ! | ! | . | $!$ |
| ! N | $!$ | 88.35! | 10.14! | 1.20 ! | 0.17! | $0.15!$ | 100.00! |
| ! NE | ! | 85.77! | $12.03!$ | 1.68 ! | $0.23!$ | 0.28 ! | $100.00!$ |
| ! E | ! | 81.02 ! | 13.26! | $4.93!$ | 0.56! | 0.23! | 100.00! |
| !SE | ! | 85.01! | 12.23! | 1.68 ! | 0.63! | 0.44 ! | 100.00! |
| ! 5 | ! | 83.58! | 14.09! | 1.99! | 0.16 ! | 0.18! | 100.00! |
| isw | ! | 86.791 | 10.921 | 1.87! | 0.191 | 0.221 | 100.001 |
|  |  |  | 10.92. |  | 0.19. | 0.22 ! | 100.00! |
| ! W | ! | 87.80 ! | 8. 50 ! | 3.09 ! | 0.20 ! | 0.41! | 100.00 ! |
| ! |  |  |  |  |  |  | -! |
| ! NW | ! | 86.94 ! | 11.07! | 1.76! | 0.07! | $0.16!$ | 100.00! |
| $!$ |  | -----+ | ------+ | ----+ | - | - | ------! |
| ! FLAT | ! | 90.67! | 7.64! | 1.39! | $0.21!$ | 0.09! | 100.00! |
| ! TOTAL | ! | 86.81! | 10.71 ! | 2.01! | 0.25! | $0.22!$ | 100.00! |

TAB. 37 : DEFOLIATION BY ALTITUDE GROUP 1988

| ! EUROPEAN COMMUNITY | ! |  |  |  | ! |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! |  |  | Defolit | DEFOLIATION | ------! |  |
| $!$ | ! | NOT OR ! | $!$ ! | ! | ! |  |
| ! | ! | SLIGHTLY ! | !MODERATELY! | SEVERELY ! | DEAD ! | TOTAL ! |
| ! |  |  |  |  |  |  |
| ! | ! | $\approx$ ! | ! $\%$ | $\because$ | $\%$ | $\approx$ ! |
| ! ALTITUDE | ! | ! | $!\quad!$ | ! | ! |  |
| ! |  | $!$ | $!$ ! | ! | ! |  |
| !0- 250 m | ! | 89.73! | $!8.71!$ | 1.34 ! | $0.23!$ | 100.00! |
| !251-500 m | ! | 90.02! | $!9.12!$ | 0.67! | 0.19! | 100.00! |
| !501-750 m | ! | 88.12! | ! 10.96! | 0.62 ! | $0.29!$ | 100.00! |
| ! 751-1000 m | ! | 89.94! | ! 8.59! | 1.27! | 0.20 ! | ------ 100.00 ! |
| ! 1001-1250 m | $!$ | 88.97! | ! 9.25! | 1.56! | 0.21! | 100.00! |
| !1251-1500 m | ! | 93.58! | ! 5.57! | 0.57! | 0.28 ! | 100.00! |
| $!>1500 \mathrm{~m}$ | ! | 95.24! | ! 4.53! | 0.23 ! | .! | 100.00! |
| ! TOTAL | ! | 89.84! | ! 8.98! | 0.96 ! | $0.22!$ | $100.00!$ |


|  | ! |  |  |  |  | ! | ! |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! EUROPEAN COMMUNITY |  |  |  |  |  | $!$ | ! |
| ! | ! | NONE ! | SLIGHT ! | !MODERATE! | SEVERE ! | DEAD ! | TOTAL ! |
| ! |  |  |  |  |  |  |  |
| ! | ! | \% ! | $\%$ ! | ! \% | $\because \quad$ ! | $\approx \quad!$ | $\approx \quad$ ! |
|  |  |  |  |  |  |  |  |
| ! ALTITUDE | ! | ! |  | ! | $!$ | ! | ! |
| !-------- |  | ! | ! | $!$ ! | $!$ | $!$ | ! |
| 10-250 m | ! | 88.20! | 9.38! | $!1.89!$ | $0.31!$ | $0.23!$ | 100.00! |
| !251- 500 m | ! | 89.99! | 8.20! | $!1.34!$ | 0.29! | 0.19! | 100.00! |
| ! 501-750 m | ! | 84.90! | 11.69! | $!3.04!$ | 0.09! | 0.29! | 100.00! |
| !751-1000 m | ! | 83.93! | 13.41! | $!2.10!$ | 0.36 ! | 0.20 ! | 100.00! |
|  |  |  |  |  |  | -- | ------! |
| !1001-1250 m | ! | 85.42! | 11.83! | ! 2.39! | 0.15 ! | 0.21 ! | 100.00! |
| !1251-1500 m | ! | 83.99! | 13.40! | $!2.04!$ | 0.28 ! | 0.28! | 100.00! |
|  |  |  |  |  |  |  |  |
| ! 151500 m | ! | 78.84! | 19.52! | ! 1.48! | 0.16 ! | .! | 100.00! |
| ! |  |  |  |  |  |  | --! |
| ! SUB-TOTAL | ! | 86.81 ! | 10.71! | ! 2.01! | $0.25!$ | $0.22!$ | 100.00! |

## PART 2

NATIONAL FOREST HEALTH REPORTS

1987 AND 1988

Accomplishment, Results, Conclusions

## A. Legislative background, procedures

As provided for under Article 3 of Council Regulation (EEC) No 3528/86 and in accordance with Article 3 of Commission Regulation (EEC) No 1696/87, each Member State draws up, annually, a forest health report. This report is based in particular, on the data from the Community network of observation points and from any other network that is representative at national or regional level and in respect of which the common methodology is applied.

Each Member State forwards to the Commission its periodic health report containing information as to how the forest damage inventory has been carried out, the forest damage results, the possible causes of observed damage, the measures taken to restore damaged forests and the socio-economical impact of forest damage.

The results are sent on a set of tables provided by the Commission so as to ensure that the data may be presented in comparable terms for each Member State. These tables are designed to present the percentage of sample trees falling in each defoliation, discolouration and combined defoliation and discolouration (optional) class in terms of the total sample, by conifers and broadleaves, by species and by age groups ( 60 years, $\mid 60$ years). Where possible, results are also submitted by administrative regions providing they are sufficiently representative.
B. Accomplishment of the national surveys

## Coverage

Results were obtained from 10 Member States in 1987 and from 11 in 1988. For most of the results presented the coverage of the national forested area is complete although for some countries these results relate to only part of the total area. Detailed information on coverage etc. for each Member state can be found in table 1.

For 1987 national reports were not recelved from Portugal and Greece. For France results were obtained for one fifth of the forested area, notably covering the eastern part of the country. For Belgium a report was recelved for the Flemlsh Region. For Italy the regions Sardegna, Sicilia and Friuli Venezia Giulia were not covered. In Spain 71\% of the forest was covered; the non-sampled part was situated in the north. In the Netherlands

SUMMARY OF NATIONAL FOREST DAMAGE INVENTORIES 1987 AND 1988

Information applies to both 1987 and 1988 unless epace is subdivided;
then upper half givas 1987 value and lower half givas iges value



e) No plots set out in maquis vegetation. d) The 22 observation points in iges are all different from those of igat.
e) See text below. f) Figure not supplied by Member State, but estimated by the commission.

85\% of the forested area was covered by a dense grid.
The remaining Member States (Luxemburg, Germany, Denmark, United Kingdom and Ireland) submitted national reports for the entire forest area.

In 1988 the coverage was enlarged. Greece and Portugal are now covered. In Italy results are only lacking for Sardegna and Sicilia. The whole of Spain is covered by the $16 \times 16 \mathrm{~km}$ grid and included in the national report, but due to cartographical problems a few plots, distributed over the whole country, could not be assessed. These plots are expected to be assessed in 1989 thus leading to a $10 \%$ increase in the number of Spanish plots.

Grid density and sampling procedures
Half of the Member States submitted national reports based on a $16 \times 16 \mathrm{~km}$ grid, thus basing their reports on the same data as they supplied to the Community survey.

Particularly dense grids have been used in the Netherlands, Luxemburg and in most parts of Germany. See table 1 for details on sample intensity.

Ireland established new observation polnts in 1988 as compared to 1987 ; the results from the two years are therefore not fully comparable.

In the Federal Republic of Germany the grid density varies greatly from Land to Land. The number of observation plots was almost doubled from 1987 to 1988, leading to an increase in average grid density from $5.6 \times 5.6 \mathrm{~km}$ to 4.2 $x 4.2 \mathrm{~km}$ in 1988. In the Netherlands a $1 \times 1 \mathrm{~km}$ grid is applied, and 1400 grid intersection
points were observed in 1987. In 1988 the number of sample points were increased to 3400 of which 2800 could be assessed. The increased number of observations in 1988 is part of the Dutch survey plan which implies more intensive sampling every 4 years; thus the increase in observation points does not represent a better coverage.

For drawing conclusions on national levels some Member States have denser grids than the Community grid (Italy, France in 1988) or have other additional sampling systems (Denmark) for which results are not available for inclusion in the tables and diagrams below. The French additional net just mentioned (réseau bleu), also includes dominated tress, as opposed to the Community net (see description in Part 1), and can thus not be compared exactly with the results of the Community net. The results sampled in the "Réseau Bleu" are slightly more pessimistic than those from the Community grid.
C. Results of the National Surveys

1. All species by Member State

For all specles together (table 2) the percentage of trees in defoliation classes $2+3+4$ range from 0\% (Ireland) to 23\% (Denmark) in 1987, and from 1\% (Portugal) to 25\% (United Kingdom) in 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+3+4$ ) was of $5 \%$ (Ireland, where the sample plots were not identlcal for the two years) and 3\% (United Kingdom)
while the largest recovery was of $5 \%$ (Spain, Denmark).

The average for the 12 Member states shown on the extreme right in this and later tables gives the average for the Community grid sample and not the average of the figures in the particular table.

Diagrams 1 and 2 show the same data as discussed above.

Diagram 1 shows the clearly damaged trees split up into defoliation classes 2, 3 and 4. The countrles in the northern part of the Community often have higher percentages of trees in damage classes $2+3+4$ jointly than than is the case elsewhere in the Community; Ireland and Greece are the most outstanding exceptions to this tendency. Most of the defoliation is of the moderate type (class 2). There is generally some proportionality between the percentages of trees in classes 2 and 3 inside a Member State; note though that in Germany and Greece the defoliation is largely of the moderate type.

Diagram 2 shows the largely undamaged trees split up into defoliation classes 0 and 1. The percentage of largely undamaged trees (classes 0 and 1 jointly) is often smaller in the northern part of the Community than elsewhere in the Community; Ireland and Greece are the most outstanding exceptions to this picture.

As to the distribution of trees in defoliation classes 0 (not defoliated) and 1 (slightly defollated) inside the group of largely undamaged trees included in this diagram, it may be noted that some of the southern Member States have a relatively large proportion of trees in class 0 (not defoliated) especially Greece and Ireland do not fit into this picture though.

Table 3 shows the discoloration for all species in each Member State. The proportion of trees showing signs of discoloration is for several Member States quite different from that of defoliation. Denmark and Germany have no noticable discoloration in 1987 and 1988, while they had appreciable defoliation. For Ireland the situation is the opposite, hardly any defoliation is coupled with considerable discoloration in 1988.

PERCENTAGES OF TOTAL DEFOLIATION FOR ALL SPECIES BY MEMBER STATE


DIAGRAM 1


DIAGRAM 2


PERCENTAGES OF TOTAL DISCOLOURATION FOR ALL SPECIES BY MEMBER STATE

| : |  | MEMBER STA |  | : ELLAS | : | ITALIA | : | ESPAÑA | : | PORTUGAL | : | FRANCE | : | BELGIE/ BELGIQUE | : | LUXEMBOURG | : | BUNDESREP. DEUTSCHLAND | : | NEDERLAND | : | DANMARK | : | UNITED KINGDOM | : | IRELAND | : | $\begin{gathered} \text { EEC-12 } \\ \text { COMMUNITY } \\ \text { SURVEY } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| : |  |  |  | : | : |  | : |  | : |  | - |  |  |  | : |  |  |  |  |  |  |  | : |  |  |  | : |  | : |
| : | 0 | NOT DISCOLOURED | 87 | : | : | 88,8 | : | 72,3 | : | - | : | 85,2 | : | 88,8 | : | 88,4 |  | 95.7 |  | 69,2 |  | 96,0 | : | 80,0 |  | 97, 8 | : | 86,2 | : |
| : |  |  | 88 | 64,2 |  | 90.0 |  | 83,7 |  | 95,9 |  | 88,4 |  | 88,3 |  | 78.2 |  | 94,8 |  | 54,9 |  | 97,0 | : | 78,0 |  | 68,6 | : | 87,0 | : |
| : |  |  |  | : | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  | : | : |  | : |  | - |  | : |  | : |  | : |  | : |  | - |  |  |  | : |  | : |  | : |  | : |
| : | 1 | SLIGHTLY | 87 | : - | : | 6,9 | - | 20,8 | : | - | : | ? |  | 4,6 | : | 11,2 | : | 3,3 | . | 24,3 |  | 3,0 | : | 15,0 | : | 1.7 | : | 10.3 | : |
| : |  | DISCOLOURED | 88 | 28,1 |  | 6,6 |  | 15,4 | : | 3.5 | : | 8,9 | : | 9,4 | : | 18,3 | : | 4,1 |  | 38,9 |  | 2,0 | : | 16,0 |  | 30,5 | : | 10.8 | : |
| : |  |  |  | : | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  | : | : |  | : |  | - |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
|  | 2 | MODERATELY | 87 | : - | : | 4,1 | : | 6,0 | : | - |  | ? |  | 5,6 | : | 0.3 | : | 0,8 | . | 2.9 |  | 1.0 | : | 5,0 | : | 0,5 | : | 3,1 | : |
| : |  | DISCOLOURED | 88 | : 7.5 | : | 3,0 | : | 0.8 | : | 0.6 | : | 2,1 | : | 1.9 | : | 3.5 | : | 0,9 |  | 2.7 |  | 1,0 | : | 5,0 | , | 0,9 | : | 2,0 | : |
| : |  |  |  | : | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| , |  |  |  | : | : |  | - |  | : |  | - |  | - |  | : |  | : |  |  |  | . |  | : |  | : |  | : |  | : |
|  | 3 | SEVERELY | 87 | : | : | 0.2 | : | 0.9 | : | - | : | ? | : | 1,0 | : | 0.1 | : | 0.1 | : | 3,6 | . | 0,0 | : | 0,0 | : | 0,0 | : | 0,4 | : |
| : |  | DISCOLOURED | 88 | 0,2 | : | 0.4 | : | 0.1 | : | 0.0 | : | 0,6 | : | 0,4 | : | 0.0 | : | 0,1 | : | 2,8 | . | 0,0 | : | 1.0 | : | 0,0 | : | 0,2 | : |
| : |  |  |  | : | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |

2. All broadleaved species by Member State

For all broadleaved species together (table 4) the percentage of trees in defoliation classes $2+3+4$ ranges from 4\% (ltaly) to 23\% (the Netherlands) in 1987 and from 1\% (Portugal) to 29\% (Greece) in 1988. The largest decline between 1987 and 1988 (increase of trees in defoliation classes $2+3+4$ ) was of $3 \%$ (the Netherlands) and the largest recovery was of $7 \%$ (Denmark, Spain).

Table 5 shows the discoloration for all broadleaved species together in each Member State. The proportion of trees showing signs of discoloration is for some Member States quite different from that of defoliation. Denmark had hardly any discoloration in both of the two years, while the defoliation was appreciable.
3. All coniferous species by Member State

For all coniferous species together (table 6) the percentage of trees in defoliation classes $2+3+4$ ranges from 0\% (Ireland) to 24\% (Denmark) in 1987 and from $2 \%$ (Portugal) to 27\% (United Kindgom) in 1988.

The largest decline between 1987 and 1988 (increase of trees in defoliation classes $2+3+4$ ) was of $7 \%$ (Luxembourg) and the largest recovery was of 3\% (Spain, Denmark).

Table 7 shows the discoloration for all coniferous species together in each Member State.

The proportion of trees showing signs of discoloration is for some Member States quite different from that of defoliation. German and Denmark have little discoloration, but appreciable defoliation, and Ireland and Greece have on the contrary, appreciable discoloration with little defoliation.
4. Broadleaved species over and under 60 years of age

For broadleaved species under 60 years (table 8) the percentage of trees In defoliation classes $2+3+4$ ranges from 5\% (Luxembourg) to 24\% (Denmark) in 1987 and from 0\% (Portugal) to 28\% (Greece) in 1988. The largest decline between 1987 and 1988 (increase in percentage of trees in defoliation classes $2+3+4$ ) was of $4 \%$ (the Netherlands) and the largest recovery was of $12 \%$ (Denmark).

DEFOLIATION FOR ALL BROADLEAVED SPECIES BY MEMBER STATE (x)


DISCOLOURATION FOR ALL BROADLEAVED SPECIES BY MEMBER STATE (x)

|  |  | MEMBER S <br> SCOLORATIION CLA | ATE | : | ELLAS | : | ITALIA | : | ESPAÑA | : | PORTUGAL | : | FRANCE | $\begin{aligned} & \text { BELGIE/ } \\ & \text { BELGIQUE } \end{aligned}$ | : | LUXEMBOURG | : | BUNDESREP. DEUTSCHLAND | : | NEDERLAND | : | DANMARK | : | $\begin{aligned} & \hline \text { UNITED } \\ & \text { KINGDOM } \end{aligned}$ | : | IRELAND | : | $\begin{gathered} \text { EEC-12 } \\ \text { COMMUNITY } \\ \text { SURVEY } \end{gathered}$ | : |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  |  | : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |
| : | 0 | NOT DISCOLOURED | 87 | : | - | : | 90,8 | : | 65,3 | : | - |  | - | 83,7 |  | 83,1 |  | 96.3 |  | 63,2 | : | 100.0 |  | 87,0 | : | - | : | 85,1 | : |
| : |  |  | 88 | : | 55,5 | : | 91,2 | : | 88,5 | : | 96,2 |  | 91.7 | 84,1 |  | 72,3 |  | 94, 1 |  | 57,0 | : | 99,0 |  | 81,0 | : | - |  | 88,6 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  | : |  | : |  | : |  | : |  |  |  |  |  |  |  |  |  |  | . |  |  |  |  |  | : |  | : |
| - | 1 | SLIGHTLY | 87 | : | - | : | 5,2 | : | 26,9 | : | - | : | - | 6,6 |  | 16,3 |  | 2,8 |  | 29,0 | : | 0,0 |  | 11,0 | : | - | : | 11,1 | : |
| : |  | DISCOLOURED | 88 | : | 33,5 | : | 5,5 | : | 10,8 | : | 2,9 | : | 5,5 | 11,5 |  | 23,4 | . | 4,8 | : | 33,4 | : | 1,0 | : | 16,0 | : | - | : | 9,0 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  | : |  | : |  | : |  | : |  |  |  |  |  |  |  |  |  |  | , |  |  |  |  |  | : |  | : |
| : | 2 | MODERATELY | 87 | : | - | : | 3,8 | : | 7,0 | : | - | : | - | 8,2 |  | 0,6 |  | 0.8 |  | 4,3 |  | 0,0 |  | 2,0 | : | - | : | 3.5 | : |
| : |  | DISCOLOURED | 88 | : | 10,8 |  | 2,9 | : | 0,6 | : | 0,9 | : | 2.1 | 3.7 | . | 4,3 | : | 1,0 | : | 5,3 | : | 0,0 |  | 3,0 | : | - | : | 2.1 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
|  |  |  |  | : |  | : |  | : |  | : |  | : |  |  | . |  | : |  | . |  | : |  | - |  | : |  | : |  | : |
| : | 3 | SEVERELY | 87 |  | - | : | 0.2 | : | 0.8 | : | - | : | - | 1.5 | : | 0,0 | : | 0,1 | : | 3,5 | : | 0,0 | : | 0,0 | : | - | : | 0,3 | : |
| : |  | DISCOLOURED | 88 | . | 0.2 | : | 0.4 | : | 0.1 | : | 0.0 | : | 0.7 | 0,7 |  | 0,0 | : | 0,1 | : | 4,3 | : | 0,0 | : | 0,0 | : | - | : | 0,3 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |

DEFOLIATION FOR ALL CONIFEROUS SPECIES BY MEMBER STATE ( $x$ )

|  |  | MEMBER ST | ATE | : | ELLAS | : | ITALIA | : | ESPAÑA | : | PORTUGAL | : | FRANCE | : | BELGIE/ BELGIQUE | : | $\begin{aligned} & \text { LUXEM- } \\ & \text { BOURG } \end{aligned}$ | : | BUNDESREP. DEUTSCHLAND | : | NEDERLAND | : | DANMARK | : | $\begin{aligned} & \text { UNITED } \\ & \text { KINGDOM } \end{aligned}$ | : | IRELAND | : | EEC-12 COMMUNITY SURVEY | $:$ $:$ $:$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . |  |  |  | : |  | : |  | : |  |  |  | : |  |  |  |  |  |  |  |  |  |  |  | : |  | : |  | : |  | : |
| : | $0+1$ | NOT OR SLIGHTLY | 87 | : | - | : | 95,1 | : | 89,3 | : | - | : | - |  | 95,3 |  | 96.2 |  | 84,1 |  | 84,0 |  | 76,0 | : | 77,0 |  | 100.0 | : | 83, 4 | : |
| : |  | DEFOLIATED | 88 | : | 92,3 | : | 93,8 |  | 92,7 | : | 98,3 | : | 90,9 |  | 89,2 |  | 89, 1 |  | 86,0 |  | 85.5 |  | 79,0 | : | 73,0 |  | 95,2 | : | 84,5 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | . |  |  |  |  |  |  |  | : |  | : |  | : |  | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | . |  |  |  |  |  |  |  | : |  |  |  | : |  | : |
| : | 2 | MODERATELY | 87 | : | - | : | 4,6 | : | 9,9 | : | - | : | - | : | 4,7 | : | 3.1 |  | 14,9 |  | 14,0 | : | 16,0 | : | 18,0 | : | 0,0 | : | 15,0 | : |
| : |  | DEFOLIATED | 88 | : | 6,8 | : | 5,7 |  | 6,2 | : | 1,5 | : | 8,0 |  | 9,0 |  | 9,6 |  | 13,2 |  | 12,1 |  | 14,0 | : | 22,0 | : | 4,5 | : | 13,7 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | , |  | : |  | : |  | : |  | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  |  |  | : |  |  |  | : |  | : |  | : |  | : |
| : | 3 | SEVERELY | 87 |  | - | : | 0,3 |  | 0,8 | . | - | : | - | - | 0.0 | : | 0.5 |  | 0.8 | . | ? |  | 8,0 | : | 5,0 | : | 0,0 | : | 1,5 | : |
| : |  | DEFOLIATED | 88 | : | 0.6 | : | 0,4 | : | 1.1 | : | 0,2 | : | 0,8 | : | 1,8 |  | 1,1 |  | 0,6 |  | 1,7 |  | 7,0 | : | 5,0 |  | 0,3 | : | 1.5 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  | : |  | : |  | - |  | . |  | : |  | - |  | : |  |  |  |  |  |  |  | : |  |  |  | : |  | : |
|  | 4 | DEAD | 87 | : | - | : | 0,0 | : | 0,0 | : | - | : | - | : | 0,0 | . | 0.2 | : | 0.2 | : | ? |  | 0,0 | : | 0,0 | : | 0.0 | : | 0.1 | : |
| : |  |  | 88 | : | 0,3 | : | 0,1 | : | 0,0 | : | 0,0 | : | 0,3 | : | 0,0 |  | 0,2 |  | 0,2 | : | 0,7 | . | 0,0 | : | 0.0 | : | 0.0 | : | 0,3 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |

## TABLE 7

DISCOLOURATION FOR ALL CONIFEROUS SPECIES BY MEMBER STATE (x)


## TABLE 8

DEFOLIATION FOR ALL BROADLEAVED SPECIES LESS THAN 60 YEARS BY MEMBER STATE (x)


For broadleaved species of 60 years or more (table 9) the percentage of trees in defoliation classes $2+3+4$ ranges from 11\% (Luxembourg) to 45\% (United Kingdom) in 1987 and from 2\% (Portugal) to 38\% (the Netherlands) in 1988. The largest decline (increase in percentage of trees in defoliation classes $2+3+4$ ) was of $3 \%$ (the Netherlands) and the largest recovery was of 10\% (Spain).

A comparison of the two age classes (broadleaved species under 60 years and of 60 years or more) mentioned above shows that with one exception (Denmark in 1987), the proportion of defollated, broadleaved species is higher for trees of 60 years or more than for those under 60. In 1987 this better performance of younger trees (smaller percentage of trees under 60 years as compared to trees of 60 years or more in defoliation classes $2+3+4$ ) ranged from 28\% (United Kingdom) to 7\% (Luxembourg, Spain) with Denmark as the only exception. In 1988 the corresponding better performance of younger trees ranged from 25\% (United Kingdom) to less than 1\% (France).

The over-performance of younger, broadleaved trees dropped between 3 and 5\% from 1987 to 1988 in Spain, Luxembourg and the Unlted Kingdom; It was largely constant in Belgium, Germany and the Netherlands; Denmark was an exception, switching from under-performance to over-performance of younger, broadleaved species.
5. Coniferous species over and under 60 years of age

For coniferous species under 60 years (table 10) the percentage of trees in defoliation classes $2+3+4$ ranges from $0 \%$ ( 1 reland) to 23\% (United Kingdom) in 1987 and from 2\% (Portugal) to $28 \%$ (United Kingdom)
in 1988. The largest decline between 1987 and 1988 (increase in percentage of trees in defollation classes $2+3+4$ ) was of $5 \%$ (Belgium, Denmark, Ireland) and the largest recovery was of $3 \%$ (Spain).

For coniferous species of 60 years or more (table 11) in 1987 the percentage of trees in defollation classes $2+3+4$ range from $5 \%$ (Spaln) to $30 \%$ (Germany) and 55\% (Denmark), but the latter figure is based on only 31 trees. In 1988 the corresponding range was from 2\% (Portugal) to 30\% (Luxembourg) and $34 \%$ (Denmark), but the latter figure is based on only 24 trees.

The very small sample in Denmark and the absence of figures from the United Kingdom and Ireland for coniferous species of 60 years or more is due to the relative short rotation age of ten applied to coniferous species.

## TABLE 9

## DEFOLIATION FOR ALL BROADLEAVED SPECIES OF 60 YEARS OR MORE BY MEMBER STATE ( $\boldsymbol{x}$ )



DEFOLIATION FOR ALL CONIFEROUS SPECIES LESS THAN 60 YEARS BY MEMBER STATE


## TAELE 11

DEFOLIATION FOR ALL CONIFEROUS SPECIES OF 60 YEARS OR MORE BY MEMBER STATE (x)

(a) small sample

A comparison of the two age classes (coniferous species under 60 years and of 60 years or more) shows that with four exceptions (Spain and the Netherlands in both years), the proportion of defoliated coniferous species is higher for trees of 60 years or more than for those under 60 years. For Portugal there is no difference between the 2 age classes.

In 1987 this better performance of younger trees (smaller percentage of trees under 60 years as compared to trees of 60 years or more in defoliation classes $2+3+4$ ) was of $35 \%$ (Denmark), 24\% (Germany), 8\% (Luxembourg), with the Netherlands ( $-2 \%$ ) and Spain ( - 7\%) having the reverse tendency. In 1988 this comparison is possible for more Member States and the over-performance of younger trees ranges from $25 \%$ (Luxembourg), 20\% (Germany) down to 1\% (Greece) and 0\% (Portugal), with the Netherlands and Spaln again having the opposite trend (-3\% and - 1\% respectively.

The over-performance of younger coniferous trees dropped by $21 \%$ (Denmark), $4 \%$ (Germany) between the two years while it increased by $17 \%$ in Luxembourg. The under-performance of younger trees in Spain in 1987 was largely irradicated in 1988 (a drop of $7 \%$ ) while it was emphasised in the Netherlands (+ 2\%).
6. Defoliation by genus and Member State
(Picea, Pinus, Larix, Abies, Fagus and Quercus)
For Picea (spruce) (table 12) the percentage of trees in defoliation classes $2+3+4$ ranges from 0\% (Ireland) to 23\% (the Netherlands) in 1987 and from 3\% (Ireland, Italy) to 31\% (United Kingdom) in 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+3+4$ ) was of $11 \%$ (United Kingdom) and the largest recovery was of $6 \%$ (Denmark).

For Pinus (pine) (table 13) the percentage of trees in defoliation classes $2+3+4$ ranges from 4\% (Belgium) to 41\% (United Kingdom) in 1987 and from 2\% (Portugal) to 16\% (France) in 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+3+4$ ) was of $7 \%$ (Belglum) and the largest recovery was of 9\% (United Kingdom).

For Larix (larch) (table 14) where results are only available from a few Member States, the percentage of trees in defoliation classes $2+3+4$ ranges from 2\% (France) to 8\% (United Kingdom) in 1987 and from $2 \%$ (France) to 18\% (United Kingdom) in 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+3+4$ ) was of 10\% (United Kingdom) and the largest recovery was less than 1\% (France).

## DEFOLIATION FOR PICEA BY MEMBER STATE (x)


(a) Picea abies
(b) Picea sitchensis
(c) Picea abies + Picea sitchensis

## TAELE 13

## DEFOLIATION FOR PINUS BY MEMBER STATE (X)


(a) Pinus pinaster + P. halepensis + P. sylvestris + P. nigra + P. pinea
(b) Pinus nigra + P. sylvestris
(c) Pinus sylvestris $+P$. contorta
(d) Pinus sylvestris $+P$. pinaster $+P$. pinea

## TABLE 14

DEFOLIATION FOR LARIX BY MEMBER STATE ( $\boldsymbol{x}$ )

(a) Larix kaempferi (leptolepis)

For Abies (fir) (table 15) the percentage of trees in defollation classes $2+3+4$ ranges from 7\% (ltaly) to 48\% (Germany) in 1987 and from 6\% (ltaly) to 45\% (Germany) in 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+3+4$ ) was less than $1 \%$ (France) and the largest recovery was of $4 \%$ (Germany). Also for this species results were only avallable from a few Member States.

For Fagus (beech) (table 16) the percentage of trees in defoliation classes $2+3+4$ ranges from 0\% (Spain, ltaly) to 46\% (Belgium) in 1987 and from $2 \%$ (Spain) to $24 \%$ (Greece) In 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+$ $3+4$ ) was of $4 \%$ (Italy) and the largest recovery was of $41 \%$ (Belgium).

For Deciduous Quercus (oak) (table 17) the percentage of trees in defoliation classes $2+3+4$ ranges from $1 \%$ (Spain) to $42 \%$ (United Kingdom) in 1987 and from 0\% (Portugal) to 44\% (United Kingdom) in 1988. The largest decline between 1987 and 1988 (increase of percentage of trees in defoliation classes $2+3+4$ ) was of $12 \%$ (Spain) and the largest recovery was of $5 \%$ (Belgium).

The situation for Evergreen Quercus (oak) (table 18) is relatively good in the three Member States from which results are avallable; the percentage of trees in defoliation classes $2+3+4$ ranges from $0 \%$ to $18 \%$ and from $0 \%$ to $8 \%$ in the two years respectively.
D. Summary information regarding possible causes of observed damage

A chapter on possible causes of observed damage is included in the National Report of each Member State.

In their reports most Member States point to a variety of causes, most common of which are insects, fungi, climatic stress and nutrient deficiency.

Air pollutants and related leaching and soil toxicity are mentioned as a possible cause by some Member States, but most of them avoid any definite conclusion in this respect.

Among other causes mentioned by a few Member States are storms, fires, grazing, management and tree-provenance.

The effects on the trees of climate, insects, fungi, etc. are not questioned by any Members States in their National Reports, while the effectof air pollution and its interaction with other stress factors is debated. Some selected and abbreviated quotations from the National Reports may serve to illustrate the variety of opinions put forward concerning air pollution.

## TABLE 15

## DEFOLIATION FOR ABIES BY MEMBER STATE ( $(\mathbf{x})$

| $:$ | DEFO |  | ATE | ELLAS | : | ITALIA | : | ESPAÑA | : | PORTUGAL | : | FRANCE | : | BELGIE/ BELGIQUE | : | LUXEMBOURG | : | BUNDESREP. DEUTSCHLAND | : | NEDERLAND | : | DANMARK | : | $\begin{aligned} & \text { UNITED } \\ & \text { KINGDOM } \end{aligned}$ | : | IRELAND | : | $\begin{gathered} \text { EEC-12 } \\ \text { COMUNITY } \\ \text { SURVEY } \\ \hline \end{gathered}$ | : |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : | $0+1$ | NOT OR SLIGHTLY | 87 | - | : | 93.5 | : |  | : |  | : | 83.7 | : |  | : |  | : | 51,6 | : |  | : |  | : |  | : |  | : | 66.2 | : |
| : |  | DEFOLIATED | 88 | 88,4 | : | 94,0 | : |  | : |  | : | 82,9 | : |  | : |  | : | 55,5 | : |  | : |  | : |  | : |  | : | 69,5 | : |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  |  |  | : |  | : |  | : |  | : |
|  | 2 | MODERATELY | 87 | - | : | 6.5 | : |  | : |  | : | 15,8 | : |  | : |  | : | 42,9 | : |  | : |  | : |  | : |  | : | 27,3 | : |
| : |  | DEFOLIATED | 88 | 9,9 | : | 6,0 | : |  | : |  | : | 15,5 | : |  | : |  | : | 39,8 | : |  | : |  | : |  | : |  | : | 27, 1 | : |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  |  | : |  | : |  | - |  | : |  | : |  | : |  | : |  | : |  |  |  | : |  | : |  | : |  | : |
|  | 3 | SEVERELY | 87 | - | : | 0.0 | : |  | : |  | : | 2.1 | : |  | : |  | : | 4,7 | : |  | : |  | : |  | : |  | : | 5,9 | : |
| : |  | DEFOLIATED | 88 | 1.1 | : | 0.0 | : |  | : |  | : | 1.0 | : |  | : |  | : | 4.3 | : |  | : |  | : |  | : |  | : | 2.1 | : |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | - |
|  | 4 | DEAD | 87 | - | : | 0.0 | : |  | : |  | : | 0,4 | : |  | : |  | : | 0,8 | : |  | : |  | : |  | : |  | : | 0,6 | : |
| : |  |  | 88 | 0,6 | : | 0,0 | : |  | : |  | : | 0,5 | : |  | : |  | : | 0.4 | : |  | : |  | : |  | : |  | : | 1,3 | : |
| : |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |

DEFOLIATION OF FAGUS BY MEMBER STATE (\%)

(a) Fagus moesiaca + F. sylvatica

DEFOLIATION FOR DECIDUOUS QUERCUS BY MEMBER STATE ( $\%$ )

| : |  | MEMBER ST <br> OLIATION CLASS | ATE |  | ELLAS <br> (d) | : | ITALIA | : | ESPAÑA <br> (b) | : | PORTUGAL <br> (e) | : | FRANCE | : | BELGIE/ BELGIQUE <br> (c) | : | LUXEMBOURG | : | BUNDESREP. DEUTSCHLAND | : | NEDERLAND (a) | : | DANMARK | : | UNITED KINGDOM <br> (a) | : | IRELAND | : | $\begin{gathered} \text { EEC-12 } \\ \text { COMMUNITY } \\ \text { SURVEY } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : | 0+1 | NOT OR SLIGHTLY | 87 |  | - | : | 94,9 | : | 99,0 | : | - | : | 94,8 | : | 81,2 |  | 92,2 |  | 77,9 | : | 69,4 |  |  | : | 58,0 | : | - | : | 88,0 | : |
| : |  | DEFOLIATED | 88 |  | 68,1 | : | 94,3 | : | 87,0 | : | 100,0 | : | 96,9 | : | 86,0 | . | 88,6 |  | 76,0 | : | 63,0 |  |  | : | 56,0 | : | - |  | 86.7 | : |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  |  |  | : |  |  |  |  |  | : |  |  |  | : |
| : | 2 | MODERATELY | 87 |  | - | : | 4,9 | : | 1.0 | : | - | : | 4,6 | : | 18,8 | : | 6,6 | : | 21.4 | : | 25,5 | : |  | : | 38,0 | : | - | : | 11.3 | : |
| : |  | DEFOLIATED | 88 |  | 29.5 | : | 5,2 | : | 7.2 | : | 0,0 | : | 2.9 | : | 11.5 | : | 9,8 | . | 22.9 | : | 29,0 | . |  | : | 39,0 | : | - | : | 12,0 | : |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  |  |  |  |  |  |  | : |  |  |  | : |  | : |  | : |  | : |
| : | 3 | SEVERELY | 87 |  | - | : | 0,2 | : | 0.0 | : | - | : | 0.5 | : | 0.0 | : | 0,8 | : | 0.5 | : | ? | : |  | : | 4,0 | : | - | : | 0,5 | : |
| : |  | DEFOLIATED | 88 |  | 1,8 | : | 0,2 | : | 5,8 | : | 0,0 | : | 0.2 | : | 2.5 | : | 1,2 | : | 1,0 | : | 6,8 | : |  | : | 5,0 | : | - | : | 0,9 | : |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |
| : |  |  |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  |  |  |  |  | : |  | : |  | : |
| : | 4 | DEAD | 87 | : | - | : | 0,1 | : | 0,0 | : | - | : | 0,1 | : | 0.0 | : | 0,4 | : | 0,1 | : | ? | : |  | : | 0.0 | : | - | : | 0,2 |  |
| : |  |  | 88 |  | 0,6 | : | 0,3 | : | 0,0 | : | 0.0 | : | 0,0 | : | 0,0 | : | 0,4 | : | 0.1 | : | 1,2 | : |  | : | 0.0 | : | - | : | 0,4 | : |
| : |  |  |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |  | : |

(a) Quercus robur
(b) Quercus pyrenaica
(c) Quercus robur + Quercus subra (borealis)
(d) Quercus frainetto + Q. robur + Q. petrea
(e) Quercus pyrenaica

## DEFOLIATION FOR EVERGREEN QUERCUS BY MEMBER STATE ( $\boldsymbol{z}$ )


(a) Quercus ilex + Q. suber
(b) Quercus suber $+Q$. rotundifolia

Germany: " . . . adverse substances in the air and their reaction products are involved in the new type of forest decline . . . a complex of biotic and ablotic factors are responsible and alr pollutants play an important role there although the importance of the single factors can vary considerably with time and site . . . all attempts to explain forest decline neglecting air pollutants have after approprlate scrutiny been turned down or rest unproven. . . . the most important adverse substances are sulphur oxide and nitrogen compounds as well as the acids and photoxidants they form in the air. The combined effect of more adverse substances, additive or even synergistic effects, deserves special attention . . .

The noxious effect of air pollution works in two ways: directly and by means of acld and nitrogen in the soll. . . Forest ecosystems will be exposed to a higher load of air pollutants than will the surrounding open land. This is due to the height of the trees, their filter effect, etc. . . . evidence has been collected as to the harmful effect of photooxidants (e.g. ozone) and acidification . . . a reduction of the soil content of interchangeable bases and an increase in the content of interchangeable aclds and acid formers can be verified. . . Acidification can lead to aluminium and heavy metals in the ground and in water sources."

United Kingdom: "Detalled anaiysis of the results of the 1987 forest damage surveys undertaken in the United Kingdom suggests that the main factors affecting the crown densities of trees are climatic. While air pollution may be having some effect on the trees, it is not easy to distinguish any such effect from those caused by other factors."

Ireland: "Difficulties arise in attributing defoliation and disscolouration specifically to the effects of atmospheric pollution. In most plots of the current survey, needle loss and yellowing were generally attributed to insect or fungal activity, nutrient deficiency or climatic stress.

As in the defoliation, the discolouration was generally attributed to factors other than atmospheric pollution. The yellowing in the spruces was mostly caused by green spruce aphid attack with some slight nutrient deficiency symptoms."

Greece: "So far we have not observed damages resembling those attributed to air pollution."

The Netherlands: "Concerning air pollution it should be noted that this may emphasise or weaken the effect of traditional factors. Preliminary results from ongoing research show that the effect of air pollution is serlous. It can be established that the vitality of forest in the Netherlands is influenced by air pollution inter alia."

Denmark: " . . . the improvement between 1987 and 1988 may probably be attributed malnly to abundant rain in the growing season and the absence of storms for some years . . . Research has shown that alr pollution can directly harm the trees by way of deposition on the follage . . . this requires however concentrations of pollutants not normally seen in Denmark.

Besides, air pollution has an indirect action because the gases dissolved in precipitation render it acidic so that the soil and later the trees will be influenced by way of leaching. This will first be seen on oligotroph soils. It is uncertain whether the indirect effect of air pollution has already manlfested itself in the northwestern part of Jutland (oligotroph soils), as a number of other known damaging agents occur at the same time. It is difficult to distinguish between the reasons behind defoliation, as the damaging agents act in combination - it is the total stress on a tree that decides its state of health."

Italy: "Among the possible causes behind forest damage in ltaly are, of course, all factors for which a toxic effect on vegetation has been demonstrated (SO2, NOX, catlons of heavy metals, etc.) or factors where such an effect is only yet a hypothesis (electro-magnetism, radloactlvity, CO2, etc.)."

France: "One should not exclude the hypothesis that atmospheric pollution may have contributed to those effects (repercussions of earller dryness) thus preventing restoration of trees that otherwisse had overcome the consequences of the drought: it has in fact been demonstrated experimentally that most pollutants act synergetically with climatic problems, coldness or water deficiency."

## E. EPILOGUE

A compilation of the data from the National Reports of the Member States allows analysis of the development from 1987 to 1988 and a comparison between Member States. Analysis of other trends, as carried out for the Community net, is not possible for the data from the National Reports.

As to a possible evolution in time for the national results, it is difficult to draw any definite conclusions yet. Firstly, because one year is too short a period and secondly because the survey nets inside some Member States were modified between the two years. So even though the present National Reports are based on more data than is the community network (and especially the common sample trees thereof: CST) they are likely to be less suited to indicate Communlty-wide damage evolution.

Exmaination of the data, however, does not suggest that the situation has deteriorated from 1987 to 1988 ; a conclusion that is in line with the results of the Community survey.

A comparison between Member States shows that neighbouring countries often have similar damage pictures; pronounced exceptions to this tendency however exist. This tendency to similarity between neighbouring countries is indeed to be expected as climate, soil conditions, some biotic damaging agents, and long range air pollution are to a large extent transboundary. The similarity between neighbouring countries may indeed be taken as a confirmation of the feasibility of the applied survey method, including eye-estimation of the damage.

First analysis of the data from the Community Network however suggests that the state of health of forests varies with a multitude of factors such as climate and other site characteristics, abiotic or biotic damaging agents, and the use of observers operating nationally/regionally may have contributed to some bias between Member States too. For these reasons as well as because of the very short time period available, it is premature to draw conclusions as to differences between individual Member States. The present compilation however is an important complement to the results of the Community network, particularly at national and regional level.

ANNEX 1<br>The research into effects of air pollution on forests in the framework of the Community's Research and Development Programmes

Since 1984 research into causes of the deteriorating health of forests has been the subject of European projects financed and coordinated by the Commission in the framework of its Research and Development Programmes on environmental protection. The scientific work relates to (a) an objective, precise description of the symptoms observed, which takes account of their development over time and their spatial variations, (b) a thorough knowledge of the environmental, natural and human factors likely to influence the health of forests, (c) the search for early indicators, which might indicate the specific simple (a single determining factor) or complex (several determining factors) cause-and-effect relationships, thus taking account of synchronic or asynchronic interactions between the factors, and (d) a thorough investigation and verification of all the main hypotheses put forward to explain the deterioration of the health of forests, namely:

- the multiple stress hypothesis,
- acidification of the soil,
- the direct ozone effect, in combination with acid deposition,
- mineral deficiencies,
- excessive deposition of nitrogen compounds,
- the influence of climatic and weather factors,
and the variants and combinations of those hypotheses.
Substantial sclentific progress has been made in respect of the investigation and verification of all the hypotheses, both as regards the theoretical study (laboratory work) of the physiological and ecological mechanisms to which those hypotheses relate and as regards the occurrence of such mechanisms in forests.

Alongside investigation of the hypotheses, major scientific progress has also been made as regards knowledge of the environmental factors likely to play a part in the deterioration process (soil, climate, meteorology, pollution climate, forestry cultivation methods). In many cases, differences by region were established. This factor proved to be of the highest importance as regards in particular the choice of explanatory hypotheses. On the other hand, a precise and objective comparative description of the symptoms and of their development was made possible thanks to the coordinated research programme.

Progress made is described in detail in Commission Scientific documents published in the framework of the Research and Development Programmes on environmental protection between 1985 and 1988 (list appended); A summary of that work is currently being prepared.

## PUBLICATIONS

```
Indirect effects of air pollution on forest trees
Root-rhizoshere Interaction
    XII/ENV/24/86
Direct effects of dry and wet deposition on forest
ecosystems - canopy interactions
Alr pollution research report n}\mp@subsup{n}{}{\circ}4\quadEUR 1126
Air pollution and Ecosystems
Air pollution research report no 7 EUR 11244
Microclimate and plant growth in Open-Top Chambers
Air pollution research report n}\mp@subsup{n}{}{\circ}
EUR 11257
Pollutlon climates in Europe and thelr perception
by terrestrial ecosystems
Air pollution research report no 6 EUR 11432
Relatlonships between above and below ground
influences of air pollution on forest trees
Air pollution research report n}\mp@subsup{n}{}{\circ}16\mathrm{ EUR 11738
Scientific basis of forest decline symptomatology
Air pollution research report n }\mp@subsup{}{}{\circ}1
EUR 11737
```

ANNEX 2

INITIATIVES AT COMMUNITY LEVEL IN RELATION TO REDUCTION OF ATMOSPHERIC POLLUTION

Regarding the reduction of atmospheric pollution, the activities of the Community have been orientated following three main lines:

1. Reduction of the emissions from non-moving sources;
2. Reduction of the emissions from moving sources;
3. Normalisation of products.

> Non - moving pollution sources

The directive 88/609/EEC concerning the limitation of the emissions of pollutants into the air from large combustion installations is the first step towards a reduction of pollution coming from non moving sources.

This directive foresees for existing combustion installations a reduction of total annual emissions compared to 1980 quantities in three steps for s02 ( $40 \%$ in 1993, $60 \%$ in 1998 and $70 \%$ in 2003) and in two steps for the NOx (20\% in 1993 and $40 \%$ in 1998).

Derogations to these dispositions are foreseen for certain Member States considering their specific situations.

New installations (authorized after July 1987) will have to conform to limited emission values for the same pollutants and for solid particles.

Furthermore the Council achieved a political consensus on a proposal for a directive concerning the reduction of pollution by new installations for burning urban waste which foresees satisfactory norms of emlsslons of HCl; SO2 and solid particles.

A proposal for a directive concerning old installations has also been submitted to the Council.

## 2.Moving sources

Different directives have been adopted by the Council concerning the reduction of pollutant emissions by motor vehicles.

They mainly concern the emissions of $C O$, NOX, and combined emissions of NOX and hydrocarbons by particular vehicles equipped with a gas or diesel engine and by heavy vehicles equipped with diesel engines as well as the emissions of solid particles by vehicles equipped with diesel engines.

## 3. Product norms

The limitation of the content of certain products of polluting substances is foreseen by two directives fixing limit contents for Pb in gas and S in gasoils.

## Future development

The Commission will contlnue to attach particular importance to the reduction of atmospheric pollution coming from specific sources such as small combustion units (less tha 50 MW ) and combustion units for toxic waste,and will continue its actions in the field of moving sources.

The commission is studying the possibilities to combat photochemical pollution (O3 mainly) by reducing chemical precursors such as NOx and VOCs (volatile organic compounds).

Finally the reduction of so called green house gases belongs to the priorities of the Commission's working programme for reducing atmospheric pollution.

## Information on the state of the environment in the European Community:

## The CORINE programme

The Cor ine programme for gathering, coordinating and ensuring the consistency of information on the state of the environment and natural resources in the European Community was adopted by the Council by the decision $n^{\circ} 85 / 338 / C E E$ of 27 June 1985 for a duration of 4 years.

The objectives of this programme follow three main axes:

- gatherlng of information on the state of the environment;
- coordination of initiatives whith the aim of improving the quality of the environment;
- ensuring the consistency and the comparability of data.

As far as atmospheric pollution is concerned, Corine, together with other institutions concerned such as OCDE has :

- contributed to the achievement of the cartographic OCDE and EC inventory of the emissions of SO2, NOx, VOC (reference year 1980);
- together with OCDE developed a common method and vocabulary and on this basis realised the inventory of emissions for the year 1985;
- contributed to the Benelux pilot project for mapping the atmospheric concentrations of different substances (NO2, SO2, Pb).

The Corine project completes the environmental policy of the Community and allows better observation, monitoring and verification of the evolution of the state of the environment in general.

FORM 1
Common forest damage inventory data to be forwarded to the Commission


For the replacing of trees of the sample see the form in Annex.

FORM 1 - Annex
Replaced trees ( ${ }^{17}$ )

|  | $\begin{aligned} & \bar{\Xi} \\ & \text { H0 } \\ & \ddot{0} 0 \end{aligned}$ |  |  | Easily identifiable causes of damage Type: T (14) |  |  |  |  |  |  |  | Identification of damage rype if possible ( ${ }^{15}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\sim}{E}$ |  |  |  | T1 | T 2 | T 3 | T 4 | T 5 | T 6 | T 7 | T 8 |  |
| 31 |  |  |  |  |  |  |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |  |  |  |  |  |  |
| 34 |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 |  |  |  |  |  |  |  |  |  |  |  |  |
| 36 |  |  |  |  |  |  |  |  |  |  |  |  |
| 37 |  |  |  |  |  |  |  |  |  |  |  |  |
| 38 |  |  |  |  |  |  |  |  |  |  |  |  |
| 39 |  |  |  |  |  |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |  |  |  |  |  |
| 41 |  |  |  |  |  |  |  |  |  |  |  |  |
| 42 |  |  |  |  |  |  |  |  |  |  |  |  |
| 43 |  |  |  |  |  |  |  |  |  |  |  |  |
| 44 |  |  |  |  |  |  |  |  |  |  |  |  |
| 45 |  |  |  |  |  |  |  |  |  |  |  |  |
| 46 |  |  |  |  |  |  |  |  |  |  |  |  |
| 47 |  |  |  |  |  |  |  |  |  |  |  |  |
| 48 |  |  |  |  |  |  |  |  |  |  |  |  |
| 49 |  |  |  |  |  |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |  |  |  |  |  |
| 51 |  |  |  |  |  |  |  |  |  |  |  |  |
| 52 |  |  |  |  |  |  |  |  |  |  |  |  |
| 53 |  |  |  |  |  |  |  |  |  |  |  |  |
| 54 |  |  |  |  | ! |  |  |  |  |  |  |  |
| 55 |  |  |  |  |  |  |  |  |  |  |  |  |
| 56 |  |  |  |  | ' |  |  |  |  |  | I |  |
| 57 |  |  |  |  |  |  |  |  |  |  | ; |  |
| 58 |  |  |  |  |  |  |  |  |  |  | , |  |
| 59 | - |  |  |  | ! |  |  |  |  |  |  |  |
| 60 | 1 |  |  |  | $!$ |  |  |  |  |  | - |  |

European Communities - Commission

## European Community: Forest health report, 1987-1988

Luxembourg: Office for Official Publications of the European Communities
1989 - IV, 132 pp., 19 illus. $-21.0 \times 29.7 \mathrm{~cm}$
ES, DA, DE, GR, EN, FR, IT, NL, PT
ISBN 92-826-0949-9
Catalogue number: $\mathrm{CH}-56-89-877-\mathrm{EN}-\mathrm{C}$

This report gives the results of national forest health reports and the Community forest damage survey in 1987 and 1988. The aim of the report is to give an overview of the state of forest health in the European Community.

#  Sales and subscriptions • Vente et abonnements • Vendita e abbonamenti Verkoop en abonnementen • Venda e assinaturas 

## BELGIQUE / BELGIE

Moniteur belge / Belgisch Staatsblad
Rue de Louvain 42 / Leuvenseweg 42
1000 Bruxelles / 1000 Brussel
Tél. (02) 5120026
Téléfax 5110184
CCP / Postrekening 000-2005502-27
Sous-dépoits / Agentschappen:
Librairie euroṕenne /
Europese Boekhandel
Avenue Albert Jonnart 50 /
Albert Jonnartlaan 50
1200 Bruxelles / 1200 Brussel
Tól. (02) 7340281
Téléfax 7350860
Jean De Lannoy
Avenue du Roi 202 /Koningslaan 202
1060 Bruxelles / 1060 Brusse
Tél. (02) 5385169
Télex 63220 UNBOOK B

## CREDOC

Rue de la Montagne 34 /Bergstraat 34
Bte 11 / Bus 1
1000 Bruxelles / 1000 Brussel

## DANMARK

J. H. Schultz Information A/S

EF-Publikationer
Ottiliavej 18
2500 Valby
TIf. 36442266
Telefax 36440141
Girokonto 6000886

## BR DEUTSCHLAND

Bundesanzeiger Verlag
Breite Straße
Postfach 108006
5000 Köln 1
Tel. (0221) 20 29-0
Fernschreiber:
ANZEIGER BONN 8882595
Telefax 2029276

## GREECE

G.C. Eleftheroudakis SA

International Bookstore
Nikis Street 4
10563 Athens
Tel. (01) 3226323
Telex 219410 ELEF
Telefax 3239821
Sub-agent for Northern Greece:
Molho's Bookstore
The Business Bookshop
Tsimiski Street 10
Thessaloniki
Tel. (031) 275271
Telex 412885 LMO

## ESPANA

Boletin Oficial del Eetado
Trafalgar, 27
28010 Madrid
Tel. (91) 4466000
Mundi-Prensa Libros, 8.A.
Castello, 37
28001 Madrid
Tel. (91) 4313399 (Libros)
4313222 (Suscripciones) 4353637 (Direcciosn)
Télex 49370-MPLI-E
Telefax (91) 2753998
Sucursal:
Librerfa Internacional AEDOE
Consejo de Ciento, 391
08009-Barceiona
Tel. (93) 3018615
Telefax (93) 3170141

| FRANCE |
| :--- |
| Journal officiel |
| Service des publications |
| des Communautes europesennes |
| 26, rue Desaix |
| 75727 Paris Cedex 15 |
| Tel. (1) 40587500 |
| Télefax (1) 40587574 |
| IRELAND |
| Government Publications Sales Office |
| Sun Alliance House |
| Molesworth Street |
| Dublin 2 |
| Tel. 710309 |
| or by post |
| Government Stationery Office |
| EEC Section |
| 6 fth floor |
| Bishop Street |
| Dublin 8 |
| Tel. 781666 |
| Fax 780645 |
| ITALIA |

## Licosa Spa

Via Benedetto Fortini, 120/10
Casella postale 552
50125 Firenze
Tel. (055) 645415
Telefax 641257
Telex 570466 LICOSA I
CCP 343509
Subagenti:
Libreria scientifica Lucio de Blasio - AEIOU
Via Meravigli, 16
20123 Milano
Tel. (02) 807679
Herder Editrice e Libreria
Piazza Montecitorio, 117-120
00186 Roma
Tel. (06) 67946 28/679 5304
Libreria giuridica
Via 12 Ottobre, 172/R
16121 Genova
Tel. (010) 595693
GRAND-DUCHÉ DE LUXEMBOURG
Abonnements seulement
Subscriptions only
Nur für Abonnements
Messageries Paul Kraus
11, rue Christophe Plantin
2339 Luxembourg
Tél. 482131
Télex 2515
CCP 49242-63

## NEDERLAND

SDU uitgeverlj
Christoffel Plantijnstraat 2
Postbus 20014
2500 EA 's-Gravenhage
Tel. (070) 789880 (bestellingen)
Telefax (070) 478351

## PORTUGAL

## Imprensa Naciona

Casa da Moeda, EP
Run D. Francisco Manuel de Melo, 5
092 Lisbol Codex
Tel. (01) 693414
Distribuidore de Livros Bertrand, Ld.*
Qrupo Bertrand, BARL
Rua das Terras doe Vales, 4-A
Apartado 37
2700 Amadort Codex
Tel. (01) $4939050=4948788$
Telex 15798 BERDIS
Telefax 491025 s


Danya süper veb ofset A.S.
Narlibahçe Sokak No. 15
Cagalogiu
Istanbul
Tel. 5120190
Telex 23822 DSVO-TR

## UNITED STATES OF AMERICA

## UNIPUB

4861-F Assembly Drive
Lanham, MD 20708-4391
Tel. Toll Free (800) 2744888
Fax (301) 4590058
Telex 7108260418

## CANADA

Renouf Publishing Co., Ltd
61 Sparks Stree
Ottawa
Ontario K1P 5R
Tel. Toll Free 1 (800) 2874164
Ottawa Region (613) 23889 85-6
Telex 053-4938

## JAPAN

Kinokuniya Company Ltd
17-7 Shinjuku 3-Chome
Shiniuku-ku
Tokyo 180-9
Tel. (03) 3540131
Journal Department
PO Box 55 Chitose
Tokyo 156
Tol. (03) 4390124

## AUTRES PAYS

OTHER COUNTRIES
ANDERE LANDER
Office dee publications offialelles
dee Communautes europernnes
2, rue Mercier
L-2085 Luxembourg
Tel, 498281
Tolex PUBOF LU 1324 b
Toldfax 48 8s 73
CC bancalre EIL $8=109 / 8003 / 700$

