

THE LIBRARIAN

Handbook on the use of the Librarian
System as installed at the J.R.C.
Computing Centre, Ispra

R, Meelhuysen, H.I. de Wolde

version 1, April 1978

INTRODUCTION

The Librarian is a dataset retrieval and maintenance system
designed to facilitate the writing, maintaining, testlng and
documenting of programs.

Source programs, object decks, test data and any other
information traditionally stored on cards, may be stored
through the Librarian system on disk. Updating and
manipulations may be performed by a set of simple commands .

This paper describes the most common use of the Librarian.
Detailed information for more complicated tasks is available at
the unit "Support to Computing”.

The basic element

The basic element is a record (length 80 bytes) containing a
cardimage, without restrictions to the type of information
contained. Each record is supplied with a sequence number in
user specified columns. This may also be external .to the
records, e.q. columns 81-88, thus leaving all 80 columns
available for information.

Module
A module consists of one or more records which have been
grouped under an alphanumerical name chosen by the user.

Masterfile

KX masterfile is a reserved disk space location containing one
or more modules possibly from several users. The masterfile is
known by the masterfile name.

The main capabilities of Librarian are listed below. This list
is not exhaustive, neither are all these options discussed in
this manual.

- Updating of modules

- Preparing modules for use in a consecutive step

- Temporary updating: the source module remains unchanged
- Cobol syntax checker

- Storing biographical information

- Storing output listings

~ Character string search

- Character string search and modification

~ Introduction of specified data in specified column

- Hasterfile back-ups

- Creating new modules out of parts from other modules
- Duplicating modules to cards, disk or tape

-~ Condensed storage of information

PAGE 1

THE LIBRARIAN PROCEDURE

The Librarian procedure has

been catalogued under the

"LIBRAP" as follows:

//LIBRAP
//
//INS
//
//STEPLIB
//
//MASTER
//
//SYSPRINT
//INDEX
//LIST
//08J0B

//
//SYSAF02
//
//SYSAF)3

//
//SYSPUNCH
//

PROC A='MASTER',E='DISPACK', K='DISK',CC=l,
EO="',EVEN"

EXEC PGM=$$URIAN, PARM='DEPTH=50 ,NJTA,NRJS',
COND= ((§CC,LT) §EO)

DD DSN=LIBRA75,DISP=(SHR,KEEP) ,UNIT=DISK,
VOL=SER=COPICB

DD DSN=§A,UNIT=£K,DISP=(SHR,KEEP,KEEP),
VOL= (PRIVATE, RETAIN, SER=EE)

DD SYSOUT=A,DCB= (RECFM=FBM, BLKSIZE=1330)
DD SYSOUT=A,DCB= (RECFM=FBM,BLKSIZE=1330)
DD SYSOUT=A,DCB= (RECFM=FBY,BLKSIZE=1330)
DD DISP=(NEW,PASS,DELETE) ,DCB=BLKSIZE=800,
UNIT=SYSDA,SPACE=(CYL, (1,1))

DD UNIT=SYSDA,SPACE=(CYL, (1,1)),

DISP= (NEW,DELETE) , SEP= (OSJOB)

DD UNIT=SYSDA,SPACE=(CYL,(1,1)),
DISP=(NEW,DELETE) , SEP= (OSJOB, SYSAF02)

DD SYSOUT=B,DCB=BLKSIZE=800

PEND

The Librarian program

name

The actual Librarian task is performed through the execution of
program $3URIAN which is stored in library LIBRA75.

The masterfile

The masterfile is

defined by MASTER DD statement.

At the

moment of the execution one must define the actual name of the
masterfile and the residing diskpack.

Output

Thne SYSPRINT, INDEX and

LIST DD statements describe

different output types.

Intermediate data sets

The 05JOB DD statement describes the module which

a consecutive jobstep.

Working files
and SYSAF03 statements define the working files.

e

Punched output

efines the

file

the

is passed to

for punched output, however it may

also be used to create a second output module for consecutive
steps, as will be demonstrated later.

PAGE 2

The Librarian procedure is invoked by the control cards:

//STEPN EXEC LIBRAP,A='...,',E=',...'
//SYSIN DD *

Librarian input cards

/*

In which A gives the masterfile name and E supplies the
residing diskpack.

A thorough knowledge of this procedure is not necessary for
current use, however more complicated tasks need sometimes JCL
substitutions.

PAGE 3

THE MASTERFILE MANAGER

Many users may use the same masterfile and thus simplify the
back-up procedures. 1In practice it 1is very useful to have a
masterfile manager who is responsible for the total dataset
without interfering with the single modules.
The tasks of such a masterfile manager are:

- The creation of the masterfile

~ The checking of the dataset expiration date

- The production of tape back-ups, at least weekly

- The execution of the relocation procedure eventually
~ The production of index listings

TIIE CREATION OF A MASTERFILE

To initialize a new masterfile on a user's disk, one has to
execute the job:

//JOBLIB DD DSN=LIBRA75,DISP=(SHR,KEEP) ,UNIT=DISK,

// VOL=SER=COPICB

//STEP1 EXEC PGM=$$URIAN

//SYSPRINT DD SYSOUT=A

//MASTER DD UNIT=3330,VOL=SER=USERnn,DSN=dsname,

// DCB= (BLKSIZE=6444 ,DSORG=DA) ,DISP=(NEW,KEEP ,DELETE) ,
SPACE=(CYL, (k))

//SYSIN DD *

~-OPT INIT,DISK,options

*
//STEP2 EXEC EURUDR,U=3330,V=USERnn
//GO.SYSIN DD *

reservation card

/*
in which: nn indicates a diskpack of the USER series

dsname is the name of your masterfile (max 8 char.)

k is the number of cylinders. According to our

experiences one cylinder may :contain roughly
6000 records of mixed nature.

Options

=OPT 1§ a Librarian command card. The options at initializing
a masterfile are the default definitions for the whole file.
At the consecutive loading of modules into the file one may
change these default values and define new ones for the single
module.

The most common form is:

-0OPT INIT,DISK,NORESEQ,SENQ=/73,8,10,10/,NOLIST, NOPUNCH,NOEXEC

PAGE 4

The records are numbered starting in column 73 with a field
width of .8 columns., The first sequence number is 10 increased
.each time by. 10, The modules. .of - this masterfile are not
automatically renumbered after each run. If you expect to have
input records with 80.columns of information you may write:
SEQ=/81,8,10,10/, but this .may also be done at the module
level, .

The option HNORESEQ defines no automatic updating of the
recordsequence numbers. .Using a card with 10 increase, the
programmer can easily see which records have been added namely
the cards. numbered with no 10 multiple., Of course, if you
insert more than 9 cards at a single place the system performs
some resequencing.

Reservation of space on disk
The reservation card is composed as follows:

columns 1-7 the number of the "fiche d'activite”
9-12 the number of authorization
14-17 the number of the programmer (masterfile
manager)
19-24 the expiration date
26-69 the masterfile name, left adjusted
*8,13,18,25 must be left blank

Space on wusers disks may be reserved only half a year in
advance. To renew the reservation it is sufficient to run the
next job:

//STEP1 EXEC EURUDR,U=3330,V=USERnn
//GO.SYSIN DD *

new reservation card

/¥

PAGE 5

ADD A MODULE

The Librarian commands start with a minus sign in column 1,
followed by three or four characters and one blank.

Each input deck for a Librarian execution has to start with the
-OPT control card.

In the next examples it is assumed that the masterfile manager
has initialized a file with the name "PRIVATE" on diskpack
USERJS.

The next procedure is executed to add a module 'PROGA':

EXEC LIBRAP,A='PRIVATE',E='USER05'
//SYSIN DD *
-OPT
-ADD PROGA,LIST
-DESC max 30 characters description
-PGMR max 10 characters programmers name

the module

-EMOD indicates end of module
-END indicates end of input deck
/*

The LIST option in the <~ADD command produces the complete
listing of the module with the sequence numbers.

The programmers name must be spelled always in the same manner
without containing blanks.

More than one module may be added in one step providing the
-EMOD card at the end of each module.

The -END card occurs only one time.

Adding a module directly from tape or disk is also possible
providing that the source dataset is fixed blocked and has
records of 80 bytes, the -AUX card refers to the related DD
card.

/ EXEC LIBRAP,A='PRIVATE',E='USER05!'
//DD1 DD... dataset definition with
« + . DCB=(RECFM=FB, LRECL=80 ,BLKSIZE....)
//SYSIN DD *
-OPT
-ADD PROGB,LIST,PUNCH
-DESC ...cccene
-PGMR PINKOPALIN
-AUX DD1
-EMOD
-END
/*

Punching of a module

The additional option "PUNCH" in the -ADD command delivers in
this case a punched output also. Normally this is not required
of course.

PAGE 6

MODULES FOR CONSECUTIVE EXECUTION

Suppose the user has put two modules into the masterfile
"PRIVATE". The first module is a fortran program PROGA, which
needs some updating. The second module are the input data
stored under the name PROGDATA. The system has the disposition
of only one output file, so two steps are needed to produce the
necessary datasets:

//STEP1 EXEC LIBRAP,A='PRIVATE',E='USER0S'

//SYSIN DD *

-0OPT

-~SEL PROGA,EXEC

~REP 20

. ««+« Record(s) to replace old record 20

-DEL 30,40

-INS 90"
«e.. Record(s) to be inserted after record 90

-EMOD

-END

/*

//STEP2 EXEC LIBRAP,A='PRIVATE',E='USERO5"

//SYSIN DD *

-0OPT

=SEL PROGDATA ,EXEC

-EMOD

-END

/*

//STEP3 EXEC FTGCLG

//CMP . SYSIN DD DSN=*.STEP1.INS.OSJOB,DISP=(OLD,DELETE)

//GO.SYSIN DD DSN=*.STEPZ.INS.OSJOB,DISP=(OLD,DELETE)

The EXEC option in the select command, -SEL, places the module
in the output file of the step.

The replace command, -REP, can also be of the form ~REP 20,25
at which all- the cards (20,25) are substituted by the new
records. -

The delete command, -DEL, can also be of the form -DEL 30,
which causes the deletion of just one card.

The update commands have to be .ordered according increasing
sequence numbers. .

Of course the data input may be modified in the same way as the
source deck. .

PAGE 7

A JCL SUBSTITUTION FOR TWO OUTPUT FILES

The same exercise as the previous example may be executed with
one step less, through a JCL substitution. The Librarian
offers only one output file for a transfer to the next step,
however the "PUNCH" file may also be transformed into an output
file by a substitution of the related DD statement.

//STEP1 EXEC LIBRAP,A='PRIVATE!,E='USER05"*
//SYSPUNCH DD DISP=(NEW,PASS,DELETE) ,DCB=BLKSIZE=800,
// UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSIN DD *
~OPT
-SEL PROGA ,EXEC

.+.s.updates

-EMOD

~SEL PROGDATA,PUNCH
-EMOD

~END

/*

//STEP2 EXEC FTGCLG

//CMP.SYSIN DD DSN=*,STEP1.INS.OSJOB,DISP=(OLD,DELETE)
//GO.SYSIN DD DSN=*,STEP1, INS.SYSPUNCH,DISP=(OLD,DELETE)

In this case the PUNCH option in the -SEL command puts the

module to the file described by the SYSPUNCH statement, ready
for use in the next step.

PAGE 8

MERGING MODULES BY UTILITY

Creating a new module from parts of existing ones is possible
through the "UTILITY" option. This procedure exists out of two
steps. .

The first one retrieves the necessary records and the second
step puts the new module into the masterfile.

//STEP1 EXEC LIBRAP,A='PRIVATE',E='USER05"'
//SYSIN DD *

-OPT UTILITY

-0OPT R

-ADD NEWMOD,LIST

-DESC

-PGMR

-INC PROGA,seql,seq2

-INC PROGB,seq3,seql

-~EMOD

~END

/*

//STEP2 EXEC LIBRAP,A='PRIVATE',E='USERO05'
//SYSIN DD DSN=%_STEP1.INS.0SJOB,DISP=(OLD,DELETE)

In this example the first step recognizes the -OPT UTILITY
card, removes this card and continues to substitute only the
include command, -INC, by the specified records, e.g. taking
from module PROGA the records numbered seql through seg2.

The other commands are not touched but directly transferred to
the output file. The second step receives thus a complete
input description for a Librarian execution.

The masterfile name in the EXEC statement of the second step
may differ from the name in the first step. In this way this
procedure may be used to transfer modules or part of modules
.between two different masterfile.

PAGE 9

TESTING LARGE PROGRAMS

At the testing of large programs it is good practice to store
the parts of the programs on which you are not working in
object form to save compilation time and output listings.
Suppose you have a large system with a main program and a
number of subroutines stored as one module PROGA in the
masterfile named "MASTERE®™ on disk "USER02". A number of new
modules are created out of the existing source module by the
metfod as described.in the previous section "Merging modules by
Utility".

From PROGA is produced MOD1 which contains MAIN
and MOD2 which contains SUBRA
and SUBRB

and MOD3 which contains SUBRC

The input deck composition for this task is as follows: -

//STEP1 EXEC LIBRAP,A='MASTERF',E='USER02"
//SYSIN DD *

-0PT UTILITY

-OPT

-ADD MOD1,LIST

-DESC

-PGMR

-INC PROGA,1,17

-EMOD

~ADD- MOD2,LIST

-DESC

-PGMR

-INC PROGA, 18,330

~EMOD

-ADD MOD3,LIST

-DESC

-PGMR

~INC PROGA,331,580

-EMOD

-END

/*

//STEP2 EXEC LIBRAP,A='MASTERF',E='USER02'
//SYSIN DD DSN=+*,STEP1.INS.0SJOB,DISP=(OLD,DELETE)

STEP2 creates MOD1, MOD2 and MOD3; consequently the subroutines
are compiled and the output of the compiler is loaded as a
module with the name "OBJECTR".

//STEP1 EXEC LIBRAP,A="'MASTERF',E='USER02'
//SYSIN DD *

-OPT

-SEL MOD2,EXEC

-INC MOD3

-EMOD

~END

/*

PAGE 10

//STEP2 EXEC FTGC

//CMP.SYSIN DD DSN=#, STEP1,INS.0SJOB,DISP=(0LD,DELETE)
//STEP3 EXEC LIBRAP,A='MASTERF',E='USER02'
//PD1 DD DSN=§LOADSET,DISP=(OLD,DELETE)
//SYSIN DD # ‘

-OPT

-ADD OBJECTR

=DESC

-PGMR

-AUX DD1 -

~EMOD

-END

/*

In this particular case in ~INC command statement is not used
:in combination with the UTILITY option. The command selects
the requested module and adds these records to the existing
output file,

The use of the ~-INC command in this sense does not allow to
transfer parts of modules, thus sequence numbers must be
omitted.))

After the execution of this job the module OBJECTR contains the
object decks of the subroutines SUBRA, SUBRB, SUBRC.

Suppose now the programmer wants to test modifications in the
main program and subroutines SUBRC.

The next job will do this task:

//STEP1 EXEC LIBRAP,A='MASTERF',E='USER02'
//SYSIN DD * -
-0PT
-SEL MOD1,EXEC, TEMP
«+es Updates specifications for MAIN
-EMOD
-SEL MOD3,EXEC,TEMP
«s.. Update specifications for SUBRAC
-EMOD
-END
/*
//STEP2 EXEC LIBRAP,A='MASTERF',E='USER02'
//SYSIN DD *
-0OPT
-SEL OBJECTR,EXEC
-EMOD
" -END
/*
//STEP3 EXEC FTGCLG
//CMP.SYSIN DD DSN=*,STEP1.INS.0SJOB,DISP=(0OLD,DELETE)
//LKED.SYSIN DD DSN=+%_,STEP2.INS.0SJOB,DISP=(OLD,DELETE)
//GO.SYSIN DD *
..o Input data
/*

PAGE 11°

The modifications to the main program and SUBRC are only
temporary because of the option TEMP. The source modules are
not affected. If the testing results of the modifications are
positive you have only to remoye the option TEMP and the
changes become definitive, .Do not forget to add@ in this case
the LIST option to receive the updated list of record sequence
numbers. .

The updated versions of . MAIN and SUBRC are input to the
compiler, which produces the new object deck. At the same time
the output of STEP3 still contain the obsolete versions.
However the linkage editor searches first the output of the.
compiler to resolve the external references. As a consequence
the modification of MAIN and SUBRC will be used and not the
obsolete versions. .

It is clear that the module OBJECTR is not modified so after
some time of introducing modifications the programmer must
delete OBJECTR and create a new module from all the updated
routines, :

PAGE 12

EDITING COMMANDS

The Librarian disposes of a series editing commands.
The first example converts a module named PROGA, from BCD
characters to EBCDIC.

//STEP1 EXEC LIBRAP,A='MASTER',E='USER05"
//SYSIN DD *
-OPT

-SEL PROGA
~EDIT #*%* (*
-EDIT * *) *
~EDIT *a*=*
_EDIT *a* LE 3
-EDIT *§#4%
-EMOD

-END

/*

The asterisk is a separator character. Any special character
may be used as such; Librarian defines the first symbol after
the EDIT command as the separator.

The general form of the ~EDIT command is

~EDIT *S1*52* (seql(,seq2)) (,STR=nn) (,END=kk)
in which

* is any special character
s1 is search string of maximal 35 characters
S2 is replacement string of maximal 35 characters
seq1
define part of the module by record numbers
seq2
nn defines starting column, default is 1
kk defines coluan beyond which no shifting may occur.
Default is 72.

The bracket indicate that the mentioned item is optional.

The -SCAN command is used to detect and signal a string of
specified characters through whole the module or part of it.
The general form is:

-SCAN *S1* (seqil(,seq2)) (,STR=nn) (,END=kk)

The meaning of the lower case characters is as described for
the -EDIT command.

If one wants to substitute the contents of certain columns
through whole the deck or part of it, the command -FILL will do
the job.

The general format is:

-FILL *S1* (seql(,seq2)) (,COL=nn)

PAGE 13

in which nn is starting column for the field; default is 73.
For example, to add characters ABC in column 73-75, it is
sufficient to write:

~-FILL *ABC*
It must be noted that for each -SEL command the number of EDIT,

~SCAN and -FILL operations are maximal 10, If you have to
perform more than 10 operations add other -SEL command.

PAGE 14

BACK-UP MASTERFILES

Many users may dispose of modules in one ‘single masterfile.
The advantage is that back-up procedures are simplified. The
masterfile manager has the obligation to make at least once a
week a back-up copy of the whole file. It is strongly advised
to use at least two or three different tapes which are
permutated. It may happen that a masterfile is damaged and
through the back-up procedure also the file copy.

Caution: Never make a back-up of a probably damaged masterfile
to your regqular tapes.

The procedure for a.back-up is as follows:

//STEP1 EXEC LIBRAP,A='XXXX',E='YYYY!
//BACKUP DD UNIT=TP9,VOlL~(PRIVATE,SER=%%222Z),
// LABEL=(1,SL, ,0UT) ,DSN=dsname,

// DISP=(NEW,PASS),

DCB=(RECFM=FB, LRECL=80 , BLKSIZE=800)
//SYSIN DD *
-OPT INDEX,BKUPTAPE
-END
/*

in which XXXX is the masterfile name
YYYY is the disk unit
2222 is the tape label
dsname is the tape file dataset name

A masterfile of 30 cylinders 3330 disk can easily be stored on
a 1200 ft tape with density 1600 BPI.

The option INDEX in the ~OPT card produces also a summary of
the present modules. See the paragraph on index listings.

PAGE 15

RESTORING A MASTERFILE

If a masterfile has been destroyed or damaged, it is necessary
to delete: and recreate the file.

Any default option and the space reservation may be modified at
this moment.

//JOBLIB DD DSN=LIBRA75,DISP=({SHR,KEEP) ,UNIT=DISK,
// VOL=SER=COPICB
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//Db1 DD DSN=masterf ,UNIT=3330,VOL=SER=USERnn,
// DISP=(OLD ,DELETE)
//STEP2 EXEC PGM=$$URIAN
//SYSPRINT DD SYSOUT=A
//MASTER DD UNIT=3330,VOL=SER=USERnn,DSN=masterf,
// DCB=(BLKXSIZE=6444 ,DSORG=DA),
DISP=(NEW,KEEP ,DELETE) ,SPACE= (CYL, (k))

//SYSIN DD *
-OPT INIT,DISK,options

*

//STEP3 EXEC EURUDR,U=3330,V=USERnn
//GO.SYSIN DD *
reservation card
/*
//STEP4 EXEC PGM=$$URIAN
//SYSPRINT DD SYSOUT=A
//BACKUP DD UNIT=TP9,VOL= (PRIVATE SER=222z2),
DSN=dsname, LABEL=(1,SL, ,IN),
V4 / DCB= (RECFM=FB, LRECL-80 BLKSIZE—BOO) v
// DISP=(0OLD, PASS)
//MASTER DD DSN=masterf +UNIT=3330,VOL=SER=USERnn,
// DISP=(OLD,KEEP)
//SYSIN DD *
-0OPT RESTORE, INDEX

~EHD

/*

In which masterf is the masterfilename .
nn indicates the dispack of the USER series
k is the number of cylinders

options are already previously described

The delete and restore procedure is also used to reorganize the
space occupation of the masterfile. Especially very active
files have to be deleted and restored once in a few months to
maintain an economical space occupation.

PAGE 16

RESTORING OF SINGLE MODULES

Single modules may be selected from a hack-up tape and copied

to a masterfile by the next procedure:

//STEP1 EXEC LIBRAP

//MASTER DD DUMMY

//MASTIN DD UNIT=TP9,VOL=(PRIVATE,SER=z2zz),

// LABEL=(1,SL, , IN) ,DSN=dsname ,DISP=(OLD,PASS) ,
7/ DCB= (RECFM=FB, LRECL=80 , BLKSIZE=800)
//SYSAF01 DD UNIT=SYSDA,SPACE=(CYL, (1,1))

//SYSIN DD *

-OPT UTILITY,NOCYCLE

~-0PT INDEX

-COPY PROGA

-COPY PROGB

~EMOD

-END

/*

//STEP2 'EXEC LIBRAP,A='xxxx,E='yvyy'

//SYSIN DD DSN=%*,STEP1.INS,.0SJOB,DISP=(0OLD,DELETE)

/*

in which

XXXX is the masterfile name

yyYvy is the disk unit

2222 is the tape label

dsname is the tape file dataset name

PROGA,PROGB are modules to be restored from back-up tape
onto masterfile xxxx.

2222

PAGE 17

INDEX LISTINGS

The contents list of a masterfile and relevant information may
be produced through the INDEX option in the -OPT command.
Four types of indexes are available respectively produced by:

-OPT INDEX

-OPT INDEX (pgmr)
-OPT INDEX(S)
-OPT INDEX (M)

The operand INDEX(pgmr) in which pgmr is the programmers name
as specified in the -PGMR card produces a 1list with one line
for each module, including the module descriptions, the date
added, the date and time of the list update and other pertinent
information.

Omitting the (pgmr) specification produces the list for the
modules. .

The management variation of the index 1list is selected by
~OPT INDEX(M) and produces an index listing of the entire
masterfile with the standard module attributes and in addition
counts representing the number of accesses, updates and
selections executions. Total for the number of records,
modules and available tracks are also provided.

The system variation of the index 1list is selected by
-OPT INDEX(S). This option will produce an index listing of
an entire masterfile containing the standard module attributes,
a count of the number of extents occupied by a module and a
count of the number of half-track or full-track blocks occupied
by the module.

PAGE 18

LIBRARIAN COMMANDS

The list of Librarian commands is not exhaustive, neither are
all possible options mentioned. Only the most frequent used
terms are specified.

The complete list may be consulted at the Computing Support
Library.

THE OPT CONTROL CARD:

~OPT options. This card must be the first input card and,
except in the case of UTILITY, there may only be
one of this type.
Allowable options are:

INDEX (type) masterfile index of specified type
will be produced
UTILITY invokes UTILITY option

ADDING A lIEW MODULE:

-ADD modname options

-DESC description of max 30 characters

-PGMR name of max 10 characters not blanks
Source deck or -AUX card

-EMOD

UPDATING A MODULE

-SEL modname ,options
-HST optional columns 6-80 used to contain comments
~INS seql or -INS LAST
cards to be inserted after record seql or at the end of
the module
-REP seql(,seq2) or ~REP ALL
cards to replace either seql through seq2 or all cards
-DEL seqil(,seq2)
-EMOD

OPTICNS FOR -ADD AND -SEL COMMANDS

EXEC module to be transferred to next step

LIST module to be listed

LISTH 1list the history cards (-HST)

PUNCH module to be punched

SEQ=/a,b,c,d/ sequence numbers begin in column a, are b
columns 1long, have an increment of c and
starting value 4. The value of a may also be
81.

PAGE 19

OPTIONS FOR -SEL COMMANDS

In additdon to the previous listed options, the -SEL card may

also contain:

TEMP updates are effective only for the output file,
the source module remains unchanged

COPY=newname creates a duplicate version of the module named
"newname"

RESEQ performs new record numbers for the module

DELETING A MODULE

-DIM modname no options permitted

EDITING OPERATIONS

-SEL name,options
-EDIT *S1*S2*(seql(,seq2)) (1,STR=nn) (,END=kk)
-SCAN *S1*S2*(seqt1(,seq2)) (1,STR=nn) (,END=kk)
-FILL *S1*(seql(,seq2)) (,COL=mm)
nn is starting column, default is 1
kk specifies ending column defaults to 72
mm is starting column for field, default is 73
maximum length of $1 and 82 is 35 characters
* is any special character
No more than 10 EDIT/SCAN/FILL operations per single
-SEL command are permitted.

COMMANDS WITH UTILITY

The next commands can only be wused in combination with the
-OPT UTILITY option:

=INC modname (,seq1) (,seq2)
referenced module or part of it is written to the
output file.

-PRINT modname(,seql) (,seq2)

-PUNCH modname (,seq1) (,seq2)

’ referenced module or part of it is printed or

punched.
Warning: First record of output is the Librarian
command.

PAGE 20

