Commission of the European Communities Joint Research Centre - Ispra
July 1976 № 3

Contents

Editorial note 2
Layout of hardware components 3
Hardware components 4
Simulation techniques at the JRC Computer Centre 6
Statistics on computer utilization, May 12
Utilization by objectives and accounts, May 13
Table of equivalent time, summary per month and cumulative 14
WANG 2200 15

Note of the Editor

The present Newsletter will be published monthly except for August and December.
The Newsletter will include:

- Developments, changes, uses of installations
- Announcements, news and abstracts on initiatives and accomplishments.

The Editor thanks in advance those who will want to contribute to the Newsletter by sending articles in English or French to one of the following persons of the Editorial Board.

Note de la Rédaction

Le présent Bulletin sera publié mensuellement excepté durant les mois d'août et décembre.
Le Bulletin traitera des:

- Développements, changements et emplol des installations
- Avis, nouvelles et résumés concernant les initiatives et les réalisations.

La Rédaction remercie d'avance ceux qui voudront bien contribuer au Bulletin en envoyant des articles en anglais ou francais à l'un des membres du Comité de Rédaction.

Editorial Board / Comité de Rédaction

S.R. Gabbai, D.G. Ispra
H. de Wolde, C.C. Ispra
C. Pigni, C.C. Ispra
J. Pire, C.C. Ispra

Editor : Sylvia R. Gabbai
Layout: Paul De Hoe
Graphical and Printing Workshop, JRC Ispra

Acknowledgement should be given for their technical support to Mr. E. Eiselt, Mrs. M. G. Giaretta, Mrs. M. Van Andel, Mr. G. Clivio, A. Margnini, G. Zurlo

Computing Installation Description
Hardware Components

\begin{tabular}{|c|c|c|c|c|}
\hline N \& Type \& Unit \& Model \& Function Description

\hline 1 \& IBM \& 3165 \& KOO \& Central Processing Unit

\hline 2 \& IBM \& 3360 \& 5 \& Processing Storage (1MB)

\hline \multirow[t]{3}{*}{2} \& \multirow[t]{3}{*}{TELEX} \& \multirow[t]{3}{*}{6360} \& \multirow[t]{3}{*}{5} \& Processing Storage (1 MB)

\hline \& \& \& \& Total central storage capacity 2 Megabytes

\hline \& \& \& \& Channels:

\hline 1 \& IBM \& 2880 \& 2 \& Block multiplexor channel

\hline 1 \& IBM \& 2860 \& 1 \& Selector channel

\hline \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{IBM} \& \multirow[t]{2}{*}{2870} \& \multirow[t]{2}{*}{1} \& Byte multiplexor channel with one selector subchannels

\hline \& \& \& \& Direct Access Units:

\hline 1 \& IBM \& 3830 \& 2 \& Storage control

\hline 2 \& IBM \& 3333 \& 1 \& Disk storage and control

\hline \multirow[t]{2}{*}{4} \& \multirow[t]{2}{*}{IBM} \& \multirow[t]{2}{*}{3330} \& \multirow[t]{2}{*}{1} \& Disk storage

\hline \& \& \& \& Total 12 disk storage units (track length 13030 bytes)

\hline \& ITEL. \& 7830 \& 1 \& Storage control

\hline \multirow[t]{3}{*}{12

1} \& \multirow[t]{3}{*}{ITEL-} \& \multirow[t]{3}{*}{7330} \& \multirow[t]{2}{*}{1} \& Disk storage

\hline \& \& \& \& Total 12 disk storage units (track length 13030 bytes)

\hline \& \& \& 2 \& Storage control

\hline 1 \& IBM \& 2305 \& 2 \& Fixed head storage (track length 14660 bytes)

\hline \& \& \& \& Magnetic Tapes:

\hline 1 \& IBM \& 3803 \& 1 \& Tape control unit

\hline 7 \& IBM \& 3420 \& 7 \& Magnetic tape unit (9 tracks density $800 / 1600$ bpi)

\hline 1 \& IBM \& 3420 \& 3 \& | Magnetic tape unit |
| :--- |
| (7 tracks density 200/556/800 bpi) |

\hline
\end{tabular}

				Peripheral Units:
1	IBM	2821	5	Control unit
2	IBM	1403	NO1	Printer
1	18M	2540	1	Card reader/punch
1	IBM	2821	1	Control unit
1	IBM	1403	NO1	Printer
1	IBM	2540	1	Card reader/punch
1	18M	2822	1	Control unit
1	IBM	2671	1	Paper tape reader
1	IBM	2826	1	Paper tape controt
1	IBM	1018	1	Paper tape punch
1	IBM	1443	NO1	Printer (system log)
1	IBM	1052	7	Printer keyboard (secondary console)
				Display Stations:
1	IBM	3066	1	System console (Primary)
1	IBM	3272	2	Control unit
10	IBM	3277	2	Display station
2	IBM	3286	2	Printer
				Teleprocessing and RJE Network
1	IBM	2703	1	Transmission control
4				Lines BSC 4800 bauds (1 line S/7 connection, 1 line external RJE)
4				Lines BSC 2400 bauds (3 lines external RJE)
8				Lines BSC 1200 bauds (1 line external RJE)
				Terminals:
6	IBM	MC72T	1	Communication terminal
16	IBM	2741		Communication terminal
				Concentrator:
1	IBM	S/7	E16	Computing system
				- EIN network connection
				-2 graphic stations TEKTRONIX 4002
				- 3 mini-computers WANG 2200
				Auxiliary Machines:
14	IBM	029	22	Printing card punch
3	IBM	029	C22	Printing card punch interpreter
4	IBM	129	3	Printing card punch interpreter
1	IBM	082	1	Sorter
1	IBM	557	1	Alphabetical interpreter
1	D-MAC			Curve-follower
1	CALCOMP	900/1136		Graphic output system

Simulation Techniques at the JRC Computing Centre

F. Argentesi

Some Notes about the Simulation Approach

The basic assumption of the simulation approach is that of the possibility of substituting a system or process by a more or less defined mathematical model.
The mathematical model is then thought of as an experimental tool for the analysis of the system behaviour in a large set of conditions.
Traditionally distinctions are made between model built up for practical and theoretical purposes.
For several authors (see for instance J.M. Smith, 1974) are simulation models only the models that refer to particular systems, generally to a single well defined system. Theoretical models are instead more general in character and they refere to large set of systems. Simulations models take into account lot of details they produce analysis of particular. cases and are mainly practical purpose oriented.
The so called theoretical models have to be thought of as scientific theory in the general sense. Therefore the simulation methodology is different in some way from the traditional theorization of science, because it is referred to specific systems without the aim of achieving results of general character.
The simulation methodology in a very synthetic way could be subdivided in following steps:

- System Analysis

The study of a system in order to ascertain its salient elements and to delineate their interactions and behaviour mechanisms.

- Model Formulation

The construction of a complete, logical structure in order to provide a reasonable symbolic substitute, or model of the system's elements and interactions, including the determination and collection of data required to support the model structure.

- Verification and Validation

The determination of the rectitude of the model in its algorithmic structure and the comparison of the responses emanating from the verified model with available information regarding the corresponding behaviour of the simulated system.

- Model Analysis

The contrasting of model responses under alternative environmental specifications (or input conditions).
The entire effort of a simulation's construction is directed toward the creation of a credible system representation from which inferences regarding the actual system's performance and behaviour can be made without the need of resorting the costly (or impossible) experimentation with the actual system.
In these few notes it is impossible to give details about the realization of these four steps even for few type of systems. Here we will only notice the fairly relevant difference that, in the simulation methodology, exist between continuous and discrete systems.
In general continuous systems are analysed by deterministic models (o.d.e. systems) and discrete systems contain in their models several stochastic elements.
These distinctions can be noticed also in a first glance to the main feature of the different types of simulation languages briefly described in the next section.
At the Applied Statistics and Mathematics Groups of Department A, the research activity in the simulation methodology is mainly oriented to the problem of model formulation and model validation for both deterministic and stochastic models. At present our activity is directed in the following lines:
a) System identification (deterministic and stochastic)
b) Statistical sensitivity analysis
c) Time series analysis (stochastic stationary systems).

Some Notes about Simulation Languages

At the JRC Computer Centre (CETIS) the main tools for the approach to simulation problems are largerly implemented. From the software point of view the following simulation languages can be directly utilized:

Continuous Simulation

a) CSMP III
b) DYNAMO II

Discrete Systems Simulation

a) GPSS/360
b) SIMPL/1

Moreover, the discrete simulation language SIMULA can be easily available if needs in its utilization will grow in the future activities of the JRC.

The continuous simulation models are used it the process can be considered as a continuous flux of matter or of information in which not individual entities are distinguishable. These models are normally given in the form of differential equations or of difference equations. Therefore the so called simulation languages for continuous systems are mainly constituted by one or more algorithms for the numerical solution of o.d.e. systems.
Moreover the languages give facilities for handling tables and preparing proper outputs in terms of both tables and diagrams. The most powerful of these languages is in our opinion the CSMP III, a FORTRAN IV based language developed by IBM.
CSMP III accepts FORTRAN subroutines as programming elements, so that all the potentialities of the large FORTRAN mathematical and statistical routine libraries can be considered as parts of the language.
This simulation language supplies a large spectrum of the most useful integration algorithms and it can solve o.d.e. systems of 200 simultaneous equations. Therefore a large class of simulation problems in various fields (biology, agriculture, chemistry, physics, engineering, economics) can be approached in the framework of CSMP III.
The DYNAMO II language is much wrakier and oriented to utilizers without mathematical background. The numerical solution of the o.d.e. systems (the model) is achieved by using the Euler method only. Therefore the accuracy of the solution can be frequently fairly low lespecially in the case of stiff o.d.e. systems).
Nevertheless it has been noticed that DYNAMO II, for some kinds of utilizers, is more intuitive thạn CSMP III.

DYNAMO II has been developed by A. Pugh at M.I.T. in the framework of Industrial Dynamics, Urban Dynamics and World Dynamics approaches. The experience has shown that DYNAMO II is fairly easy to learn and that simple problems can be programmed and elaborated in short times. Unfortunately this language is limited and by its use becomes difficult the treatment of complex problems. The most negative limitation seems to be the impossibility of using indexed variables (has to be noticed that DYNAMO Ill not available at the moment at the JRC permits the utilization of indexed variables).
The simulation of discrete systems is different of that of continuous systems because in this case the process is described by "Entities" which pass throughout the system making use or leaving the systems components (machines, storage) at well defined times called "events".
The evolution of the systems state is achieved by the instantaneous transformation of this state that takes only in correspondence of the events.In this kind of models the aim is generally that of studying the system beha-
viour from the point of view of its capacity, i.e. the amount of the "entities flux" that go through the system in a given time.
For what concerning the simulation of discrete systems has to be noticed the fact that FORTRAN IV and PL/I are still used languages because of the widespread nature of the problems that are considered as discrete simulation problems. Nevertheless, the difficulties in treating discrete simulation problems in FORTRAN IV (or PL/I) make its use practical only for well established and specialised teams.
Has to be noticed moreover, that opposite to the problem oriented languages (GPSS, SIMPL/I, SIMULA) the FORTRAN simulation programs are of difficult use for the people that have not participated to their elaboration.

GPSS is a language developed by G. Gordon for IBM.
The structure of the system to be simulated is described in terms of a flow diagram, produced by a set of well defined type of blocks. Each block represents a specific action that is a typical basic operation that could take place in the system. The connections between blocks give the time sequence of the realization of the actions in the systems. When there is a choice among different actions there is more than one connection leaving the block.
Through the system there are entities in movement called transactions; these transactions can use facilities or be stored in storage. Transactions can be yet generated or destroyed and it is possible to collect some statistics about their story.
There is a proper algorithm for the time evolution and it is possible making simple mathematical and logical operations on the parameters. The blockdiagram is easily transformed in the input because at each block corresponds only one instruction in the language. GPSS is a fairly specialized language, therefore only a limited class of problems can be treated by its use. It is especially suitable for problems with fluxes of documents or information, simple queuing problem and so on. Nevertheless GPSS is largerly used mainly because it is of a fairly intuitive utilization.
The SIMULA language has been designed by Nygaard and Dahl at the Norwegian Computing Centre. It is largerly different from the other discrete simulation languages. SIMULA is an ALGOL based language and it follows the logical structures and feature of ALGOL. The entities that flow through the system are called processes among which are considered also the machines that constitute the system. At every process are associated a set of local data that define its characteristics and a behaviour pattern describing its time history. In this history are listed all the transformations of the parameters characterising the process, the relationship with the other processes (wait, etc.), and the history finishes, if needed with the elimination of the process itself. The processes are grouped in sets
called activities, with similar operating rules. The management of the processes is done by ausiliary listings called elements, in which the names of the processes are defined.
The control of the events stream done by an automatic routine, that can be modified through instruction called sequencing. SIMULA is a very rich language, therefore its use is fairly complex.
SIMPL/1 is a simulation language for discrete systems based on PL/I developed by IBM. This language does not differ remarkably from the basic structure of the typical class of discrete simulation languages. It is much more powerful in the mathematical and logical operations and it can accept PL/I subroutines. SIMPL/1 presents large output possibilities for both tables and diagrams. Moreover, the peculiar software feature of SIMPL/1 seems to be especially useful for the statistical analysis of the simulation responses.
It has to be noticed that the statistical analysis of the simulation outputs is one of the most relevant points of the dicrete simulation methodology. Large classes of problems can be approached with the support of both types of simulation languages described.
In the following we will try to set up a list of some relevant application areas:

Continuous Simulation

1. Physical and chemical systems
(Dynamics problems, chemical kinetics, etc.)
2. Biochemical systems (Enzyme kinetics, biochemical oscillators, etc.)
3. Ecological and Economics systems (Population dynamics, ecosystems dynamics, etc.)

Discrete Simulation

Manufacturing Facilities planning, assembly line balancing, manpower allocation, quality control, inventory management, equipment maintenance, plant location planning.
Distribution Warehouse procedures, number and location of warehouses, inventory management, work crew scheduling, truck routing, design of truck docking facilities.
Banking Bank floor operations, cheque transit procedures, interest rate and other policies.
Railways Yard operations, network operations, crew scheduling, commuter rate studies, freight blocking strategies.
Shipping Scheduling of port facilities, cargo mix, harbour design, freight scheduling.

Airlines	Runway utilization, air traffic control, terminal facility planning, crew scheduling, reservation system lodeling, timetables.
Traffic Control	Road planning, safety studies, timing of traffic lights. City PlanningTransportation networks, welfare studies, budget plan- ning, planning of services and facilities.
Medical	Blood bank inventory, hospital bed and patient sche- duling, scheduling of staff, scheduling of nursing ac- tivities.
Process	Refinery scheduling, bulk delivery planning in chemical works.

Referencen

J.M. SMITH - (1974) Models in Ecology, C.U.P.

C'est avec consternation que le membres du Centre de Calcul ont appris le décès d'un de leurs collègues, Monsieur Christian Simmenlagh, survenu dans un accident de la route, le 20 juin 1976. Aux parents et proches du défunt, Computer Centre Newsletter exprime ses condoléances émues.

Statistics of computing installation utilization

Report of computing installation exploitation
for the month of May

	YEAR 1976	YEAR 1975
Number of working days	20 d	17 d
Work hours from 8.00 to 24.00 for Duration of scheduled maintenance	14.00 h	12.00 h
	23.45 h	10.84 h
Duration of unexpected maintenance	2.75 h	7.58 h
Total maintenance time	26.20 h	18.42 h
Total exploitation time	274.800 h	180.080 h
CPU time in problem mode	120.617 h	62.630 h
Teleprocessing:		
CPU time	1.30 h	0.70 h
1/O number	581.000	495.000
Equivalent time	5.37 h	4.20 h
Elapsed time	157.50 h	87.20 h
Batch processing:		
Number of jobs	8,332	6,943
Number of cards read	2,853,000	2,170,000
Number of cards punched	153,000	191,000
Number of lines printed	23,351,000	20,191,000
Number of pages printed	524,000	451,000

BATCH PROCESSING DISTRIBUTION BY CLASS

	A	1	2	3	4	5	D	TOTAL
Number of jobs	1216	2734	1094	1890	331	205	364	7834
Elapsed time (hrs)	24	108	89	177	65	69	71	603
CPU time (hrs)	0.8	14	15	33	26	10	20	119
Equivalent time (hrs)	7.6	40.2	37.3	77.6	37.4	38.8	29.1	268
Turn around time (hrs)	0.4	0.6	1.2	0.9	1.8	2.2	3.4	0.9

PERCENTAGE OF JOBS FINISHED IN LESS THAN

TIME	15°	30°	1 h	2^{h}	4^{h}	8^{h}	1^{D}	2^{D}	3^{D}	6^{D}
\% year 1975	24.3	42.0	61.3	77.8	88.7	91.8	97.5	99.6	99.8	100
\% year 1976	42.2	60.1	75.5	88.0	96.2	98.9	99.3	100		

Utilization of the computer center by the objectives and appropriation accounts for the month of May

IBM 370/165
equivalent time in hours

120	General Infrastructure	57.5663
130	Scientific and Technical Support	1.4810
143	ESSOR Reactor	4.5113
145	Medium Activity Laboratory	--
146	Central Bureau for Nuclear Measurements (CBNM)	--
191	Technical Support to Commission Activities	1.5436
193	Technical Support to Power Stations	1.4493
211	Waste Disposal	0.2185
213	Materials Science and Basic Research on Materials	0.8728
214	Hydrogen	1.6899
221	Reactor Safety	57.0753
222	Applied Informatics	23.6800
223	Information Analysis Services	46.8100
230	European Informatics Network	3.4252
251	Standards and Reference Materials	10.4627
252	Protection of the Environment	8.5113
253	Remote Sensing of Earth's Resources	9.2357
254	New Technologies	-
412	Fissile Materials Control	0.5324

TOTAL 229.0653
190 Services to external users 25.0847

EQUIVALENT TIME TABLE FOR ALL JOBS OF THE ADMINISTRATION - MONTHLY AND CUMULATIVE STATISTICS

equivalent time table for the jobs of all the objectives - monthly and cumulative statistics

	January	February	March	April	May	June	July	August	September	October	November	Dacember
Year 1975 eccumulation	$\begin{array}{r} 178 \\ 178 \end{array}$	$\begin{aligned} & 171 \\ & 349 \end{aligned}$	$\begin{aligned} & 168 \\ & 517 \end{aligned}$	$\begin{aligned} & 166 \\ & 683 \end{aligned}$	$\begin{aligned} & 142 \\ & 825 \end{aligned}$	$\begin{aligned} & 166 \\ & 991 \end{aligned}$	$\begin{array}{r} 228 \\ 1219 \end{array}$	$\begin{array}{r} 137 \\ 1358 \end{array}$	$\begin{array}{r} 152 \\ 1508 \\ \hline \end{array}$	$\begin{array}{r} 170 \\ 1678 \end{array}$	$\begin{array}{r} 190 \\ 1868 \end{array}$	$\begin{array}{r} 176 \\ 2044 \\ \hline \end{array}$
Year 1976 secumulation	$\begin{array}{r} 206 \\ 206 \\ \hline \end{array}$	$\begin{aligned} & 237 \\ & 443 \\ & \hline \end{aligned}$	$\begin{aligned} & 270 \\ & 713 \\ & \hline \end{aligned}$	$\begin{aligned} & 241 \\ & 954 \end{aligned}$	$\begin{array}{r} 229 \\ \cdot 1183 \\ \hline \end{array}$							

EQUIVALENT TIME TABLE FOR THE JOBS OF THE EXTERNAL USERS - MONTHLY AND CUMULATIVE STATISTICS

	January	February	March	April	May	June	July	August	September	October	November	December
Year 1975	16	28	24	28	32	31	26	15	18	19	12	18
accumulation	16	44	68	96	128	159	185	200	218	237	249	267
Year 1976 accumulation	$\begin{aligned} & 18 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 84 \end{aligned}$	$\begin{array}{r} 25 \\ 106 \\ \hline \end{array}$							

EQUIVALENT TIME TABLE FOR ALL JOBS OF ALL USERS - MONTHLY AND CUMULATIVE STATISTICS

	Jonuary	February	March	April	May	June	July	August	September	October	November	December
Year 1975 accumulation	$\begin{aligned} & 214 \\ & 214 \end{aligned}$	$\begin{aligned} & 216 \\ & 430 \\ & \hline \end{aligned}$	$\begin{aligned} & 208 \\ & 638 \end{aligned}$	$\begin{array}{r} 215 \\ 853 \\ \hline \end{array}$	$\begin{array}{r} 190 \\ 1043 \\ \hline \end{array}$	$\begin{array}{r} 222 \\ 1265 \\ \hline \end{array}$	$\begin{array}{r} 266 \\ 1531 \\ \hline \end{array}$	$\begin{array}{r} 166 \\ 1697 \end{array}$	$\begin{array}{r} 181 \\ 1878 \\ \hline \end{array}$	$\begin{array}{r} 202 \\ 2080 \\ \hline \end{array}$	$\begin{array}{r} 219 \\ 2299 \\ \hline \end{array}$	$\begin{array}{r} 208 \\ 2507 \\ \hline \end{array}$
Year 1976 eccumulation	$\begin{array}{r} 233 \\ 233 \\ \hline \end{array}$	$\begin{aligned} & 271 \\ & 604 \\ & \hline \end{aligned}$	$\begin{aligned} & 313 \\ & 817 \\ & \hline \end{aligned}$	$\begin{array}{r} 280 \\ 1097 \end{array}$	$\begin{array}{r} 277 \\ 1374 \\ \hline \end{array}$							

WANG 2200

C.L. van den Muyzenberg

The WANG 2200 at the CETIS is a small computer with the following configuration:

- Central processor with 8 K bytes storage (internal code $=\mathrm{ASCII}$)
- Video display, 16 lines each of 64 characters, keybord: Upper and lower case and BASIC keywords
- Printer, two different character types, both with upper and lower case characters (132/line)
- 2 floppy disk units
- A card reader for punched or mark-sensed cards .

A third disk unit and an interface to connect the WANG to the 370/165 have been ordered.

It is possible to use the WANG in four different modes:

1. As a desk calculator by simply typing PRINT, followed by the expression that is to be calculated.
2. As a computer, using the WANG supplied programs (Appendix A) or the programs written at Euratom (Appendix B)
3. As a computer, writing programs is BASIC
4. As a terminal to read cards, store cards on floppy disks, modify cards on the floppy disks, print cards on the printer, send jobs to the 370/165 for execution.

To use the WANG, simply go there and switch it on (every unit has its own switch; please switch all units off when you stop working).

To use the standard programs, ask Mr. C.L. van den Muyzenberg for the disk with these programs (when the 3rd disk unit arrives, the standard programs will be installed fixed on this unit).

It is recommended that users writing their own programs, save these programs on disk for later use or for modifications afterwards.
Making a private library of selected standard programs is possible. A number of standard programs have been developed already and are available for use (see Appendix B). If you have programs written for general use, please inform us.

Floppy disks have been ordered. It is recommended to use at least two of them (for copying programs while making modifications).
A short programming course will be held in August 1976. For any questions, or further information contact Mr. C.L. van den Muyzenberg.

Appendix A - WANG Supplied Programs

Put the floppy disk in the R unit. Load a program with LOAD DCR "name" = the name of the program. Start executing the program with RUN EXEC.

Warning: Some WANG supplied programs contain errors, please tell us about any errors you may find.

The programs are divided in four groups:

1. MAT Mathematical programs
2. GPSE General programs, statistical and engineering
3. FIN Finance and utilities
4. GAMES Games.

The name of the program is MATH, GPSE, FIN or GAMES followed by the number. You may find detailed descriptions and sample problems in the related WANG manuals.

1. MATH PROGRAM PAGE
1 ROOTS OF A QUADRATIC 3
2 ROOTS OF A POLYNOMIAL 7
3 HALF-INTERVAL SEARCH FOR ROOTS 11
4 REAL ROOTS OF A POLYNOMIAL 15
5 SIMPSON'S RULE 21
6 NUMERICAL INTEGRATION (ROMBERG'S METHOD) 25
7 RUNGE-KUTTA 29
8 GAUSSIAN QUADRATURE (20-point) 33
9 DERIVATIVE (DIFFERENCE QUOTIENTS) 37
10 MATRIX INVERSION (GAUSS-JORDAN ELIMINATION METHOD) 43
11 MATRIX INVERSION (GAUSSJJORDAN DONE IN PLAGE) 47
12 EIGENVALUE AND EIGENVECTOR 51
13 VECTOR OPERATIONS 55
14 VECTOR ANALYSIS 59
15 SOLUTION OF SIMULTANEOUS EQUATIONS (GAUSS-JORDAN) 63
16
MATRIX ADDITION, SUBTRACTION AND SCALAR MULTIPLICATION 67
17 MATRIX MULTIPLICATION 73
18 SOLUTION OF SIMULTANEOUS EQUATIONS 77
19 LINEAR PROGRAMMING 81
20 COMPLEX DETERMINANT 87
21 HYPERBOLIC FUNCTIONS \& INVERSE HYPERBOLICS 93
22 SIN, COS, TAN, SINH, COSH, TANH - COMPLEX ARGUMENTS 97
23 ANGLE CONVERSION I 101
24 ANGLE CONVERSION II 105
25 TRIGONOMETRIC POLYNOMIAL 109
26 PLANE TRIANGLE SOLUTION 113
27 COORDINATE CHANGE 119
28 AREA OF RECTILINEAR SURFACE 123
29 LINEAR INTERPOLATION 127
30 LAGRANGIAN INTERPOLATION 131
31 GREATEST COMMON DIVISOR 137
32 PRIME FACTORIZATION OF AN INTEGER 141
33 PERMUTATIONS AND COMBINATIONS 145
34 LOG B TO BASE A 151
35 SECOND DEGREE EQUATION I 155
36 EXPLICIT SECOND DEGREE EQUATION 159
37 SECOND DEGREE EQUATION II 163
38 ALGEBRA OF COMPLEX NUMBERS 167
39 HYPERGEOMETRIC FUNCTION 171
40 SQUARE ROOT OF A COMPLEX NUMBER 175
41 BESSEL FUNCTION 179
42 GAMṀA FUNCTION 183
43 FOURIER ANALYSIS (DEFINED FUNCTION) 187
44 FOURIER ANALYSIS (TABULATED FUNCTION) 191
2. GPSE PROGRAM PAGE
1 LINEAR REGRESSION: $Y=A+B X$ 3
2 MULTIPLE LINEAR REGRESSION 7
3 Nth ORDER REGRESSION 13
4 EXPONENTIAL REGRESSION: $Y=A e^{B X}$ 17
5 GEOMETRIC REGRESSION: $Y=A X B$ 23
6 LINEAR CORRELATION 29
7 CORRELATION MATRIX 33
8 ONE-WAY ANALYSIS OF VARIANCE 39
9 TWO-WAY ANALYSIS OF VARIANCE 43
10 ANALYSIS OF VARIANCE - LATIN SQUARES 47
11 CHI-SQUARE TEST \& DISTRIBUTION 55
12 CHI-SQUARE ANALYSIS 59
13 T-TEST 63
14 WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST 69
15 MANN-WHITNET TEST 72
16 NORMAL FREQUENCY AND DISTRIBUTION FUNCTIONS 77
17 NEGATIVE BINOMIAL DISTRIBUTION 81
18 BINOMIAL DISTRIBUTION 85
19 POISSON DISTRIBUTION 89
20 F-VALUE 93
21 T-VALUE 97
22 RANDOM NORMAL DEVIATES 101
23 MEAN, VARIANCE, STANDARD DEVIATION I 107
24 MEAN, VARIANCE, STANDARD DEVIATION II 111
25 GEOMETRIC MEAN AND STANDARD DEVIATION 115
26 CROSS-COVARIANCE OF TIME SERIES 119
27 AUTO-COVARIANCE OF TIME SERIES 123
28 SYSTEM RELIABILITY 127
. 29 ERROR FUNCTION 131
30 TALBOT'S FORMULA 137
31 MANNING'S FORMULA 141
32 HEADLOSS IN A PIPE 145
33 BERNOULLI'S EQUATION 147
34 WARPING STRESS DUE TO TEMPERATURE DIFFERENTIAL 153
35 PRESSURE DUE TO SURFACE LOADS, PRINT LOADS. FINITE OR INFINITE LINE LOADS 157
36 BEAM 163
37 OIL WELL DEPLETION 167
38 NETWORK IMPEDANCE - FINDING A SERIES OR PARALLEL CIRCUIT 171
39
CHARACTERISTIC GENERATOR RESISTANCE AND SOURCE emf VOLTAGE 175
40 "ERLANG B" EQUATION 179
3. FIN PROGRAM PAGE
1 NUMBER OF SEMI-ANNUAL PERIODS BETWEEN TWO DATES (360 DAY/YEAR) 3
2 BOND DOLLAR PRICE 7
3 BOND YIELD (BASIS) 13
4 DISCOUNT \& PRICE ON DISCOUNT COMMERCIAL PAPER 17
5 INTEREST BEARING COMMERCIAL PAPER 21
6 NUMBER OF DAYS BETWEEN TWO DATES 25
7 MORTAGE PAYMENT 29
8 DAY OF YEAR 33
9 ANNUITY 37
10 ANNUAL DEBT PAYMENT 41
11 PRESENT INVESTMENT 45
12 NOMINAL INTEREST RATE 49
13 EFFECTIVE INTEREST RATE 53
14 INVESTMENT WITHDRAWAL 57
15 INITIAL INVESTMENT 61
16 SUM TOTAL FROM A SINGLE INVESTMENT 65
17 PERIODIC INVESTMENT 69
18 SUM FROM PERIODIC INVESTMENT 73
19 DEPRECIATION CHARGE (DECLINING BALANCE) 77
20 DECLINING BALANCE DEPRECIATION RATE 81
21 SALVAGE VALUE 85
22 AVERAGE GROWTH RATE \& PROJECTED SALES 89
23 PLOT 95
24 MULTI-PLOT 99
25 POLAR PLOT 105
26 T-PLOT 109
27 HISTOGRAM 113
28 UTILITY 117
4. GAMES PROGRAM PAGE
29 ARTILLERY 121
30 CRAPS 123
31 TIC-TAC-TOE 127
32 ONE ARMED BANDIT 131
33 BLACKJACK 135
34 MASS OF NITROGEN IN CONTAINMENT SYSTEM 139
35 PERCENT ABSORPTION TO CONCENTRATION 143

Appendix B - CETIS Supplied Programs

Put the floppy disk in the R unit.
Load a program with LOAD DCR "name" with name $=$ the name of the program.
Start executing the program with RUN EXEC.

Please tell us about any errors you may find.

UTILITY	The program calls a series of separate modules by the use of the Special Function keys: Conversion functions between decimal and hexadecimal (370/165) vice versa, both fixed and float			
SF	0	Use of magnetic tapes, calculation of the percentage of use of a tape when several data sets are written on the tape.		
SF	1	Service programs: card to printer		
SF	3	4		Print "how to use" of UTILITY
:---				

Le prochain numéro de Computing Center Newsletter ne paraitra qu'en Septembre prochain.
La Rédaction souhaite à ses lecteurs de très bonnes vacances.

The Newsletter is available at: Des exemplaires du Bulletin sont disponibles chez:
Mrs R. Porta
Program's Library
Bldg. 36 - Tel. 760
Mme R. Porta
Bibliothèque des Programmes
Bât. 36 - Tel. 760

Les personnes intéressées et désireuses de recevoir régulièrement "Computing Centre Newsletter" sont priées de remplir le bulletin suivant et de l'envoyer à:

Mme R. Porta
Bibliothèque des Programmes
Båt. 36, Tel. 760

Nom

Adresse

Tel.

The Persons interested in receiving regularly the "Computing Centre Newsletter" are requested to fill out the following form and to send it to:

Mrs R. Porta
Program Library
Building 36, Tel. 760

Name

Address

Tel.

