

JRC - TSO Primer

A First Introduction to the Use of the TSO System

as Installed at the JRC Computing Centre, Ispra.

A. Rink

August 1979.

CONTENTS

1. Introduction

2. Batch-processing systems

3. Interactive systems

4. Interactive syst~ vs batch-processing systems

5. IBM System/370 Operating System: Time Sharing Option(TSO)

5.1 Introduction

5.2 Starting and ending a terminal session

5.3 The HELP command

5.4 Entering and manipulating data

5.4.1 TSO data set naming conventions

5.4.2 Creating and editing a data set

5.4.3 Reserving a data set

5.4.4 Printing a data set on the line printer

5.5 Programming at the terminal

5.5.1 Allocating a data set

5.5.2 Compiling, Link editing and executing a program

5.5.3 Background processing

5.6 Example sessions

5.6.1 PL/1 session

5.6.2 FORTRAN session

6. References

1. Introduction

The aim of this paper is to give a first introduction into the
usage of some basic facilities of the Time Sharing Option (TSO)
of the IBM 370 Operating System, which is available at the Ispra
JRC Computing Centre.
As a second aim the paper intends to
knowledge on operating systems, since this
understanding certain properties and terms

provide some basic
might be helpful in

of TSO.

The purpose of an operating system is to enable a group of
people to share a computer installation efficiently. This means
that people will compete for the use of physical resources such
as processor time, storage space, and peripheral devices (card
readers, printers, etc.). The sharing of a computer
installation is an economic necessity [1]. To allow this an
operating system must have a policy for choosing the order in
which competing users are served and for resolving conflicts of
simultaneous requests for the same resources. It also must have
means of enforcing this policy in spite of ·the presence of
erroneous or malicious user programs and, since use~s must pay
for the cost of computing, accounting of the usage of resources
has to be performed [1].

Operating systems can be distinguished by the way users can
request work to be done.

In the following, two types of operatL:ng systems will be
considered (batch-processing systems and interactive systems)
and their advantages and disadvantages will be discussed.

Finally TSO which belongs to the class of interactive systems
will be presented and its use will be shown in connection with
example sessions.

- 1 -

2. Batch-processing systems

A computation requested by a user is called a job~ A job may
consist of several separate programs to be executed
sequentially, each individual program being called a job step.
A job is defined by using a job control language.

THI~ IS A JOB DEFINITION.
I'H USER MICKY HOUSE AND
UY ACCOUNT NUMBER IS 111.
AS FIRST STEP THE FOLLOWING
PL/1-PROGRAM HAS TO BE COHPILED.
PL/1-PROGRAr~ PROC OPTIONS (MAIN) ~

.
END PL/ 1-PROGRAr·1~
AS SECOND STEP THE COMPILED PROGRArf
HAS TO BE EXECUTED.
END OF JOB DEFINITION.

Fig.2.1 Example of a job definition

Fig. 2.1 shows an example of a job definition. For didactic
reasons a natural language (English) was used as job control
language. However, in real life this is not the case.

Typically in batch-processing syst&ms job defin~tions are
punched on cards and subnitted to the system via card
readers. Figure 2.2 shows the basic organization of such a
systa~ [1]. (In [1] a distinction is Made between
batch-processing syste!!ls and spooling systems which will not
be used here s~nce from the user's point of view both system
types are considered as non-interactive).

- 2 -

-~~~~r~1 __ _

- ~~~- ,..~ 2..

Fig. 2.2 Organization of a batch-processing system.

The central pr0cessor is multiplexed between several
programs. That is, program execution is interleaved in time.
The input program reads cards from the card reader to 3 queue
on the backing store (disk, drum). The scheduling program
selects user jobs from this input queue and starts their
execution. The output program prints output read from the
output queue on a line printer. The user programs held in
the internal store read their data from the input queue and
write results in an output queue on the backing store.
The operating system consists of the input program, output
program and scheduling program. The number of user programs
which can be executed concurrently depends on the
availibility of the internal store. If there are very large
programs stored on backing store only few of them can run
concurrently.
Operating systems like the one described tend to be effective
with respect to throughput (average number of jobs executed
per time unit) and processor utilization.

- 3 -

3. Interactive Systems

To improve interaction between a computer and human beings,
users should be given the possibility to use the facilities
of a computer interactivly.
This means, that users can define their requests in an
uncomplicated way and the system responds to trivial requests
(Like data editing requests) within a few seconds. So what
is wanted is to have a computer made simultaneously avilable
to many users in a manner somewhat like a telephone exchange.
Each user would be able to use a typewriter like device at
his own pace and without concern for the activity of otherg
using the systerr .•
Operating systems which possess these features are called
interactive systems. Fig. 3.1 shows the basic orgar.ization
of an interactive system [1,2].

Fig. 3.1 Organization of an interactive system.

- 4 -

The internal store is divided into two parts, one for the
operating system, the other part for the user programs. A
large backing store (drum or disk) is divided into n slices,
where each slice is of the same size as the user area in the
main store. Programs and data of a user reside e{ther in the
user area of the internal store, or in one of the slices on
the backing store.

Computation requests and user programs are entered via the
terminals.

The operating system takes care of the terminals. Assume
that all user programs are requested to run. Since there is
only one user area within the internal store the operating
system sequentially loads one program, keeps it there for a
certain amount of time (for instance 0.1 sec) called a time
slice, and assigns to it the processor. After its time slice
is expired the user program is stored back on·backing store
and the next program is loaded. This process is repeated in
a cycle until all computation requests are satisfied.

The process of copying user programs back and forth between
internal and backing store is called swapping.

The technique of sequentially running each user program for a
short amount of time is known as time-sharincr. Therefore
interactive systems are also referred to as time-sharing
systems.

Besides the commands needed normally to request computations
the control languages 1n interactive systems provide a lot of
additional facilities to support users in doing their work.

~hese facilities include commands to enter, modify, store and
retrieve data, to develop, test and debug programs, and to
control e1e terminal session.
Fig. 3.2 shows an example of a terminal session.

- 5 -

ENTER LOGON
logon user=micky mouse account nbr = 111
PREPARATION OF TERMINAL SESSION FOR lUCKY HOUSE IN PROGRESS
READY
edit example.pl1 new
INPUT
program: proc options {main);

end;
save
SAVED
READY
run example.pl1
READY
log off
END OF TERMINAL SESSION

Fig.3.2 Example of terminal session

In the above example all system messages are written using
uppercase letters and all user input is written using
lowercase letters.
At the beginning, of the terminal session the user is asked to
identify himself. After the system has verified the user
input it sends the message READY. Now the user creates a
program called EXAMPLE.PL1 by using the EDIT command.
After saving it on backing store for later use the user
requests its compilation and execution with the RUN command.
Finally the user finishes his terminal session with LOGOFF.

- 6 -

4. Interactive systems vs batch-processing systems

Based on the system descriptions given in chapter 2 and
chapter 3, in this chapter the advantages and disadvantages
of interactive systems· in comparison with batch-processing
systems will be discussed.

1. Advantages

Fast response to trivial requests

In interactive systems the time interval between the
request for a computation and the return of its
results is called response time. In
batch-processing systems this time interval is
defined slightly differently and is called
turnaround time, that is the elapsed time between
the submission of a job to the computer centre for
processing and the return of its results to the
programmer. In interactive systems the units of
interaction are much smaller than in
batch-processing systems. Also in interactive
systems the basic scheduling policy is to guarantee
a fast response to trivial requests while in
batch-processing systems the basic scheduling
policy aims to have a good throughput.
Consequently, response time to trivial requests is
measured in seconds While turnaround time is
measured in minutes and sometimes in hours.

Improvement-of programming and debugging

One feature of interactive systems is that they give
a fast response to trivial requests. Thus, they are
able to provide a lot of additional facilities to
sup~ort users ih doing their work. These include
fac1lities to enter, store, retrieve, and edit
progtams from the terminal. For debugging special
test facilities are offered to test programs from
the terminal. In this way programs can be stopped
at predetermined points, the contents of variables
can be listed on the terminal, and new values can be
set.

- 7 -

Conversational access

conversational access means that a computer can be
accessed directly from a typewriter-like device and
that for trivial requests response time is very
shor~ (a few seconds).
This type of conversation is much more adapted to
human beings. In addition the language which has to
be used to express computation requests can be
simplified since in cases where the user does not
know what to do the syste~ will supply additional
information. In cases where the system misses some
information it will ask for it.

2. Disadvantages

Low processor utilization

In interactive systems a short guaranteed response
time is achieved at the price of decreased processor
utilization. This is due to the ~act that these
systems are forced to lose processor time on
unproductive transfers of programs b~tween two
levels of store [1].

Slow down of large computations

In interactive systems every user requested
computation which ~eeds multiple time slices is
slowed down by a certain factor due to the ti~e used
for swapping, its involved overhead, and because of
the need to serve other users on a 'good' response
time basis. So interactive scheduling only makes
sense for more or less trivial requests1 it is not a
realistic method for computations that run for
minutes and hours [1].

Lower throughput

Throughput is defined in this document as the
average number of jobs executed per time unit.
Because of the high system overhead inherent in
interactive systems, thrqughput here is achieved at
a lower rate than in batch-processing systems.

- 8 -

3. Conclusion

As it was mentioned before time-sharing systems and
batch-processing systems have different objectives.
That is, they serve different purposes.
Interactive system aim to give a fast response to
trivial requests of simultaneous users.
Therefore, they, are very useful for computations
where human beings are involved and where the ~ace
is limited by human thinking.
Batch-processing systems, however, aim to have a
good throughput. That means that ~~ey are well
suited for serious computa~ions where no
interactions with human beings occur. Thus, these
two system types do not compete with each other.
Each gives the users a special service in a very
efficient manner.

- 9 -

5. IBM System/370 Operating System: Time Sharing Option (TSO)

5.1 Introduction

TSO is the time sharing system of the IBM System/370 Operating
System. TSO allows a number of users to use the facilities of
the system concurrently and in a conversational manner. Users
can communicate with the system by typing requests for work on a
terminal. The system responds to those requests by performing
the work and sending messages back to the terminal [4,5].
In TSO computation requests are expressed through commands. By
using different commands, different kinds of work are carried
out.
When a command is used to request work, the command establishes
the scope of the work to the system. For some commands, the
scope of the work encompasses several operations that are
identified separately. After entering the command, one of the
separately identifiable operations (subcommandsl may be
specified. A subcommand, like a command, is a request for work.
However, the work requested by a subcommand is a particular
operation within the scope of work established by a command
[4,5]. The commands and subcommands recognized by TSO form the
TSO command language.
In the following sections the basic facilities of the TSO
command language will be explained and examples of its usage
will be given. Thereby the following conventions have to be
observed:

- any user input is written in lowercase letters.

- all system messages come out in uppercase letter.

due to didactic reasons all keywords of the command
language are underlined.

- keywords have to be separated by one or more spaces
(blanks) •

to make the user input available to the system every
input has to be finished by pressing the RETURN key of the
use~erminal. In the following examples it is illustrated
by~

the backspace key
character on an input

can
line.

be used to delete the preceding

- the ATTN key can be used to delete the entire input line.

At the end of this chapter two complete example sessions
are given.

- 10 -

5.2 Starting and ending a terminal session

To start a terminal session the first thing that has
is to turn on power at the terminal and possibly at
After this the LOGON command to identify the user to
has to be used. Thereby the system needs the
information:

to be done
the modem.
the system
following

1. User identification- the name or code by which the
user is known to the system.

\,

2. Password A further identification used for
additional security protection.

3. Procedure name The name of
that predefine a certain kind of
do.

a series of statements
work the user wants to

For all examples within this chapter the following LOGON
information will be used:

- user identification

password

- procedure name

tu n ON/OFF switch to on
a CR

tsotest

pass all

pl1log (this tells the system that
PL/1 will be used as
programming language)

I J54012A ENTER LOGON -
logon tsotest/passall proc(pl1log) ~
TSOTEST LOGON IN PROGRESS AT 10:00:23 ON JULY 7,1978
NO BROADCAST MESSAGES
CPU- 00:00:01 EXECUTION- 00:00:16 SESSION- 00:00:24
READY

To end a terminal session the LOGOFF command can be entered.

Example 5.2.2:

- 11 -

5.3 The HELP command

The HELP command provides the user with information about all
other TSO commands. At the most general level the user can
enter :

help@

This will cause the user.to receive a list of all commands and a
brief explanation of their functions. If the user wants all the
information available on a specific command, for example EDIT,
the following should be entered:

~edit@
If one wants.only the function, syntax, or operands, of the EDIT
command, one of the following should be entered:

~ edit function~
help edit syntax
.help edit operands R

- 12 -

5.4 Entering and manipulating data

5.4.1 TSO data set naming conventions

Almost all system applications are concerned with the processing
of data. Therefore, it is important to know how to enter data
into the system and how to modify, store, and retrieve data
after it has been entered [4].
Any collection of related ~ata treated as a unit is called a
data set. For example, a 'dat>:~ set may contain:
- text used for information storage and retrieval,
- a source program,
- data used as input to a program.
To uniquely identify each data set stored in the system it must
be given a unique name. The system then uses that name to
identify the data set whenever it is to be accessed. In TSO a
data set name consists of three fields separated by a period:

1. The user identification
2. The user supplied name
3. A descriptive qualifier

Example 5.4.1.1:

~otest. a~ha. pl~

identification user/ descriptive
qualifier supplied name q~alifier

Each field consists of one through 8 alphanumeric characters and
must begin with an alphabetic character.
The identification qualifier is the user identifaction
within ~~e LOGON command. The descriptive qualifier
the type of data contained in the data set. A
descriptive qualifiers kn~~n to TSO is given below.

Descriptive qualifier Data set conte~ts

ASM Assembler program
COBOL COBOL program
DATA Uppercase text
FORT FOHTRAi~ program
LIST Listings
TEXT Uppercase and Lowercase text
LOAD Load module
OBJ Object mo.dule
PLI PL/1 program

Fig. 5.4.1.1 Descriptive qualifiers

- 13 -

specified
specifies
subset of

collsvs
Text Box

\'lhen a data set is created only the user supplied name has to be
specified. The system supplies automatically the identification
qualifier and prompts the user for the descriptive qualifier
(pro~pting is the req~est of the system to tile user to supply
missing information).
The TSO naming conventions also apply to partitioned data set§.
A partitioned data set contains data sets as data. These data
sets are called members.
Each member is identified by a member name and can be referred
to separately. The me~ber name is enclosed within parentheses
and ap?ended to the end of the name of the partitioned data set.

Example 5.4.1.2:

.tsotest. alpha .pli (program1)
'~------ '\

partitioned data set name member name

Example 5.4.1.3 shows a list of valid data set names in the
manner in which the user might have specified them.

Exa~ple 5.4.1.3:

tsotest.alpha(program1)
alpha(program2)
beta
alpha.pli

tsotest.gamma

5.4.2. Creating and editing a d~ta set

One way to create a data set is by using the EDIT command.

Example 5.4.2.1

READY
edit alpha.pli(prog1) new
INPUT
00010
00020

ex~le : e; proc options (main);

.
oo15o Bd
00160 ~~
EDIT

-~®
SAV~ end C
READ

example;

- 14 -

~ For the input of PL/1 programs the user must always leave
a blank as the first character of each line.
On an output listing at a terl'linal the system ~Till insert
another blank between the line number and the first character.
Thus, in the case of a PL/1 program which is listed, there will
appear to be two blank characters at the beginning of each line.

In the above example the user wishes to create a member (calling
it PROG1) of a data set (calling it ALPHA.PLI). To do so the
user enters the EDIT command with the NEW operand. The NEN
operand specifies that a new data set is to be created. The
systems responds to this with the InPUT message followed by the
first line number. After the user has typed in his first input
line the system prints the next line number. In the next line
the user wants to insert a space line so he has to type at least
one space.
This goes on up to line 00160 where the user strikes the RETURN
key immediatly following the line number. This means that the
user has reached the end of the data he wanted to enter. The
system responds with the EDIT message. The user now has the
possibility to use the EDIT subcommands to update, list, delete
or to save the data set. After giving the SAVE subcommand the
system still remains in EDIT mode. To switch back to the
command mode the user types in the END subcommand of EDIT. The
system sends the message READY.
The next example shows how to use the CHANGE, LIST, DELETE and
INPUT subcommands of EDIT to edit an existing data set called
EX.PLI.

Example 5.4.2.2 :

edit ex.pli old
EDrT ----
list fcR\
0001 o'-Y EXAHPLE : PROC OPTIONS (riAIN) ;
00020
00030
00040
00050

DECLARE SUH BINARY FIXED(31,0),
I BINARY FIXED(31,0);

smt=O; I=1;
DO NHILE (I LE 10);

SUM=SUU+I; I=I+1;
END;
PUT EDIT ('SUM= ',SUM) (A,F(10));

END EXAMPLE;

00060
00070
00080
00090
00100
00110
00120
END OF
change
delete
1nput
INPUT
00102
00104@

DATA
70 ~/1000/
50 CR
102 @

put edit ('processing finished')

- 15 -

(A);§

EDIT
list@
00010 EXAHPLE PROC OPTIONS (MAIN);
00020
00030 DECLARE SUM BINARY FIXED(31,0),
00040 I BINARY FIXED(31,0);
00060 SUM=O; I=1;
00070 DO WHILE (I LE 1000);
00080 SUM=SUM+I; I=I+1;
00090 END;
00100 PUT EDIT ('SUM= ',SUM) (A,F(10));
00102 PUT EDIT ('PROCESSING FiniSHED') (A);
00110
00120 END EXAi1PLE;
END OF DATA
save@
SAVEJl,
~I}_d_(£_~
READY

5.4.3 Reserving a data set.

The installation policy of the JRC computing centre is that data
sets created with the F.DIT command are normally only kept until
the end of the session. To obtain a longer reservation the user
can use certain command procedures (a command procedure is a set
of TSO co~ands and optionally subcommands which are executed
upon calling of the command procedure). One possible way of
reserving and creating a data set using a command procedure is
shown below •

. ~e.~~--5_. 4_~3 !...!.:
READY
creares ex.pli user01 lcRl
,IKJ56234I ATTR-LIST $@)11321 NOT FOUND
IKJ56247I UTILITY DATA SET NOT FREED IS NOT ALLOCATED
EX.PLI

RECFM-LRECL-BLKSIZE-DSORG-CREATED---EXPIRES--SECURITY
FB 80 3120 PS 07/07/78 00/00/00 NONE
VOLUME --
USER01

TO TERHINATE, REPLY AT ANY TIME 'END' OR 'STOP'.
~O~OU WANT TO RESERVE, INQUIRY OR STOP? (REPLY R,I OR S)

SPEGIFY AUT.NO. AND PROGR.NO.
• • • • • • • • (8 NUMERICS)
14550823 rcro
SPECIFY T'im" VOLUf.tE SERIAL NUMBER.
• • • • • • (6 ALPIIANUMERICS)
useroa <Btl
SPECIFY~E DATA-SET NAME (FULLY-QUALIFIED DSNAME).
tsotest.ex.pli ~
SPECIFY THE EXPIRATION DATE (DAY/MONTH/YEAR) •

- 16 -

•••••• (6 NUMERICS)
010875@)
YOUR DATA-SET IS N0\'7 RESERVED.
DO~OU WANT TO RESERVE, INQUIRY OR STOP?
s 189
READY
edit ex.pli £!.£_~
EDIT
input@
INPUT
00010 example: proc option (main)

(REPLY R,I OR S)

First the user types in CREARES (the name of the command
procedure) g~v~ng it as operands the name of the data set he
wants to create and to reserve and the name of the volume the
data set is supposed to be stored on (the following volumes are
available:
USERXX with XX= Oa/Ob/Oc/Od/Oe/Of/Og).
Now the system interacts with the user as shown in the example
and finally sends the message READY indicating the completion of
the work. The user now types in the EDIT command using the OLD
operand and after he typed in the subcommand INPUT things are
going the same way as described in section 5.3.2.
To get more information on the usage of the CREARES command
procedure the following command can be used:

READY
help creares @
Installation policy with respect to reservation and accounting
of data sets is described in the installation notes in the
section 'PROC NOTES (LIBRAIRIES PRIVEES),PAG.H.1-1'.

5.4.4 Printing a data set on the line printer

Because it ~ight be very time consuming to list large data sets
on the user's terminal, certain command procedures are provided
to print a data set on the line printer. The example below
serves as a first introduction into the usage of the LST command
procedure.

- 17 -

collsvs
Text Box

Example 5.4.4.1:

READY
lst ex.pli fiO
IKJ580I DATA ~T LS$T.$SCR$A NOT IN CATALOG
SAVED
IKJ56247I UTILITY DATA SET NOT FREED, IS NOT ALLOCATED
TO TERMINATE' REPLY AT ANY TIME I END I OR I STOP I •

SPECIFY AUT.NO. AND PROGR.NO.
•••••••• (8 NUMERICS)
14550823@
SPECIFY BOX NO., JOBNAME SUFFIX AND PROGRAMMER'S NAME
•••••••••••• (3 NUMERICS, 1 ALPHANUMERIC AND MAX.16
ALPHANUMERICS)
9 99a--donald duck ~
YOUR JOB IS NAMED 1 TSOTESTA' AlJD HAS BEEN PASSED TO HASP.
READY
To get more informations on the LST command procedure the
following command can be used:

READY
_!!elp lst@

5.5 Programming at the terminal

5.5.1 Allocating data sets

A program in a progra~inq language may be thought of as a
realization of a function f which, given as input a set of
values called x, delivers as output a set of values called y,
hence y=f(x). The output set y is computed by applying the
function f to its input set x.
From the point of view of the operating system those sets are
caTled data sets (see section 5.4.1) and are known to the
operating system by their data set names.
From the point of view of program f those sets .are called files
and are known to the program f by their file names.
Now the question arises: How does a program like program f know
which data set it has to take as its input file and which data
set it has to take as its output file?
Two solutions are possible :

- the allocation is made by name that is the file name must
be the same as the data set name,
- the allocation is made through a command, which provides a
link between the name of the file and the name of the data
set.

The last solution which offers more flexibility is used in TSO
and the command that does it is the ALLOCATE command.
But besides establishing the link between files and data sets
the ALLOCATE command can be used also to create a data set.
This is important with respect to output data sets.

- 18 -

Example 5.5.1.1

READY
free file(sysin,sysprint) ~
READY-
allocate file(sysin) dataset(in.data) old~
READY --
alloc file(sysprint) da(out.data) ~ block(SOO) ,space(10) § READY ---- ---
~ex.pli pli@

READY
free file (sysin,sysprint) @
READY--

file (sysin) dataset (*) § allocate
READY

~taset(*)@ allocate file(sysprint)
READY -- _

~ ex.pli _pli(§:")

READY

In example 5.5.1.1 a program EX.PLI is executed. Its input file
is called SYSIN and its output file is called SYSPRINT.

EX.PLI is executed twice, the first time all input data is taken
from data set IN.DA~A and its output data is placed in data set
OUT.DATA. The second time all input ddta is taken from the
terminal and output is listed on the terminal.

The first FP~E command is used to break any predefined file
allocation (tais might be the case, since SYSIN and SYSPRINT are
the standard PL/1 input and output files). The next ALLOCATE
command now provides a link between file SYSIN and data set
IN.DATA. The second ALLOCATE does the same with file SYSPRINT
and data set OUT.DATA. But since the data set OUT.DATA does not
yet exist, it must be created. This is done by using the NEW
operand. The BLOCK and SPACE operands then tell the system how
much storage space is needed, that is 10 blocks witi1 a size of
800 bytes for each block.

After this is done program EX.PLI can be started.

After execution is finished the files SYSIN and SYSPRINT are
freed again and now are assigned to the terminal (DATASET(*) is
defined to mean the terminal). Program EX.PLI can be started
once more.

Section 5.6 shows two complete terminal sessions.

- 19 -

5.5.2 Compiling, link editing and executing a program.

A digital computer can be thought of as
and interpreting a sequence of items of
its memory and performing a sequence of
the information items being scanned. The
information being scanned is normally
computer memory and is referred to as the

a device for scanning
information stored in
actions determined by

sequence of items of
stored in the main

instruction sequence.

Interpretation of successive instructions of an instruction
sequence which constitutes a program is referred to as execution
of the program [7].

Programs which can be directly executed by the computer are said
to be in internal machine language. However, programs are
normally specified by the programmer in some kind of
problem-oriented language-. To execute these programs they first
have to be translated into an instruction sequence in the
internal machine language. The translation can be carried out
by a computer and is known as compiling. The translation
program is called a compiler.

If any program would be translated as a whole and if any
translated program was able to be executed immediatly then
compilation could be perfor.ned as described above. However, in
most instances a program consists of several parts Mlich are
compiled independently and stored in their translated form for
later use. Therefore, compilation does not result in programs
written in machine language but in programs written in an
intermediate language called object language. The different
independently compiled parts of a program are known as ob~ect
modules. The program which processes object modules toink
edit them is called the linkage editor. The output of the
linkage editor is called a.load module. To place a load module
into the main memory for execution a program called loader has
to be used. Fig. 5.5.2.1 summarizes the different steps in
preparing a program for execution.

- 20 -

·~~~~":\
t-\..-1 .. I~)

/

~---

/

c~~:,J.:1
Fig. 5.5.2.1 Preparing a PL/1 program for execution

- 21 -

In TSO several commands are provided to compile, link edit,
load, and execute programs at the terminal. TSO also allows the
use of other programs, such as utilities, at the terminal. That
is, instead of taking a job to the computer room to run it under
the operating system, TSO commands can be used to enter it
through the terminal. The followinq examples shows three ways
of executing a PL/1 program called EX.PLI.

Example 5.~~~] :

RRADY
run ex.pli _£!!...~

READY

The RUN command can be used to compile, link, load, and execute
the source statements ~ontained in data set EX.PLI (the
descriptive qualifier PLI tells the system that the T-'L/1
compiler has to be used).

Example 5.5.2.2.

READY
pli ex. pli ..£!i_ ®

READY
loadgo

READY

ex.obj ~

The PLI command calls the PL/1 compiler to compile the program
contained in EX.PLI. The compiler produces a data set called
EX.OBJ which contains the t'bject module. The LOADGO command
then can be used to link, load execute the object module
contained in data set EX.OJ3,J.

E};ample 5. 5. 2. 3 :

READY
pli ex.pli ~!)

READY (._~
link ex. obj \!2Y

- 22 -

READY r:;;.._
call ex.load (tempnarne) ~

READY

The PLI command calls the PLil compiler to compile the program
contained in EX.PLI. The LINK command takes the object module
contained in EX.OBJ (\vhich was produced by the compiler) as
input and produces a partitioned data set called EX. LOAD \'7i th
TEMPNAME as member which contains the load module. The CALL
command takes this load module, loads it into main memory and
starts execution.

5.5.3 Background processing.

In the TSO terminology a terminal session is sometimes referred
to as time-sharing __ .iQ!? or foregr9_u_n_c! __ j_Q):?_.
Consequently a job that is executed by the
syste~ is called a background_ jpb2 TSO
possibility to sub:nit jobs for execution in the
portion of the IBM Systeml370 operating systerr .•

Example 5. 5. 3 • 1 :

batch-processing
now offers the
batch-processing

Kno,.m: - data set EX.PL.L \m1cn contains an PLI1 program
- data set IN.DATA which contains the input data

READY
pli ex@

READY
link ex®
READY
edit back ex. cntl new cntl E!9

INPUT
00010 I I exec pgrn=tempname@ --
00020 /lsteplib dd dsname=tsotest.ex.load,disp=(shr,keeDl ~
00030 I I dd dsname=sys1 .plilink ,disp= (shr ,keep) \8Y ~
00040 I /sysin dd dsname=tsotest.in.dat·a,disp= (shr ,keept ~
000 50 I lsysprint dd dsnarne=tsotest. out. data, uni t=3330-1 , (_c!lJ-=::-
00060 11 disp=(new,catlg) ,vol=ser=useroa,space=(!250, (5))~
00070 11 dcb=(recf~=vba,lrecl=125,blksize=1250) ~
00080 I lplidump dd sysout=a@
ooo9o I*@
00100 ~
EDIT
~~
SAVED
end@

- 23 -

READY
~ dataset(in.data,ex.load) ~
READY
submit backex.cntl 6D
TO TEIUUNATE, REPLY"KT ANY TIME 'END' OR 'STOP'.
SPECIFY AUT,NO. AND PROGR.NO.

14550823 CR
••••••••ff)J NUMERICS)

SPECIFY B NO., JOBNAME SUFFIX AND PROGR&~~R'S NAME.
••••••••••••• (3 NUMERICS, 1 ALPHANUMERIC AND MAX. 16
ALPHANUMERICS)
999a --micky.mouselciD
YOUR JOB IS NA.~D •'li-(oTESTA' AND HAS BEEN PASSED TO HASP.
READY

READY
IEF404I TSOTES~ ENDED
list out.data C
IKJ52827I OUT.D TA

READY

In the above example the user wants to run as background job a
PL/1 program contained in data set EX.PLI. As input data set
the already existing data set IN.DATA will be used. As output
data set a new data set to be paMed OUT.~ATA will ~e created.
First the user has to produce a load module of the PL/1 program.
This he does with the PLI and LINK cor.unands. As result a
partitioned data set called EX.LOJI.O and a member called TEMPNAME
is created which contains the resultant load module.
Now the user creates a data set called BACKEX.C!~TL (with EDI'.L')
>~here he puts in the job control state.."'!!ents to define the job.
(If the· first statement of such a job definition is not a JOB
statement, the system generates one when the job· is sub~itted.)
As next step the user frees data set IN.DATA and data set
EX,LOAD, to make L~em available to the background job.
After this has be done the user types the SUBlUT coll$and to
submit the job definition contained in data set BACKEX .• Ci:UTL tc
the !J.:\tch-processing portion of the l'3M System/370 Operating
System. The user now is pronpted to supply additL:mal
information needed to complete tl1e Jon· card generation. After
the following READY message the user is free to do some other
work while his job is executed in the background.
Completion of the background execution is announced by the
message TSOTESTA ENDED. To obtain the content of the created
output data set OUT.DATA the user enters the LIST conmand.

- 24 -

5.6. Example sessions.

5.6.1 PL/1 session.

The task is to write a PL~1 program which given a positive
integer n computes the sum= ~.'- • (To make the user input
available to the system every input has be finished by pressing
the carriage return key of th~used terminal. In the following
example it is illustrated by~.

Turn ON/OFF switch to ON
and then type a C

J54012A R LOGON - --
logon tsotest/passall proc(pl1log) (CRl
TSOTEST LOGON IN PROGRESS AT 10:15~0N JULY 21, 1978
NO BROADCAST MESSAGES
CPU - 00:00:01 EXECUTION- 00:00:13 SESSION- 00:00:22
READY
edit ex.pli new pli@

__..._ INPUT
00010
00020

~am le:proc options(main) ; __ ~c~----~~--~--~~~~~~
~ to enter a blank line type at least one blank

~~(~s~a~c~eL)~~--~~xe_hitting .~
00030 declare sum binary fixed(31,0), ~ ~
00040 i binary fixed (31 ,0), (gp
00050 k binary fixed(31,0), ~CCR'
00060 n binary fixed(31,0); ~
00070 @
ooo8o k=65ooo; (CR1

00090 put edit('eln:~r value of n: 1
) (a) skip;~

00100 s..~t list(n); ®
00110 CR' .
00120 ~while (n gt 0 and n .Je k); ~·
00130 sum=O, i=1; (£B) _
00140 ·do while(i le n); ~R,
M l50 sum+sg.!ll+i; \£!)
00160 end; l_fR_,
00170 put editr-rn= 1 ,n, 1 sum= 1 ,sum) (a,f (10) ,a,f (1QJ.; ~
00180 put edit('enter valye of n: 1

) (a) skip; ~
00190 get l~9t(n); ~
00200 ~nd; (£!y
00210 ·~
00220 put edit(1 processing stopped on n= ',n) (a,f(10));
00230 @ '
00240 end exam le; CR'
00250 ·~·to leave t e ~nput mode and to go back to the edit mode
hit immediatly@ without typing any blank (space)
EDIT ~ -
save\f_!Y
SAVED

- 25 -

list@
00010 EXAHPLE: PROC OPTIONS (ftiUN);
oono
00030 DECLARE SUH
00040 I
00050 K
00060 N

1<=65000;

BINARY
BINARY
BINARY
BINARY

FIXED(31 ,0),
FIY.ED(31,0),
FIXED (3 1 , 0) ,
FIXED(31 ,0);

0007C
00080
00090
00100
00110

PUT EDIT (1 ENTER VALUE OF' N: 1
) (A)

GET LIST(N);

00120 DO NHILE(N GT 0 AND N LE K);
00130
001110

sur!=O, I=1 ;
DO WHILE (I LE N);

00150 SUH+.3U~!+l;
00160 E)ID;

f>KIP;

00170 PUT EDIT('N= ',N,' SUt-'l= ',SUH) (.!'I.,F(10),A,F(10));
00180 PUT EDIT('I!~TER VALUE OF N:') (A) SKIP;
00190 GET LIST(N);
00200 I!ND;
00210
00220 PUT r::DIT('PP..C·CESSING STOPPED ON N= ',)!) (A,F(10));
00230
00240 END EXAHPLE;

END~ OATh
end C.
READ.
pli fJX@
l'L/I OPTIMIZF.R V1 R3.0 PTF 65 TH1E: 10.28.18 Dl\TE: 21 JULY 78
COMPILER Dil\G~lOSTIC HESSAGES OF SEVgftiTY ··'I AUD ABOVE
ERROR ID L # NUMBER lffiSSAGE DESCR:PTION
SEVI::HE i'.~TD EPROR DI.l\GNOSTIC r~SSAGES
IEL0399I E 130 SEtHCOLO~ hSSU~fED
!EL0327I S 130.2 INVALID ~YNTAX.
IEL0304I S 150 IHVALID SYNTAX AFTER 'SUM'.
tffiSSAGES SUPPRESf:ED BY ':'HE FL."),r; OPTION: 2
END OF COHPIL~R DTI\GNC•S':':'IC ~!ESSAGES
COMPILE TIME 0.00 MINS SPILL FILE:
COHPILATION ENDF.D BY 'NOCOHPILE' OPTI<'N
READY

- 26 -

AFTER 'SUM=O'.
I' 1=1' IGN0RED.

I ~:.UM+SUH+ I I IG1TORED.
I.

0 RECORDS, SIZl n151

edit ex. pli old pli @
EDIT
list 120 2000 (cR)
J0120 DO WHILE'(N G'J' 0 AlTO N LE :·{);
00130 SUH=O, I=1;
OOHO DO •vHILE(I LE N);
00150 SUM+SUM+I;
00160 END;
00170 PUT EDIT('N= ',N,' SUI-t= ',SUM) (A,F(10),A,F(10));
00180 PUT EDIT('ENTER VALUE OF i~:') (A) SKIP;
00190 GET LIST(N);
00200 END;
00210
00220 PUT EDIT('?ROCESSING STOPPED ON N= ',N) (A,F(10));
00230
00240 END EXAHPLE;
END OF DATA .
change 130 I,/; I@
list 130@
00130 sum=O; i=1;
change 15Q_j+l=l@
list 150 ~
00150 SUM=SUM+I;
input 151 1 <2;)
INPUT
001 51 ,
00152(8y
EDIT .

i=i+1; ~)

list (0)
00010 EXAMPLE: PROC OPTIONS(~~IN);

DECLARE Sm~ BINARY
I BIHARY
I< BinARY
U BINARY

K=65000;

FIXED (31 ,0) I

FIXED(31,0),
FIXED(31 ,0) I

FIXED(31,0);

?UT EDIT (I ENTER iTALGE OF N: I) (J,)
GET LIST(N);

!JO NH!LE (N GT 0 A'.JD H LE K) ;
SUM=O; I=1;
DO l'l'HILE (I !~F. ~n ;

SUH=SU~HI;

I=I+1;
EUD;

SKIP;

00020
00030
00040
00050
00060
00070
00080
00:19('
00100
00110
00120
00130
001110
00150
00151
00160
00170
00180
00190
00200
00210

PUT EDIT('U= 1 ,N, 1 SC.M= 1 ,Sur1) (A,F(10),l>,F(10));
PUT EDIT ('ENTER W\I,UE OF N: 1

) (A) SKIP;
GET I,IGT (N) ;

END;

0n20 PUT EDIT(1 PROCESSING STOPPED ON i~= 1 ,N) (A,F(10));
00230
00240 END BXAMPLE;
lmD OF DATA
save@

- 27 -

SAVED
end tCro
RE.IIDY
run ex.pli plil(;)
PL/I OPTIMIZER \r!R3.0 PTF 65 TIME: 11.01.07 DATE: 21 JULY 78

NO MESSAGES OF SEVERITY W AND ABOVE PRODUCED FOR THIS
COnPILATION_
MESSAGES SUPPRESSED BY THE FLAG OPTION: 2 I.
COMPILE TIME 0.01 MINS SPILL FIP:: 0 RECORDS, SIZE 4051

ENTER VALUE OF N: 1 0 @
N= 10 SUM= 55
ENTER VALUE OF N:100 ~
N= 100 SUM= 5050
ENTER VALUE OF N: 11111 <QY
N= 11111 SUM= 61732716
ENTER VALUE OF N: 0 ~
PROCESSING STOPPED ON N= 0
READY .
IEC 1 3 0 I PL 1 DUMP DD STATEME~~T MISSING
IB~tO 1 3 I SYSUSER NO SUITABLE PLIDUMP DD CJI.O..D
edit in.data new nonum@
INPUT
10 100 a
~111 o@
~IT
save@
SAVED
end CcRl .
H.EAD'r"
free file(sysin,sysprint)~
READY
allocate file(sysin) dataset(in.data) old~
READY
alloc file(sysprint) da(out.data) new block(SOO) space(10) ~
READY
load<JO ex.obj@

READY ~ list out.data CR
IEC130I pl1dum_ dd statement missing
IBM013I SYSUSER NO SUITABLE PLIDUMP DD CARD
OUT.DATA
ENTER VA LUE OF
ENTER VA LUE OF
ENTER VA LUE OF
ENTER VA LUE OF
READY
logoff@

N:N= 10 sun=
N:N= 100 SUH=
N:N= 11111 SUM=

55
5050

61732716
N:PROCESSING STOPPED ON N= 0

T OTEST LOGGED OFF TSO AT 14:30
OFF sw1tcfi- to OFF' ,

:31 ON JULY 21, 1978+·-

---------. __)

- 28 -

5.6.2 FORTRAN session.

The task is to write a FORTRAN program which given a positive
integer n computes the sum= ~L

'-1

(To make the user input available to the system every input has
to be finished by pressing the carriage return key of t~e used
terminal. In the follovling example it is illustrated by (~R).

/T:~: -ONfOFF ~witch to ON -,
~_typ~~@

Y.N:73Z2ZG : RU:S VI,IR
IKJ53020A ENTER LOGON _
logon tsotest/passall proc (fg1log) (eR
TSOTEST LOGON IN PROGRESS AT 09:29:37 ON AUGUST 1, 1978
NO BROADCAST MESSAGES
CPU - 00:00:01 EXECUTION - 00:00:24 SESSION - 00:00:48
READY
edit ex.fort new fortgi'CR
INPUT
00010 integer*4 sum CR
00020 integer*4 i •CR
00030 integer*4 k CR
00040 integer*4 n•CR
00050 k=65000 ',CR _
00060 10 write(6,10) ~R
00070 read(5,80) n•CR.
00080 if(n.le.O) go.to 60 CR
00090 if(n.gt~k)zgo to 60·CR
001 00 sum=O _CR _
00110 do 50 i=1,n'CR
00120 50 sum+sum+i ~R
00130 go to 10 ~R
00140 60 writeJ6,100) n'CR
00150 stop 'CR
00160 70 forma~(' eQter value of n:') CR
00170 80 format(i5) 'eR' _
00180 90 format(' x="-T,i10,' sum= ',i10)~
00190 100 format(' processing stopped on n= ',i10)~
00200~, ~to leave the input mode and to go back to the edit~
mode \hit immediatly e_ without typing any blank (space)
EDIT _
save~

SAVED I

list (eR
00010-
00020
00030
00040
00050
00060
00070

INTEGER*4 SUM
INTEGER*4 I
INTEGER*4 K
INTEGER*4 N
K=65000

10 WRITE(6,70)
READ(5,80) N

- 29 -

00080
00090
00100

IF(N.LE.O) GO TO 60
IF(N.GT.K) GO TO 60
SU)1=0

00110
00120
00130
00140
00150

DO 50 I=1,N
50 SUM+SUM+I

GO TO 10
60 WRITE(6,100) N

00160 70
00170 80
00180 90
00190 100
END Qf. DATA
end(C~"
READY
fort ex@
G1 COMPILER
00000120

STOP
FORMAT (' ENTER VALUE OF N: ')
FORl'1AT (IS) \
FORMAT (' X= ' , I 1 0 ,1 ' SUM= ' , I 1 0)
FORMAT(' PROCESSING STOPPED ON N=

ENTERED
50 SUM+SUM+I

$
01) IGI013I SYNTAX
01) IGI015I * NO END STA.
SOURCE ANALYZED
PROGRAM NAME = l'iAIN

'' I1 0)

* 002 DIAGNOSTICS GENERATED, HIGHEST SEVERITY CODE IS 8
READY

edit ex. fort old fortgi fcR>
EDIT '-
list 120 2000 ~
00120 50 sum+sum+i
00130 GO TO 10
00140 60 WRITE(6,100) N
00150 STOP
00160 70 FORMAT ('ENTER VALUE OF N:')
00170 80 FOIDiAT (IS)
00180 90 FORHAT(' X= ',I10,' SUM= ',I10)
00190 100 FORMAT(' PROCESSING STOPPED ON N=
END OF DATA _
change 12,.0 /+/=/ @~
list 120~ -
00120 50 SUM=SUM+i
input 121 1 ~~
INPUT
00121 --
00122 (CR
EDIT --

write(6,90) n,sum(CR

input 191
INPUT
00191 -
00192 (ci'
EDIT ..--::.:
list~
00010
00020
00030

•eR "- ,........_
end(~'

INTEGER*4 SUM
INTEGER*4 I
INTEGER*4 K

- 30 -

'' I1 0)

INTEGER*4 N
K=65000

10 WRITE(6,70)
READ(5,80) N
IF(N.LE.O) GO TO 60
IF(N.GT.K) GO TO 60
SUM=O
DO 50 I=1 ,N

50 SUM=SUM+I
WRITE(6,90) N,SUM
GO TO 10

60 WRITE(r,,100) N
STOP

00040
00050
00060
00070
00080
00090
00100
00t10
00120
00121
00130
00140
00150
00160
00170
001 80
00190
00191

70
80
90

FORMAT (' ENTER VALUE OF N: ')
FORMAT(I5)

100
FOR11AT(' X= ',I10,' SUn= ',I10)
FOR11AT (' PROCESSING STOPPED ON N=
END

END OF DATA
save@
SAVED
end~
READY
run ex. fort fort 1CIU
G1 COMPILER ENTER~
SOURCEzANALYZED
PROGRAMzNAME = MAIN
* NO DIAGNOSTICS GENERATED
ENTER VALUE OF N:
00010 I~
X= 1 o sm1=
ENTER ~LUEzOF N:
00100 ~

55

X= 100 SUM= 5050
ENTER VALUE OF N:

.11111@
X= 11111 SUM=
ENTER YA.J:.UE OF N:
00000 (89

61732716

PROCESSING STOPPED ON N=
READY
edit in.data new nonum@
INPUT

00010 ICR
00100 R
11111 c
00000 ·C
@
EDIT
save I§
SAVED
end@
READY

0

', I10)

free file(ft05f001,ft06f001) ~
READY
allocate file(ft05f001) dataset(in.data) old~

- 31 -

READY
alloc file(ft06f001) da(out.data) new block(BOO) space(10~
READY
loadgo ex.obj@
READY
list out.data@
OUT.DATA
ENTER VA LUE OF N:
X= 10 SUM= 55
ENTER VA LUE OF N:
X= 100 SUM= 5050
ENTER VA LUE OF N:
X= 11111 SUM= 61732716
ENTER VA LUE OF N:
PROCESSING STOPPED ON N= 0
READY
logoff CcRI
j'.SOTEST'J::'OGGED OFF TSO AT 10: 49:54 ON AUGUST 1, 197 8+

(_turn ON/OFF switch to OFF j

- 32 -

collsvs
Text Box

6. References.

[1] Brinch Hansen, P. Operating System Principles,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.

[2] Habermann, A.N.: Introduction to Operating System Design,
SRA, 1976.

[3] Corbato, F.J., Merwin Daggett, M., and Daley, R.C.:
An experimental time-sharing system, Proc. AFIPS Fall
Joint Computer Conf., pp. 335-44, f'lay 1962.

[4] IBM System/360 Operating System: Time Sharing Option
Terminal User's Guide GC28-6763-X.

[5] IBM System/360 Operating System: Time Sharing Option
Command Language Reference, GC28-6732-X.

[6] JRC - Ispra Computing Centre Newsletter, pp. 16-25,
Sept. 1974.

[7] Wegner, P. Programming Languages, Information
Structures and Machine Organization, McGraw-Hill, 1968.

- .n -

collsvs
Text Box

collsvs
Text Box

