

CONTENTS

Editor's Note 2

The European Informatics Network
Demonstration 3

Table of equivalent time, summary per month
and cumulative 8

Statistics of computing installation utilization - June 9

Utilization by objectives and accounts- June 10

An Introduction to Modular Systems 11

Note of the Editor

The present Newsletter il
published monthly except for August
ll'ld December.

The Newsletter includes:

• Developments. c:flanges. uses of
installations

• Announcements. news and abltrac:ts
on initiatives 1r1d accomplishments.

The Editor thll'lks in advlnc:e til«* who
want to c:antrlbu• to the Newsletter
by sen~ng •tides in English or French
to one of the following persons of the
Editorial Board. ·

Editorial Board I Comite de Ridaction

H. de Wotdl. D.G. lssn
C. Pi~l. C.C. lspq
J. Pire. C.C. lssn

Consulr.nt: S.R. Gebbel. D.G. lspra

Computing Centre References

Manager
Adjoined

CDmputer Room
Adjoined ·

Periph•rals
System Group

Adjoined
Informatics Support

o General Information
o Program Information Service

Aelloined
o Graphics and Support to Users

Adjoined
Application Packages

Note de Ia Redaction

I.e present Bulletin est publi• mensuell•
menrexcept4 durant les mois d'aoCrt et
dfclmbre.

I.e Bulletin traite des:

• Diveloppementl. changements et
emplai des des installations

• Avis. nouwlles et raum& c:ancemant
les initiatives et les reatisations.

La Redaction r..,.rcie d'awna ceux
qui wulent bien c:antribuer ., Bulletin
111 envoyant des articles en an9ail ou
fran~ I t•un des membres du Comid
deR~Ion.

Room

J.Pi~ 1816
G. Gaggero 1874
P. Tombl 1857
A. Binda 1857
G. Nocera 1825
0. Koenig 1839
P.A. Moinil 1841
G. Gaggero 1874
G. Hudry 1873
G. Gaggero 1874
S. Leo Menardi 1884

Til.

732
787
797
797
767
742
704
787
787
787
721

H.l. de Wolde 1883 1259
A. Pollicini 1886 701
A.lnzaghi 1887 755

Editor : Jean Pire
Layout : Peul D• Hoe
Grephical and Printing Workstlop, JAC lspra

2

The European Informatics Network Demonstration

A. Endrizzi

This is the third article in a series decribing the work being performed on the
project and will describe the EIN demonstration that took place on April 5th.

The demonstration
The basic idea behind the demonstration was to present the •Concourse• of
computers of different makes and located at various European sites.
For this purpose a series of simple applications was agreed between the
partners and performed concurrently at each site.
Each partner utilized his own equipment such as local interactive terminals,
printing facilities and computers to access the services offered by the remo­
te partners.
Those participants not having enough resources, in terms of equipment and
developed sofware, joined the demonstration via dial up connections to the
closest subscriber host of the network.

The «distributed• audience could feel the presence of a giant multipurpose
machine build up by the connection of a number of data processin_g installa­
tions in Europe, each of them offering its own application services.

The system
The traffic of data is handled and regulated by the various logical functions
implemented on top of the telecommunication lines connecting the disper­
sed equipment.
The basic data transmission service is supported by the five packet swit­
ching nodes located at the primary centres sites and connected together by
international lines. They are capable of transferring atoms of information
(packets) from any source to any destination.

Source and sinks of data are represented by the connected computers run­
ning application programs and/or driving peripherals. The connection is
usually supported by a local full duplex line linking the host computer to the
closest packet switching center.

Each host computer normally runs a number of application programs and ter­
minal handlers.
This means that packets in arrival have to be classified and routed to the pro­
per destination inside the host itself.Packets to be transmitted need also to
be •marked• in such a way that they can be addressed to the proper destina­
tion program.

This multiplexing and demultiplexing function inside the hosts is performed
by the so called Transport Station. The TS is a distributed process running in

3

all hosts and charged with the naming conventions that are necessary to set
up and operate the conversations between remote processes.
The TS is also provided with the appropriate intelligence to recover from the
sporadic malfunctioning of the packet switching network due to line break
down or congestion.
The TS acts much the same way as telephone and mail services do. It provi­
des liaisons (telephone calls) which carry the full duplex conversation bet­
ween correspondents in the form of streams of messages. It also provides fa­
cilities to send lettergrams (letters) from one network address to another.

The contents of the messages or lettergrams is completely transparent to
theTS.
The semantic meaning of the exchanged information has to be agreed by the
interlocutors.
Point to point agreements on the language to be used for the communication
are to be avoided. In fact the software which is capable of interpreting the
exchanged information should be valid for any conversation of the same ty­
pe.

The standardization of the language to be used by the communicating pro­
cesses guarantees the possibility to bypass the incompatibilities between
hererogeneous systems and services. The common language is obviously
different from the one used within a particular system, so that each network
host has to adapt itself to the agreed standards.

On top of the TS a Virtual Terminal layer was defined which corresponds to
the notion of a standard interactive terminal. All network hosts had to interfa­
ce via software translation modules, their terminal handlers to the VT.
This approach implies that local terminals are to appear as standard termi­
nals and local applications are to be modified or interfaced in order to be ca­

. pable of driving standard terminals.
In this way any terminal connected to the network system is able to logon any
conversational service which accepts network users.

Similar criteria will be followed in the future to provide the EIN network with
the file transfer and remote job entry services.

The demonstrated facilities ·
The demonstration was intended to show the operation of the various layers
mentioned above.

The packet switching service was illustrated first. This was done by sending
data and commands packets to the switching nodes. Those packets were
addressed to the testing and monitoring facilities that run in the nodes. Those
facilities, once activated, provide the demanding end with packets carrying
status information such as line behaviour, traffic, routing paths.
Packets were also sent to the CYCLADE, DCN and EPSS networks which
happen to be connected to EIN.

4

Via DCN and EPSS, ARPANET was supposed to be reachable. The experi­
ment to link us to the Pacific Coast was also scheduled but for some reasons
we were unable to perform it. we· now know that other EIN partners succe­
dedinthat.

The Transport service was demonstrated by exchanging messages with va­
rious location.

A distributed application n called «Conclave» was run successfully. It con­
sists of a simplified teleconferencing service which allows a number of parti­
cipants to build and retrieve a common file containing the contributions of
the «speakers».
The virtual Terminal Protocol allowed those partners having implemented it,
to access to a number of remote timesharing services and information retrie­
val systems.
From our terminals we ware able to log on to the Univac timesharing service
in Milan and to the CDC Venus service in Zuerich.

Remote users utilized our corea and ECDIN facilities.
During the demonstration we experienced some malfunctions which introdu­
ced some delays into the scheduled agenda or prevented us to show some
other implemented features. After a preliminary analysis jointly performed by
the EIN implementors, we can now say that those faults originated from
hardware malfunctioning and from software unreliability. As a justification it

·should be mentioned that EIN is a research project and as such hardware
and software maintenance services are not supported properly. Neverthe­
less it is believed that despite some temporary faults, the network system be­
haved nicely and the cooperation of a great number of heterogeneous sy­
stems performing activities was demonstrated.

TELETEXT

ECOIN

SOME E IN SERVICES

5

I
GATEWAY

CYCLAilES NPL

CYCLADES PL

Gateway EIN-PL

EIN PL

EIN TS

\

TERMINAL
HANDLER

/
/

/

-•/
/

AERE /

HARWEL.

I
I
I
I
I
I
I
I
I
\

I

CICG~
GRENOBLE \

\

' " '
JRC ,._

az
STOCKHOLM

NPL

CILEA
MILAN

international leased lines

primary centres with
packet switches

•

CREI

/
. /

-• - CSATA
BAR I

\
\
\
\

I
I

I
/

\
\
I
I
I
I
I

secondary centres connected by
naticnalleased lines

associated centres using the Public
Switched Telephone Network
(PSTN)

THE CONCOURSE OF COMPUTERS

ACCOUNTED WORK UNITS TABLE FOR ALL JOBS OF THE GENERAL SERVICES- Monthly and Cumulative Statistics

January February March April May June July August September October November Oecember

Year 1977 44 74 78 32 26 36 27 25 27 31 40 34

t~ccumulation 44 118 196 228 254 290 317 342 369 400 440 474

Year 1978 51 43 55 50 49 74
accumulation 51 94 149 199 248 322

ACCOUNTED WORK UNITS TABLE FOR THEJOBSOFALL THE OBJECTIVES AND GENERAL SERVICES-Monthly and Cumulative Statistics

January February March Apnl lfllay June July August September October November December

Year 1977 135 218 312 193 180 269 244 196 277 275 284 179
accumulation 135 353 665 858 1038 1307 1551 1747 2024 2300 2584 2763

Year 1978 211 213 283 232 202 317
accumulation 211 424 707 939 1141 1.458 -----

ACCOUNTED WORK UNITS TABLE FOR THE JOBS OF THE EXTERNAL USERS- Monthly and Cumulative Statistics

January February March April May June July August September October Novemb .. : Uecember

Year 1977 13 14 18 16 13 22 19 18 27 25 21 20
accumulation 13 27 45 61 74 96 115 133 180 185 206 226

Year 1978 12 10 11 46 23 11
accumulation 12 22 33 79 102 113

EQUIVALENT TIME TABLE FOR ALL JOBS OF ALL USERS- Monthly and Cumulative Statistics

January February March April May June July August September October November December

Year 1977 158 241 314 242 202 294 266 217 299 299 318 235
accumulat1on 158 399 713 955 1157 1451 1717 1934 2233 2532 2850 3085

Year 1978 276 261 356 298 262 335
accumulation 276 537 893 1191 1453 1. 788

Statistics of computing installation utlization

Report of computing installation exploitation
for the month of June 1978

YEAR 1978

Number of working days 22 d
Work hours from 8.00 to 24.00 for 16.00 h
Duration of scheduled maintenance 21.00 h
Durataon of unexpected maantenance 15.83 h
Total maintenance time 36.83 h
Total exploatation time 334.988h
CPU time in problem mode 183.178h

Conversational Systems:

CPU time 3.60 h

1/0 number 501.000
Equivalent time 7.10 h

Elapsed time 415.00 h

Batch processing:

Number of jobs 8.542

Number of cards read 2.019.000

Number of cards punched 116.000

Number of lines printed 7.663.000
Number of pages printed 614.730

YEAR 1977

22 d
16.00 h
17.84 h
14,61 h
32.45 h
319.55h

143.71 h

3.93 h

845.000
9.85 h

351 h

10.392
2.895.000

166.000

28.265.000
632.000

BATCH PROCESSING DISTRIBUTION BY REQUESTED CORE MEMORY SIZE

100 200 300 400 600 800 1000 1400 total

Number of jobs 1961 2680 1881 1027 296 26 92 34 7997

Elapsed time (hrs) 57 181 224 188 65 4 51 12 782

CPU time (hrsl 3 25 41 33 18 0,7 15 7 143

Equivalent time (hrsl 17 54 73 71 30 30 8 284

Turn around time (hrs) 0.4 1.3 1.5 2.4 3.5 3.0 4.6 8.0 1.4

PERCENTAGE OF JOBS FINISHED IN LESS THAN

TIME

%year t9n 46 64 80 90 97 99 99 99 100

%vear_1978 27 43 61 78 93 99 100 I I I

Utilisation of computer centre by the objectives and appropriation accounts
for the month of June 1978

1.20.2 General Services· Administration· lspra

1.20.3 General Services· Technical • lspra

1.30.4 L.M.A.

1.90.0 ESSOR

1.92.0 Support to the Commission

2.10.1 Reactor Safety

2.10.2 Plutonium Fuel and Actinide Research

2.10.3 Nuclear Materials

2.20.1 Solar Energy

2.20.2 Hydrogen

2.20.4 Design Studies on Thermonuclear Fusion

2.30.0 Environment and Resources

2.40.0 METRE

2.50.1 Informatics

2.50.3 Safeguards

309 Programming Support

TOTAL

1.94.0 Service to External Users

TOTAL

IBM 370/165

equivalent time in houn

73.55

0.64

36.11

1.30

149.55

1.95

0.60

4.38

16.46

1.11

25.48

3.60

2.16

316.89

11.43

328.32

An Introduction to Modular Systems

G. Gaggero

Abstract

An ov~rview of the various approaches adopted in the development of modular sy­
stems IS presented. Three modular systems which have a high degree of generality ,
(CARONTE, ICES, and GENESYS), are described.

Introduction

With the advent of third generation computers an increasing interest in the
development of modular systems was observed. Several different systems
have been implemented; some of them are specific to particular fields of
application of computers, other ones are quite general in purpose.

There are various motivations at the base of modular systems development.

In first place, the rapid growth of computer power stimulated the increase of
the number and complexity of the tasks performed with the aid of computers.
Stand-alone programs written to solve a specific problem turned out to per­
form only a subtask of a more complex task. It appeared evident the need to
integrate stand-alone programs into systems of programs. But integration re­
quires standardization and the logical complexity of large systems requires a
clear structure of programs; so that economy and efficiency suggested a se­
cond step to be made, the design of modular programming systems.

Another important motivation is the need of a rationalization of the produc­
tion, dissemination and use of software. Modular systems are expected tore­
duce the present wastage of man-power and money caused mainly by soft­
ware duplication, by promoting a more effective sharing of programs.

The aim of this paper is to outline the most important aspects of the modular
system approach, and to describe three systems, (CARONTE, ICES, and GE­
NESYS), which have a high degree of generality, and are presently in use at
the JRC Computing Center.

An Outline of Modular Systems

Taking into account the basic philosophies and technical approaches, three
types of modular systems can ~ identified.

One can classify into a first category those modular systems which have
been developed to link together several pre-existing stand-alone programs
with a minimum of changes. They essentially automate the job of taking the
output of a program and preparing the input for the next one.

A second category includes those systems whose modules and interfaces
have been planned from the start and have been developed following stan­
dard rules.
To the third category belong problem orientated language modular systems.
In these systems modularity is a consequence of both the need to integrate

11

the operation of several separate but related subtasks and the problem orien­
tated language communication approach.

In the first two types of systems, communication of data between modules is
generally accomplished through a peripheral or backing store. The layout of
data within the interfaces. is under the control of the programmer and he
must provide each module with suitable read/write instructions or calls to re­
trieve or store data.
In the systems of the third type the interface concept is replaced by the vir­
tual storage concept, which relieves the programmer of knowing whether or
not the data is in core or stored peripherally. A language (generally an exten­
sion of FORTRAN) is provided to make d~ta access transparent to the pro­
grammer.

Another interesting aspect of modular systems is the way in which the con­
trol of the computational sequence through the various modules is provided.

From a logical point of view different types of path control can be identified:

- those In which the path is pre-set when the system is programmed,

- those in which the path is pre-set but self-developing during execution on
the basis otdiscriminations which are identified in advance,

- those in which calculational paths are controlled interactively by the user
during execution.

The first type of control can be usually obtained without a supervisor (or exe­
cutor or driver program) by simply arranging modules as subsequent steps of
a job and using theJob Control Language (JCL) provided by the Operating
System.

On the contrary, a driver program is required in order to implement the se­
cond type of path control. Arithmetical and logical capabilities of an algorith­
mic language are required to programme the complex logic of a self­
developing path. In addition, the driver program must provide an efficient mo­
dules management to allow looping paths.

Concerning the third type of control, one easily recognizes the need for a
conversational driver program with a powerful communication language,
and, hopefully, graphical display facilities.

A further important aspect of modular systems is the way in which they are
implemented. As the efforts and costs associated to the development and
maintenance of a comprehensive library of modules are normally quite high,
machine Independence is a basic requisite.

Various approaches to this problem have been dopted:

- writing modules and driver program in ANSI FORTRAN or In a low level
subset of FORTRAN;

12

- confining all data management operations in the driver program and ac­
cessing external data through standard calls to subprograms;

- writing modules in a «private• language which can be easily translated in­
to the various dialects of a high-level language (e.g. FORTRAN) of general
use.

A high degree of portability of modules is generally obtained by these means.
Of course the problem is more difficult with the executor which must rely for
modules and data management on the facilities provided by the various ope­
rating systems. No general solution has been found to this problem, except
that of providing different executors for different computers.

CARONTE System
CARONTE system was started in 1967 at the CETIS Division of the lspra
Establishment of the Joint Research Centre. The first version became opera­
tive on the IBM 360/65 computer in 1969. Use experience and portability con­
siderations suggested a series of improvements which resulted in the deve­
lopment of two further versions in 1971 and 1972. The most up-to-date ver­
sion of the system, called CARONTE Fortran, is 90% written in Fortran IV
language and is running on IBM 360 and 370 series computers.

CARONTE has been working since many years at various computer installa­
tions, (lspra; CNEN, Bologna; BELGONUCLEAIRE, Bruxelles; CAMEN, Pisa).

ThePhilosophyof CARONTE
CARONTE was developed to provide an automatic control of the execution of
a sequence of modules involving transmission of data from module to modu­
le.

A basic design specification of the system was that pre-existing programs
could be handled as modules with a minimum of modifications.

Input and output data of a program to be inserted into the library of CARON­
TE do not have to be standardized. Groups of data that could be received
from or passed to another module have to be organized into numbered sets,
called «INTERFACES». Each interface has its own lay-out of data, but interfa­
ces identified by the same number must have the same lay-out.

When a module produces a set of data to be used by another module, the set
is stored, under the control of CARONTE, into a data file, called •DATA­
POOL•, and receives a label consisting of:

«module name••module occurence••interface number••control flags•

Conversely, when a module requires a set of data produced by another mo­
dule, the set is transferred, under the control of CARONTE, from the DATA­
POOL to the module.

However, since input and output INTERFACES are not necessarily standardi-

13

zed, 1t may happen that a rearrangement of data (e.g. convertion of data from
an interface to another one; merging of two or more interfaces) become ne­
cessary to provide a correct transfer of data.

This task is performed by «LINKING MODULES•. which must be written to
provide INTERFACES manipulation, (they operate on one or more interfaces
to produce another interface).

It must be noted that intervention of LINKING MODULES does not require
any user action, being controlled interely by CARONTE.

Of course, if CARONTE is used to control a library of modules having stan­
dardized interfaces instead of a library of pre-existing programs linked toget­
her a-posteriori, the need for LINKING MODULES is strongly reduced.

Path Control and Data Flow Specification
The system CARONTE allows the execution of a single module as well as of a
sequence of modules. Are also permitted loops involving two or more modu­
les. The number of times a loop is executed can be fixed by the user or de­
pend on the verification of a specified condition.

To the purpose of defining the sequence of modules to be executed, the user
is provided with a simple control language. For instance, the sequence of
modules ALFA, BETA, twice (GAMMA, LAMBDA), BETA is specified as fol-

lows: ALFA-1, BETA-1, 2*·(GAMMA-1, LAMBDA-1), BETA-2

The number following the module name is the •MODULE OCCURENCE NUM­
BER• in the sequence.

The flow of data from module to module can be specified by the user by
means of the control language.

For instance, in order to inform the system that INTERFACE 2 required by
module BETA (in its first occurence) must come from INTERFACE 3 and IN­
TERFACE 5 provided by program ALFA, the user can write either:

BETA-1 (2)F ROM ALFA-1 (3),ALFA-1 (5) ·or BETA-1 interfece 2 name FROM ALFA-1

provided that a name has been assigned to INTERFACE2, using a special
feature of CARONTE. .

The Newsletter Is available at:

Mrs. A. Cambon
Support to Computing
Bldg 36- Tel. 730

14

Des exemplaires du Bullfltin sont
disponibles chez:

Mme A. Cambon
Support to Computing
Bllt. 36- Tel. 730

System Organization
The system consists of a NUCLEUS, which is always resident in fast memory
and of a PROCESSOR.

The operations performed by the system are the following:

a) it analyses the sequence of modules specified by the user,
b) it examines what interfaces have to be transferred from module to modu­

le and determines what linking-modules are required,
c) it executes the whole sequence consisting of problem-solving modules

and linking-modules.

ICES System
The Integrated Civil Engineering System (ICES) was developed at the M.I.T.,
starting from 1964, as a cooperative venture of US government, industry,
and university groups interested In the development of a large-scale, c;ompu­
ter-based system for Civil Engineering.

It was originally developed to run on IBM 360 series computers, but, at pre­
sent, there exist several versions of ICES running on UNIVAC, CDC, SIE­
MENS 4004, and PHILIPS P400 computers.

The MIT version of ICES (for IBM 360, 370 computers) is available from the
ICES Users Group (lUG) Distribution Agency.

The Philosophy of ICES
The ICES system is aimed at providing the engineer (or more generally the
user) with a complete environment for developing and using large Integrated
programs. The major attention was devoted in designing ICES to the man­
machine communication problem.

The structure of ICES is hierarchical in that it is composed of a set of
subsystems operating under the control of the ICES Basic System.

The role of the Basic System will become clear if we proceed by considering
the characteristics of a subsystem.

A subsystem is a collection of modules performing various independent but
related subtasks which combined in different ways provide the solution to a
particular class of problems.

The user of an ICES subsystem is meant to be skilled in some discipline but
not necessarily to be an expert in the use of computers: so that each
subsystem must have a problem oriented language (POL) associated with it.
These POLs have the nature of commands which are composed of phrases
familiar to the user.

15

From the user point of view, the execution of an ICES subsystem is the pro­
cessing of a series of commands. When a command is put into ICES, the
ICES Basic System interprets the command, i.e. determines what module(s)
the use of this command implies and stores any data input with the com­
mand, it ensures the execution of the invoked module(s) and then passes to
the next command.

Although command interpretation is a function of the ICES System, it Is the
responsibility of the subsystem programmer to specify through a special pur­
pose language, called the Command Definition Language (COL), the form of
each command and the modules to be invoked.

Concerning the problem-solving modules, they are written in a language cal­
led ICETRAN, which is a procedure-oriented language based on FORTRAN.
After an ICETRAN module is written, it is precompiled by the ICETRAN pre­
compiler into FORTRAN. The FORTRAN compiler then produces object code
from the FORTRAN input. The linkage-editor is finally used to produce a load
module which is included in the Subsystem library. ·

An ICETRAN module can make reference to the subsystem data base, which
is formed from data input through the POL, and data generated during com­
putation by other modules.

No input/output statements have to be written by the ICETRAN programmer
to transfer data from module to module. ICES provides a dynamic arrays al­
location facility which is implemented via a virtual store algorithm.

The basic functions of this algorithm are to create, distroy, and move data
elements (arrays or subarrays) from the primary memory to disk memory and
viceversa.

ICES System Components

The system consists of the following basic components:

1) ICETRAN language precompiler,
2) CDLianguage compiler, .
3) ICES executor, which provides modules and data management
4) ICES utility programs.

GENESYS System
In 1969 the UK Government decided to sponsor a system under which a li­
brary of integrated programs could be made readily available on a wide ran­
ge of computers.

The GENESYS Centre was established to coordinate the development of the
system and support the use of the software.

The GENESYS (GENeral Engineering SYStem) system consists of a Master

16

Program and of a library of problem solving subsystems. Eighteen
subsystems are now available or being developed, for use in the Civil Engi­
neering field.

The Phlllsophy of GENESYS

The GENESYS System provides complete facilities for developing and run­
ning a library of integrated subsystems.

The programmer developing a subsystem can define, through a special lan­
guage, a set of commands (POL) to allow users to activate individual pro­
gram modules, and a set of tables to be used for entering the bulk of data.

He can write modules of a subsystem in a language, called GENTRAN, which
is based on ANSI FORTRAN, but offers more powerful input and output facili­
ties, dynamic array definition and features for manipulating data structures
(tree structure).

For the user GENESYS provides two basic facilities. The user can enter the
data by using the standard tables defined by the programmer. The format is
very free, but because it is a standard, errors are considerably reduced. Se­
cond, he can control the way his problem is solved by using the POL com­
mands.

In addition, GENESYS provides data filing and editing facilities, allows the
user to specify the units for input or output data, accepts certain FORTRAN
statements (e.g. IF, DO, GOTO, and assignement statements) amongst POL
commands.

A unique facility within GENESYS is the possibility to replace any numerical
item in a table by a variable (or an arithmetic expression), which will be defi­
ned later in the commands.

From the above description it appears that GENESYS is similar in a number
of ways to ICES, but it differs in several important aspects.

However, the most important difference is that GENESYS was designed to
be as machine independent as possible.

Subsystem modules, written in GENTRAN, are fully machine independent. In
fact, a precompiler, which is part of the GENESYS Master, translates them
into FORTRAN tailored to fit the particular configuration of the run-time com­
puter.

The Master program itself is 95% machine-independent, and the GENESYS
Centre provides a version of it for each different computer. At present, the
GENESYS System is running on more than 20 combinations of compu­
ter/operating systems.

It must be noted that GENESYS, like ICES, can run in batch as well as in con­
versational mode.

17

Concluding Remarks

Several other modular systems have been developed during the last decade
and some of them would merit our interest. However, the three systems
described In this paper, have been chosen because they serve quite well to
illustrate the basic aspects of the historical development of modular systems
and because they are all available for use on the computing installations of
theJRC.

In a second paper, which will be shortly published, we will try to outline the
basic requirements for a •modern• integrated modular system for enginee­
ring.

REFERENCES
1) G. Buccari, G. Fattori, C. Mongini-Tamagnini- .CARONTE- The Euratom Sy­

stem for Automatic Control of Linked calculations• - Proceedings of the Con­
ference on •The Effective Use of Computers in the Nuclear Industry., Knoxville,
Tenn., April1969

2) C. Mongini-Tamagnini - .cARONTE - The Euratom Modular calculational Sy­
stem• - Paper presented at the Symposium •Modular Coding Systems for
Reactorcalculationsa,lspra 1-3 Dec. 1970

3) G. Buccari, G. Fattori, C. Mongini-Tamagnini, F. Astigiano- •CARONTE- The
Euratom Modular calculations System•- Report EUR 4779e (1972)

4) G. Fattori, A.A. Pollicini - .cARONTE - FORTRAN•, EUROCOPI Program De­
scription Series, Report No.6, June 1977

5) D. Roos - •ICES System Design• The MIT Press, Cambridge, Massachusetts,
1966

6) B. Schumaker - •An Introduction to ICES., Dept. of Civil Engineering, Re­
search Report R 67-47, MIT, Sept. 1967

7) · J.M. Sussman - •Primary Memory Management in ICES: An Engineering
Oriented Computer System•. Dept. of Civil Engineering, Research Report R 67-
8, MIT, Nov. 1967

8) W .A. Dillon - •ICES- Programmers Reference Manual•, Dept. of Civil Enginee­
ring, Research Report R 71-33, MIT, August 1971

9) D.G. Alcock, B.H. Sharing - •GENESYS- An Attempt to Rationalise the Use of
Computers in Structural Engineering• in: The Structural Engineer, Vol.48, No.4,
April1970, pp. 143-152

10) •The GENESYS Reference Manual•. The Genesys Centre, Univ. of Technology,
Loughborough, UK

11) R.J. Allwood- •GENESYS- Machine Independent Software Sharing• in: Struc­
tural Mechanics Computer Programs, ed. W. Pilkey et al., University Press of
Virginia, Charlottesville, 1974

18

Les personnes intllres*s et d6sireuses de recevoir r6guli6re­
ment "Computing Centre Newsletter" sont pri6es de rempli r
le bulletin suivant et de l'envoyer a:

Mme A. C.mbon
Support to Computi ..
Bit. 36, TeL 730

Nom •••

Adresse ..•..•......••••..•••.•.....•.•••.•..••.•••.••

Tel. • ••••••••••.••• ." •.

The Persons interested in receiving regularly the "Computing
Centre Newsletter" are requested to fill out the following
form and to send it to:

Mn. A. Cambon
Support to Cornputi ..
Builcli .. 38, Tel 730

Name ••••••••.••••••••••••••••••••••••••••••••••••••

Address ••••••••.••.•.••••.••••.•••.•••.••.•••••••••••

Tel. .•...........•....•

	Contents
	Note of the editor
	The European Informatics Network Demonstration
	Table of equivalent time, summary per month

and cumulative
	Statistics of computing installation utlization - June
	Utilization of by the objectives and accounts - June
	An introduction to modular systems

